WO2018088424A1 - リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法 - Google Patents

リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法 Download PDF

Info

Publication number
WO2018088424A1
WO2018088424A1 PCT/JP2017/040233 JP2017040233W WO2018088424A1 WO 2018088424 A1 WO2018088424 A1 WO 2018088424A1 JP 2017040233 W JP2017040233 W JP 2017040233W WO 2018088424 A1 WO2018088424 A1 WO 2018088424A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
containing zirconium
zirconium phosphate
composition ratio
powder
Prior art date
Application number
PCT/JP2017/040233
Other languages
English (en)
French (fr)
Inventor
中島 靖
中山 享
Original Assignee
第一稀元素化学工業株式会社
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社, 独立行政法人国立高等専門学校機構 filed Critical 第一稀元素化学工業株式会社
Priority to US16/309,596 priority Critical patent/US20190334200A1/en
Priority to CN201780037620.4A priority patent/CN109311670A/zh
Priority to JP2018550226A priority patent/JP6864323B2/ja
Priority to EP17868819.8A priority patent/EP3539925A4/en
Publication of WO2018088424A1 publication Critical patent/WO2018088424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium-containing zirconium phosphate useful as a lithium ion conductive solid electrolyte material for an all-solid battery, and a method for producing the calcined powder and sintered body thereof.
  • lithium-ion batteries used in portable electronic devices such as mobile phones and laptop computers are more advantageous than other batteries in terms of energy density.
  • the application to the electric vehicle and the hybrid vehicle which are the source is researched.
  • the lithium ion secondary battery currently on the market mainly uses an organic electrolyte as an electrolyte, but there are concerns about leakage and corrosion, and there are problems such as being flammable. .
  • An inorganic solid electrolyte using zirconium phosphate is one of lithium ion conductive materials that can be used instead.
  • An inorganic solid electrolyte is a material that is chemically and electrochemically safer than an organic electrolyte, and is considered to be an effective material for practical use.
  • a phosphate compound such as zirconium phosphate undergoes thermal decomposition at a high temperature of 1200 ° C. or higher, and phosphorus (P) is evaporated (Patent Document 1).
  • P phosphorus
  • Patent Document 1 a phosphate compound such as zirconium phosphate undergoes thermal decomposition at a high temperature of 1200 ° C. or higher, and phosphorus (P) is evaporated.
  • Patent Document 1 phosphorus
  • sodium zirconium phosphate shows a weight loss of as much as 36%.
  • the alkaline earth metal phosphate compound having a specific composition is deteriorated by a thermal cycle deterioration test by raising and lowering temperature between 100 ° C. and 1260 ° C., for example.
  • Patent Document 1 discloses that RZr 4 (PO 4 ) 6 (R is a cation of one or more periodic table IIa group) is obtained by holding a sintered body at a temperature equal to or higher than the phase transition temperature and then rapidly cooling it.
  • the phosphate compound of the composition of the high temperature type RZr 4 (PO 4 ) 6 (R is one or more cations of the periodic table IIa) having a crystal structure having the symmetry of R3c has thermal expansion and contraction. It has been shown that there is no low thermal expansion.
  • this phosphate compound is produced by a mixing method using (ZrO) 2 P 2 O 7 , ZrP 2 O 7 , RCO 3 , ZrO 2 , R 2 HPO 4 , NH 4 H 2 PO 4 and the like as starting materials. Because of this method, an impurity phase other than the target crystalline phase is generated in the sintered body, and the thermal cycle deterioration test increases the size of the sintered body, changes the thermal expansion coefficient, and lowers the strength. There is a problem.
  • Patent Document 2 discloses a sintered all solid state battery that has a good capacity characteristic that can secure a large capacity even when used in a high temperature atmosphere, and that has good storage stability and can suppress deterioration of battery characteristics as much as possible. It is disclosed.
  • the main component of the composition of the solid electrolyte material is the general formula Li x M1 y M2 z (PO 4 ) 3 (where M1 is selected from Ti, Ge, and Zr). And at least one selected from the group consisting of Mg, Ca, Ba, Al, Cr, In, Sc, Y, and Hf).
  • M1 is selected from Ti, Ge, and Zr
  • Mg is selected from Ti, Ge, and Zr
  • Mg, Ca, Ba, Al, Cr, In, Sc, Y, and Hf are characterized by satisfying 0.5 ⁇ x ⁇ 4, 0.5 ⁇ y ⁇ 2, and 0 ⁇ z ⁇ 1.5, respectively.
  • Patent Document 2 there is no description that focuses on the phosphoric acid concentration or the contents that specify a certain composition range without fixing the phosphoric acid concentration (composition).
  • the present invention provides a lithium-containing zirconium phosphate that is useful as a lithium ion conductive inorganic solid electrolyte material and excellent in high-temperature heat resistance and mechanical strength, and a method for producing the calcined powder and sintered body thereof. With the goal.
  • the present inventor has found that the above object can be achieved according to lithium-containing zirconium phosphate having a specific composition ratio obtained by a specific manufacturing method, and completed the present invention. It came to do.
  • this invention relates to the manufacturing method of the following lithium containing zirconium phosphate, its calcining powder, and a sintered compact.
  • the M 2 is selected from the group consisting of Zr alone or Zr and Al, Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the composition ratio of Zr among the composition ratios of M 2 is 1.47 to 2.00.
  • a lithium-containing zirconium phosphate characterized by that. 2. Item 2. The above-mentioned item 1, wherein the composition ratio is Li: M 1 : M 2 : P 1.1 to 1.6: 0.15 to 0.35: 2.0: 3.05 to 3.50. Lithium-containing zirconium phosphate. 3.
  • Item 4. The lithium-containing zirconium phosphate according to any one of Items 1 to 3, having a resistivity at room temperature of 100,000 ⁇ ⁇ cm or less.
  • Item 5 The lithium-containing zirconium phosphate according to any one of Items 1 to 4, having a three-point bending strength of 20 MPa or more. 6).
  • At least one consists of a composition ratio of Zr among the composition ratio of the M 2 is 1.47 to 2.00 is, (4)
  • Each raw material powder made of an inorganic compound, which is a Li supply source, M 1 supply source, M 2 supply source and P supply source, is mixed, and the obtained mixed raw material powder is calcined at a temperature of 800 ° C. or higher. Having steps, A method for producing a calcined powder of lithium-containing zirconium phosphate. 7). After obtaining the calcined powder by the method for producing a calcined powder according to Item 6, the calcined powder is molded and sintered at 800 to 1500 ° C. to obtain a sintered body. The manufacturing method of the sintered compact of lithium containing zirconium phosphate in any one of these.
  • the lithium-containing zirconium phosphate of the present invention has excellent high-temperature heat resistance and mechanical strength, and is useful as a lithium ion conductive inorganic solid electrolyte material. Moreover, the manufacturing method of the sintered compact of the lithium containing zirconium phosphate of this invention is suitable for manufacture of the lithium containing zirconium phosphate of this invention which has the said characteristic.
  • the lithium-containing zirconium phosphate of the present invention (sintered body or powder thereof) (1)
  • M 1 is at least one selected from the group consisting of Ca, Mg, Sr and Ba, and when two or more types are contained, the total composition ratio is 0.10 to 0.35.
  • the M 2 is selected from the group consisting of Zr alone or Zr and Al, Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the composition ratio of Zr among the composition ratios of M 2 is 1.47 to 2.00. It is characterized by that.
