WO2015199172A1 - 摺動部品 - Google Patents
摺動部品 Download PDFInfo
- Publication number
- WO2015199172A1 WO2015199172A1 PCT/JP2015/068318 JP2015068318W WO2015199172A1 WO 2015199172 A1 WO2015199172 A1 WO 2015199172A1 JP 2015068318 W JP2015068318 W JP 2015068318W WO 2015199172 A1 WO2015199172 A1 WO 2015199172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure fluid
- fluid side
- pressure
- sliding surface
- low
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
- F16J15/3404—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
- F16J15/3408—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
- F16J15/3412—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/34—Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/164—Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
Definitions
- the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
- the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed in the sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
- the present applicant provides a plurality of dimples 50 on the sliding surface S as shown in FIG. 6, and moves the cavitation formation region 50 a on the upstream side of each dimple 50 toward the low-pressure fluid side.
- the downstream positive pressure generation region 50b is disposed closer to the high-pressure fluid side, the fluid is sucked in the upstream cavitation formation region 50a, and the sucked fluid is drawn from the downstream positive pressure generation region 50b.
- An invention for returning to the high-pressure side has been filed earlier (hereinafter referred to as “Prior Art 2”; see Patent Document 2).
- the prior art 2 is an epoch-making invention in that it has both functions of leakage prevention and lubrication regardless of the pressure difference between the inner and outer circumferences of the sliding surface.
- the fluid movement from the upstream cavitation formation region 50a to the downstream positive pressure generation region 50b is slightly less smooth, so the low pressure fluid side X of the positive pressure generation region 50b
- the generation of dynamic pressure in the fluid may be excessive, leading to leakage, and the distance from the pressure peak position in the dynamic pressure generation region to the low pressure fluid side may not be so large, leading to leakage.
- the upstream cavitation formation region is arranged closer to the low-pressure fluid side, there is a problem that the radial width of the cavitation formation region cannot be increased and the negative pressure generation starting point cannot be increased.
- the present invention relates to an improvement of the invention described in Patent Document 2, and includes cavitation on the upstream side of a recessed portion (referred to as “dimple” in the present specification) such as a dimple formed on a sliding surface. Smooth movement of fluid from the area to the downstream positive pressure generation area further improves both leakage prevention and lubrication functions regardless of the pressure difference between the inner and outer periphery of the sliding surface.
- An object of the present invention is to provide a sliding part provided with In addition, at the same time, the object is to provide a sliding part having a further improved leakage prevention function by increasing the negative pressure generation starting point and disposing a cavitation region almost all around the low pressure fluid side. It is what.
- a plurality of dimples are independently provided in the circumferential direction on one sliding surface of the pair of sliding components that slide relative to each other.
- the dimples are formed along the circumferential direction with a substantially constant width from the upstream cavitation formation region to the downstream positive pressure generation region, and the upstream end of the cavitation formation region extends from the low pressure fluid side to the high pressure fluid side.
- a taper shape that is inclined along the rotation direction of the mating sliding surface, and is disposed so as to overlap in the radial direction with the positive pressure generation region of the dimple disposed on the upstream side.
- the edge on the low-pressure fluid side has a tapered shape that inclines along the rotation direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side, and the edge on the low-pressure fluid side of the cavitation forming region It is characterized by being smoothly connected. According to this feature, the fluid that attempts to leak from the positive pressure generation region of the upstream dimple to the low pressure fluid side flows into the upstream side of the cavitation formation region of the downstream dimple, and leaks to the low pressure fluid side. Is prevented and the sealing performance is improved. That is, since the cavitation formation region is disposed over almost the entire circumference on the low-pressure fluid side, the function of preventing leakage can be further improved.
- the radial width of the cavitation formation region can be increased, the negative pressure generation starting point can be increased, and the sealing performance can be improved. Furthermore, since the cavitation formation region is increased, the shear resistance of the sliding surface can be reduced, and the torque of the sliding component can be reduced. Furthermore, the fluid flowing into the cavitation formation region flows smoothly into the positive pressure generation region, and no positive pressure is generated in the flow of the fluid that hits the edge on the low pressure fluid side. The generation of dynamic pressure can be suppressed, and the amount of fluid leaking to the low pressure fluid side can be reduced.
- the distance from the pressure peak position on the tip side of the positive pressure generating portion where the positive pressure is generated in the positive pressure generating region to the low pressure fluid side is increased, and as a result, the pressure gradient is reduced and the amount of leakage can be reduced. it can.
- the sliding component of the present invention is, secondly, in the first feature, on the high-pressure fluid side of the sliding surface provided with the dimple, or on the high-pressure fluid side of the other sliding surface.
- a positive pressure generating mechanism comprising a Rayleigh step communicating with the high-pressure fluid side via a radial groove is disposed, a pressure releasing groove is provided between the positive pressure generating mechanism and the dimple, and the pressure releasing groove is The high-pressure fluid side communicates with the radial groove.
- a fluid film can be formed and lubricated by a positive pressure generating mechanism comprising a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication can be performed with dimples disposed on the low-pressure fluid side. The sealing action by the dimples can be ensured.
- the sliding component of the present invention is, in the first feature, provided on the high-pressure fluid side of the sliding surface provided with the dimples or on the high-pressure fluid side of the other sliding surface.
