WO2018088273A1 - Ctod試験片の作製方法および塑性歪調整用治具 - Google Patents

Ctod試験片の作製方法および塑性歪調整用治具 Download PDF

Info

Publication number
WO2018088273A1
WO2018088273A1 PCT/JP2017/039331 JP2017039331W WO2018088273A1 WO 2018088273 A1 WO2018088273 A1 WO 2018088273A1 JP 2017039331 W JP2017039331 W JP 2017039331W WO 2018088273 A1 WO2018088273 A1 WO 2018088273A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
test piece
conductive
notch
ctod
Prior art date
Application number
PCT/JP2017/039331
Other languages
English (en)
French (fr)
Inventor
祐介 島田
健裕 井上
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/346,994 priority Critical patent/US20200072719A1/en
Priority to CN201780069268.2A priority patent/CN109964110A/zh
Priority to KR1020197016101A priority patent/KR20190077503A/ko
Priority to JP2018550153A priority patent/JP6648836B2/ja
Priority to EP17870227.0A priority patent/EP3540408A1/en
Publication of WO2018088273A1 publication Critical patent/WO2018088273A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/62Manufacturing, calibrating, or repairing devices used in investigations covered by the preceding subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0296Welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils

Definitions

  • the present invention relates to a method for producing a CTOD specimen and a plastic strain adjustment jig.
  • a plurality of welded joints are used in ships, offshore structures, liquefied gas storage tanks and the like (hereinafter abbreviated as ships etc.). For this reason, when designing a ship etc., it is necessary to fully consider the reliability of a welded joint from the viewpoint of fracture mechanics.
  • a crack tip opening displacement (CTOD (Crack Tip Opening Displacement)) test is used (see Non-Patent Document 1).
  • CTOD Crack Tip Opening Displacement
  • a notch and a fatigue precrack are formed in a welded portion of a test piece.
  • a three-point bending test is performed on the test piece in which the notch and the fatigue precrack are formed, and the limit CTOD is obtained.
  • the critical CTOD means the critical crack tip opening displacement that starts unstable fracture without increasing the load in a three-point bending test.
  • Patent Document 1 describes a platen (local compression) process as one of processing methods for removing welding residual stress.
  • Patent Document 2 describes a reverse bending process in which a compression preload is applied and unloaded in a direction in which a notch is closed as one of processing methods for removing welding residual stress.
  • FIG. 1 is a side view showing an example of a three-point bending test piece used in the CTOD test.
  • a three-point bending test piece 1 (hereinafter abbreviated as “test piece 1”) has a substantially rectangular parallelepiped shape.
  • the test piece 1 is a joint test piece having a base material 1a, a base material 1b, and a welded portion (welded metal) 1c.
  • the test piece 1 is taken from a joint steel material (not shown) so that the welded portion 1c is located at a substantially central portion in the longitudinal direction of the test piece 1.
  • a notch 2 is formed at the center and the lower surface side in the longitudinal direction of the test piece 1. More specifically, the notch 2 is formed in the weld 1c.
  • the notch 2 has a V-shaped tip 2a.
  • the tip 2b of the notch 2 is formed in, for example, a substantially semicircular shape having a predetermined curvature.
  • a fatigue precrack 3 is formed so as to extend upward (in the width direction of the test piece 1) from the tip 2b of the notch 2.
  • the fatigue precrack 3 is formed after the residual stress in the vicinity of the tip 2b of the notch 2 is removed.
  • the dimension of the test piece 1 is prescribed
  • a clip gauge (not shown) is attached to the notch 2. Then, in a state where both end portions of the lower surface of the test piece 1 are supported by the support members 4a and 4b, the center portion of the upper surface of the test piece 1 is pushed downward to bend the test piece 1 at three points. Furthermore, the value of the limit CTOD is obtained based on the opening displacement of the notch 2 measured using a clip gauge.
  • FIG. 1 the width W of the test piece 1 and the distance S between the support members 4a and 4b in the longitudinal direction of the test piece 1 are shown.
  • the thickness of the test piece is the actual thickness of the welded joint to be evaluated.
  • the load applied to the test piece and the diameter of the punch for applying the load increase according to the strength and thickness of the test piece. Therefore, for example, when evaluating a welded joint made of an extremely thick and high-strength steel plate, the load and the diameter of the punch must be increased. In this case, a high-capacity test apparatus is required, and the test cost for reliability evaluation increases.
  • the test piece after the notch is formed is bent at three points in the direction opposite to the direction of bending (hereinafter also referred to as forward bending) of the test piece in the CTOD test.
  • Compressive plastic strain (hereinafter simply referred to as plastic strain) is applied to the vicinity of the tip of the plate.
  • plastic strain is comparable as the load at the time of performing a CTOD test. For this reason, even when removing the residual stress of a high-strength test piece, it is not necessary to apply a large load compared to the platen treatment, so a high-capacity test device must be used to remove the residual stress. Also good. For this reason, when the reverse bending process is used, the test cost can be reduced as compared with the case where the platen process is used.
  • control of the amount of plastic strain is particularly important for increasing the measurement accuracy of the CTOD test using the reverse bending process.
  • a gauge plate having a predetermined thickness is sandwiched between the notches, and in this state, the bending is performed until the gauge plates can no longer slide between the inner walls of the notches.
  • a method is conceivable in which reverse bending is performed with a gauge plate having a predetermined thickness sandwiched in the notch, and the reverse bending load detected by a load meter is monitored.
  • the control accuracy is low, and it is difficult to perform reverse bending with high accuracy so as to obtain a predetermined plastic strain amount.