  • means “more than or less” unless otherwise specified.
  • a to B indicates “A to B”.
  • room temperature in the present specification indicates “15 to 35 ° C.” designated as standard atmospheric conditions used for measurement and testing in Japanese Industrial Standards (JIS C 0068 60068-1). Show.
  • the lithium-containing zirconium phosphate of the present invention having the above characteristics is excellent in high-temperature heat resistance and mechanical strength, and is useful as a lithium ion conductive inorganic solid electrolyte material.
  • the lithium-containing zirconium phosphate of the present invention is a mixture of raw material powders made of inorganic compounds, which are a Li supply source, an M 1 supply source, an M 2 supply source, and a P supply source. Calcination powder is obtained by calcination at a temperature of °C or higher, and then the calcination powder is formed and sintered at 800 to 1500 ° C (including pulverization after sintering as necessary). It is done.
  • Method for producing calcined powder of lithium-containing zirconium phosphate The method for producing calcined powder of lithium-containing zirconium phosphate of the present invention (hereinafter also referred to as “method for producing calcined powder”) (1)
  • M 1 is at least one selected from the group consisting of Ca, Mg, Sr and Ba, and when two or more types are contained, the total composition ratio is 0.10 to 0.35.
  • the M 2 is selected from the group consisting of Zr alone or Zr and Al, Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. at least one consists of a composition ratio of Zr among the composition ratio of the M 2 is 1.47 to 2.00 is, (4)
  • Each raw material powder made of an inorganic compound, which is a Li supply source, M 1 supply source, M 2 supply source and P supply source, is mixed, and the obtained mixed raw material powder is calcined at a temperature of 800 ° C. or higher. Having steps, It is characterized by that.
  • An inorganic compound can be used as each raw material powder.
  • Li supply source various inorganic compounds containing Li can be used, and examples thereof include at least one selected from the group consisting of LiOH, LiOH.H 2 O, Li 2 CO 3 and LiNO 3 .
  • the M 1 source is at least one source of Ca, Mg, Sr and Ba, and various inorganic compounds containing these elements can be used.
  • the M 2 source may be optionally included in addition to the essential Zr, at least one of Al, Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu
  • the source of As the essential Zr supply source various inorganic compounds containing Zr can be used, and examples thereof include at least one selected from the group consisting of H 2 Zr 3 , ZrO 2 , ZrOCl 2 and Zr (SO 4 ) 2. .
  • the optional component can be used a variety of inorganic compounds including each element, for example, Al 2 O 3, Sc 2 O 3, Y 2 O 3, La 2 O 3, Pr 6 O 11, Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 and Lu 2 O And at least one selected from the group consisting of 3 .
  • various inorganic compounds containing P can be used, and examples thereof include at least one selected from the group consisting of H 3 PO 4 , Li 3 PO 4 and H 3 PO 2 .
  • the composition ratio of M 1 means the total composition ratio when two or more elements are contained.
  • the Zr composition ratio is 1.47 to 2.00, and preferably 1.50 to 2.00.
  • the composition ratio of P is preferably 3.01 to 3.50, more preferably 3.03 to 3.50, and most preferably 3.05 to 3.50.
  • composition ratio of Li: M 1 : M 2 : P is particularly within the range of 1.1 to 1.6: 0.15 to 0.35: 2.0: 3.05 to 3.50 among the above. It is preferable that higher conductivity can be obtained.
  • each raw material of the powder is not limited, but is preferably about 0.3 to 20 ⁇ m.
  • the average particle diameter in this specification is a value measured by a laser diffraction method.
  • the temperature at which the mixed raw material powder is calcined may be 800 ° C or higher, but the calcining temperature can be widely selected from the range of 800 ° C or higher as long as sintering can be avoided. It is preferable that it is below the sintering temperature (or below the sintering temperature).
  • the calcination time can be appropriately adjusted depending on the calcination temperature.
  • the calcining atmosphere is not limited, but usually an air atmosphere may be used.
  • the calcined powder of lithium-containing zirconium phosphate obtained by the calcining has a NASICON type crystal structure of the main constituent phase that can be identified from powder X-ray diffraction measurement.
  • the NASICON-type structure of the calcined powder retains its crystal structure even when it is subsequently sintered.
  • the calcined powder is molded and sintered at 800-1500 ° C. to obtain a sintered product. It is done.
  • the calcined powder is formed, it is formed into a shape such as a pellet by forming it at a pressure of 50 to 250 MPa using a known press such as a die press or CIP.
  • the sintering temperature may be 800 to 1500 ° C., and among them, 900 to 1400 ° C. is preferable.
  • the sintering atmosphere is not limited, but usually an air atmosphere may be used.
  • the sintered body obtained by the above sintering may be pulverized and processed into a powder as necessary.
  • the lithium-containing zirconium phosphate of the present invention obtained by the method for producing a sintered body is (1)
  • M 1 is at least one selected from the group consisting of Ca, Mg, Sr and Ba, and when two or more types are contained, the total composition ratio is 0.10 to 0.35.
  • the M 2 is selected from the group consisting of Zr alone or Zr and Al, Sc, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the composition ratio of Zr among the composition ratios of M 2 is 1.47 to 2.00.
  • the crystal structure of the main constituent phase that can be identified from powder X-ray diffraction measurement is NASICON type.
  • the lithium-containing zirconium phosphate of the present invention has excellent high-temperature heat resistance and mechanical strength, and is useful as a lithium ion conductive inorganic solid electrolyte material.
  • the total in the entire temperature range with 1500 ° C. as the end point is less than 1.0% by weight, more preferably 0.6% by weight or less.
  • the weight reduction rate in this specification is based on thermogravimetry (in the air atmosphere, the heating rate is 10 ° C./min) from room temperature to 1500 ° C. using a differential thermobalance (TG-DTA8120 (Rigaku Corporation)). It is a calculated value.
  • the three-point bending strength is 20 MPa or more, more preferably 21 MPa or more.
  • the 3-point bending strength in this specification is a value measured by a bending strength test method (JIS R1601) of fine ceramics.
  • the resistivity at room temperature is 100000 ⁇ ⁇ cm or less, more preferably 99900 ⁇ ⁇ cm or less.
  • the room temperature resistivity in the present specification is determined by preparing a sintered pellet sample from a calcined powder (particle size of about 0.3 to 10 ⁇ m, preferably about 0.3 to 5 ⁇ m), and then forming an electrode. Then, the upper and lower surfaces of the sintered pellet sample were mirror-polished, and a conductive Ag paste was applied to both surfaces, and then sufficiently dried at 150 ° C. After the dried sintered pellet sample was fixed to the measurement cell, a terminal was connected, and the electrical conductivity was measured by the AC impedance method at room temperature.
  • Examples 1-1 to 1-15 Li 2 CO 3 , ZrO 2 , CaCO 3, and NH 4 H 2 PO 4 were prepared as starting materials, and only predetermined amounts were weighed while changing only the P amount so that the composition shown in Table 1 was obtained after sintering.
