WO2018088353A1 - しゅう動部品 - Google Patents

しゅう動部品 Download PDF

Info

Publication number
WO2018088353A1
WO2018088353A1 PCT/JP2017/039905 JP2017039905W WO2018088353A1 WO 2018088353 A1 WO2018088353 A1 WO 2018088353A1 JP 2017039905 W JP2017039905 W JP 2017039905W WO 2018088353 A1 WO2018088353 A1 WO 2018088353A1
Authority
WO
WIPO (PCT)
Prior art keywords
deep groove
pressure generating
groove
sliding
negative pressure
Prior art date
Application number
PCT/JP2017/039905
Other languages
English (en)
French (fr)
Inventor
雄大 根岸
紗和花 小杉
井上 秀行
猛 細江
雄一郎 徳永
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2018550187A priority Critical patent/JP6910371B2/ja
Priority to KR1020197012003A priority patent/KR102288167B1/ko
Priority to CN201780065648.9A priority patent/CN109844382B/zh
Priority to EP17870493.8A priority patent/EP3540275B1/en
Priority to US16/347,657 priority patent/US10941863B2/en
Publication of WO2018088353A1 publication Critical patent/WO2018088353A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • F16J15/3416Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities with at least one continuous groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed on a sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • a mechanical seal which is an example of a sliding component
  • its performance is evaluated by leakage amount, wear amount, and torque.
  • the performance is improved by optimizing the sliding material and sliding surface roughness of the mechanical seal, realizing low leakage, long life, and low torque.
  • further improvement in the performance of mechanical seals is required, and technical development that exceeds the framework of conventional techniques is required.
  • the present applicant has patented an invention of a sliding component that does not leak when stationary, operates at the beginning of rotation, including fluid lubrication, prevents leakage, and achieves both sealing and lubrication. (Hereinafter referred to as “prior art”; see Patent Document 1).
  • This conventional technique realizes a pumping action of forming a fluid lubricating film on the sliding surface by the positive pressure generated in the positive pressure generating region and pulling back the fluid leaking to the low pressure fluid side to the high pressure fluid side,
  • a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step disposed on the high pressure fluid side, and the low pressure fluid side is formed.
  • An invention is disclosed in which a sliding part capable of being sealed with an arranged dimple can cope with a case where a rotating side sealing ring rotates in both forward and reverse directions.
  • the above-described conventional technique is extremely excellent in that it does not leak at rest, operates in fluid lubrication at the time of rotation including the initial stage of rotation, prevents leakage, and achieves both sealing and lubrication.
  • the above dimple is surrounded by a land part and is an independent groove on the sliding surface, when the foreign substance or bubble is mixed in the dimple, the foreign substance or bubble cannot be discharged out of the dimple. It has been confirmed by the present inventor that wear or burnout due to leakage of the sliding surface and frictional heat generation may occur and the function of the mechanical seal may deteriorate.
  • the present invention has been made in order to improve the problematic points while taking advantage of the advantages of the prior art, and it is possible to actively apply fluid to the entire sliding surface while satisfying conflicting conditions of sealing and lubrication.
  • sliding parts that can prevent wear and burnout due to frictional heat generation on the sliding surface and prevent leakage, it is possible to discharge foreign matter and bubbles taken in the negative pressure generation groove, It is an object of the present invention to provide a sliding part that can maintain the sealing function of the sliding surface over a long period of time.
  • the sliding component of the present invention is firstly a sliding component in which a rotating sliding component rotates in both forward and reverse directions among a pair of sliding components.
  • the sliding surface of at least one of the sliding parts is provided with a positive pressure generating groove located on the sealing fluid side, and is separated from the anti-sealing fluid side by a land portion located on the anti-sealing fluid side.
  • the negative pressure generating groove is provided, and a deep groove communicating with the sealing fluid side is provided on the sealing fluid side from the negative pressure generating groove, An upstream end portion of the positive pressure generating groove is communicated with the deep groove, an upstream inlet portion and a downstream outlet portion of the negative pressure generating groove are communicated with the deep groove, and the inlet portion and the outlet portion are connected to each other.
  • the intermediate portion is disposed so as to be located on the anti-sealing fluid side from the inlet portion and the outlet portion.
  • the space between the sliding surfaces that slide relative to each other is increased by the positive pressure, a liquid film is formed on the sliding surface, and the sliding surface Suction occurs on the anti-sealing fluid side, preventing leakage from the sealing fluid side to the anti-sealing fluid side.Furthermore, even if foreign matter or air bubbles enter the negative pressure generating groove, the foreign matter or air bubbles pass through the deep groove. Since it is discharged to the sealing fluid side, the sealing function of the sliding surface can be maintained for a long period of time.
  • the sliding component of the present invention is secondly characterized in that, in the first feature, each of the inlet portion and the outlet portion is formed in a tapered shape from the deep groove side toward the intermediate portion. It is a feature. According to this feature, it is possible to enhance the effect of discharging foreign matter and bubbles that have entered the negative pressure generating groove.
  • the connecting portions of the inlet and outlet portions and the deep groove intersect with each other in the flow direction of the fluid in the deep groove. And a stagnation part extending on the anti-sealing fluid side. According to this feature, the pumping effect by the flow can be further enhanced, and the action of sucking fluid from the intermediate portion to the vicinity of the outlet portion can be further increased.
  • the stagnation portion of the inlet portion extends upstream, and the stagnation portion of the outlet portion extends toward the downstream side. It is characterized by its shape. According to this feature, the pumping effect by the flow can be further enhanced, and the action of sucking fluid from the intermediate portion to the vicinity of the outlet portion can be further increased.
  • the sliding component of the present invention is fifthly characterized in that, in any of the first to fourth features, the deep groove is composed of a radial deep groove and a circumferential deep groove. According to this feature, it is possible to guide the fluid that leaks from the sealing fluid side to the anti-sealing fluid side of the sliding surface, and to escape to the sealing fluid side, and also to slide in both forward and reverse directions
  • the arrangement of the positive pressure generating grooves and the negative pressure generating grooves on the sliding surface can be made rational without waste.
  • the positive pressure generating groove is a radial direction connecting the center in the circumferential direction of the radial deep groove and the rotation center. It is characterized by being arranged on both sides of the radial deep groove so as to be symmetric with respect to the line. According to this feature, the arrangement of the positive pressure generating grooves on the sliding surface can be rationalized suitable for sliding parts that rotate in both forward and reverse directions.
  • the negative pressure generating groove has a radial line connecting the center in the circumferential direction and the rotation center. It is characterized by being arranged symmetrically. According to this feature, the arrangement of the negative pressure generating grooves on the sliding surface can be rationalized suitable for sliding parts that rotate in both forward and reverse directions.
  • the sliding component of the present invention is characterized in that, in any one of the first to seventh features, the circumferential deep groove is between the positive pressure generating groove and the negative pressure generating groove. It is characterized by being arranged continuously in the circumferential direction through the radial deep groove. According to this feature, by releasing the dynamic pressure (positive pressure) generated by the positive pressure generating mechanism up to the pressure of the high-pressure side fluid, the fluid flows into the negative pressure generating mechanism on the low-pressure side, and the negative pressure generating mechanism It is possible to prevent the pressure generation capability from being weakened.
  • the present invention has the following excellent effects. (1) Of a pair of sliding parts, in a sliding part in which a rotating side sliding part rotates in both forward and reverse directions, the sliding surface of at least one side sliding part is positioned on the sealed fluid side. A positive pressure generating groove is provided, and a negative pressure generating groove located on the anti-sealing fluid side and separated from the anti-sealing fluid side by a land portion is provided, and the sealing fluid side is sealed from the negative pressure generating groove.
  • a deep groove communicated with the fluid side is provided, the upstream end of the positive pressure generating groove communicates with the deep groove, the upstream inlet portion and the downstream outlet portion of the negative pressure generating groove communicate with the deep groove, and the inlet
  • the intermediate part between the outlet part and the outlet part is arranged so as to be located on the anti-sealing fluid side from the inlet part and outlet part.
  • the space between the sliding surfaces can be widened, and a liquid film is formed on the sliding surfaces.
  • the entrance portion and the exit portion are each formed in a tapered shape from the deep groove side toward the intermediate portion, thereby enhancing the effect of discharging foreign matter and bubbles that have entered the negative pressure generating groove. .
  • the inlet portion and the connecting portion between the outlet portion and the deep groove each have a stagnation portion that crosses the fluid flow direction in the deep groove and extends toward the anti-sealing fluid side, thereby providing a pumping effect due to the flow. This can be further enhanced, and the action of sucking fluid from the intermediate portion to the vicinity of the outlet portion can be further increased.