  • the reverse bending process is stopped at a predetermined reverse bending amount. It is considered possible. However, the amount of increase in the reverse bending load at the moment when the gauge plate and the inner wall of the notch are in contact (the amount of change in the reverse bending load immediately before the gauge plate and the inner wall of the notch are in contact with each other) The magnitude of the reverse bending load before the gauge plate comes into contact with the inner wall of the notch is considerably smaller.
  • the operator must determine whether or not the predetermined reverse bending amount has been reached by proceeding the reverse bending process with the gauge plate sandwiched between the notches. Therefore, the operation is extremely complicated.
  • the present invention has been made to solve the problems of the prior art, and a method for producing a test piece of a welded joint (hereinafter referred to as “CTOD test piece”) to be used for the CTOD test method with high accuracy and low cost, and
  • An object of the present invention is to provide a jig for adjusting plastic strain of a CTOD test piece.
  • the present inventors have made various studies in order to produce a CTOD test piece with high accuracy and low cost, and completed the present invention.
  • the gist of the present invention is the following CTOD test piece preparation method and plastic strain adjustment jig.
  • a method for producing a test piece for use in a CTOD test method from a joint steel material having a first base material, a welded portion, and a second base material (1) Cutting the joint steel material to obtain a rectangular parallelepiped member arranged so that the first base material, the welded portion, and the second base material are aligned in the longitudinal direction; (2) A step of cutting a part of the welded portion at the central portion in the longitudinal direction of the member to provide a slit-shaped notch, (3) A first conductive member is disposed above the surface of the member including an edge on one side of the notch in the longitudinal direction, and an edge on the other side of the notch in the longitudinal direction is disposed.
  • a second conductive member is disposed above the surface of the member including the first conductive member so that a distance between the first conductive member and the second conductive member in the longitudinal direction is a predetermined interval. Fixing the member and the second conductive member in an insulated state to the member; (4) electrically connecting the first conductive member and the second conductive member to an external power source, (5) applying a bending load to the member in a direction in which the notch is closed; (6) a step of unloading the load when contact between the first conductive member and the second conductive member is electrically confirmed; and (7) forming a fatigue precrack at the tip of the notch, A method for producing a CTOD test piece.
  • step (3) Fixing the first conductive member and the second conductive member to the member with an insulating sheet interposed between the member and the member; A method for producing the CTOD test piece of [1] above.
  • step (3) Fixing the first conductive member and the second conductive member to the member by an insulating screw; The method for producing a CTOD test piece according to the above [2] or [3].
  • step (3) The screw hole of the knife edge fixing screw formed in the member is used as the screw hole of the insulating screw.
  • a CTOD test piece of a welded joint can be produced with high accuracy and low cost.
  • FIG. 1 is a side view showing an example of a three-point bending test piece used in the CTOD test.
  • FIG. 2 is a perspective view of a rectangular parallelepiped member cut out from the joint steel (member in the middle of producing a CTOD test piece).
  • FIG. 3 is a perspective view of a member (a member in the middle of producing a CTOD test piece) in which a notch is formed in the member of FIG.
  • FIG. 4 is a side view showing an installation state of the plastic strain adjustment jig during the reverse bending process.
  • FIG. 5 is a top view showing an installation state of the plastic strain adjustment jig during the reverse bending process.
  • FIG. 6 is a side view showing the installation state of the knife edge during the CTOD test.
  • FIG. 1 is a side view showing an example of a three-point bending test piece used in the CTOD test.
  • FIG. 2 is a perspective view of a rectangular parallelepiped member cut out from the joint steel (member in the middle
  • FIG. 7 is a side view showing another example of the installation state of the plastic strain adjustment jig during the reverse bending process.
  • FIG. 8 is a side view showing a state of the reverse bending process.
  • FIG. 9 is a side view of a CTOD test piece.
  • the method for producing a CTOD test piece according to the present embodiment is a method for producing a test piece to be used in the CTOD test method from a joint steel material having a first base material, a welded portion, and a second base material.
  • a joint steel material (welded joint) is cut, and the first base material 1a, the welded portion 1c, and the second base material 1b are elongated.
  • a rectangular parallelepiped member 10 arranged in a line is obtained.
  • the outer shape (thickness, width, and length) of the member 10 is the outer shape of the CTOD test piece as it is.
  • the width direction of the member 10 (the direction indicated by the arrow of the width W) is the vertical direction. More specifically, with the center of the member 10 as a reference, a side where a notch 20c (see FIG. 3) described later is formed is defined as an upper side, and the opposite side is defined as a lower side. Further, in the member 10, of the two side surfaces 20 and 21 orthogonal to the vertical direction, the side surface 20 where a notch portion 20 c described later is formed is an upper surface, and the other side surface 21 is a lower surface.
  • the side surface 20 is referred to as the upper surface 20.
  • the notch 20 c is provided at a position including the fusion line (Fusion) Line).
  • the central portion in the longitudinal direction of the welded portion 1 c or the weld HAZ (Heat Affected Zone). ) May be provided in a position including
  • the upper surface 20 of the member 10 is divided into two surfaces 20a and 20b by a notch 20c.
  • the surface 20a includes an edge on one side in the longitudinal direction of the notch 20c
  • the surface 20b includes an edge on the other side in the longitudinal direction of the notch 20c.
  • the first conductive member 50a is disposed above the surface 20a
  • the second conductive member 50b is disposed above the surface 20b.
  • the first conductive member 50 a and the second conductive member 50 b are fixed to the member 10.
  • the gap between the first conductive member 50a and the second conductive member 50b in the longitudinal direction of the member 10 is set to a predetermined interval.
  • the gap between the first conductive member 50a and the second conductive member 50b can be adjusted, for example, by using a gauge plate having a predetermined thickness.
  • the first conductive member 50a and the second conductive member 50b are each fixed to the member 10 in a state of being electrically insulated from the member 10.
  • an insulating material is interposed between the first conductive member 50a and the second conductive member 50b and the member 10. This can be ensured.