  • the calcined powder was molded at a pressure of 100 MPa, and then sintered at a temperature of 800 to 1500 ° C. shown in Table 1 to obtain a sintered body (sample) of lithium-containing zirconium phosphate.
  • FIG. 1 shows a powder X-ray diffraction pattern of the lithium-containing zirconium phosphate obtained in Example 1-4 at room temperature. Also from this illustration, it can be seen that the main constituent phase has a NASICON structure.
  • Examples 2-1 to 2-8 Li 2 CO 3 , ZrO 2 , CaCO 3 and NH 4 H 2 PO 4 were prepared as starting materials, and only a predetermined amount was weighed by changing only the Li amount so that the composition shown in Table 2 was obtained after sintering.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 3-1 to 3-6 Li 2 CO 3 , ZrO 2 , CaCO 3 and NH 4 H 2 PO 4 were prepared as starting materials, and only a predetermined amount was weighed by changing only the amount of M 1 (Ca) so that the composition shown in Table 3 was obtained after sintering. .
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 4-1 to 4-4 Prepare Li 2 CO 3 , ZrO 2 , MgO, CaCO 3 , SrCO 3 , BaCO 3 and NH 4 H 2 PO 4 as starting materials, and change only the type of M 1 so that the composition shown in Table 4 is obtained after sintering. And weighed a predetermined amount.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 5-1 to 5-6 Prepare Li 2 CO 3 , ZrO 2 , MgO, CaCO 3 and NH 4 H 2 PO 4 as starting materials, and change the type and content of M 1 so that the composition shown in Table 5 is obtained after sintering. Weighed quantitatively.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 6-1 to 6-6 Prepare Li 2 CO 3 , ZrO 2 , CaCO 3 , SrCO 3 and NH 4 H 2 PO 4 as starting materials, and change the type and content of M 1 so that the composition shown in Table 6 is obtained after sintering. A predetermined amount was weighed.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 7-1 to 7-4 Prepare Li 2 CO 3 , ZrO 2 , BaCO 3 , SrCO 3 and NH 4 H 2 PO 4 as starting materials, and change the kind and content of M 1 so that the composition shown in Table 7 is obtained after sintering. A predetermined amount was weighed.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Examples 8-1 to 8-24 Starting materials Li 2 CO 3 , ZrO 2 , Al 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , CaCO 3 and NH 4 H 2 PO 4 was prepared, the type of M 1 so as to have the composition shown in Table 8 after sintering were each weighed in a predetermined amount by changing the kind and content of M 2.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Comparative Examples 1-8 Prepare Li 2 CO 3 , ZrO 2 , CaCO 3 and NH 4 H 2 PO 4 as starting materials, and change the contents of M 1 and P so that the composition shown in Table 9 is obtained after sintering. Weighed quantitatively.
  • sample preparation and sample evaluation were performed in the same manner as in Example 1.
  • Comparative Example 9 An aqueous solution of oxalic acid crystals (H 2 C 2 O 4 ⁇ 2H 2 O) was added to an aqueous solution of zirconium oxychloride (ZrOCl 2 ⁇ 8H 2 O reagent) with stirring, and then an aqueous ammonium hydrogen phosphate solution was added and mixed with stirring. After maintaining in a 96 ° C. constant temperature room for 5 days, the obtained reaction product was filtered, washed with water, and then heat treated at 650 ° C. for 3 hours to obtain a zirconium phosphate having a NASICON structure.
  • zirconium oxychloride ZrOCl 2 ⁇ 8H 2 O reagent
  • the obtained zirconium phosphate was dispersed in deionized water, 100 mL of an aqueous solution containing Li and Ca ions was added so as to have the composition shown in Table 9, placed in an autoclave, and water was added for 24 hours under conditions of an autoclave treatment temperature of 250 ° C. A sample was obtained by thermal synthesis treatment.
  • the main constituent phase was NASICON type structure.
  • Test Example 1 (Characteristic evaluation of lithium-containing zirconium phosphate) The lithium-containing zirconium phosphate (each sample) obtained in Examples and Comparative Examples was subjected to composition analysis, weight loss rate measurement by thermogravimetric analysis, three-point bending strength measurement, and room temperature resistivity measurement. The obtained results are shown in Tables 1-9.
  • test method and its evaluation method are as follows.
  • composition analysis For composition analysis, a 10% hydrofluoric acid solution was placed in a 100 L beaker made of Teflon (registered trademark), and each sample was pulverized in a silicon nitride mortar, and then 0.1 g was added and heated and dissolved. The dissolved solution was adjusted to a total volume of 100 ml with a volumetric flask, and the quantitative results were converted into molar ratios using an inductively coupled plasma emission spectrometer.
  • Weight reduction rate Thermal stability is measured by thermogravimetry (atmospheric temperature, heating rate 10 ° C / min) from room temperature to 1500 ° C using a differential thermal balance (TG-DTA8120 (Rigaku Corporation)). Calculated. Considering the use of the lithium ion conductive solid electrolyte material, the weight reduction rate is less than 1.0% by weight, preferably 0.6% by weight or less.
  • the three-point bending strength was measured based on a method for testing the bending strength of fine ceramics (JIS R1601). Considering the use of the lithium ion conductive solid electrolyte material, the allowable range of the three-point bending strength is 20 MPa or more.
  • Room temperature resistivity measurement Room temperature resistivity was determined as follows.
  • a sintered pellet sample was prepared from each calcined powder (particle size of about 0.3 to 10 ⁇ m, preferably about 0.3 to 5 ⁇ m).
  • the upper surface and the lower surface of the sintered pellet sample were mirror-polished, and a conductive Ag paste was applied to both surfaces, and then sufficiently dried at 150 ° C.
  • the dried sintered pellet sample was cooled to room temperature, fixed to a measurement cell, a terminal was connected, and conductivity was measured at room temperature by the AC impedance method.
  • FIGS. 2 and 3 show typical complex impedance plots of the lithium-containing zirconium phosphate of the present invention (FIG. 2 is Example 1-4, FIG. 3 is Example 8-23).
  • FIG. 2 is Example 1-4
  • FIG. 3 is Example 8-23.
  • one arc on the high frequency side and spikes on the low frequency side are observed.
  • the spikes on the low frequency side are considered to be caused by the resistance between the electrolyte and the electrode interface.
  • One arc on the high frequency side appears to be a beautiful arc, but is considered to be an arc that is the sum of the arc caused by the intragranular resistance (high frequency side) and the arc caused by the grain boundary resistance (low frequency side). It is done.
  • the lithium-containing zirconium phosphates of the examples are in any of weight loss rate, three-point bending strength, and room temperature resistivity, considering the use of the lithium ion conductive solid electrolyte material. Even in terms of characteristics, acceptable characteristics are obtained.
  • the composition ratio of the lithium-containing zirconium phosphate is out of the predetermined range of the present invention or the manufacturing conditions are out of the predetermined process of the present invention, the weight reduction rate, three-point bending It can be seen that at least one characteristic of strength and room temperature resistivity does not meet the acceptable range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、リチウムイオン導電性の無機固体電解質材料として有用な、高温耐熱性及び機械的強度に優れたリチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法を提供する。 本発明は、具体的には、リチウム含有リン酸ジルコニウムであって、 (1)組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、 (2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、 (3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00である、ことを特徴とするリチウム含有リン酸ジルコニウムを提供する。