  • the stagnation part of the inlet part spreads upstream, and the stagnation part of the outlet part has a shape extending toward the downstream side, so that the pumping effect by the flow can be further enhanced, The action of sucking fluid from the portion to the vicinity of the outlet portion can be further increased.
  • the deep groove is composed of a radial deep groove and a circumferential deep groove, thereby leading the fluid to leak from the sealing fluid side of the sliding surface to the anti-sealing fluid side and letting it escape to the sealing fluid side.
  • the arrangement of the positive pressure generating grooves and the negative pressure generating grooves on the sliding surface of the sliding part rotating in both forward and reverse directions can be made rational without waste.
  • the positive pressure generating grooves are arranged on both sides of the radial deep groove so as to be symmetrical with respect to a radial line connecting the circumferential center of the radial deep groove and the rotation center.
  • the arrangement of the positive pressure generating grooves on the surface can be made reasonable and suitable for sliding parts that rotate in both forward and reverse directions.
  • the negative pressure generating grooves are arranged so as to be symmetric with respect to the radial line connecting the center in the circumferential direction and the rotation center, thereby arranging the negative pressure generating grooves on the sliding surface. It can be reasonable to be suitable for sliding parts that rotate in both forward and reverse directions.
  • the circumferential deep groove is disposed between the positive pressure generating groove and the negative pressure generating groove in the radial direction, and is continuously disposed in the circumferential direction via the radial deep groove, whereby positive pressure is generated.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3 for the sake of explanation; It is the top view which showed the sliding surface of the sliding component which concerns on Example 2 of this invention. It is the top view which showed the sliding surface of the sliding component which concerns on Example 3 of this invention.
  • Example 1 of this invention With reference to FIG. 1 thru
  • a mechanical seal which is an example of a sliding part will be described as an example.
  • the outer peripheral side of the sliding parts constituting the mechanical seal will be described as the sealed fluid side and the inner peripheral side as the anti-sealed fluid side (air side)
  • the present invention is not limited to this, The present invention can also be applied when the anti-sealing fluid side (air side) is reversed.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type of a type that seals a sealed fluid on the sealing fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • a mechanical seal which is an inside type of a type that seals a sealed fluid on the sealing fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • annular ring which is one sliding component provided in a state in which it can rotate integrally with the rotary shaft 1 via a sleeve 2 on the rotary shaft 1 side for driving a pump impeller (not shown) on the sealed fluid side.
  • the annular stationary side sealing ring 5 which is the other sliding part provided in the pump housing 4 in a non-rotating state and movable in the axial direction.
  • the coiled wave spring 6 and the bellows 7 that urge the ring 5 in the axial direction are in close contact with the sliding surfaces S that are mirror-finished by lapping or the like. That is, this mechanical seal prevents the sealed fluid from flowing out from the outer periphery of the rotating shaft 1 to the atmosphere side on the sliding surfaces S of the rotating side sealing ring 3 and the stationary side sealing ring 5. .
  • FIG. 2 shows a sliding surface of a sliding component according to the first embodiment of the present invention.
  • the surface texture of the present invention is applied to the sliding surface of the stationary seal ring 5 of FIG. This will be described as an example. The same applies to the case where the surface texture of the present invention is applied to the sliding surface of the rotation-side sealing ring 3.
  • the radial groove only needs to communicate with the sealing fluid side. It is not necessary to provide the outer peripheral side of the moving surface.
  • the outer peripheral side of the sliding surface of the stationary seal ring 5 is the sealed fluid side, and the inner peripheral side is the anti-sealed fluid side (air side).
  • the counterpart sliding surface rotates in both forward and reverse directions, but in FIG. 2, description will be made assuming that the counterpart sliding surface rotates counterclockwise as indicated by a solid line arrow.
  • the sliding surface S of the stationary seal ring 5 is provided with positive pressure generating grooves 11 and 11 ′ as positive pressure generating mechanisms 10 and 10 ′ located on the sealing fluid side, and positioned on the anti-sealing fluid side.
  • a negative pressure generating groove 13 is provided as a negative pressure generating mechanism 12 separated from the anti-sealing fluid side by the land portion R, and the negative pressure generating groove 13 communicates with the sealing fluid side from the sealing fluid side.
  • a deep groove 14 is provided.
  • the land portion R indicates a smooth portion of the sliding surface S.
  • the deep groove 14 includes a radial deep groove 14a and a circumferential deep groove 14b.
  • the circumferential deep grooves 14b are continuously arranged in the circumferential direction via the radial deep grooves 14a.
  • the radial deep grooves 14 a are arranged in eight equal parts, and the circumferential deep grooves 14 b are arranged between the positive pressure generating grooves 11 and the negative pressure generating grooves 13 in the radial direction.
  • the positive pressure generating mechanisms 10 and 10 ′ are composed of Rayleigh steps, and the positive pressure generating grooves (hereinafter sometimes referred to as “grooves”) 11 and 11 ′ have a circumferential center and a rotational center of the radial deep groove 14a. Disposed on both sides of the radial deep groove 14a so as to be symmetric with respect to the connecting radial line OO.
  • grooves the positive pressure generating grooves
  • the upstream end portion 11a communicates with the radial deep groove 14a, and the downstream end portion 11b narrows to form a step.
  • a positive pressure is generated in the groove 11 ′ located on the downstream side of the radial deep groove 14a (the right side of the radial deep groove 14a in FIG. 2).
  • the end 11a 'on the upstream side of the groove 11' communicates with the deep radial groove 14a, and the end 11b 'on the downstream side is narrowed to form a step.
  • the negative pressure generating groove 13 extends in the circumferential direction so as to be symmetric with respect to a radial line OO connecting the center in the circumferential direction and the center of rotation, and has an upstream inlet portion 13a and a downstream side.
  • the outlet portion 13b on the side communicates with the circumferential deep groove 14b, and the intermediate portion 13c between the inlet portion 13a and the outlet portion 13b is on the anti-sealing fluid side (the inner peripheral edge side of the sliding surface) from the inlet portion 13a and the outlet portion 13b. )
  • the planar shape of the inlet portion 13a and the outlet portion 13b intersects the tangential direction (fluid flow direction) of the circumferential deep groove 14b, and is on the anti-sealing fluid side (inner peripheral edge side of the sliding surface). It extends toward the intermediate part 13c located, and is formed in a tapered shape tapered from the circumferential deep groove 14b side toward the intermediate part 13c.
  • the depth and width of the positive pressure generating grooves 11 and 11 ', the negative pressure generating groove 13 and the deep groove 14 depend on the diameter of the sliding part, the width and relative sliding speed of the sliding surface, and the sealing and lubrication conditions. Therefore, the property is appropriately determined.
  • the depth of the positive pressure generating grooves 11, 11 ′ is several times the depth of the negative pressure generating groove 13, and the depth of the deep groove 14 is ten times the depth of the positive pressure generating grooves 11, 11 ′. That's it.
  • the negative pressure generating groove 13 will be described with reference to FIGS.
  • the negative pressure generating groove 13 is bent from the inlet portion 13a and the outlet portion 13b toward the intermediate portion 13c located on the anti-sealing fluid side (inner peripheral edge side of the sliding surface).
  • a negative pressure is generated at the inlet portion 13a, and cavitation is generated in the intermediate portion 13c.
  • dynamic pressure positive pressure
  • FIG. 4B As indicated by an arrow, the rotary ring 3 rotates counterclockwise with respect to the fixed ring 5, but the negative pressure generating groove 13 is formed on the sliding surface S of the fixed ring 5. If it is formed, a widening gap (step) 13 d exists at the inlet 13 a located on the upstream side of the negative pressure generating groove 13.
  • the sliding surface of the opposite rotating ring 3 is flat.
  • a dynamic pressure (negative pressure) as indicated by a broken line is generated due to the presence of the expansion gap (step) 13d. For this reason, a negative pressure is generated at the inlet portion 13a located on the upstream side in the negative pressure generating groove 13, and a positive pressure is generated at the outlet portion 13b located on the downstream side. Then, cavitation occurs from the negative pressure generation region of the inlet portion 13a to the intermediate portion 13c.
  • R represents a land portion constituting the seal surface S.
  • the negative pressure generating groove 13 is a trough groove, the amount of fluid flowing from the deep groove 14 is small, and as shown in FIG. 3, the fluid smoothly flows from the outlet portion 13b to the circumferential deep groove 14b.
  • the generation of the dynamic pressure (positive pressure) is extremely small, and the action of sucking the fluid from the intermediate portion 13c to the vicinity of the outlet portion 13b occurs due to the pumping effect by the flow.
  • the positive pressure generating groove (groove) 11 sucks fluid from the sealed fluid side via the radial deep groove 14a on the upstream side, and narrows the positive pressure of the step. A positive pressure is generated at 11b, and the interval between the sliding surfaces S that slide relative to the generated positive pressure is increased, and a liquid film is formed on the sliding surface S.
  • the negative pressure generation groove 13 generates cavitation as a result of generating negative pressure in the cavitation formation region, and the cavitation internal pressure becomes a negative pressure lower than the atmospheric pressure.