  • insulating sheets 60 a and 60 b are interposed between the first conductive member 50 a and the second conductive member 50 b and the member 10.
  • an insulating material may be formed in advance by coating an insulating material on the back surfaces (the surfaces facing the member 10 side) of the first conductive member 50a and the second conductive member 50b.
  • the member 10 in a state in which the first conductive member 50a and the second conductive member 50b having a predetermined thickness are removed from an apparatus (a three-point bending tester) that performs a reverse bending process. Can be attached to.
  • the gap can be adjusted easily and accurately.
  • the knife edges 100a and 100b are fixed on the CTOD test piece 30 by the knife edge fixing screws 110a and 110b, and further, a clip gauge (illustrated). (Omitted) is hooked on the knife edges 100a, 100b.
  • a bending load is applied to the CTOD test piece 30 to widen the opening of the notch 20c, and the change of the knife edge interval at that time is confirmed by a clip gauge.
  • a screw hole for the knife edge fixing screws 110a and 110b is provided in the CTOD test piece of the type shown in FIG. Therefore, this screw hole is used as a screw hole of bolts (insulating screws) 70a and 70b for fixing the first conductive member 50a and the second conductive member 50b to the member 10, as shown in FIGS. Can be used.
  • the first conductive member 50a and the second conductive member 50b are fixed to the member 10 using bolts (insulating screws) 70a and 70b.
  • the first conductive member 50 a and the second conductive member 50 b may be fixed to the member 10 using adhesives 90 a and 90 b.
  • a material in which the upper surfaces (upper surfaces in the drawing) of the first conductive member 50a and the second conductive member 50b are attached to a sheet-like material in a state where a predetermined interval is maintained is prepared in advance. This facilitates the work of fixing the first conductive member 50a and the second conductive member 50b to the member 10.
  • the insulating sheets 60a and 60b can be omitted.
  • an insulating adhesive is used as the adhesives 90a and 90b, the insulating sheets 60a and 60b can be omitted.
  • the first conductive member 50a and the second conductive member 50b are fixed by bolts (insulating screws) 70a and 70b, screw holes for the bolts 70a and 70b need to be provided separately.
  • the first conductive member 50a and the second conductive member 50b are fixed by the adhesives 90a and 90b, it is not necessary to provide a screw hole separately, so that a CTOD test piece is produced at low cost. Can do.
  • the first conductive member 50a and the second conductive member 50b are electrically connected to an external power source via conductive cables 80a and 80b, respectively.
  • An ammeter is connected to the conductive cables 80a and 80b, and a current state (current value) of the first conductive member 50a and the second conductive member 50b is constantly detected. In the state shown in FIGS. 4 and 5, since the first conductive member 50a and the second conductive member 50b are not in contact, the current value detected by the ammeter is zero.
  • the conductive cables 80a and 80b can be connected to the first conductive member 50a and the second conductive member 50b with solder or the like, for example. Further, for example, between the insulating sheets 60a and 60b and the first conductive member 50a and the second conductive member 50b, the conductive cables 80a and 80b electrically connected to the external electrodes are replaced with the insulating sheets 60a and 60b. And you may insert so that the 1st conductive member 50a and the 2nd conductive member 50b may contact. In this state, the first conductive member 50a and the second conductive member 50b are fixed to the member 10 by tightening the bolts (insulating screws) 70a and 70b and sandwiching the conductive cables 80a and 80b therebetween. The conductive members 50a and the second conductive members 50b and the conductive cables 80a and 80b may be electrically connected. According to this method, the labor of soldering can be saved.
  • both end portions of the member 10 in the longitudinal direction that is, the first base material 1a and the second base material
  • both end portions of the member 10 in the longitudinal direction that is, the first base material 1a and the second base material
  • a bending load is applied to the member 10 so that the end of each material 1b moves upward (upward in the drawing).
  • a bending load is applied to the member 10 in the direction in which the notch 20c of the member 10 is closed (that is, the direction opposite to the bending direction of the test piece in the CTOD test).
  • the plastic strain of compression can be provided to the part (part below the front-end
  • interval of the 1st electroconductive member 50a and the 2nd electroconductive member 50b becomes narrow, so that the member 10 bends in the direction where the notch part 20c closes.
  • the operator unloads the reverse bending load applied to the member 10 when the contact between the first conductive member 50a and the second conductive member 50b is electrically confirmed by the detector. Good.
  • the judgment whether the 1st electroconductive member 50a and the 2nd electroconductive member 50b contacted is not left to an operator's sense.
  • the operator accurately grasps when the predetermined reverse bending amount (the bending amount corresponding to the interval between the first conductive member 50a and the second conductive member 50b before the reverse bending) is applied to the member 10.
  • the reverse bending process can be stopped at an appropriate timing.
  • a predetermined plastic strain can be applied to the member 10 and the residual stress due to welding can be appropriately removed.
  • a CTOD test piece when forming a CTOD test piece by forming a fatigue precrack in a rectangular parallelepiped member having a notch, the formation of the fatigue precrack is performed. Before, a bending load is applied to the member in a direction in which the notch is closed, and then the welding residual stress is removed by unloading the bending load. That is, the reverse bending process is performed. In this reverse bending process, a plastic strain adjusting jig 200 shown in FIGS. 4 and 5 is used.
  • the plastic strain adjusting jig 200 is used to electrically connect the main body portions (first conductive member, second conductive member) 50a, 50b made of a conductive material and the main body portions 50a, 50b to the external electrodes.
  • Conductive cables 80a and 80b and bolts (insulating screws) 70a and 70b for fixing the main body portions 50a and 50b to the member 10 are provided.
  • Through holes 51a and 51b for inserting bolts (insulating screws) 70a and 70b are formed in the central portions of the main body portions 50a and 50b.