Description

リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
 本発明は、全固体電池のリチウムイオン導電性固体電解質材料として有用な、リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法に関する。
 現在、携帯電話、ノートパソコン等の携帯用電子機器に使われているリチウムイオン電池はエネルギー密度の点で他の電池に比べて有利なため、地球温暖化の問題を背景に二次電池を動力源とした電気自動車やハイブリッド自動車への応用が研究されている。なお、現在市販されているリチウムイオン二次電池は、電解質として主に有機電解液が用いられているが、漏液や腐食の心配があり、また可燃性である等の問題を有している。
 これに代替するリチウムイオン導電性材料の一つとして、リン酸ジルコニウムを用いた無機固体電解質がある。無機固体電解質は有機電解液に比べて化学的、電気化学的に安全な材料であり、実用化に有力な材料と考えられている。
 しかしながら、リン酸ジルコニウムなどのリン酸塩化合物は1200℃以上の高温で熱分解を起こし、リン(P)分が蒸発することが指摘されている(特許文献1)。例えば、1400℃で100時間熱処理した場合には、リン酸ジルコニウムナトリウムは36%もの重量減を示すという問題がある。また、特定組成のアルカリ土類金属のリン酸塩化合物は、例えば100℃から1260℃間の昇降温による熱サイクル劣化試験により劣化することが報告されている。
 一方、特許文献1には、RZr(PO(Rは一種以上の周期率表IIa属の陽イオン)焼結体を相転移温度以上の温度に保持した後、急冷することにより得られた、R3cの対称性を有する結晶構造を有する高温型のRZr(PO(Rは一種以上の周期率表IIa属の陽イオン)組成のリン酸塩化合物は熱膨張も熱収縮もしない低熱膨張性であることが示されている。
 しかしながら、このリン酸塩化合物は、(ZrO)、ZrP、RCO、ZrO、RHPO、NHPO等を出発原料とした混合法による製造方法であるため、焼結体中に目的とする結晶相以外の不純物相が生成し、熱サイクル劣化試験により焼結体の寸法が増加したり、熱膨張係数が変化したり、低強度化するといった問題がある。
 また、特許文献2には、高温雰囲気で使用しても大きな容量を確保できる良好な容量特性を有し、かつ保存性が良好で電池特性の劣化を極力抑制できる焼結式の全固体電池について開示されている。そして、特許文献2の請求項9には、固体電解質材料の組成に関して、主成分が一般式LiM1M2(PO(但し、M1は、Ti、Ge、及びZrの中から選択された少なくとも一種を含み、M2は、Mg、Ca、Ba、Al、Cr、In、Sc、Y、及びHfの中から選択された少なくとも1種を含む。)で、前記x、y、zは、それぞれ 0.5≦x≦4、0.5≦y≦2、0≦z≦1.5を満足することを特徴とすることが記載されている。
 特許文献2において、特にリン酸濃度(組成)を固定化せずに、ある一定の組成範囲を明記した内容、もしくはリン酸濃度に着目した記載はされていない。
特開平3-208807号公報 特開2015-065021号公報
 本発明は、リチウムイオン導電性の無機固体電解質材料として有用な、高温耐熱性及び機械的強度に優れたリチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法を提供することを目的とする。
 本発明者は上記目的を達成すべく鋭意研究を重ねた結果、特定の製造方法により得られる特定の組成比率を有するリチウム含有リン酸ジルコニウムによれば上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は下記のリチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法に関する。
1.リチウム含有リン酸ジルコニウムであって、
(1)組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
(2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
(3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00である、
ことを特徴とするリチウム含有リン酸ジルコニウム。
2.前記組成比率が、Li:M:M:P=1.1~1.6:0.15~0.35:2.0:3.05~3.50である、上記項1に記載のリチウム含有リン酸ジルコニウム。
3.粉末状態のリチウム含有リン酸ジルコニウムを、大気雰囲気下、昇温速度10℃/分で加熱処理した場合のLi及びPの重量の減少量の合計であって、室温を起点とし1500℃を終点とする温度範囲全体での当該合計が1.0重量%未満である、上記項1又は2に記載のリチウム含有リン酸ジルコニウム。
4.室温における抵抗率が100000Ω・cm以下である、上記項1~3のいずれかに記載のリチウム含有リン酸ジルコニウム。
5.3点曲げ強度が20MPa以上である、上記項1~4のいずれかに記載のリチウム含有リン酸ジルコニウム。
6.リチウム含有リン酸ジルコニウムの仮焼粉末の製造方法であって、
(1)前記仮焼粉末の組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
(2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
(3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00であり、
(4)Li供給源、M供給源、M供給源及びP供給源である、無機化合物からなる各原料粉末を混合し、得られた混合原料粉末を800℃以上の温度で仮焼する工程を有する、
ことを特徴とするリチウム含有リン酸ジルコニウムの仮焼粉末の製造方法。
7.上記項6に記載の仮焼粉末の製造方法により仮焼粉末を得た後、前記仮焼粉末を成形し、800~1500℃で焼結することにより焼結体を得る、上記項1~5のいずれかに記載のリチウム含有リン酸ジルコニウムの焼結体の製造方法。
 本発明のリチウム含有リン酸ジルコニウムは、高温耐熱性及び機械的強度に優れており、リチウムイオン導電性の無機固体電解質材料として有用である。また、本発明のリチウム含有リン酸ジルコニウムの焼結体の製造方法は、上記特徴を有する本発明のリチウム含有リン酸ジルコニウムの製造に適している。
実施例1-4で得られたリチウム含有リン酸ジルコニウムの室温での粉末X線回折パターンを示す図である。 実施例1-4で得られたリチウム含有リン酸ジルコニウムの25℃での複素インピーダンスプロットを示す図である。 実施例8-23で得られたリチウム含有リン酸ジルコニウムの25℃での複素インピーダンスプロットを示す図である。 実施例1-4で得られたリチウム含有リン酸ジルコニウムの熱質量分析において、粉末状態のリチウム含有リン酸ジルコニウムを、大気雰囲気下、昇温速度10℃/分で室温(起点)から1500℃(終点)まで加熱処理した際の当該温度範囲全体でのLi及びPの重量の減少量の合計の推移を示す図である。
 本発明のリチウム含有リン酸ジルコニウム(焼結体又はその粉末)は、
(1)組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
(2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
(3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00である、
ことを特徴とする。
 なお、本明細書では特に示す場合を除き「~」は「以上以下」を示す。例えば、「A~B」は「A以上B以下」を示す。また、本明細書における「室温」は、日本工業規格(JIS C 60068-1)において測定及び試験に用いる標準大気条件として指定されている「15~35℃」を示し、例えば「25℃」を示す。