- a positive pressure generating mechanism including a Rayleigh step communicating with the high-pressure fluid side is provided.
- a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication are performed by dimples disposed on the low-pressure fluid side. Since there is no need to provide deep grooves such as radial grooves and pressure release grooves, there is an advantage that the processing is easy.
- the present invention has the following excellent effects.
- the fluid flowing into the cavitation formation region flows smoothly into the positive pressure generation region, and no positive pressure is generated in the flow of the fluid that hits the edge on the low pressure fluid side.
- the generation of dynamic pressure can be suppressed, and the amount of fluid leaking to the low pressure fluid side can be reduced.
- a positive pressure generating mechanism comprising a Rayleigh step communicating with the high-pressure fluid side via a radial groove is provided on the high-pressure fluid side of the sliding surface provided with dimples or on the high-pressure fluid side of the other sliding surface.
- the pressure release groove is provided between the positive pressure generating mechanism and the dimple, and the pressure release groove is arranged on the high pressure fluid side by communicating with the high pressure fluid side via the radial groove.
- a fluid film can be formed and lubricated by a positive pressure generating mechanism consisting of a Rayleigh step, and sealing and lubrication can be performed with dimples arranged on the low-pressure fluid side. Can be.
- a positive pressure generating mechanism comprising a Rayleigh step communicating with the high pressure fluid side is disposed on the high pressure fluid side of the sliding surface provided with the dimples or on the high pressure fluid side of the other sliding surface.
- a fluid film is formed and lubricated by a positive pressure generating mechanism comprising a Rayleigh step disposed on the high-pressure fluid side, and sealing and lubrication are performed with dimples disposed on the low-pressure fluid side. Since there is no need to provide deep grooves such as directional grooves and pressure release grooves, there is an advantage that processing is easy.
- FIG. 1 shows a sliding surface of a sliding component according to Embodiment 1 of the present invention.
- (A) is a diagram for explaining a positive pressure generating mechanism consisting of a narrowing gap (step) on the downstream side of the dimple
- (b) is a diagram for explaining a negative pressure generating mechanism consisting of an expanding gap (step) on the upstream side of the dimple.
- is there. 3 shows a sliding surface of a sliding component according to Embodiment 2 of the present invention. It shows the sliding surface of the sliding component which concerns on Example 3 of this invention. The sliding surface of the prior art 2 is shown.
- FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on a high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
- An annular rotary ring 3 provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high-pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1, and a pump
- An annular stationary ring 5 provided in the housing 4 in a non-rotating state and movable in the axial direction is wrapped with a coiled wave spring 6 and a bellows 7 that urge the stationary ring 5 in the axial direction.
- the sliding surfaces S mirror-finished are slid closely. That is, this mechanical seal prevents the sealed fluid from flowing out from the outer periphery of the rotating shaft 1 to the atmosphere side on the sliding surfaces S of the rotating ring 3 and the stationary ring 5.
- the present invention is not limited to the inside type, but can also be applied to an outside type that seals the sealed fluid on the high-pressure fluid side that is about to leak from the inner periphery to the outer periphery of the sliding surface. Needless to say.
- FIG. 2 shows a sliding surface of the sliding component according to the first embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example. The same applies when dimples are formed on the sliding surface of the rotating ring 3.
- a plurality of dimples 10 are provided on the sliding surface S in the circumferential direction.
- the dimples 10 do not communicate with the high-pressure fluid side and the low-pressure fluid side, and the dimples 10 are provided so as to be separated from each other in the circumferential direction independently of each other.
- the number, area, and depth of the dimples 10 have properties that are appropriately determined according to the diameter of the sliding component, the width and relative movement speed of the sliding surface, and the sealing and lubrication conditions.
- a dimple having a large depth and a shallow depth is preferable in terms of fluid lubrication and liquid film formation.
- the dimples 10 are provided in six equal distributions, but may be four equal distributions, eight equal distributions, or the like.
- Each dimple 10 is formed along the circumferential direction with a substantially constant width so as to form an arc shape from the upstream cavitation forming region 10a to the downstream positive pressure generating region 10b.
- the edge 10c on the low pressure fluid side of the cavitation formation region 10a of each dimple 10 is separated from the low pressure fluid side by the sliding surface S1, and the edge 10d on the high pressure fluid side is also separated from the high pressure fluid side by the sliding surface S2. Yes.
- the fluid sucked in the cavitation formation region 10a of each dimple 10 passes through the dimple, generates dynamic pressure (positive pressure) in the positive pressure generation region 10b, and returns to the high pressure fluid side closer to the radial direction. It has become.
- the upstream side start end 10e of the cavitation forming region 10a has a tapered shape inclined along the rotation direction of the mating sliding surface from the low pressure fluid side toward the high pressure fluid side, and is positive pressure of the dimple 10 disposed on the upstream side. It arrange
- the taper angle ⁇ 1 with respect to the edge 10c on the low-pressure fluid side of the upstream start end 10e is set to 0 ° ⁇ 1 ⁇ 45 °, for example.
- the upstream start end 10e is not limited to a straight line, and may be a smooth single circular arc-like curve.