  • the main body portion 50a is fixed to the member 10 in a state of being disposed above the surface 20a including the edge portion on the one side of the notch portion 20c of the member 10, and the main body portion 50b is fixed to the notch portion 20c of the member 10.
  • the member 10 is fixed to the member 10 in a state of being disposed above the surface 20b including the edge portion on the other side.
  • the through-holes 51a and 51b are exhibiting the substantially rectangular shape.
  • the lengths of the short sides of each of the through holes 51a and 51b are the heads of the bolts (insulating screws) 70a and 70b. It is smaller than the diameter of the circle inscribed in the outer edge and larger than the outer diameter of the threaded portion.
  • a CTOD test piece of a welded joint can be produced with high accuracy and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

継手鋼材から、第一母材、溶接部および第二母材が長手方向に並ぶように配置された直方体の部材を得た後、その部材において、溶接部の一部を切削してスリット状の切欠き部を設ける。前記長手方向における切欠き部の一方側の縁部を含む部材の表面の上方に第一導電性部材を配置し、前記長手方向における切欠き部の他方側の縁部を含む部材の表面の上方に第二導電性部材を配置し、それらを前記部材に固定する。前記長手方向における第一導電性部材と第二導電性部材との隙間は所定の間隔に設定される。第一導電性部材および第二導電性部材をそれぞれ外部電源に電気的に接続し、前記部材に対して切欠き部が閉じる方向に曲げ荷重を与える。第一導電性部材および第二導電性部材の接触が電気的に確認された時点で前記曲げ荷重を除荷し、その後、切欠き部の先端に疲労予亀裂を形成して、CTOD試験片を得る。

Description

CTOD試験片の作製方法および塑性歪調整用治具
 本発明は、CTOD試験片の作製方法および塑性歪調整用治具に関する。
 船舶、海洋構造物および液化ガス貯蔵タンク等(以下、船舶等と略記する。)では、一般に複数の溶接継手が用いられている。このため、船舶等を設計する際には、破壊力学的な観点から、溶接継手の信頼性を十分に検討する必要がある。
 溶接部の信頼性を評価するために、亀裂先端開口変位(CTOD(Crack Tip Opening Displacement))試験が利用されている(非特許文献1参照)。CTOD試験によって溶接継手の信頼性を評価する場合には、一般に、試験片の溶接部に切欠き部および疲労予亀裂が形成される。そして、切欠き部および疲労予亀裂が形成された試験片に対して3点曲げ試験を行い、限界CTODを求める。限界CTODとは、3点曲げ試験において、荷重の増加を伴わないで不安定破壊を開始する限界の亀裂先端開口変位を意味する。
 ところで、試験片の溶接部には溶接残留応力(以下、単に残留応力ともいう。)が生じているので、適切な疲労予亀裂を形成することが難しい場合がある。具体的には、直線状の疲労予亀裂を形成できない場合がある。そこで、従来、試験片に生じている残留応力を除去するための方法が提案されている。
 たとえば、特許文献1には、溶接残留応力を除去する処理方法の一つとして、プラテン(local compression)処理が記載されている。
 一方、特許文献2には、溶接残留応力を除去する処理方法の一つとして、切欠き部が閉口する方向に圧縮予荷重を付与、除荷する、逆曲げ処理が記載されている。
「日本溶接協会規格 WES1108 き裂先端開口変位(CTOD)試験方法」,社団法人日本溶接協会,1995年
実公平2-45800号公報 特開2011-169745号公報
 図1は、CTOD試験で使用する3点曲げ試験片の一例を示す側面図である。
 図1を参照して、3点曲げ試験片1(以下、試験片1と略記する。)は、略直方体形状を有する。試験片1は、母材1a、母材1bおよび溶接部(溶接金属)1cを有する継手試験片である。試験片1は、溶接部1cが試験片1の長手方向における略中央部に位置するように、継手鋼材(図示せず)から採取される。試験片1の長手方向における中央部かつ下面側には、切欠き部2が形成されている。より具体的には、切欠き部2は、溶接部1cに形成されている。切欠き部2は、V字状の先端部2aを有する。切欠き部2の先端2bは、たとえば、所定の曲率を有する略半円形状に形成される。切欠き部2の先端2bから上方(試験片1の幅方向)に延びるように疲労予亀裂3が形成されている。疲労予亀裂3は、切欠き部2の先端2bの近傍の残留応力を除去した後に形成される。なお、詳細な説明は省略するが、試験片1の寸法は、たとえば、上記非特許文献1に記載された標準三点曲げ試験片の寸法と同様に規定される。
 CTOD試験を行う際には、切欠き部2にクリップゲージ(図示せず)を取り付ける。そして、試験片1の下面の両端部を支持部材4a,4bで支持した状態で、試験片1の上面の中央部を下方に向かって押し込むことによって、試験片1の3点曲げを行う。さらに、クリップゲージを用いて測定した切欠き部2の開口変位に基づいて、限界CTODの値を求める。なお、図1においては、試験片1の幅Wおよび試験片1の長手方向における支持部材4a,4bの距離Sが示されている。