 上記特徴を有する本発明のリチウム含有リン酸ジルコニウムは、高温耐熱性及び機械的強度に優れており、リチウムイオン導電性の無機固体電解質材料として有用である。この本発明のリチウム含有リン酸ジルコニウムは、Li供給源、M供給源、M供給源及びP供給源である、無機化合物からなる各原料粉末を混合し、得られた混合原料粉末を800℃以上の温度で仮焼することにより仮焼粉末を得、その後、当該仮焼粉末を成形し、800~1500℃で焼結(必要に応じて焼結後の粉砕を含む)することにより得られる。
 以下、仮焼粉末の製造方法、焼結体の製造方法を説明した後、リチウム含有リン酸ジルコニウム(焼結体又はその粉末)の特性について説明する。
 リチウム含有リン酸ジルコニウムの仮焼粉末の製造方法
 本発明のリチウム含有リン酸ジルコニウムの仮焼粉末の製造方法(以下、「仮焼粉末の製造方法」ともいう)は、
(1)前記仮焼粉末の組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
(2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
(3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00であり、
(4)Li供給源、M供給源、M供給源及びP供給源である、無機化合物からなる各原料粉末を混合し、得られた混合原料粉末を800℃以上の温度で仮焼する工程を有する、
ことを特徴とする。
 各原料粉末としては、無機化合物が使用できる。
 Li供給源は、Liを含む各種の無機化合物を使用でき、例えば、LiOH、LiOH・HO、LiCO及びLiNOからなる群から選択される少なくとも一種が挙げられる。
 M供給源は、Ca、Mg、Sr及びBaの少なくとも一種の供給源であり、これらの元素を含む各種の無機化合物を使用でき、例えば、MgO、CaCO、SrCO及びBaCOからなる群から選択される少なくとも一種が挙げられる。
 M供給源は、必須のZrに加えて任意に含み得るAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの少なくとも一種の供給源である。必須のZr供給源としては、Zrを含む各種の無機化合物を使用でき、例えば、HZr 、ZrO、ZrOCl及びZr(SOからなる群から選択される少なくとも一種が挙げられる。また、任意成分については、上記各元素を含む各種の無機化合物を使用でき、例えば、Al、Sc、Y、La、Pr11、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種が挙げられる。
 P供給源は、Pを含む各種の無機化合物を使用でき、例えば、HPO、LiPO及びHPOからなる群から選択される少なくとも一種が挙げられる。
 Li供給源、M供給源、M供給源及びP供給源の混合割合は、仮焼後(焼結後も同様)の組成比率がLi:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下の範囲内となる限り特に限定されない。なお、上記Mの組成比率は、二種類以上の元素を含有する場合には合計の組成比率を意味する。上記Mの組成比率のうちZrの組成比率は1.47~2.00であり、1.50~2.00が好ましい。また、Pの組成比率は3.01~3.50が好ましく、3.03~3.50がより好ましく、3.05~3.50が最も好ましい。
 Li:M:M:Pの組成比率は、上記の中でも、特に1.1~1.6:0.15~0.35:2.0:3.05~3.50の範囲内であることがより高い導電率を得ることができる点で好ましい。
 各原料を混合する際は、ポットミルなどの公知の撹拌機を使用することができる。粉末の各原料の平均粒径は限定的ではないが、0.3~20μm程度が好ましい。なお、本明細書における平均粒径はレーザー回折法により測定した値である。
 混合原料粉末を仮焼する温度は、800℃以上であればよいが、仮焼温度は焼結を回避できる限り800℃以上の範囲から幅広く選択することができるが、一般的には後述する焼結温度以下(又は焼結温度未満)であることが好ましい。仮焼時間は、仮焼温度により適宜調整することができる。仮焼雰囲気は限定的ではないが、通常は大気雰囲気でよい。
 上記仮焼により得られるリチウム含有リン酸ジルコニウムの仮焼粉末は、粉末X線回折測定から特定できる主構成相の結晶構造がナシコン型であることが好ましい。仮焼粉末のナシコン型構造は、その後に焼結した場合でも結晶構造は保持される。
 リチウム含有リン酸ジルコニウムの焼結体の製造方法
 上記仮焼粉末の製造方法により仮焼粉末を得た後、仮焼粉末を成形し、800~1500℃で焼結することにより焼結体が得られる。仮焼粉末を成形する際は、金型プレス、CIP等の公知のプレス機を用いて50~250MPaの圧力にて成型することにより、例えば、ペレットなどの形状に成形する。
 焼結温度は、800~1500℃であればよいが、その中でも900~1400℃であることが好ましい。焼結雰囲気は限定的ではないが、通常は大気雰囲気でよい。
 上記焼結により得られる焼結体は、必要に応じて粉砕して粉末に加工してもよい。
 リチウム含有リン酸ジルコニウム(焼結体又はその粉末)の特性
 上記焼結体の製造方法により得られる本発明のリチウム含有リン酸ジルコニウムは、
(1)組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
(2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
(3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00である、
ことを特徴とし、好ましくは、粉末X線回折測定から特定できる主構成相の結晶構造がナシコン型である。
 本発明のリチウム含有リン酸ジルコニウムは、高温耐熱性及び機械的強度に優れており、リチウムイオン導電性の無機固体電解質材料として有用である。
 高温耐熱性については、粉末状態のリチウム含有リン酸ジルコニウムを、大気雰囲気下、昇温速度10℃/分で加熱処理した場合のLi及びPの重量の減少量の合計であって、室温を起点とし1500℃を終点とする温度範囲全体での当該合計が好適な実施態様では1.0重量%未満であり、より好ましくは0.6重量%以下である。なお、本明細書における重量減少率は、示差熱天秤(TG-DTA8120(株式会社リガク))を用いて室温から1500℃までの熱重量測定(大気雰囲気中、昇温速度10℃/分)から算出した値である。
 機械的強度については、3点曲げ強度が好適な実施態様では20MPa以上であり、より好ましくは21MPa以上である。なお、本明細書における3点曲げ強度は、ファインセラミックスの曲げ強さ試験方法(JIS R1601)により測定した値である。
 また、室温における抵抗率が好適な実施態様では100000Ω・cm以下であり、より好ましくは99900Ω・cm以下である。なお、本明細書における室温抵抗率は、仮焼粉末(粒径0.3~10μm程度、好ましくは0.3~5μm程度)から焼結体ペレット試料を調製し、次に電極を形成するために、焼結体ペレット試料の上面及び下面を鏡面研磨し、両面に導電性Agペーストを塗布後、150℃にて十分に乾燥させた。乾燥させた焼結体ペレット試料を測定セルに固定後、端子を接続し、室温において交流インピーダンス法による導電率測定を行った。導電率の測定にはインピーダンスメーター(HP4194A)を使用し、インピーダンスメーターの周波数範囲を100Hz~10MHzとして室温にて測定を行い、複素インピーダンス解析により導電率と温度との関係をプロット(アレニウスプロット)することで導電率を測定した。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1-1~1-15
 出発原料としてLiCO、ZrO、CaCO及びNHPOを用意し、焼結後に表1に示す組成となるようにP量のみ変えてそれぞれ所定量秤量した。
 次に、これらの秤量物をジルコニア製のポットミルに投入し、16時間混合して混合粉末を得た後、大気雰囲気下にて800℃で仮焼、粉砕を経て仮焼粉末を得た。
 仮焼粉末を100MPaの圧力にて金型成型した後、表1に示す800~1500℃の温度で焼結することによりリチウム含有リン酸ジルコニウムの焼結体(試料)を得た。