  • suction occurs on the anti-sealing fluid side of the sliding surface, and leakage from the sealing fluid side to the anti-sealing fluid side is prevented. .
  • the fluid sucked into the negative pressure generating groove 13 is discharged to the sealed fluid side via the circumferential deep groove 14b and the radial deep groove 14a connected to the sealed fluid side on the downstream side.
  • the deep groove 14b in the circumferential direction of the deep groove 14 plays a role of guiding the fluid to leak from the sealing fluid side of the sliding surface S to the anti-sealing fluid side and letting it escape to the sealing fluid side through the radial deep groove 14a. It is. That is, the circumferential deep groove 14b of the deep groove 14 releases the dynamic pressure (positive pressure) generated by the positive pressure generating mechanism 10, for example, the Rayleigh step mechanism, to the pressure of the high pressure side fluid, so that the fluid is negatively charged on the low pressure side.
  • the pressure generation mechanism 12, that is, the negative pressure generation groove 13 flows into the negative pressure generation groove 13, and serves to prevent the negative pressure generation capability of the negative pressure generation mechanism 12 from being weakened. It plays the role of guiding the fluid that is about to flow into the anti-sealing fluid side by pressure to the circumferential deep groove 14b and letting it escape to the sealing fluid side through the radial deep groove 14a.
  • the upstream inlet portion 13a and the downstream outlet portion 13b of the negative pressure generating groove 13 (in the case of reverse rotation, the inlet portion 13a is the downstream side and the outlet portion 13b is the upstream side). Since each of the deep grooves 14 communicates with the circumferential deep groove 14 b, when foreign matter or bubbles enter the negative pressure generating groove 13, the foreign matter or bubbles are discharged to the sealed fluid side via the deep groove 14. In particular, since the portion of the negative pressure generating groove 13 that communicates with the circumferential deep groove 14b is smoothly expanded, foreign matters and bubbles do not stay in the negative pressure generating groove 13 and smoothly enter the circumferential deep groove 14b. It is moved and discharged to the sealed fluid side. *
  • the sliding component according to the first embodiment of the present invention is as described above, and has the following excellent effects.
  • Positive pressure generating grooves 11 and 11 ′ are provided, and a negative pressure generating groove 13 is provided that is located on the anti-sealing fluid side and is separated from the anti-sealing fluid side by a land portion R.
  • a deep groove 14 communicated with the sealed fluid side is provided on the sealed fluid side, and the upstream end of the positive pressure generating grooves 11 and 11 ′ communicates with the deep groove 14, and the upstream inlet of the negative pressure generating groove 13.
  • the portion 13a and the outlet portion 13b on the downstream side are communicated with the deep groove 14, and an intermediate portion 13c between the inlet portion 13a and the outlet portion 13b is disposed on the anti-sealing fluid side from the inlet portion 13a and the outlet portion 13b.
  • the interval between the sliding surfaces S that slide relative to each other is increased by a positive pressure, a liquid film is formed on the sliding surface S, and suction occurs on the anti-sealing fluid side of the sliding surface. Since leakage from the side to the anti-sealing fluid side is prevented and foreign matter and bubbles enter the negative pressure generating groove 13, foreign matter and bubbles are discharged to the sealing fluid side through the deep groove 14.
  • the sealing function of the moving surface can be maintained for a long time.
  • the entrance portion 13a and the exit portion 13b are each formed in a tapered shape from the deep groove 14 side toward the intermediate portion 13c, thereby removing foreign matter and bubbles that have entered the negative pressure generating groove 13. Can be increased.
  • the deep groove 14 is composed of the radial direction deep groove 14a and the circumferential direction deep groove 14b, thereby introducing the fluid that is about to leak from the sealing fluid side of the sliding surface S to the anti-sealing fluid side and letting it escape to the sealing fluid side.
  • the arrangement of the positive pressure generating grooves 11, 11 ′ and the negative pressure generating grooves 13 on the sliding surface of the sliding part that rotates in both forward and reverse directions can be rational without waste. Can do.
  • the positive pressure generating grooves 11 and 11 ′ are formed on both sides of the radial deep groove 14a so as to be symmetric with respect to a radial line OO connecting the circumferential center and the rotation center of the radial deep groove 14a.
  • the arrangement of the positive pressure generating grooves 11 and 11 ′ on the sliding surface can be rationalized suitable for sliding parts that rotate in both forward and reverse directions.
  • the negative pressure generating groove 13 is arranged so as to be symmetric with respect to the radial line OO connecting the center in the circumferential direction and the center of rotation, thereby generating negative pressure on the sliding surface.
  • the arrangement of the grooves 13 can be rational and suitable for sliding parts that rotate in both forward and reverse directions.
  • the circumferential deep groove 14b is disposed between the positive pressure generating grooves 11, 11 'and the negative pressure generating groove 13 in the radial direction, and is continuously disposed in the circumferential direction via the radial deep groove 14a.
  • the dynamic pressure (positive pressure) generated by the positive pressure generating mechanism 10 is released to the pressure of the high-pressure side fluid, so that the fluid flows into the negative-pressure generating mechanism 12 on the low-pressure side, and the negative pressure generating mechanism 12 It is possible to prevent the negative pressure generation capability of the weakening.
  • the planar shape of the negative pressure generating groove is different from that of the first embodiment, but the other basic configuration is the same as that of the first embodiment.
  • the inlet 13a and outlet 13 of the negative pressure generating groove 13 and the connecting portions of the circumferential deep groove 14b cross and counteract the fluid flow direction in the circumferential deep groove 14b.
  • the stagnation portions 13f and 13g having a spread on the sealed fluid side are provided.
  • the stagnation portions 13f and 13g intersect each other so as to be orthogonal to the fluid flow direction in the circumferential deep groove 14b and have an extension on the anti-sealing fluid side.
  • the inlet 13a is provided with a stagnation portion 13f that intersects the fluid flow direction in the circumferential direction deep groove 14b so as to be orthogonal to the fluid flow direction in the circumferential direction and has a spread on the anti-sealing fluid side.
  • the amount of inflow is further reduced, and the presence of the stagnation portion 13g slightly suppresses the discharge of fluid at the outlet portion 13b, but the generation of dynamic pressure (positive pressure) at the outlet portion 13b is further reduced, so
  • the pumping effect can be enhanced, and the action of sucking fluid from the intermediate part 13c to the vicinity of the outlet part 13b can be further increased.
  • a sliding part according to a third embodiment of the present invention will be described with reference to FIG.
  • symbol is attached
  • the planar shape of the negative pressure generating groove is different from that of the first embodiment, but the other basic configuration is the same as that of the first embodiment.
  • the connecting portion between the inlet 13a of the negative pressure generating groove 13 and the circumferential deep groove 14b crosses the fluid flow direction in the circumferential deep groove 14b and is on the anti-sealing fluid side.
  • a stagnation portion 13h extending upstream is provided, and the outlet portion 13 is connected to the outlet portion and the circumferential deep groove 14b so as to cross and counteract the flow direction of the fluid in the circumferential deep groove 14b.
  • a stagnation portion 13i which is on the sealed fluid side and extends downstream is provided.
  • the inlet portion 13a is provided with a stagnation portion 13h that intersects with the fluid flow direction in the circumferential deep groove 14b and spreads on the anti-sealing fluid side and upstream, so that the fluid flows into the negative pressure generating groove 13
  • the amount is further reduced, and the presence of the stagnation part 13i and the stagnation part 13g slightly suppresses the discharge of fluid at the outlet part 13b, but the generation of dynamic pressure (positive pressure) at the outlet part 13b is further reduced.
  • the pumping effect by the flow can be further enhanced, and the action of sucking the fluid from the intermediate portion 13c to the vicinity of the outlet portion 13b can be further increased.
  • the sliding component is used in any one of the pair of rotation sealing rings and the fixing sealing ring in the mechanical seal device.
  • the lubricating oil is provided on one axial side of the cylindrical sliding surface. It is also possible to use as a sliding part of a bearing that slides on a rotating shaft while sealing.
  • the present invention is also applicable to the case where the sealed fluid is present on the inner peripheral side.
  • the positive pressure generating mechanism, the negative pressure generating mechanism, and the deep groove are provided in the stationary seal ring of the mechanical seal constituting the sliding part. You may provide in a sealing ring. Further, for example, a positive pressure generating mechanism may be provided in one sliding ring, a negative pressure generating mechanism may be provided in the other sliding ring, and a deep groove may be provided in one of the sliding rings.
  • the radial grooves are arranged in eight equal parts, and correspondingly, four positive pressure generating grooves as a positive pressure generating mechanism are provided (four for reverse rotation are provided).
  • four negative pressure generating grooves which are a negative pressure generating mechanism, are provided.
  • the present invention is not limited to this example. Alternatively, it may be more than 12, for example.
  • the positive pressure generating mechanism is configured by the Rayleigh step mechanism.
  • the present invention is not limited thereto, and may be configured by, for example, dimples. Any mechanism can be used.
  • the positive pressure generating mechanism is a dimple, the deep groove does not need to communicate with the upstream side of the dimple.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