 特許文献1および2に記載の処理方法では、試験片のうち疲労予亀裂が形成される部分に予め圧縮方向の荷重が与えられる。これにより、疲労予亀裂が形成される部分に塑性歪が与えられ、残留応力を除去することができる。
 しかしながら、プラテン処理では、試験片の板厚は、評価対象となる溶接継手の実際の板厚となる。さらに、試験片に加える荷重および該荷重を加えるためのポンチの直径は、試験片の強度および板厚に従って大きくなる。したがって、たとえば、極厚かつ高強度の鋼板からなる溶接継手の評価を行う場合には、荷重およびポンチの直径を大きくしなければならない。この場合、高容量の試験装置が必要になり、信頼性評価のための試験コストが増加する。
 一方、逆曲げ処理は、切欠き部を形成した後の試験片を、CTOD試験における試験片の曲げ(以下、順曲げともいう。)方向とは逆方向に3点曲げして、切欠き部の先端の近傍部分に圧縮塑性歪(以下、単に塑性歪という。)を与えるものである。そして、逆曲げ処理によって残留応力を除去する際に必要となる荷重は、CTOD試験を行う際の荷重と同程度である。このため、高強度の試験片の残留応力を除去する場合であっても、プラテン処理に比べて大きな荷重を加える必要が無いので、残留応力を除去するために高容量の試験装置を用いなくてもよい。このため、逆曲げ処理を利用した場合には、プラテン処理を利用した場合に比べて、試験コストの低減も可能になる。
 ここで、逆曲げ時の塑性歪量が変動すると、限界CTODの値も変動するため、塑性歪量の制御は逆曲げ処理を利用したCTOD試験の測定精度を高めるうえで特に重要である。塑性歪量の制御方法としては、例えば、切欠き部に所定厚さのゲージ板を挟み、その状態で、ゲージ板が切欠き部内壁の間で摺動できなくなるまで逆曲げを行う方法、切欠き部に所定厚さのゲージ板を挟んだ状態で逆曲げを行い、荷重計によって検出される逆曲げ荷重をモニターする方法などが考えられる。しかし、いずれも制御精度が低く、所定の塑性歪量となるように逆曲げを精度よく行うことは困難である。
 具体的には、上記の2つの方法のうち、1つ目の方法では、ゲージ板が摺動できるかどうかの判断は、作業者の感覚に委ねられる。このため、所定の塑性歪量となるように逆曲げを精度よく行うことは困難である。
 一方、2つ目の方法では、ゲージ板と切欠き部内壁とが接触することによって逆曲げ荷重が増加する時点を正確に検出することができれば、所定の逆曲げ量で逆曲げ処理を停止することができると考えられる。しかしながら、ゲージ板と切欠き部内壁とが接触した瞬間における逆曲げ荷重の増加量(ゲージ板と切欠き部内壁とが接触する直前の逆曲げ荷重と接触直後の逆曲げ荷重の変化量)は、ゲージ板と切欠き部内壁とが接触する前の逆曲げ荷重の大きさに比べてかなり小さい。このため、作業者が荷重計の検出値を見て、ゲージ板と切欠き部内壁とが接触したことによって生じる荷重の増加と、荷重のバラツキ(ノイズ等による荷重計の検出値のバラツキ)とを区別することは困難である。それゆえ、ゲージ板と切欠き部内壁とが接触した時点を正確に検出することは困難である。したがって、荷重の変化(荷重計の検出値の変化)から所定の塑性歪量となるように逆曲げを精度よく行うことは困難である。
 また、これらの方法では、作業者は、切欠き部にゲージ板を挟みながら逆曲げ処理を進行し、所定の逆曲げ量に達したかどうかを判断しなければならない。そのため、その作業が極めて煩雑である。
 本発明は、従来技術の問題を解決するためになされたものであり、CTOD試験方法に供する溶接継手の試験片(以下、「CTOD試験片」という)を高精度かつ低コストで作製する方法およびCTOD試験片の塑性歪調整用治具を提供することを目的とする。
 本発明者らは、上述の問題を解決するために、高精度かつ低コストでCTOD試験片を作製するべく、種々の検討を行い、本発明を完成させた。
 本発明は、下記のCTOD試験片の作製方法および塑性歪調整用治具を要旨とする。
 〔1〕第一母材、溶接部および第二母材を有する継手鋼材からCTOD試験方法に供する試験片を作製する方法であって、
(1)前記継手鋼材を切削して、前記第一母材、前記溶接部および前記第二母材が長手方向に並ぶように配置された直方体の部材を得る工程、
(2)前記部材の前記長手方向の中央部に、前記溶接部の一部を切削して、スリット状の切欠き部を設ける工程、
(3)前記長手方向における前記切欠き部の一方側の縁部を含む前記部材の表面の上方に第一導電性部材を配置し、前記長手方向における前記切欠き部の他方側の縁部を含む前記部材の表面の上方に第二導電性部材を配置し、前記長手方向における前記第一導電性部材と前記第二導電性部材との間隔が所定の間隔となるように前記第一導電性部材および第二導電性部材を前記部材に絶縁した状態で固定する工程、
(4)前記第一導電性部材および前記第二導電性部材をそれぞれ外部電源に電気的に接続する工程、
(5)前記部材に前記切欠き部が閉じる方向に曲げ荷重を与える工程、
(6)前記第一導電性部材および前記第二導電性部材の接触が電気的に確認された時点で前記荷重を除荷する工程、および、
(7)前記切欠き部の先端に疲労予亀裂を形成する工程、
を備える、CTOD試験片の作製方法。
 〔2〕 前記(3)の工程において、
 前記部材との間に絶縁シートを介在させた状態で、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
上記〔1〕のCTOD試験片の作製方法。
 〔3〕 前記(3)および(4)の工程において、
 前記絶縁シートと、前記第一導電性部材および前記第二導電性部材とに、外部電極に電気的に接続された導電ケーブルを接触させた状態で、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
上記〔2〕のCTOD試験片の作製方法。
 〔4〕 前記(3)の工程において、
 絶縁ねじによって、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