 表1に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。図1に実施例1-4で得られたリチウム含有リン酸ジルコニウムの室温での粉末X線回折パターンを示す。この図示からも、主構成相はナシコン型構造であることが分かる。
 実施例2-1~2-8
 出発原料としてLiCO、ZrO、CaCO及びNHPOを用意し、焼結後に表2に示す組成となるようにLi量のみ変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表2に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例3-1~3-6
 出発原料としてLiCO、ZrO、CaCO及びNHPOを用意し、焼結後に表3に示す組成となるようにM(Ca)量のみ変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表3に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例4-1~4-4
 出発原料としてLiCO、ZrO、MgO、CaCO、SrCO、BaCO及びNHPOを用意し、焼結後に表4に示す組成となるようにMの種類のみ変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表4に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例5-1~5-6
 出発原料としてLiCO、ZrO、MgO、CaCO及びNHPOを用意し、焼結後に表5に示す組成となるようにMの種類及び含有量を変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表5に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例6-1~6-6
 出発原料としてLiCO、ZrO、CaCO、SrCO及びNHPOを用意し、焼結後に表6に示す組成となるようにMの種類及び含有量を変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表6に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例7-1~7-4
 出発原料としてLiCO、ZrO、BaCO、SrCO及びNHPOを用意し、焼結後に表7に示す組成となるようにMの種類及び含有量を変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表7に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 実施例8-1~8-24
 出発原料としてLiCO、ZrO、Al、Sc、Y、La、Pr11、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、CaCO及びNHPOを用意し、焼結後に表8の組成となるようにMの種類、Mの種類及び含有量を変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 表8に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 比較例1~8
 出発原料としてLiCO、ZrO、CaCO及びNHPOを用意し、焼結後に表9の組成となるようにMの含有量及びPの含有量を変えてそれぞれ所定量秤量した。
 その後、試料調製及び試料評価(粉末X線回折測定)は、実施例1に同様に行った。
 表9に示す全てのリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、いずれも主構成相はナシコン型構造であった。
 比較例9
 オキシ塩化ジルコニウム(ZrOCl・8HO試薬)水溶液にシュウ酸結晶(H・2HO)水溶液を攪拌しながら加え、次いでリン酸水素アンモニウム水溶液を攪拌しつつ添加混合させ、96℃恒温室中に5日間保持した後、得られた反応生成物をろ過、水洗後、650℃で3時間熱処理してナシコン型構造のリン酸ジルコニウムを得た。
 得られたリン酸ジルコニウムを脱イオン水に分散し、表9に示す組成になるようにLi及びCaイオンを含む水溶液100mLを加え、オートクレーブに入れ、オートクレーブ処理温度250℃の条件下で24時間水熱合成処理し試料を得た。
 その後、試料評価(粉末X線回折測定)は、実施例1と同様に行った。
 得られたリチウム含有リン酸ジルコニウムの粉末X線回折測定を実施した結果、主構成相はナシコン型構造であった。
 試験例1(リチウム含有リン酸ジルコニウムの特性評価)
 実施例及び比較例で得たリチウム含有リン酸ジルコニウム(各試料)について組成分析,熱重量分析による重量減少率測定,3点曲げ強度測定及び室温抵抗率測定を行った。得られた結果は表1~9に示した。
 試験方法及びその評価方法は下記の通りである。
(組成分析)
 組成分析は、テフロン(登録商標)製100Lビーカーに10%フッ化水素酸溶液を入れ、各試料を窒化ケイ素製乳鉢にて粉砕した後、0.1g加えて加熱、溶解させた。溶解した溶液をメスフラスコで全量100mlに調整し、誘導結合プラズマ発光分光分析装置を用いて定量結果をモル比換算した。
(重量減少率)
 熱安定性は、示差熱天秤(TG-DTA8120(株式会社リガク))を用いて室温から1500℃までの熱重量測定(大気雰囲気中、昇温速度10℃/分)を行い、重量減少率を算出した。リチウムイオン導電性固体電解質材料の用途を考慮すると、重量減少率は、1.0重量%未満が許容範囲であり、0.6重量%以下が好ましい。
(3点曲げ強度測定)
 3点曲げ強度は、ファインセラミックスの曲げ強さ試験方法(JIS R1601)に基づいて測定した。リチウムイオン導電性固体電解質材料の用途を考慮すると、3点曲げ強度は、20MPa以上が許容範囲である。
(室温抵抗率測定)
 室温抵抗率は、以下のようにして求めた。
 先ず、各仮焼粉末(粒径0.3~10μm程度、好ましくは0.3~5μm程度)から焼結体ペレット試料を調製した。次に電極を形成するために、焼結体ペレット試料の上面及び下面を鏡面研磨し、両面に導電性Agペーストを塗布後、150℃にて十分に乾燥させた。乾燥させた焼結体ペレット試料を室温まで降温させ、測定セルに固定後、端子を接続し、室温において交流インピーダンス法による導電率測定を行った。
 導電率の測定にはインピーダンスメーター(HP4194A)を使用し、インピーダンスメーターの周波数範囲を100Hz~10MHzとして室温にて測定を行い、複素インピーダンス解析により導電率と温度との関係をプロット(アレニウスプロット)することで導電率を測定した。リチウムイオン導電性固体電解質材料の用途を考慮すると、室温抵抗率は、100000Ω・cm以下が許容範囲である。
 図2及び図3に本発明のリチウム含有リン酸ジルコニウムの代表的な複素インピーダンスプロット(図2は実施例1-4、図3は実施例8-23)を示す。どちらも、高周波数側に1つの円弧と低周波数側にスパイクスが観察される。低周波数側のスパイクスは、電解質と電極界面との抵抗に起因するものと考えられる。高周波数側の1つの円弧は綺麗な1つの円弧と見えるが、粒内抵抗に起因する円弧(高周波数側)と粒界抵抗に起因する円弧(低周波数側)とを足し合わせた円弧と考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-T000010
 表1~表8の結果から明らかな通り、実施例のリチウム含有リン酸ジルコニウムは、リチウムイオン導電性固体電解質材料の用途を考慮すると、重量減少率、3点曲げ強度及び室温抵抗率のいずれの点でも許容範囲の特性が得られている。他方、表9の結果から明らかな通り、リチウム含有リン酸ジルコニウムの組成比が本願発明所定の範囲を外れる場合や製造条件が本願発明所定の工程を外れる場合には、重量減少率、3点曲げ強度及び室温抵抗率の少なくとも一種の特性が許容範囲を満たさないことが分かる。