負圧発生溝内に取り込まれた異物や気泡を排出可能とする。 一対のしゅう動部品のうち、回転側のしゅう動部品が正逆両方向に回転する摺動部品において、少なくとも一方側のしゅう動部品のしゅう動面には、密封流体側に位置して正圧発生溝11、11'が設けられ、また、反密封流体側に位置して反密封流体側とはランド部Rにより隔離された負圧発生溝13が設けられると共に、負圧発生溝13より密封流体側には密封流体側と連通された深溝14が設けられ、正圧発生溝11、11'の上流側の端部は深溝14に連通され、負圧発生溝13の上流側の入口部13a及び下流側の出口部13bは深溝14に連通され、入口部13aと出口部13bとの間の中間部13cは入口部13a及び出口部13bより反密封流体側に位置するように配設されることを特徴としている。 

Description

しゅう動部品
 本発明は、例えば、メカニカルシール、軸受、その他、しゅう動部に適したしゅう動部品に関する。特に、しゅう動面に流体を介在させて摩擦を低減させるとともに、しゅう動面から流体が漏洩するのを防止する必要のある密封環または軸受などのしゅう動部品に関する。
 しゅう動部品の一例である、メカニカルシールにおいて、その性能は、漏れ量、摩耗量、及びトルクによって評価される。従来技術ではメカニカルシールのしゅう動材質やしゅう動面粗さを最適化することにより性能を高め、低漏れ、高寿命、低トルクを実現している。しかし、近年の環境問題に対する意識の高まりから、メカニカルシールの更なる性能向上が求められており、従来技術の枠を超える技術開発が必要となっている。
 そのような中で、本出願人は、静止時に漏れず、回転初期を含み回転時には流体潤滑で作動するとともに漏れを防止し、密封と潤滑とを両立させることのできるしゅう動部品の発明を特許出願している(以下、「従来技術」という。特許文献1参照)。
 この従来技術は、正圧発生領域で発生した正圧によりしゅう動面に流体潤滑膜を形成すると共に、低圧流体側に漏れた流体を高圧流体側に引き戻すポンピング作用を実現するものであって、その一実施形態として、特許文献1の図18~図20に示すように、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプルで密封を行うことができる摺動部品において、回転側密封環が正逆両方向に回転する場合にも対応可能とした発明が開示されている。
国際公開第2014/0050920号
  しかし、上記の従来技術は、静止時に漏れず、回転初期を含み回転時には流体潤滑で作動するとともに漏れを防止し、密封と潤滑とを両立させることのできるようにした点できわめて優れたものであるが、上記ディンプルは周囲がランド部に囲まれ、しゅう動面において独立した溝であるため、ディンプル内に異物や気泡が混入した際に、異物や気泡をディンプル外に排出することができず、しゅう動面の漏れ及び摩擦発熱による摩耗や焼損等が発生し、メカニカルシールの機能が低下するおそれのあることが本発明者において確認されている。
 本発明は、従来技術の長所を生かしつつ、その問題となる点を改良するために行われたものであり、密封と潤滑という相反する条件を両立させつつ、しゅう動面全体に積極的に流体を取り入れ、しゅう動面の摩擦発熱による摩耗や焼損等を防止すると共に漏れを防止することのできるしゅう動部品において、負圧発生溝内に取り込まれた異物や気泡を排出可能とすることにより、長期間にわたりしゅう動面の密封機能を維持させることのできるしゅう動部品を提供することを目的とする。
 上記目的を達成するため本発明のしゅう動部品は、第1に、一対のしゅう動部品のうち、回転側のしゅう動部品が正逆両方向に回転する摺動部品において、
 少なくとも一方側のしゅう動部品のしゅう動面には、密封流体側に位置して正圧発生溝が設けられ、また、反密封流体側に位置して反密封流体側とはランド部により隔離された負圧発生溝が設けられると共に、前記負圧発生溝より密封流体側には密封流体側と連通された深溝が設けられ、
 前記正圧発生溝の上流側の端部は前記深溝に連通され、前記負圧発生溝の上流側の入口部及び下流側の出口部は前記深溝に連通され、前記入口部と出口部との間の中間部は前記入口部及び出口部より反密封流体側に位置するように配設されることを特徴としている。
 この特徴によれば、正逆両方向に回転するしゅう動部品において、正圧により相対しゅう動するしゅう動面の間隔を広げられ、該しゅう動面に液膜が形成され、また、しゅう動面の反密封流体側において吸い込みが発生し、密封流体側から反密封流体側への漏れが防止され、さらに、異物や気泡が負圧発生溝内に浸入した場合でも、異物や気泡は深溝を介して密封流体側に排出されるため、しゅう動面の密封機能を長期間にわたり維持させることができる。
 また、本発明のしゅう動部品は、第2に、第1の特徴において、前記入口部及び出口部は、それぞれ、前記深溝側から前記中間部に向かって先細のテーパ状に形成されることを特徴としている。
 この特徴によれば、負圧発生溝内に浸入した異物や気泡の排出効果を高めることができる。
 また、本発明のしゅう動部品は、第3に、第1の特徴において、前記入口部及び出口部と前記深溝との接続部は、それぞれ、前記深溝内の流体の流れ方向に対し、交叉すると共に反密封流体側に広がり有する淀み部を備えることを特徴としている。
 この特徴によれば、流れによるポンピング効果を一層高めることができ、中間部から出口部付近にかけて流体を吸い込む作用をより一層大きくすることができる。
 また、本発明のしゅう動部品は、第4に、第3の特徴において、前記入口部の前記淀み部は上流側に広がり、また、前記出口部の前記淀み部は下流側に向かう広がりを有する形状であることを特徴としている。
 この特徴によれば、流れによるポンピング効果を一層高めることができ、中間部から出口部付近にかけて流体を吸い込む作用をより一層大きくすることができる。
 また、本発明のしゅう動部品は、第5に、第1ないし第4のいずれかの特徴において、前記深溝は半径方向深溝及び円周方向深溝から構成されることを特徴としている。
 この特徴によれば、しゅう動面の密封流体側から反密封流体側に漏れようとする流体を導き、密封流体側に逃す役割を果たすことができ、また、正逆両方向に回転するしゅう動部品のしゅう動面における正圧発生溝及び負圧発生溝の配列を無駄のない合理的なものとすることができる。
 また、本発明のしゅう動部品は、第6に、第1ないし第5のいずれかの特徴において、前記正圧発生溝は、前記半径方向深溝の周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように前記半径方向深溝の両側に配設されることを特徴としている。
 この特徴によれば、しゅう動面における正圧発生溝の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
 また、本発明のしゅう動部品は、第7に、第1ないし第6のいずれかの特徴において、前記負圧発生溝は、その周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように配設されることを特徴としている。
 この特徴によれば、しゅう動面における負圧発生溝の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
 また、本発明のしゅう動部品は、第8に、第1ないし第7のいずれかの特徴において、前記円周方向深溝は前記正圧発生溝と前記負圧発生溝との径方向の間に配設され、前記半径方向深溝を介して円周方向に連続して配設されることを特徴としている。
 この特徴によれば、正圧発生機構で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧側の負圧発生機構に流入し、負圧発生機構の負圧発生能力が弱まることを防止することができる。
 本発明は、以下のような優れた効果を奏する。
(1)一対のしゅう動部品のうち、回転側のしゅう動部品が正逆両方向に回転する摺動部品において、少なくとも一方側のしゅう動部品のしゅう動面には、密封流体側に位置して正圧発生溝が設けられ、また、反密封流体側に位置して反密封流体側とはランド部により隔離された負圧発生溝が設けられると共に、負圧発生溝より密封流体側には密封流体側と連通された深溝が設けられ、正圧発生溝の上流側の端部は深溝に連通され、負圧発生溝の上流側の入口部及び下流側の出口部は深溝に連通され、入口部と出口部との間の中間部は入口部及び出口部より反密封流体側に位置するように配設されることにより、正逆両方向に回転するしゅう動部品において、正圧により相対しゅう動するしゅう動面の間隔を広げられ、該しゅう動面に液膜が形成され、また、しゅう動面の反密封流体側において吸い込みが発生し、密封流体側から反密封流体側への漏れが防止され、さらに、異物や気泡が負圧発生溝内に浸入した場合でも、異物や気泡は深溝を介して密封流体側に排出されるため、しゅう動面の密封機能を長期間にわたり維持させることができる。
(2)入口部及び出口部は、それぞれ、深溝側から中間部に向かって先細のテーパ状に形成されることにより、負圧発生溝内に浸入した異物や気泡の排出効果を高めることができる。
(3)入口部及び出口部と深溝との接続部は、それぞれ、深溝内の流体の流れ方向に対し、交叉すると共に反密封流体側に広がり有する淀み部を備えることにより、流れによるポンピング効果を一層高めることができ、中間部から出口部付近にかけて流体を吸い込む作用をより一層大きくすることができる。
(4)入口部の前記淀み部は上流側に広がり、また、前記出口部の前記淀み部は下流側に向かう広がりを有する形状であることにより、流れによるポンピング効果を一層高めることができ、中間部から出口部付近にかけて流体を吸い込む作用をより一層大きくすることができる。
(5)深溝は半径方向深溝及び円周方向深溝から構成されることにより、しゅう動面の密封流体側から反密封流体側に漏れようとする流体を導き、密封流体側に逃す役割を果たすことができ、また、正逆両方向に回転するしゅう動部品のしゅう動面における正圧発生溝及び負圧発生溝の配列を無駄のない合理的なものとすることができる。