上記〔2〕または〔3〕のCTOD試験片の作製方法。
 〔5〕 前記(3)の工程において、
 前記部材に形成されたナイフエッジ固定用ねじのねじ穴を前記絶縁ねじのねじ穴として用いる、
上記〔4〕のCTOD試験片の作製方法。
 〔6〕 切欠き部を有する直方体の部材に疲労予亀裂を形成してCTOD試験片を作製するに際し、前記疲労予亀裂の形成前に、前記部材に対して前記切欠き部が閉じる方向に曲げ荷重を与え、その後、その曲げ荷重を除荷することにより溶接残留応力を除去する工程において、前記部材に取り付けられ用いられる、塑性歪調整用治具であって、
 導電性材料からなる一対の本体部と、
 前記一対の本体部を外部電極に電気的に接続するための導電ケーブルとを備え、
 前記一対の本体部はそれぞれ、その中央部に、前記本体部を前記部材に固定するためのねじが挿通される貫通孔を有する、
塑性歪調整用治具。
 本発明によれば、溶接継手のCTOD試験片を高精度かつ低コストで作製することができる。
図1は、CTOD試験で使用する3点曲げ試験片の一例を示す側面図である。 図2は、継手鋼材から切り出した直方体の部材(CTOD試験片の作製途中の部材)の斜視図である。 図3は、図2の部材に切欠き部を形成した部材(CTOD試験片の作製途中の部材)の斜視図である。 図4は、逆曲げ処理時の塑性歪調整用治具の設置状態を示す側面図である。 図5は、逆曲げ処理時の塑性歪調整用治具の設置状態を示す上面図である。 図6は、CTOD試験時のナイフエッジの設置状態を示す側面図である。 図7は、逆曲げ処理時の塑性歪調整用治具の設置状態の他の例を示す側面図である。 図8は、逆曲げ処理の状態を示す側面図である。 図9は、CTOD試験片の側面図である。
 1.CTOD試験片の作製方法
 本実施形態に係るCTOD試験片の作製方法は、第一母材、溶接部および第二母材を有する継手鋼材からCTOD試験方法に供する試験片を作製する方法である。
 図2に示すように、本実施形態に係るCTOD試験片の作製方法においては、まず継手鋼材(溶接継手)を切削して、第一母材1a、溶接部1cおよび第二母材1bが長手方向に並ぶように配置された直方体の部材10を得る。この部材10の外形形状(厚さ、幅、および長さ)は、そのままCTOD試験片の外形形状となる。CTOD試験片の外形形状は、目的に応じて適宜設定すればよいが、典型的には、厚さ(図の奥行方向)B=25mm、幅(図の上下方向)W=50mm(=2B)、長さ(図の左右方向)L=240mm(≧9B)である。なお、本実施形態においては、部材10の幅方向(幅Wの矢印が示す方向)を上下方向とする。より具体的には、部材10の中心を基準として、後述する切欠き部20c(図3参照)が形成される側を上方とし、その反対側を下方とする。また、部材10において、上下方向に直交する2つの側面20,21のうち、後述する切欠き部20cが形成される側面20を上面とし、他方の側面21を下面とする。以下においては、側面20を上面20と記載する。
 次に、図3に示すように、部材10の前記長手方向の中央部に、溶接部1cの少なくとも一部を切削して、スリット状の切欠き部20cを設ける。図3に示す例では、溶融線(Fusion Line)を含む位置に切欠き部20cを設けているが、目的に応じて、溶接部1cの前記長手方向における中央部、または溶接HAZ(Heat Affected Zone)を含む位置に切欠き部20cを設けてもよい。なお、図3に示す例では、部材10の上面20は、切欠き部20cによって2つの表面20a,20bに分割されている。表面20aは、切欠き部20cの前記長手方向における一方側の縁部を含み、表面20bは、切欠き部20cの前記長手方向における他方側の縁部を含む。
 そして、図4および図5に示すように、切欠き部20cを設けた部材10において、表面20aの上方に第一導電性部材50aを配置し、表面20bの上方に第二導電性部材50bを配置し、第一導電性部材50aおよび第二導電性部材50bを部材10に固定する。本実施形態では、部材10の長手方向における第一導電性部材50aと第二導電性部材50bとの隙間が所定の間隔に設定される。第一導電性部材50aと第二導電性部材50bとの隙間は、例えば、所定厚さのゲージ板を用いることで調整できる。また、第一導電性部材50aおよび第二導電性部材50bはそれぞれ、部材10とは電気的に絶縁された状態で部材10に固定される。このとき、第一導電性部材50aおよび第二導電性部材50bと部材10との絶縁は、例えば、第一導電性部材50aおよび第二導電性部材50bと部材10との間に絶縁材料を介在させることにより確保することができる。本実施形態では、第一導電性部材50aおよび第二導電性部材50bと部材10との間に絶縁シート60a,60bを介在させている。また、予め、第一導電性部材50aおよび第二導電性部材50bの裏面(部材10側を向く面)に絶縁材料を塗装し、絶縁膜を形成してもよい。
 なお、本実施形態において、部材10の逆曲げ量を適切に検出するためには、第一導電性部材50aと第二導電性部材50bとの前記隙間を精度良く調整する必要がある。この点に関して、本実施形態では、所定の厚さの第一導電性部材50aおよび第二導電性部材50bを、逆曲げ処理を行う機器(3点曲げ試験機)から取り外された状態の部材10に取り付けることができる。この場合、作業者は、逆曲げ処理中の部材10に対してではなく、静止状態の部材10に対して作業ができるため、前記隙間を容易かつ精度よく調整することができる。
 ここで、図6に示すように、CTOD試験を行う際には、例えば、CTOD試験片30上にナイフエッジ100a,100bがナイフエッジ固定用ねじ110a,110bによって固定され、さらに、クリップゲージ(図示省略)がナイフエッジ100a,100bに引っ掛けられる。この状態で、CTOD試験片30に曲げ荷重が与えられて切欠き部20cの開口が広げられていき、その時のナイフエッジ間隔の変化がクリップゲージで確認される。このため、図6に示すタイプのCTOD試験片には、ナイフエッジ固定用ねじ110a,110bのためのねじ穴が設けられる。よって、このねじ穴を、図4および図5に示すように、第一導電性部材50aおよび第二導電性部材50bを部材10に固定するためのボルト(絶縁ねじ)70a,70bのねじ穴として用いることができる。