- the upstream start end 10e of the cavitation forming region 10a is formed in a tapered shape inclined so as to be substantially parallel to the low pressure fluid side edge 10f of the positive pressure generating region 10b of the dimple 10 disposed on the upstream side. At the same time, it is arranged so as to overlap in a radial direction at least a portion of a substantially triangular region P indicated by hatching in which positive pressure is generated in the positive pressure generating region 10b of the dimple 10 disposed on the upstream side.
- the upstream side start end 10e and the low pressure fluid side edge 10f are “substantially parallel” means that the angle of intersection of the two is in the range of 0 ° to 30 °.
- the upstream start end 10e is formed so as to be substantially parallel to the low pressure fluid side edge 10f of the positive pressure generating region 10b of the dimple 10 disposed on the upstream side, whereby the dimple placement efficiency on the sliding surface S ( The ratio of the total area of the dimples to the total area of the sliding surface can be improved. Further, the upstream start end 10e is disposed so as to overlap in a radial direction with a substantially triangular region P indicated by hatching in which positive pressure is generated in the positive pressure generation region 10b of the dimple 10 disposed on the upstream side.
- the fluid indicated by the arrow R that is about to leak from the positive pressure generating region 10b of the upstream dimple 10 to the low pressure fluid side flows into the upstream side of the cavitation forming region 10a of the downstream dimple 10.
- the sealing performance is improved. That is, since the cavitation formation region is disposed over almost the entire circumference on the low-pressure fluid side, the function of preventing leakage can be further improved.
- the radial width of the cavitation formation region can be increased, the negative pressure generation starting point can be increased, and the sealing performance can be improved.
- the cavitation formation region is increased, the shear resistance of the sliding surface can be reduced, and the torque of the sliding component can be reduced.
- An edge 10f on the low-pressure fluid side of the positive pressure generation region 10b has a tapered shape that inclines along the rotation direction of the mating sliding surface from the low-pressure fluid side to the high-pressure fluid side, and Smoothly connected to the edge 10c.
- the taper angle ⁇ 2 of the edge 10f on the low-pressure fluid side of the positive pressure generation region 10b with respect to the edge 10c on the low-pressure fluid side of the cavitation forming region 10a is set to 0 ° ⁇ 2 ⁇ 45 °, for example.
- the edge 10f on the low-pressure fluid side is not limited to a straight line, and may be a convex or concave curve toward the low-pressure fluid side. In the case of a straight line, a single straight line is desirable, and in the case of a curve, the curvature is desirably uniform.
- the edge 10f on the low-pressure fluid side of the positive pressure generation region 10b has a tapered shape that inclines along the rotation direction of the mating sliding surface from the low-pressure fluid side toward the high-pressure fluid side, and the cavitation formation region 10a. Is smoothly connected to the edge 10c on the low-pressure fluid side, so that the fluid flowing into the cavitation formation region 10a flows smoothly into the positive pressure generation region 10b, and is positive in the flow of the fluid that hits the edge 10f on the low-pressure fluid side.
- the positive pressure generating portion where the positive pressure is generated in the positive pressure generating region 10b is a portion of a substantially triangular region P indicated by hatching in FIG. 2, the distance from the pressure peak position on the tip side to the low pressure fluid side As a result, the pressure gradient becomes smaller, and the amount of leakage can be reduced.
- the taper angle ⁇ of the edge 10d on the low-pressure fluid side of the positive pressure generation region 10b is preferably as small as possible so that the fluid that hits the edge 10d on the low-pressure fluid side flows smoothly and no positive pressure is generated.
- each dimple 10 shown in FIG. 2 is merely an example.
- the dimple 10 is formed along the circumferential direction with a substantially constant width, and with respect to the cavitation formation region 10a, the start end 10e extends from the low pressure fluid side to the high pressure fluid side. And is formed so as to be inclined in the direction of rotation of the mating sliding surface and to be overlapped in the radial direction with the positive pressure generation region 10b of the dimple 10 disposed on the upstream side.
- the taper angle and the degree of overlap in the radial direction with the positive pressure generation region 10b of the upstream dimple 10 may be determined by design.
- the edge 10f on the low pressure fluid side of the positive pressure generation region 10b has a tapered shape that inclines along the rotational direction of the mating sliding surface from the low pressure fluid side toward the high pressure fluid side.
- the shape may be, for example, the side surface of the bow portion of the hull.
- FIG. 3A As indicated by an arrow, the rotating ring 3 rotates counterclockwise with respect to the fixed ring 5, but when the dimple 10 is formed on the sliding surface S of the fixed ring 5, A narrowing gap (step) 11 exists on the downstream side of the dimple 10.
- the sliding surfaces of the opposed rotating rings 3 are flat.
- the fluid interposed between the sliding surfaces of the rotating ring 3 and the stationary ring 5 tends to follow the moving direction of the rotating ring 3 due to its viscosity.
- the presence of the narrowing gap (step) 11 generates a dynamic pressure (positive pressure) as indicated by a broken line.
- FIG. 4 shows a sliding surface of the sliding component according to the second embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example.
- the second embodiment is different from the first embodiment shown in FIG. 2 in that a positive pressure generating mechanism including a Rayleigh step is disposed on the high pressure fluid side of the sliding surface provided with the dimples. Is basically the same as that of the first embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
- a dimple 10 is disposed on the low pressure fluid side, and a positive pressure generating mechanism including a Rayleigh step 20 is disposed on the high pressure fluid side.