(6)正圧発生溝は、半径方向深溝の周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように半径方向深溝の両側に配設されることにより、しゅう動面における正圧発生溝の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
(7)負圧発生溝は、その周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように配設されることにより、しゅう動面における負圧発生溝の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
(8)円周方向深溝は正圧発生溝と負圧発生溝との径方向の間に配設され、半径方向深溝を介して円周方向に連続して配設されることにより、正圧発生機構で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧側の負圧発生機構に流入し、負圧発生機構の負圧発生能力が弱まることを防止することができる。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 本発明の実施例1に係るしゅう動部品のしゅう動面を示した平面図である。 図2の要部を拡大した拡大図である。 図3のA-A断面図であって、説明の都合上、相手しゅう動面も示している。 本発明の実施例2に係るしゅう動部品のしゅう動面を示した平面図である。 本発明の実施例3に係るしゅう動部品のしゅう動面を示した平面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。 
 図1ないし図4を参照して、本発明の実施例1に係るしゅう動部品について説明する。
 なお、以下の実施例においては、しゅう動部品の一例であるメカニカルシールを例にして説明する。また、メカニカルシールを構成するしゅう動部品の外周側を密封流体側、内周側を反密封流体側(空気側)として説明するが、本発明はこれに限定されることなく、密封流体側と反密封流体側(空気側)とが逆の場合も適用可能である。
 図1は、メカニカルシールの一例を示す縦断面図であって、しゅう動面の外周から内周方向に向かって漏れようとする密封流体側の被密封流体を密封する形式のインサイド形式のものであり、密封流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた一方のしゅう動部品である円環状の回転側密封環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた他方のしゅう動部品である円環状の固定側密封環5とが設けられ、固定側密封環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、ラッピング等によって鏡面仕上げされたしゅう動面S同士で密接しゅう動するようになっている。すなわち、このメカニカルシールは、回転側密封環3と固定側密封環5との互いのしゅう動面Sにおいて、被密封流体が回転軸1の外周から大気側へ流出するのを防止するものである。
 図2は、本発明の実施例1に係るしゅう動部品のしゅう動面を示したものであって、ここでは、図1の固定側密封環5のしゅう動面に本発明の表面テクスチャが適用された場合を例にして説明する。
 なお、回転側密封環3のしゅう動面に本発明の表面テクスチャが適用された場合も基本的には同様であるが、その場合、半径方向溝は密封流体側に連通すればよいため、しゅう動面の外周側まで設けられる必要はない。
 図2において、固定側密封環5のしゅう動面の外周側が密封流体側であり、また、内周側が反密封流体側(空気側)である。また、相手しゅう動面は正逆両方向に回転するものであるが、図2においては、相手しゅう動面が実線の矢印で示すように反時計方向に回転する場合を想定して説明する。
 固定側密封環5のしゅう動面Sには、密封流体側に位置して正圧発生機構10、10’としての正圧発生溝11、11’が設けられ、また、反密封流体側に位置して反密封流体側とはランド部Rにより隔離された負圧発生機構12としての負圧発生溝13が設けられると共に、負圧発生溝13より密封流体側には密封流体側と連通された深溝14が設けられている。
 なお、ランド部Rはしゅう動面Sの平滑な部分を指している。
 深溝14は半径方向深溝14a及び円周方向深溝14bから構成される。円周方向深溝14bは半径方向深溝14aを介して円周方向に連続して配設されている。
 図2においては、半径方向深溝14aは8等配に設けられており、円周方向深溝14bは正圧発生溝11と負圧発生溝13との径方向の間に配設されている。
 正圧発生機構10、10’はレイリーステップからなり、正圧発生溝(以下、「グルーブ」ということがある。)11、11’は、半径方向深溝14aの周方向の中心と回転中心とを結ぶ径方向の線O-Oに対して対称になるように半径方向深溝14aの両側に配設される。相手しゅう動面が実線で示す反時計方向に回転すると半径方向深溝14aの下流側(図2においては半径方向深溝14aの左側)に位置するグルーブ11において正圧を発生するように、グルーブ11の上流側の端部11aは半径方向深溝14aに連通され、下流側の端部11bは狭まり段差を形成している。
 逆に、相手しゅう動面が破線で示す時計方向に回転すると半径方向深溝14aの下流側(図2においては半径方向深溝14aの右側)に位置するグルーブ11’において正圧を発生するように、グルーブ11’上流側の端部11a’は半径方向深溝14aに連通され、下流側の端部11b’は狭まり段差を形成している。
 負圧発生溝13は、その周方向の中心と回転中心とを結ぶ径方向の線O-Oに対して対称になるように周方向に延設されており、上流側の入口部13a及び下流側の出口部13bは円周方向深溝14bに連通され、入口部13aと出口部13bとの間の中間部13cは入口部13a及び出口部13bより反密封流体側(しゅう動面の内周縁側)に位置するように円弧状に配設されている。
 入口部13a及び出口部13bの平面形状は、それぞれ、円周方向深溝14bの接線方向(流体の流れ方向)に対して交叉し、かつ、反密封流体側(しゅう動面の内周縁側)に位置する中間部13cに向かって延びており、円周方向深溝14b側から中間部13cに向かって先細のテーパ状に形成されている。
 正圧発生溝11、11’、負圧発生溝13及び深溝14の深さ及び幅はしゅう動部品の径、しゅう動面の幅及び相対しゅう動速度、並びに、密封及び潤滑の条件等に応じて適宜決定される性質のものである。たとえば、正圧発生溝11、11’の深さは負圧発生溝13の深さの数倍であり、また、深溝14の深さは正圧発生溝11、11’の深さの十倍以上である。
 次に、図3及び4を参照しながら、負圧発生溝13について説明する。
 図3において、負圧発生溝13は入口部13a及び出口部13bから反密封流体側(しゅう動面の内周縁側)に位置する中間部13cに向かって屈曲しているため、図4に示すように、入口部13aで負圧が発生し、中間部13c内ではキャビテーションが発生する。また、出口部13bで動圧(正圧)が発生する。
 すなわち、図4(a)において、矢印で示すように、固定環5に対して回転環3が反時計方向に回転移動するが、固定環5のしゅう動面Sに負圧発生溝13が形成されていると、該負圧発生溝13の下流側に位置する出口部13bには狭まり隙間(段差)13eが存在する。相対する回転環3のしゅう動面は平坦である。
 回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5のしゅう動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、狭まり隙間(段差)13eの存在によって破線で示すような動圧(正圧)が発生される。
 一方、図4(b)においては、矢印で示すように、固定環5に対して回転環3は反時計方向に回転移動するが、固定環5のしゅう動面Sに負圧発生溝13が形成されていると、負圧発生溝13の上流側に位置する入口部13aには拡がり隙間(段差)13dが存在する。相対する回転環3のしゅう動面は平坦である。
 回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5のしゅう動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、拡がり隙間(段差)13dの存在によって破線で示すような動圧(負圧)が発生される。
 このため、負圧発生溝13内の上流側に位置する入口部13aには負圧が発生し、下流側に位置する出口部13bには正圧が発生することになる。そして、入口部13aの負圧発生領域から中間部13cにかけてキャビテーションが発生する。
 なお、Rはシール面Sを構成するランド部を示す
 負圧発生溝13は淺溝のため深溝14からの流体の流入量は少なく、また、図3に示すように流体は出口部13bから円周方向深溝14bにスムースに流れることから、出口部13bにおける動圧(正圧)の発生は限りなく小さく、流れによるポンピング効果により、中間部13cから出口部13b付近にかけて流体を吸い込む作用を生じる。
 今、相手しゅう動面が実線で示す反時計方向に回転すると、正圧発生溝(グルーブ)11は、その上流側において半径方向深溝14aを介して密封流体側から流体を吸い込み、狭まり段差正圧11bで正圧を発生し、発生した正圧により相対しゅう動するしゅう動面Sの間隔を広げ、該しゅう動面Sに液膜を形成する。
 また、負圧発生溝13は、キャビテーション形成領域において負圧を発生させる結果、キャビテーションが発生し、キャビテーション内部圧力は、大気圧より低く負圧となるためポンピング作用が生じ、反密封流体側の流体は図3の矢印で示すように負圧発生溝13へ流入する結果、しゅう動面の反密封流体側において吸い込みが発生し、密封流体側から反密封流体側への漏れを防止するものである。そして負圧発生溝13に吸い込まれた流体はその下流側において密封流体側に接続された円周方向深溝14b及び半径方向深溝14aを介して密封流体側に排出される。