 なお、図4および図5に示す例では、第一導電性部材50aおよび第二導電性部材50bをボルト(絶縁ねじ)70a,70bを用いて、部材10に固定する例を示しているが、例えば、図7に示すように、接着剤90a,90bを用いて、第一導電性部材50aおよび第二導電性部材50bを部材10に固定してもよい。このとき、予め、所定の間隔を保った状態で、第一導電性部材50aおよび第二導電性部材50bの上面(図面の上側の面)をシート状物に貼り付けたものを用意しておくことにより、第一導電性部材50aおよび第二導電性部材50bの部材10への固定作業が容易になる。また、接着剤90a,90bとして絶縁性接着剤を用いれば、絶縁シート60a,60bを省略することができる。例えば、予めナイフエッジを切欠き部内に設けた試験片の場合には、図6に示すようなナイフエッジ固定用ねじ110a,110bのためのねじ穴が設けられない。このため、第一導電性部材50aおよび第二導電性部材50bをボルト(絶縁ねじ)70a,70bによって固定することを前提とすると、ボルト70a,70bのためのねじ穴を別途設ける必要がある。この点、接着剤90a,90bによって第一導電性部材50aおよび第二導電性部材50bを固定する構成であれば、ねじ穴を別途設ける必要がないため、低コストにCTOD試験片を作製することができる。
 図4および図5に示すように、第一導電性部材50aおよび第二導電性部材50bは、それぞれ導電ケーブル80a,80bを介して外部電源に電気的に接続される。導電ケーブル80a,80bには、電流計が接続されており、第一導電性部材50aおよび第二導電性部材50bの通電状態(電流値)を常時検知する状態となっている。図4および図5に示す状態では、第一導電性部材50aおよび第二導電性部材50bが接触していないため、電流計によって検出される電流値はゼロである。
 なお、導電ケーブル80a,80bは、例えば、第一導電性部材50aおよび第二導電性部材50bに半田などにより接続することが可能である。また、例えば、絶縁シート60a,60bと、第一導電性部材50aおよび第二導電性部材50bとの間に、外部電極に電気的に接続された導電ケーブル80a,80bを、絶縁シート60a,60bと、第一導電性部材50aおよび第二導電性部材50bとに接触するように挿入してもよい。この状態で、ボルト(絶縁ねじ)70a,70bを締め付け、導電ケーブル80a,80bを間に挟むようにして第一導電性部材50aおよび第二導電性部材50bを部材10に固定することによって、第一導電性部材50aおよび第二導電性部材50bと導電ケーブル80a,80bとの導通を確保してもよい。この方法によれば、半田付けの手間が省ける。
 この状態で、図8に示すように、逆曲げ処理では、前記長手方向における部材10の中心部に対して、前記長手方向における部材10の両端部(すなわち、第一母材1aおよび第二母材1bそれぞれの端部)が上方向(図面の上方向)に移動するように、部材10に対して曲げ荷重を与える。言い換えると、部材10の切欠き部20cが閉じる方向(つまり、CTOD試験における試験片の曲げ方向とは逆の方向)に、部材10に対して曲げ荷重を与える。これにより、疲労予亀裂を形成する箇所(切欠き部20cの先端より下の部分)に圧縮の塑性歪を付与することができる。そして、切欠き部20cが閉じる方向に部材10が曲がるほど、第一導電性部材50aおよび第二導電性部材50bの間隔が狭くなる。第一導電性部材50aおよび第二導電性部材50bが接触すると、第一導電性部材50a、第二導電性部材50bおよび導電ケーブル80a,80bを含む回路が通電されるため、検知器(電流計)が電流を検知する。すなわち、本実施形態では、第一導電性部材50aと第二導電性部材50bとの間で電流が流れたことを、検知器によって検知することができる。したがって、作業者は、検知器による上記電流の検知に基づいて、第一導電性部材50aおよび第二導電性部材50bが接触したことを把握することが可能となる。このため、作業者は、第一導電性部材50aおよび第二導電性部材50bの接触が検知器によって電気的に確認された時点で、部材10に与えられている逆曲げ荷重を除荷すればよい。このように、本実施形態では、第一導電性部材50aと第二導電性部材50bとが接触したか否かの判断が、作業者の感覚に委ねられることはない。これにより、作業者は、所定の逆曲げ量(逆曲げ前の第一導電性部材50aおよび第二導電性部材50bの間隔に対応する曲げ量)が部材10に付与された時点を精度良く把握することができ、かつ適切なタイミングで逆曲げ処理を止めることができる。その結果、部材10に所定の塑性歪を付与し、溶接による残留応力を適切に除去することができる。
 そして、図9に示すように、上記の逆曲げ処理を実施した後に、切欠き部20cの先端に、疲労予亀裂20dを形成して、CTOD試験片30を得る。このため、本実施形態に係るCTOD試験片の作製方法により得られたCTOD試験片は、溶接による残留応力が適切に除去されている。したがって、本実施形態に係る作製方法により得られたCTOD試験片を用いることによって、高精度なCTOD試験を行うことが可能となる。
 2.塑性歪調整用治具
 本実施形態に係るCTOD試験片の作製方法においては、切欠き部を有する直方体の部材に疲労予亀裂を形成してCTOD試験片を作製するに際し、前記疲労予亀裂の形成前に、前記部材に対して前記切欠き部が閉じる方向に曲げ荷重を与え、その後、その曲げ荷重を除荷することにより溶接残留応力を除去する工程が実施される。つまり、逆曲げ処理工程が実施される。この逆曲げ処理工程において、図4および図5に示す、塑性歪調整用治具200が用いられる。塑性歪調整用治具200は、導電性材料からなる本体部(第一導電性部材、第二導電性部材)50a,50bと、本体部50a,50bを外部電極に電気的に接続するための導電ケーブル80a,80bと、本体部50a,50bを部材10に固定するボルト(絶縁ねじ)70a,70bとを備える。本体部50a,50bの中央部には、ボルト(絶縁ねじ)70a,70bを挿通するための貫通孔51a,51bが形成されている。上記本体部50aは、部材10の切欠き部20cの前記一方側の縁部を含む表面20aの上方に配置された状態で部材10に固定され、本体部50bは、部材10の切欠き部20cの前記他方側の縁部を含む表面20bの上方に配置された状態で部材10に固定される。