- the Rayleigh step 20 is composed of a narrowing step 21, a groove portion 22, and a radial groove 23 communicating with the high pressure fluid side. Between the Rayleigh step 20 and the dimple 10, the high pressure fluid side and the radial groove 23 are interposed. And a pressure release groove 24 communicated with each other.
- the groove portion 22 is disposed so as to be separated from the high-pressure fluid side via a sliding surface S3 having a constant width, and extends in the circumferential direction with a constant width so as to form an arc shape.
- the depth of the groove portion 22 is several times the depth of the dimple 10.
- the pressure release groove 24 releases the dynamic pressure (positive pressure) generated in the Rayleigh step 20 to the pressure of the high-pressure side fluid, so that the fluid flows into the dimple 10 on the low-pressure fluid side, and the dimple 10 has a negative pressure generation capability. It serves to prevent weakening, and plays a role of guiding the fluid that is about to flow into the low-pressure fluid side by the positive pressure generated at the Rayleigh step 20 on the high-pressure fluid side to the pressure release groove 24 and letting it escape to the high-pressure fluid side. It is.
- the dimples 10 are provided in 6 equal distributions, and the Rayleigh steps 20 are provided in 8 equal distributions.
- the depth and width of the groove part 22, the radial groove 23 and the pressure release groove 24 are appropriately determined according to the diameter of the sliding component, the width and relative movement speed of the sliding surface, and the sealing and lubrication conditions. It is of a nature.
- the depth of the groove portion 22 is about 1 ⁇ 2 to several times the depth of the dimple 10, and the depth of the radial groove 23 and the pressure release groove 24 is ten times the depth of the dimple 10. That's it.
- a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step 20 disposed on the high-pressure fluid side, and sealing and lubrication are performed by the dimple 10 disposed on the low-pressure fluid side.
- the fluid sucked in the cavitation formation region 10 a of the dimple 10 is guided from the positive pressure generation region 10 b to the pressure release groove 24 and returned to the high pressure fluid side through the radial groove 23.
- the fluid film is formed and lubricated by the positive pressure generating mechanism including the Rayleigh step 20 disposed on the high-pressure fluid side, and the dimple 10 disposed on the low-pressure fluid side is sealed and lubricated. The sealing action by the dimple 10 can be ensured.
- FIG. 5 shows a sliding surface of the sliding component according to the third embodiment of the present invention, and a case where dimples are formed on the sliding surface of the stationary ring 5 in FIG. 1 will be described as an example.
- the third embodiment is different from the first embodiment shown in FIG. 2 in that a positive pressure generating mechanism including a Rayleigh step is disposed on the high-pressure fluid side of the sliding surface provided with the dimples. Is basically the same as that of the first embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
- a dimple 10 is disposed on the low pressure fluid side, and a positive pressure generating mechanism including a Rayleigh step 30 is disposed on the high pressure fluid side.
- the Rayleigh step 30 includes a narrowing step 31, a groove portion 32, and a radial groove 33 communicating with the high-pressure fluid side on the upstream side of the groove portion 32, and a sliding surface is provided between the Rayleigh step 30 and the dimple 10. S is interposed.
- the groove portion 32 is disposed separately from the high-pressure fluid side via a sliding surface S3 having a constant width, and has a constant width and extends in the circumferential direction so as to form an arc shape.
- the depth of the groove portion 32 is about 1 ⁇ 2 to several times the depth of the dimple 10.
- the narrowing step 31 has a tapered shape that is inclined from the low-pressure fluid side toward the high-pressure fluid side along the rotational direction of the mating sliding surface.
- the radial groove 33 has a width equal to or greater than the width of the groove portion 32.
- the depth of the radial groove 33 is approximately the same as the depth of the groove portion 32 and is several times the depth of the dimple 10. Therefore, it is easy for the high-pressure fluid to flow into the groove portion 32, and the sliding surface S is sufficiently lubricated.
- a fluid film is formed and lubricated by a positive pressure generating mechanism including a Rayleigh step 30 disposed on the high-pressure fluid side, and sealing and lubrication are performed by the dimple 10 disposed on the low-pressure fluid side.
- the fluid sucked in the cavitation forming region 10a of the dimple 10 is returned to the high pressure fluid side while lubricating the sliding surface S from the positive pressure generating region 10b.
- the present invention can also be applied to a case where the inner peripheral side is a high-pressure fluid.
- the positive pressure generation region may be disposed on the inner peripheral side.
- the upstream cavitation formation region 10a has a certain width so as to form an arc shape and extends in the circumferential direction
- the downstream positive pressure generation region 10b is
- the cavitation formation region 10a has a shape that is substantially the same as the width of the cavitation formation region 10a from the cavitation formation region 10a and extends so as to incline along the rotation direction of the mating sliding surface
- the cavitation forming region 10a and the positive pressure generating region 10b may be disposed so as to have different widths.
- the positive pressure generating mechanism including the dimple 10 and the Rayleigh steps 20 and 30 is disposed on the sliding surface of the stationary ring 5 out of the rotating ring 3 and the stationary ring 5.
- the present invention is not limited to this, and it may be disposed on the sliding surface of the rotating ring 3, and the dimple 10 is disposed on one of the sliding surfaces of the rotating ring 3 and the stationary ring 5, and the other sliding surface.
- a positive pressure generating mechanism including Rayleigh steps 20 and 30 may be disposed on the surface.