Claims (7)

  1.  リチウム含有リン酸ジルコニウムであって、
    (1)組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
    (2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
    (3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00である、
    ことを特徴とするリチウム含有リン酸ジルコニウム。
  2.  前記組成比率が、Li:M:M:P=1.1~1.6:0.15~0.35:2.0:3.05~3.50である、請求項1に記載のリチウム含有リン酸ジルコニウム。
  3.  粉末状態のリチウム含有リン酸ジルコニウムを、大気雰囲気下、昇温速度10℃/分で加熱処理した場合のLi及びPの重量の減少量の合計であって、室温を起点とし1500℃を終点とする温度範囲全体での当該合計が1.0重量%未満である、請求項1又は2に記載のリチウム含有リン酸ジルコニウム。
  4.  室温における抵抗率が100000Ω・cm以下である、請求項1又は2に記載のリチウム含有リン酸ジルコニウム。
  5.  3点曲げ強度が20MPa以上である、請求項1又は2に記載のリチウム含有リン酸ジルコニウム。
  6.  リチウム含有リン酸ジルコニウムの仮焼粉末の製造方法であって、
    (1)前記仮焼粉末の組成比率が、Li:M:M:P=1.0~1.7:0.10~0.35:2.0:3.00超過3.50以下であり、
    (2)前記Mは、Ca、Mg、Sr及びBaからなる群から選択される少なくとも一種であり、二種類以上を含有する場合には合計の組成比率が0.10~0.35であり、
    (3)前記Mは、Zr単独、又はZrとAl、Sc、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも一種とからなり、前記Mの組成比率のうちZrの組成比率は1.47~2.00であり、
    (4)Li供給源、M供給源、M供給源及びP供給源である、無機化合物からなる各原料粉末を混合し、得られた混合原料粉末を800℃以上の温度で仮焼する工程を有する、
    ことを特徴とするリチウム含有リン酸ジルコニウムの仮焼粉末の製造方法。
  7.  請求項6に記載の仮焼粉末の製造方法により仮焼粉末を得た後、前記仮焼粉末を成形し、800~1500℃で焼結することにより焼結体を得る、請求項1~5のいずれかに記載のリチウム含有リン酸ジルコニウムの焼結体の製造方法。
PCT/JP2017/040233 2016-11-09 2017-11-08 リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法 WO2018088424A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/309,596 US20190334200A1 (en) 2016-11-09 2017-11-08 Lithium-containing zirconium phosphate, calcined powder of same, and method for producing sintered body
CN201780037620.4A CN109311670A (zh) 2016-11-09 2017-11-08 含锂磷酸锆、及其预烧粉末和烧结体的制造方法
JP2018550226A JP6864323B2 (ja) 2016-11-09 2017-11-08 リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
EP17868819.8A EP3539925A4 (en) 2016-11-09 2017-11-08 LITHIUM-CONTAINING ZIRCONIUM PHOSPHATE, CALCINATED POWDER THEREOF, AND METHOD FOR PRODUCING SINTERED BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016219188 2016-11-09
JP2016-219188 2016-11-09