 さらに、深溝14の円周方向深溝14bは、しゅう動面Sの密封流体側から反密封流体側に漏れようとする流体を導き、半径方向深溝14aを介して密封流体側に逃す役割を果たすものである。
 すなわち、深溝14の円周方向深溝14bは、正圧発生機構10、例えば、レイリーステップ機構で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧側の負圧発生機構12、すなわち、負圧発生溝13に流入し、負圧発生機構12の負圧発生能力が弱まることを防止する役割を果たすものであり、高圧側の正圧発生機構10で発生した圧力により反密封流体側に流入しようとする流体を円周方向深溝14bに導き、半径方向深溝14aを介して密封流体側に逃す役割を果たすものである。
 そして、本発明においては、負圧発生溝13の上流側の入口部13a及び下流側の出口部13b(逆回転の場合は入口部13aが下流側、出口部13bが上流側となる。)はそれぞれ深溝14の円周方向深溝14bに連通されているため、異物や気泡が負圧発生溝13内に浸入した場合において、異物や気泡は深溝14を介して密封流体側に排出される。特に、負圧発生溝13の円周方向深溝14bに連通される部分は滑らかに拡張されているため、異物や気泡は負圧発生溝13内に留まることなく、スムースに円周方向深溝14bに移動され、密封流体側に排出される。 
 本発明の実施例1に係るしゅう動部品は上記のとおりであり、以下のような優れた効果を奏する。
(1)一対のしゅう動部品のうち、回転側のしゅう動部品が正逆両方向に回転する摺動部品において、少なくとも一方側のしゅう動部品のしゅう動面には、密封流体側に位置して正圧発生溝11、11’が設けられ、また、反密封流体側に位置して反密封流体側とはランド部Rにより隔離された負圧発生溝13が設けられると共に、負圧発生溝13より密封流体側には密封流体側と連通された深溝14が設けられ、正圧発生溝11、11’の上流側の端部は深溝14に連通され、負圧発生溝13の上流側の入口部13a及び下流側の出口部13bは深溝14に連通され、入口部13aと出口部13bとの間の中間部13cは入口部13a及び出口部13bより反密封流体側に位置するように配設されることにより、正逆両方向に回転するしゅう動部品において、正圧により相対しゅう動するしゅう動面Sの間隔を広げられ、該しゅう動面Sに液膜が形成され、また、しゅう動面の反密封流体側において吸い込みが発生し、密封流体側から反密封流体側への漏れが防止され、さらに、異物や気泡が負圧発生溝13内に浸入した場合でも、異物や気泡は深溝14を介して密封流体側に排出されるため、しゅう動面の密封機能を長期間にわたり維持させることができる。
(2)入口部13a及び出口部13bは、それぞれ、深溝14側から中間部13cに向かって先細のテーパ状に形成されることにより、負圧発生溝13内に浸入した異物や気泡の排出効果を高めることができる。
(3)深溝14は半径方向深溝14a及び円周方向深溝14bから構成されることにより、しゅう動面Sの密封流体側から反密封流体側に漏れようとする流体を導き、密封流体側に逃す役割を果たすことができ、また、正逆両方向に回転するしゅう動部品のしゅう動面における正圧発生溝11、11’及び負圧発生溝13の配列を無駄のない合理的なものとすることができる。
(4)正圧発生溝11、11’は、半径方向深溝14aの周方向の中心と回転中心とを結ぶ径方向の線O-Oに対して対称になるように半径方向深溝14aの両側に配設されることにより、しゅう動面における正圧発生溝11、11’の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
(5)負圧発生溝13は、その周方向の中心と回転中心とを結ぶ径方向の線O-Oに対して対称になるように配設されることにより、しゅう動面における負圧発生溝13の配列を正逆両方向に回転するしゅう動部品に適した合理的なものとすることができる。
(6)円周方向深溝14bは正圧発生溝11、11’と負圧発生溝13との径方向の間に配設され、半径方向深溝14aを介して円周方向に連続して配設されることにより、正圧発生機構10で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧側の負圧発生機構12に流入し、負圧発生機構12の負圧発生能力が弱まることを防止することができる。
 図5を参照しながら、本発明の実施例2に係るしゅう動部品について説明する。
 なお、実施例1と同じ部材には同じ符号を付し、重複する説明は省略する。
 図5に示す実施例2に係るしゅう動部品においては、負圧発生溝の平面形状が実施例1と相違するが、その他の基本構成は実施例1と同じである。
 図5において、負圧発生溝13の入口部13a及び出口部13と円周方向深溝14bとの接続部には、それぞれ、円周方向深溝14b内の流体の流れ方向に対し、交叉すると共に反密封流体側に広がりを有する淀み部13f、13gが設けられている。
 図5に示す負圧発生溝13においては、淀み部13f、13gは円周方向深溝14b内の流体の流れ方向に対し直交するように交叉すると共に反密封流体側に広がりを有している。
 入口部13aに円周方向深溝14b内の流体の流れ方向に対し直交するように交叉すると共に反密封流体側に広がりを有する淀み部13fが設けられることにより、負圧発生溝13への流体の流入量は一層に少なくなり、また、淀み部13gの存在により出口部13bにおいては流体の排出が若干抑えられるものの、出口部13bにおける動圧(正圧)の発生は一層小さくなるため、流れによるポンピング効果を高めることができ、中間部13cから出口部13b付近にかけて流体を吸い込む作用を一層大きくすることができる。
 図6を参照しながら、本発明の実施例3に係るしゅう動部品について説明する。
 なお、実施例1と同じ部材には同じ符号を付し、重複する説明は省略する。
 図6に示す実施例3に係るしゅう動部品においては、負圧発生溝の平面形状が実施例1と相違するが、その他の基本構成は実施例1と同じである。
 図6において、負圧発生溝13の入口部13aと円周方向深溝14bとの接続部には、円周方向深溝14b内の流体の流れ方向に対し、交叉すると共に反密封流体側であって上流側に広がる淀み部13hが設けられ、また、出口部13前記出口部と円周方向深溝14bとの接続部には、円周方向深溝14b内の流体の流れ方向に対し、交叉すると共に反密封流体側であって下流側に広がる淀み部13iが設けられている。
 入口部13aに円周方向深溝14b内の流体の流れ方向に対し交叉すると共に反密封流体側であって上流側に広がる淀み部13hが設けられることにより、負圧発生溝13への流体の流入量はより一層少なくなり、また、淀み部13i淀み部13gの存在により出口部13bにおいては流体の排出が若干抑えられるものの、出口部13bにおける動圧(正圧)の発生はより一層小さくなるため、流れによるポンピング効果を一層高めることができ、中間部13cから出口部13b付近にかけて流体を吸い込む作用をより一層大きくすることができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、しゅう動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状しゅう動面の軸方向一方側に潤滑油を密封しながら回転軸としゅう動する軸受のしゅう動部品として利用することも可能である。
 また、例えば、前記実施例では、外周側に被密封流体が存在する場合について説明したが、内周側に被密封流体が存在する場合にも適用可能である。
 また、例えば、前記実施例では、しゅう動部品を構成するメカニカルシールの固定側密封環に正圧発生機構、負圧発生機構及び深溝を設ける場合について説明したが、これとは逆に、回転側密封環に設けてもよい。
 また、例えば、一方のしゅう動環に正圧発生機構を、他方のしゅう動環に負圧発生機構を設け、深溝をいずれかのしゅう動環に設けるようにしてもよい。
 また、例えば、前記実施例では、半径方向溝が8等配に設けられ、これに対応して、正圧発生機構である正圧発生溝が4枚設けられ(逆回転用に4枚設けられ、合計で8枚)、負圧発生機構である負圧発生溝が4枚設けられた例が説明されているが、これに限定されることなく、これより少ない例えば半径方向溝が4等配でもよく、また、これより多い例えば12枚等でもよい。
 また、例えば、前記実施例では、正圧発生機構がレイリーステップ機構から構成される場合について説明したが、これに限定されることなく、例えば、ディンプルで構成してもよく、要は、正圧を発生する機構であればよい。
 なお、正圧発生機構がディンプルの場合、深溝はディンプルの上流側に連通される必要はない。
  1            回転軸
  2            スリーブ
  3            回転側密封環
  4            ハウジング
  5            固定側密封環
  6            コイルドウェーブスプリング
  7            ベローズ
 10、10’        正圧発生機構
 11、11’        正圧発生溝(グルーブ)
 11a           上流側の端部
 11b           下流側の端部(狭まり段差)
 12            負圧発生機構
 13            負圧発生溝
 13a           上流側の入口部
 13b           下流側の出口部
 13c           中間部
 13d           拡がり隙間(段差)
 13e           狭まり隙間(段差)
 13f~13i       淀み部
 14            深溝
 14a           半径方向深溝
 14b           円周方向深溝
 S             シール面
 R             ランド部
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (8)