- the dimple 10 may be disposed on the sliding surface of the rotating ring 3, and the positive pressure generating mechanism including the Rayleigh steps 20 and 30 may be disposed on the sliding surface of the stationary ring 5.
- the lubrication function can be further improved.
- the radial groove 23 and the pressure release groove 24 are disposed on the side where the positive pressure generating mechanism including the Rayleigh step 20 is provided.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Sealing (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
Abstract
Description
発明が開示されている(以下、「従来技術1」という。)。
また、上記従来技術2は、摺動面の内・外周の差圧の大きさに関係することなく漏れ防止と潤滑の両機能を奏する点で画期的な発明であるが、各ディンプル50の基本的な形状がクランク状であることにより、上流側のキャビテーション形成領域50aから下流側の正圧発生領域50bへの流体移動において若干スムーズさを欠くため、正圧発生領域50bの低圧流体側Xにおける動圧発生が過大になり漏れにつながるおそれがあり、また、動圧発生領域の圧力ピーク位置から低圧流体側までの距離がそれほど大きくとれないため漏れにつながるおそれがあるという問題があった。さらに、上流側のキャビテーション形成領域を低圧流体側に寄って配置する関係上、キャビテーション形成領域の径方向の幅を大きくすることができず、負圧発生起点を大きくできないという問題があった。
また、同時に、負圧発生起点を大きくすると共に、低圧流体側のほぼ全周にわたってキャビテーション領域を配設することにより、より一層、漏れ防止の機能を向上させた摺動部品を提供することを目的とするものである。
この特徴によれば、上流側のディンプルの正圧発生領域から低圧流体側に漏洩しようとする流体は下流側のディンプルのキャビテーション形成領域の上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。すなわち、低圧流体側のほぼ全周にわたってキャビテーション形成領域が配設されるため、より一層、漏れ防止の機能を向上させることができる。
また、キャビテーション形成領域の径方向の幅を大きくすることできるため、負圧発生起点を大きくすることができ、密封性を向上することができる。
さらに、キャビテーション形成領域が大きくなるため、摺動面のせん断抵抗を小さくすることができ、摺動部品の低トルク化を図ることができる。
さらに、キャビテーション形成領域に流入した流体は正圧発生領域にスムーズに流れ、低圧流体側の縁にぶつかった流体の流れにおいて正圧が立たないため、正圧発生領域の先端側の低圧流体側における動圧発生を抑えることができ、低圧流体側に漏洩する流体の量を低減することができる。
さらに、正圧発生領域において正圧が発生する正圧発生部の先端側の圧力ピーク位置から低圧流体側までの距離が大きくなり、その結果、圧力勾配が小さくなり、漏れ量を低減することができる。
この特徴によれば、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑できると共に、低圧流体側に配設されたディンプルで密封と潤滑とを行うことができるものであって、ディンプルによる密封作用を確実なものとすることができる。
この特徴によれば、高圧流体側に配設されたレイリーステップからなる正圧発生機構で流体膜を形成して潤滑し、低圧流体側に配設されたディンプルで密封と潤滑とを行うものであって、半径方向溝及び圧力開放溝のような深溝を設ける必要がないため、加工が容易であるというメリットがある。
(1)上流側のディンプルの正圧発生領域から低圧流体側に漏洩しようとする流体は下流側のディンプルのキャビテーション形成領域の上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。すなわち、低圧流体側のほぼ全周にわたってキャビテーション形成領域が配設されるため、より一層、漏れ防止の機能を向上させることができる。
また、キャビテーション形成領域の径方向の幅を大きくすることできるため、負圧発生起点を大きくすることができ、密封性を向上することができる。
さらに、キャビテーション形成領域が大きくなるため、摺動面のせん断抵抗を小さくすることができ、摺動部品の低トルク化を図ることができる。
さらに、キャビテーション形成領域に流入した流体は正圧発生領域にスムーズに流れ、低圧流体側の縁にぶつかった流体の流れにおいて正圧が立たないため、正圧発生領域の先端側の低圧流体側における動圧発生を抑えることができ、低圧流体側に漏洩する流体の量を低減することができる。
なお、本実施例においては、メカニカルシールを構成する部品が摺動部品である場合を例にして説明する。
図1は、メカニカルシールの一例を示す縦断面図であって、摺動面の外周から内周方向に向かって漏れようとする高圧流体側の被密封流体を密封する形式のインサイド形式のものであり、高圧流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた円環状の回転環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた円環状の固定環5とが、この固定環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、ラッピング等によって鏡面仕上げされた摺動面S同士で密接摺動するようになっている。すなわち、このメカニカルシールは、回転環3と固定環5との互いの摺動面Sにおいて、被密封流体が回転軸1の外周から大気側へ流出するのを防止するものである。
なお、本発明は、インサイド形式のものに限らず、摺動面の内周から外周方向に向かって漏れようとする高圧流体側の被密封流体を密封するアウトサイド形式のものにも適用できることはいうまでもない。
なお、回転環3の摺動面にディンプルが形成される場合も同じである
各ディンプル10のキャビテーション形成領域10aの低圧流体側の縁10cは低圧流体側と摺動面S1で離隔され、また、同じく高圧流体側の縁10dは高圧流体側と摺動面S2で離隔されている。
各ディンプル10のキャビテーション形成領域10aで吸入された流体は当該ディンプル内を通って正圧発生領域10bで動圧(正圧)を発生し、径方向に近い側の高圧流体側に戻されるようになっている。
なお、各ディンプル10の径方向の幅aは、摺動面の径方向の幅をbとすると、a=(1/5~4/5)×bに設定されるのが望ましい。
なお、上流側の始端10eと低圧流体側の縁10fとが「ほぼ平行」とは、両者の交角が0゜~30°の範囲に有ることを意味する。