Publications (1)

Publication Number Publication Date
WO2018088424A1 true WO2018088424A1 (ja) 2018-05-17

Family

ID=62110617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040233 WO2018088424A1 (ja) 2016-11-09 2017-11-08 リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法

Country Status (5)

Country Link
US (1) US20190334200A1 (ja)
EP (1) EP3539925A4 (ja)
JP (1) JP6864323B2 (ja)
CN (1) CN109311670A (ja)
WO (1) WO2018088424A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261558A1 (ja) * 2020-06-24 2021-12-30 Tdk株式会社 固体電解質および固体電解質電池
WO2022118561A1 (ja) * 2020-12-01 2022-06-09 太陽誘電株式会社 全固体電池およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183255A1 (ja) * 2016-04-19 2017-10-26 株式会社村田製作所 固体電解質及び全固体電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065023A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 固体電解質材料、及び全固体電池
JP2015076324A (ja) * 2013-10-10 2015-04-20 株式会社村田製作所 固体電解質材料およびそれを用いた全固体電池
JP2016051539A (ja) * 2014-08-29 2016-04-11 株式会社村田製作所 固体電解質材料、及び全固体電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528594B (zh) * 2006-10-27 2012-05-30 东亚合成株式会社 新型层状磷酸锆化合物
JP5969799B2 (ja) * 2012-04-11 2016-08-17 株式会社コベルコ科研 Li含有燐酸化合物焼結体およびスパッタリングターゲット、並びにその製造方法
JP6183783B2 (ja) * 2013-09-25 2017-08-23 株式会社村田製作所 全固体電池
CN104591112B (zh) * 2014-12-23 2017-03-01 西北大学 磷酸锰铯锂及其制备方法与应用
JP6659504B2 (ja) * 2016-09-20 2020-03-04 株式会社東芝 固体電解質、リチウム電池、電池パック、及び車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065023A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 固体電解質材料、及び全固体電池
JP2015076324A (ja) * 2013-10-10 2015-04-20 株式会社村田製作所 固体電解質材料およびそれを用いた全固体電池
JP2016051539A (ja) * 2014-08-29 2016-04-11 株式会社村田製作所 固体電解質材料、及び全固体電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3539925A4 *
XIE, HUI ET AL.: "Li1.2Zr1.9Ca0.1 (P04) 3, a room-temperature Li-ion solid electrolyte", JOURNAL OF POWER SOURCES, vol. 196, 2011, pages 7760 - 7762, XP028378312 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261558A1 (ja) * 2020-06-24 2021-12-30 Tdk株式会社 固体電解質および固体電解質電池
WO2022118561A1 (ja) * 2020-12-01 2022-06-09 太陽誘電株式会社 全固体電池およびその製造方法

Also Published As

Publication number Publication date
JPWO2018088424A1 (ja) 2019-07-18
EP3539925A4 (en) 2020-05-06
CN109311670A (zh) 2019-02-05
EP3539925A1 (en) 2019-09-18
US20190334200A1 (en) 2019-10-31
JP6864323B2 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
Li et al. Optimizing Li+ conductivity in a garnet framework
EP3135634B1 (en) Method for producing garnet-type compound
CN108367924B (zh) 用于固体钠离子电池组的具有nasicon结构的电解质材料及其制造方法
EP3840100A1 (en) Ion-conductive solid electrolyte compound, method for preparing same, and electrochemical device comprising same
US10276892B2 (en) High conductivity NASICON electrolyte for room temperature solid-state sodium ion batteries
TW201116482A (en) Phase-pure lithium aluminium titanium phosphate and method for its production and its use
WO2018088424A1 (ja) リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
JPWO2013146349A1 (ja) リチウムイオン伝導体の製造法
JP2018037341A (ja) 全固体電池の製造方法
JP5574881B2 (ja) 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
CN110462912A (zh) 全固体电池
JP7022616B2 (ja) 正極活物質の製造方法
US11637316B2 (en) Ceramic powder material, sintered body, and battery
JP2012048893A (ja) 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
JP7274868B2 (ja) 全固体電池用正極材料、全固体電池、および全固体電池用正極活物質の製造方法
KR102660233B1 (ko) 충전식 리튬 이온 고체 전지용 분말상 고체 전해질 화합물
JP7101005B2 (ja) 正極活物質の製造方法
Truong et al. Recent progress in garnet-type structure solid Li ion electrolytes: Composition–structure–ionic conductivity relationship and chemical stability focused
Ahmad et al. Origin of the enhanced Li+ ionic conductivity in Gd+ 3 substituted Li 5+ 2x La 3 Nb 2− x Gd x O 12 lithium conducting garnets
Beutl et al. A thermodynamic investigation on the substitution mechanism of Mg-doped lithium vanadium phosphate
JP6478223B2 (ja) イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス
JP2013053054A (ja) 電子伝導性を有するリチウムケイ素窒化物及びその製造方法
Wu et al. Utilizing dual functions of LaPO4 to enhance the electrochemical performance of LiNi0. 87Co0. 09Al0. 04O2 cathode material
Gayathri et al. Effect of magnesium addition on the structural, microstructural and electrical properties of YVO4
Cho et al. Influence of Ga Content on the Ionic Conductivity of Li1+ XGaXTi2-X (PO4) 3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868819

Country of ref document: EP

Effective date: 20190611