  1.  一対のしゅう動部品のうち、回転側のしゅう動部品が正逆両方向に回転する摺動部品において、
     少なくとも一方側のしゅう動部品のしゅう動面には、密封流体側に位置して正圧発生溝が設けられ、また、反密封流体側に位置して反密封流体側とはランド部により隔離された負圧発生溝が設けられると共に、前記負圧発生溝より密封流体側には密封流体側と連通された深溝が設けられており、
     前記正圧発生溝の上流側の端部は前記深溝に連通され、前記負圧発生溝の上流側の入口部及び下流側の出口部は前記深溝に連通され、前記入口部と出口部との間の中間部は前記入口部及び出口部より反密封流体側に位置するように配設されることを特徴とするしゅう動部品。
  2.  前記入口部及び出口部は、それぞれ、前記深溝側から前記中間部に向かって先細のテーパ状に形成されることを特徴とする請求項1に記載のしゅう動部品。
  3.  前記入口部及び出口部と前記深溝との接続部は、それぞれ、前記深溝内の流体の流れ方向に対し、交叉すると共に反密封流体側に広がり有する淀み部を備えることを特徴とする請求項1に記載のしゅう動部品。
  4.  前記入口部の前記淀み部は上流側に広がり、また、前記出口部の前記淀み部は下流側に向かう広がりを有する形状であることを特徴とする請求項3に記載のしゅう動部品。
  5.  前記深溝は半径方向深溝及び円周方向深溝から構成されることを特徴とする請求項1ないし請求項4のいずれか1項に記載のしゅう動部品。
  6.  前記正圧発生溝は、前記半径方向深溝の周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように前記半径方向深溝の両側に配設されることを特徴とする請求項1ないし請求項5のいずれか1項に記載のしゅう動部品。
  7.  前記負圧発生溝は、その周方向の中心と回転中心とを結ぶ径方向の線に対して対称になるように配設されることを特徴とする請求項1ないし請求項6のいずれか1項に記載のしゅう動部品。
  8.  前記円周方向深溝は前記正圧発生溝と前記負圧発生溝との径方向の間に配設され、前記半径方向深溝を介して円周方向に連続して配設されることを特徴とする請求項1ないし請求項7のいずれか1項に記載のしゅう動部品。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2017/039905 2016-11-14 2017-11-06 しゅう動部品 WO2018088353A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018550187A JP6910371B2 (ja) 2016-11-14 2017-11-06 しゅう動部品
KR1020197012003A KR102288167B1 (ko) 2016-11-14 2017-11-06 슬라이딩 부품
CN201780065648.9A CN109844382B (zh) 2016-11-14 2017-11-06 滑动部件
EP17870493.8A EP3540275B1 (en) 2016-11-14 2017-11-06 Sliding component
US16/347,657 US10941863B2 (en) 2016-11-14 2017-11-06 Sliding component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221386 2016-11-14
JP2016-221386 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088353A1 true WO2018088353A1 (ja) 2018-05-17