また、上流側の始端10eが上流側に配置されたディンプル10の正圧発生領域10bにおいて正圧が発生するハッチングで示された略三角形の領域Pの部分と径方向において重複するように配設されることにより、上流側のディンプル10の正圧発生領域10bから低圧流体側に漏洩しようとする矢印Rで示される流体は下流側のディンプル10のキャビテーション形成領域10aの上流側に流入することになり、低圧流体側への漏洩が阻止され密封性が向上される。すなわち、低圧流体側のほぼ全周にわたってキャビテーション形成領域が配設されるため、より一層、漏れ防止の機能を向上させることができる。
さらに、キャビテーション形成領域の径方向の幅を大きくすることできるため、負圧発生起点を大きくすることができ、密封性を向上することができる。
さらに、キャビテーション形成領域が大きくなるため、摺動面のせん断抵抗を小さくすることができ、摺動部品の低トルク化を図ることができる。
その際、正圧発生領域10bの低圧流体側の縁10dのテーパ角θは、低圧流体側の縁10dにぶつかった流体がスムーズに流れ正圧が立たないようにする観点から小さいほど望ましい。
また、正圧発生領域10bに関しては、正圧発生領域10bの低圧流体側の縁10fは、低圧流体側から高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなし、キャビテーション形成領域10aの低圧流体側の縁10cと滑らかに接続されていればよく、例えば、船体の船首部の側面のような形状でよい。
図3(a)において、矢印で示すように、固定環5に対して回転環3が反時計方向に回転移動するが、固定環5の摺動面Sにディンプル10が形成されていると、該ディンプル10の下流側には狭まり隙間(段差)11が存在する。相対する回転環3の摺動面は平坦である。
回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、狭まり隙間(段差)11の存在によって破線で示すような動圧(正圧)が発生される。
回転環3が矢印で示す方向に相対移動すると、回転環3及び固定環5の摺動面間に介在する流体が、その粘性によって、回転環3の移動方向に追随移動しようとするため、その際、拡がり隙間(段差)12の存在によって破線で示すような動圧(負圧)が発生される。
このため、ディンプル10内の上流側には負圧が発生し、下流側には正圧が発生することになる。そして、上流側の負圧発生領域にはキャビテーションが発生する。
レイリーステップ20は、狭まり段差21、グルーブ部22及び高圧流体側と連通する半径方向溝23から構成されており、レイリーステップ20とディンプル10との間には高圧流体側と半径方向溝23を介して連通された圧力開放溝24が設けられている。グルーブ部22は、一定幅の摺動面S3を介して高圧流体側とは隔離されて配設され、円弧状をなすように一定幅を有して周方向に延びている。グルーブ部22の深さは、ディンプル10の深さの数倍である。圧力開放溝24は、レイリーステップ20で発生した動圧(正圧)を高圧側流体の圧力まで開放することで、流体が低圧流体側のディンプル10に流入し、ディンプル10の負圧発生能力が弱まることを防止するためのものであり、高圧流体側のレイリーステップ20で発生した正圧により低圧流体側に流入しようとする流体を圧力開放溝24に導き、高圧流体側に逃す役割を果たすものである。
図4の場合、ディンプル10は6等配に設けられ、レイリーステップ20は8等配に設けられている。
レイリーステップ30は、狭まり段差31、グルーブ部32及びグルーブ部32の上流側において高圧流体側と連通する半径方向溝33から構成されており、レイリーステップ30とディンプル10との間には摺動面Sが介在されている。
半径方向溝33の深さは、グルーブ部32の深さと同程度であり、ディンプル10の深さの数倍である。そのため、グルーブ部32には高圧流体の流入が容易であり、摺動面Sの潤滑が十分に行われる。
2 スリーブ
3 回転環
4 ハウジング
5 固定環
6 コイルドウェーブスプリング
7 ベローズ
10 ディンプル
10a キャビテーション形成領域
10b 正圧発生領域
10c キャビテーション形成領域の低圧流体側の縁
10d キャビテーション形成領域の高圧流体側の縁
10e キャビテーション形成領域の上流側の始端
10f 正圧発生領域の低圧流体側の縁
11 狭まり隙間(段差)
12 拡がり隙間(段差)
20 レイリーステップ(正圧発生機構)
21 狭まり段差
22 グルーブ部レイリーステップ
23 半径方向溝
24 圧力開放溝
30 レイリーステップ
31 狭まり段差
32 グルーブ部
33 半径方向溝
S 摺動面
P 正圧発生部
θ1 上流側の始端の低圧流体側の縁に対するテーパ角
θ2 正圧発生領域の低圧流体側の縁のキャビテーション形成領域の低圧流体側の縁に対するテーパ角
R 正圧発生領域から低圧流体側に漏洩しようとする流体
a 各ディンプルの径方向の幅
b 摺動面の径方向の幅
Claims (3)
- 一対の摺動部品の互いに相対摺動する一方側の摺動面に複数のディンプルが周方向に独立して設けられ、各ディンプルは上流側のキャビテーション形成領域から下流側の正圧発生領域まで略一定の幅で周方向に沿って形成され、前記キャビテーション形成領域の上流側の始端は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に上流側に配置されたディンプルの正圧発生領域と径方向において重複するように配設され、前記正圧発生領域の前記低圧流体側の縁は、前記低圧流体側から前記高圧流体側に向けて相手摺動面の回転方向に沿って傾斜するテーパ形状をなすと共に前記キャビテーション形成領域の前記低圧流体側の縁と滑らかに接続されることを特徴とする摺動部品。
- 請求項1に記載の摺動部品において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と半径方向溝を介して連通するレイリーステップからなる正圧発生機構が配設され、前記正圧発生機構と前記ディンプルとの間に圧力開放溝が設けられ、前記圧力開放溝は高圧流体側と前記半径方向溝を介して連通されていることを特徴とする摺動部品。
- 請求項1に記載の摺動部品において、前記ディンプルが設けられた前記摺動面の前記高圧流体側、又は、他方の摺動面の前記高圧流体側には前記高圧流体側と連通するレイリーステップからなる正圧発生機構が配設されていることを特徴とする摺動部品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580012272.6A CN106062445B (zh) | 2014-06-26 | 2015-06-25 | 滑动部件 |
EP15812456.0A EP3163134B1 (en) | 2014-06-26 | 2015-06-25 | Sliding component |
US15/122,483 US9841106B2 (en) | 2014-06-26 | 2015-06-25 | Sliding parts |
AU2015281105A AU2015281105B2 (en) | 2014-06-26 | 2015-06-25 | Sliding component |
JP2016529651A JP6456950B2 (ja) | 2014-06-26 | 2015-06-25 | 摺動部品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-131056 | 2014-06-26 | ||
JP2014131056 | 2014-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015199172A1 true WO2015199172A1 (ja) | 2015-12-30 |
Family
ID=54938249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068318 WO2015199172A1 (ja) | 2014-06-26 | 2015-06-25 | 摺動部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9841106B2 (ja) |
EP (1) | EP3163134B1 (ja) |
JP (1) | JP6456950B2 (ja) |
CN (1) | CN106062445B (ja) |
AU (1) | AU2015281105B2 (ja) |
WO (1) | WO2015199172A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049847A1 (ja) * | 2017-09-05 | 2019-03-14 | イーグル工業株式会社 | 摺動部品 |
US10989249B2 (en) * | 2016-11-14 | 2021-04-27 | Eagle Industry Co., Ltd. | Sliding component |
WO2021193743A1 (ja) * | 2020-03-26 | 2021-09-30 | イーグル工業株式会社 | 摺動部品 |
US11767916B2 (en) | 2019-02-14 | 2023-09-26 | Eagle Industry Co., Ltd. | Sliding components |
US11821461B2 (en) | 2019-02-15 | 2023-11-21 | Eagle Industry Co., Ltd. | Sliding components |
US12049962B2 (en) | 2019-02-04 | 2024-07-30 | Eagle Industry Co., Ltd. | Sliding component |
US12110968B2 (en) | 2020-03-09 | 2024-10-08 | Eagle Industry Co., Ltd. | Sliding component |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3309431B1 (en) * | 2015-06-15 | 2022-07-20 | Eagle Industry Co., Ltd. | Slide component |
CN109844382B (zh) * | 2016-11-14 | 2021-01-12 | 伊格尔工业股份有限公司 | 滑动部件 |
CN110691931B (zh) * | 2017-05-19 | 2022-02-01 | 伊格尔工业股份有限公司 | 滑动部件 |
KR102377127B1 (ko) * | 2017-08-28 | 2022-03-23 | 이구루코교 가부시기가이샤 | 슬라이딩 부품 |
KR102693659B1 (ko) * | 2019-03-15 | 2024-08-12 | 엔오케이 가부시키가이샤 | 실링 링 및 밀봉 구조 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005180652A (ja) * | 2003-12-22 | 2005-07-07 | Eagle Ind Co Ltd | 摺動部品 |
WO2014050920A1 (ja) * | 2012-09-29 | 2014-04-03 | イーグル工業株式会社 | 摺動部品 |
WO2014061544A1 (ja) * | 2012-10-18 | 2014-04-24 | イーグル工業株式会社 | 摺動部品 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1366960A (fr) * | 1963-06-07 | 1964-07-17 | Rateau Soc | Garniture d'étanchéité pour arbre rotatif |
US3767212A (en) * | 1970-12-21 | 1973-10-23 | Nasa | Spiral groove seal |
US4406466A (en) * | 1982-11-29 | 1983-09-27 | Elliott Turbomachinery Co., Inc. | Gas lift bearing and oil seal |
JPS60107461U (ja) * | 1983-12-23 | 1985-07-22 | イーグル工業株式会社 | 船尾管軸封装置 |
US5201531A (en) * | 1992-04-02 | 1993-04-13 | John Crane Inc. | Face seal with double spiral grooves |
CA2096759A1 (en) * | 1992-08-06 | 1994-02-07 | Mark G. Pospisil | Mechanical end face seal system |
US5501470A (en) * | 1992-12-11 | 1996-03-26 | Nippon Pillar Packing Co., Ltd. | Non-contacting shaft sealing device with grooved face pattern |
CN1040354C (zh) * | 1993-07-01 | 1998-10-21 | 胡正纯 | 机械密封装置及其生产方法 |
US5498007A (en) * | 1994-02-01 | 1996-03-12 | Durametallic Corporation | Double gas barrier seal |
JPH08193662A (ja) | 1995-01-13 | 1996-07-30 | Mitsubishi Heavy Ind Ltd | メカニカルシール |
US6454268B1 (en) * | 2001-02-09 | 2002-09-24 | Eagle Industry Co., Ltd. | Shaft seal device |
US6655693B2 (en) * | 2001-04-26 | 2003-12-02 | John Crane Inc. | Non-contacting gas compressor seal |
CN1989363A (zh) * | 2004-07-22 | 2007-06-27 | 萱场工业株式会社 | 滑动部的密封构造 |