Family

ID=62109893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039905 WO2018088353A1 (ja) 2016-11-14 2017-11-06 しゅう動部品

Country Status (6)

Country Link
US (1) US10941863B2 (ja)
EP (1) EP3540275B1 (ja)
JP (1) JP6910371B2 (ja)
KR (1) KR102288167B1 (ja)
CN (1) CN109844382B (ja)
WO (1) WO2018088353A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153468A (ja) * 2019-03-22 2020-09-24 イーグル工業株式会社 摺動部品
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
US11053975B2 (en) 2017-05-19 2021-07-06 Eagle Industry Co., Ltd Sliding component
WO2021246372A1 (ja) * 2020-06-02 2021-12-09 イーグル工業株式会社 摺動部品
US11248707B2 (en) 2017-05-19 2022-02-15 Eagle Industry Co., Ltd Sliding component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023656B (zh) * 2016-12-07 2021-06-04 伊格尔工业股份有限公司 滑动组件
US20210164571A1 (en) * 2018-05-17 2021-06-03 Eagle Industry Co., Ltd. Seal ring
EP3816490A4 (en) 2018-05-17 2022-03-02 Eagle Industry Co., Ltd. WATERTIGHT RING
CN112105851B (zh) 2018-05-17 2023-02-28 伊格尔工业股份有限公司 密封环
US11644100B2 (en) * 2018-05-17 2023-05-09 Eagle Industry Co., Ltd. Seal ring
DE102020007800A1 (de) 2020-12-15 2022-06-15 Kaco Gmbh + Co. Kg Dichtring einer Gleitringdichtung sowie Gleitringdichtung mit einem Dichtring
CN114857272B (zh) * 2022-03-31 2023-06-02 清华大学 端面密封组件
CN114857273B (zh) * 2022-03-31 2023-06-02 清华大学 端面密封组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050920A1 (ja) 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014148316A1 (ja) * 2013-03-17 2014-09-25 イーグル工業株式会社 摺動部品
WO2015125950A1 (ja) * 2014-02-24 2015-08-27 イーグル工業株式会社 摺動部品および摺動部品の加工方法
US20160047476A1 (en) * 2014-08-15 2016-02-18 Eaton Corporation Hydrodynamic mating ring with integrated groove inlet pressure control
WO2016072325A1 (ja) * 2014-11-08 2016-05-12 イーグル工業株式会社 摺動部品

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL130801C (ja) * 1961-02-10
US3176910A (en) * 1962-11-20 1965-04-06 Curtiss Wright Corp Rotor and seal combination for rotary mechanisms
US3333855A (en) * 1964-09-22 1967-08-01 Gits Bros Mfg Co Floating controlled gap seal
DE1913397B2 (de) * 1969-03-17 1974-06-20 Feodor Burgmann Jun. Asbest- Und Packungswerk, 8190 Wolfratshausen Gleitringdichtung mit Schraubengangpumpe
US3672689A (en) * 1970-10-05 1972-06-27 Robert C Hadley Mechanical seal assemblies
US4082296A (en) * 1976-05-26 1978-04-04 Stein Philip C Seal for sealing between a rotating member and a housing
US4155561A (en) * 1976-06-11 1979-05-22 Rudy John V Sealing device
US4415168A (en) * 1977-04-12 1983-11-15 Taiho Kogyo Co., Ltd. Mechanical seal
US4145058A (en) * 1977-07-08 1979-03-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Shaft seal assembly for high speed and high pressure applications
JPS5850363A (ja) * 1981-09-18 1983-03-24 Taiho Kogyo Co Ltd メカニカルシ−ル
US5246295A (en) * 1991-10-30 1993-09-21 Ide Russell D Non-contacting mechanical face seal of the gap-type
US5388843A (en) * 1993-02-16 1995-02-14 Durametallic Corporation Fluid film seal
US5509664A (en) * 1993-07-19 1996-04-23 Stein Seal Company Segmented hydrodynamic seals for sealing a rotatable shaft
EP0720709B1 (en) * 1993-09-01 2002-03-06 Flowserve Management Company Face seal with angled and annular grooves
US5498007A (en) * 1994-02-01 1996-03-12 Durametallic Corporation Double gas barrier seal
US5558341A (en) * 1995-01-11 1996-09-24 Stein Seal Company Seal for sealing an incompressible fluid between a relatively stationary seal and a movable member
CN1087061C (zh) * 1998-08-13 2002-07-03 王玉明 可双向旋转的双列双叶螺旋槽端面密封
PL187630B1 (pl) * 1998-12-10 2004-08-31 Anga Uszczelnienia Mechaniczne Pierścień ślizgowy uszczelnienia mechanicznego czołowego bezstykowego
US6446976B1 (en) * 2000-09-06 2002-09-10 Flowserve Management Company Hydrodynamic face seal with grooved sealing dam for zero-leakage
JP5758378B2 (ja) * 2010-03-15 2015-08-05 イーグル工業株式会社 摺動部材
EP2626604B1 (en) * 2010-10-06 2019-06-12 Eagle Industry Co., Ltd. Sliding part
CN103791097A (zh) * 2014-02-28 2014-05-14 江苏大学 一种自动排泄颗粒的组合流体动压槽机械密封
CN106104112B (zh) * 2014-06-26 2017-12-19 伊格尔工业股份有限公司 滑动部件
WO2015199172A1 (ja) * 2014-06-26 2015-12-30 イーグル工業株式会社 摺動部品
WO2016042989A1 (ja) * 2014-09-20 2016-03-24 イーグル工業株式会社 摺動部品
AU2015319402B2 (en) * 2014-09-20 2018-04-05 Eagle Industry Co., Ltd. Sliding component
US9638326B2 (en) * 2014-12-15 2017-05-02 Kaydon Ring & Seal, Inc. Arch-bound ring seal and ring seal system including an arch-bound ring seal
US9927033B2 (en) * 2015-06-29 2018-03-27 Kaydon Ring & Seal, Inc. Split circumferential lift-off seal segment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050920A1 (ja) 2012-09-29 2014-04-03 イーグル工業株式会社 摺動部品
WO2014148316A1 (ja) * 2013-03-17 2014-09-25 イーグル工業株式会社 摺動部品
WO2015125950A1 (ja) * 2014-02-24 2015-08-27 イーグル工業株式会社 摺動部品および摺動部品の加工方法
US20160047476A1 (en) * 2014-08-15 2016-02-18 Eaton Corporation Hydrodynamic mating ring with integrated groove inlet pressure control
WO2016072325A1 (ja) * 2014-11-08 2016-05-12 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540275A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053975B2 (en) 2017-05-19 2021-07-06 Eagle Industry Co., Ltd Sliding component
US11248707B2 (en) 2017-05-19 2022-02-15 Eagle Industry Co., Ltd Sliding component
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
JP2020153468A (ja) * 2019-03-22 2020-09-24 イーグル工業株式会社 摺動部品
JP7262895B2 (ja) 2019-03-22 2023-04-24 イーグル工業株式会社 摺動部品
WO2021246372A1 (ja) * 2020-06-02 2021-12-09 イーグル工業株式会社 摺動部品

Also Published As

Publication number Publication date
CN109844382B (zh) 2021-01-12
JPWO2018088353A1 (ja) 2019-10-03
CN109844382A (zh) 2019-06-04
US10941863B2 (en) 2021-03-09
EP3540275A4 (en) 2020-07-15
EP3540275A1 (en) 2019-09-18
JP6910371B2 (ja) 2021-07-28
US20190316682A1 (en) 2019-10-17
EP3540275B1 (en) 2023-07-05
KR102288167B1 (ko) 2021-08-11
KR20190053947A (ko) 2019-05-20

Similar Documents

Publication Publication Date Title
WO2018088353A1 (ja) しゅう動部品
JP6204974B2 (ja) 摺動部品
JP7043414B2 (ja) しゅう動部品
JP6678170B2 (ja) 摺動部品
JP6058018B2 (ja) 摺動部品
JP6161632B2 (ja) 摺動部品
JP6776232B2 (ja) 摺動部品
JP6678169B2 (ja) 摺動部品
US10626995B2 (en) Sliding component
JP6345695B2 (ja) 摺動部品
JP6392343B2 (ja) 摺動部品
JP6918012B2 (ja) しゅう動部品
WO2015087799A1 (ja) 摺動部品
WO2015199172A1 (ja) 摺動部品
JP6713990B2 (ja) 摺動部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550187

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20197012003

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017870493

Country of ref document: EP