US20120018957A1 (en) * | 2010-02-26 | 2012-01-26 | Nok Corporation | Seal ring |
US8814433B2 (en) * | 2010-10-06 | 2014-08-26 | Eagle Industry Co., Ltd. | Sliding component |
CN104185755B (zh) * | 2012-05-21 | 2016-08-17 | 伊格尔工业股份有限公司 | 滑动部件 |
US9772037B2 (en) * | 2012-08-04 | 2017-09-26 | Eagle Industry Co., Ltd. | Sliding component |
AU2014239820B2 (en) * | 2013-03-17 | 2016-07-21 | Eagle Industry Co., Ltd. | Sliding component |
-
2015
- 2015-06-25 US US15/122,483 patent/US9841106B2/en active Active
- 2015-06-25 CN CN201580012272.6A patent/CN106062445B/zh active Active
- 2015-06-25 AU AU2015281105A patent/AU2015281105B2/en not_active Ceased
- 2015-06-25 EP EP15812456.0A patent/EP3163134B1/en active Active
- 2015-06-25 JP JP2016529651A patent/JP6456950B2/ja active Active
- 2015-06-25 WO PCT/JP2015/068318 patent/WO2015199172A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005180652A (ja) * | 2003-12-22 | 2005-07-07 | Eagle Ind Co Ltd | 摺動部品 |
WO2014050920A1 (ja) * | 2012-09-29 | 2014-04-03 | イーグル工業株式会社 | 摺動部品 |
WO2014061544A1 (ja) * | 2012-10-18 | 2014-04-24 | イーグル工業株式会社 | 摺動部品 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10989249B2 (en) * | 2016-11-14 | 2021-04-27 | Eagle Industry Co., Ltd. | Sliding component |
WO2019049847A1 (ja) * | 2017-09-05 | 2019-03-14 | イーグル工業株式会社 | 摺動部品 |
US11221071B2 (en) | 2017-09-05 | 2022-01-11 | Eagle Industry Co., Ltd. | Sliding component |
US12049962B2 (en) | 2019-02-04 | 2024-07-30 | Eagle Industry Co., Ltd. | Sliding component |
US11767916B2 (en) | 2019-02-14 | 2023-09-26 | Eagle Industry Co., Ltd. | Sliding components |
US11821461B2 (en) | 2019-02-15 | 2023-11-21 | Eagle Industry Co., Ltd. | Sliding components |
US12110968B2 (en) | 2020-03-09 | 2024-10-08 | Eagle Industry Co., Ltd. | Sliding component |
WO2021193743A1 (ja) * | 2020-03-26 | 2021-09-30 | イーグル工業株式会社 | 摺動部品 |
JP7520470B2 (ja) | 2020-03-26 | 2024-07-23 | イーグル工業株式会社 | 摺動部品 |
Also Published As
Publication number | Publication date |
---|---|
US20170102074A1 (en) | 2017-04-13 |
EP3163134A1 (en) | 2017-05-03 |
EP3163134A4 (en) | 2018-03-14 |
CN106062445B (zh) | 2018-06-19 |
JP6456950B2 (ja) | 2019-01-23 |
JPWO2015199172A1 (ja) | 2017-04-20 |
AU2015281105B2 (en) | 2017-08-31 |
EP3163134B1 (en) | 2021-04-07 |
US9841106B2 (en) | 2017-12-12 |
AU2015281105A1 (en) | 2016-09-15 |
CN106062445A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6392343B2 (ja) | 摺動部品 | |
JP6456950B2 (ja) | 摺動部品 | |
JP6058018B2 (ja) | 摺動部品 | |
JP6776232B2 (ja) | 摺動部品 | |
JP6161632B2 (ja) | 摺動部品 | |
US10626995B2 (en) | Sliding component | |
JP6204974B2 (ja) | 摺動部品 | |
JP6910371B2 (ja) | しゅう動部品 | |
JP6345695B2 (ja) | 摺動部品 | |
US11608897B2 (en) | Slide component | |
JP6279474B2 (ja) | 摺動部品 | |
WO2014061544A1 (ja) | 摺動部品 | |
WO2017002646A1 (ja) | 摺動部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15812456 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016529651 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15122483 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015281105 Country of ref document: AU Date of ref document: 20150625 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015812456 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015812456 Country of ref document: EP |