 そして、図5に示すように、貫通孔51a,51bは、略矩形状を呈している。貫通孔51a,51bそれぞれの短辺の長さ(部材10の厚さ方向(図3において厚さBの矢印が示す方向)の長さ)は、ボルト(絶縁ねじ)70a,70bの頭部の外縁に内接する円の直径より小さく、ねじ部の外径より大きい。このような構成により、本体部50a,50bにおけるボルト(絶縁ねじ)70a,70bの固定位置を変更することができる。このため、第一導電性部材50aおよび第二導電性部材50bの間隔を容易に調整することができる。
 本発明によれば、溶接継手のCTOD試験片を高精度かつ低コストで作製することができる。
1 試験片
1a 母材(第一母材)
1b 母材(第二母材)
1c 溶接部
2 切欠き部
2a 先端部
2b 先端
3 疲労予亀裂
4a,4b 支持部材
10 部材(直方体の部材)
20a 切欠き部の一方の縁部を含む部材の表面
20c 切欠き部
20b 切欠き部の他方の縁部を含む部材の表面
20d 疲労予亀裂
30 CTOD試験片
50a 第一導電性部材
50b 第二導電性部材
51a,51b 貫通孔
60a,60b 絶縁シート
70a,70b ボルト(絶縁ねじ)
80a,80b 導電ケーブル
90a,90b 接着剤
100a,100b ナイフエッジ
110a,110b ナイフエッジ固定用ねじ
200 塑性歪調整用治具

Claims (6)

  1.  第一母材、溶接部および第二母材を有する継手鋼材からCTOD試験方法に供する試験片を作製する方法であって、
    (1)前記継手鋼材を切削して、前記第一母材、前記溶接部および前記第二母材が長手方向に並ぶように配置された直方体の部材を得る工程、
    (2)前記部材の前記長手方向の中央部に、前記溶接部の一部を切削して、スリット状の切欠き部を設ける工程、
    (3)前記長手方向における前記切欠き部の一方側の縁部を含む前記部材の表面の上方に第一導電性部材を配置し、前記長手方向における前記切欠き部の他方側の縁部を含む前記部材の表面の上方に第二導電性部材を配置し、前記長手方向における前記第一導電性部材と前記第二導電性部材との間隔が所定の間隔となるように前記第一導電性部材および第二導電性部材を前記部材に絶縁した状態で固定する工程、
    (4)前記第一導電性部材および前記第二導電性部材をそれぞれ外部電源に電気的に接続する工程、
    (5)前記部材に前記切欠き部が閉じる方向に曲げ荷重を与える工程、
    (6)前記第一導電性部材および前記第二導電性部材の接触が電気的に確認された時点で前記荷重を除荷する工程、および、
    (7)前記切欠き部の先端に疲労予亀裂を形成する工程、
    を備える、CTOD試験片の作製方法。
  2.  前記(3)の工程において、
     前記部材との間に絶縁シートを介在させた状態で、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
    請求項1に記載のCTOD試験片の作製方法。
  3.  前記(3)および(4)の工程において、
     前記絶縁シートと、前記第一導電性部材および前記第二導電性部材とに、外部電極に電気的に接続された導電ケーブルを接触させた状態で、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
    請求項2に記載のCTOD試験片の作製方法。
  4.  前記(3)の工程において、
     絶縁ねじによって、前記第一導電性部材および前記第二導電性部材を前記部材に固定する、
    請求項2または3に記載のCTOD試験片の作製方法。
  5.  前記(3)の工程において、
     前記部材に形成されたナイフエッジ固定用ねじのねじ穴を前記絶縁ねじのねじ穴として用いる、
    請求項4に記載のCTOD試験片の作製方法。
  6.  切欠き部を有する直方体の部材に疲労予亀裂を形成してCTOD試験片を作製するに際し、前記疲労予亀裂の形成前に、前記部材に対して前記切欠き部が閉じる方向に曲げ荷重を与え、その後、その曲げ荷重を除荷することにより溶接残留応力を除去する工程において、前記部材に取り付けられ用いられる、塑性歪調整用治具であって、
     導電性材料からなる一対の本体部と、
     前記一対の本体部を外部電極に電気的に接続するための導電ケーブルとを備え、
     前記一対の本体部はそれぞれ、その中央部に、前記本体部を前記部材に固定するためのねじが挿通される貫通孔を有する、
    塑性歪調整用治具。
PCT/JP2017/039331 2016-11-09 2017-10-31 Ctod試験片の作製方法および塑性歪調整用治具 WO2018088273A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/346,994 US20200072719A1 (en) 2016-11-09 2017-10-31 Method for Manufacturing CTOD Test Specimen, and Jig for Controlling Plastic Strain
CN201780069268.2A CN109964110A (zh) 2016-11-09 2017-10-31 Ctod试验片的制作方法及塑性应变调整用治具
KR1020197016101A KR20190077503A (ko) 2016-11-09 2017-10-31 Ctod 시험편의 제작 방법 및 소성 변형 조정용 지그
JP2018550153A JP6648836B2 (ja) 2016-11-09 2017-10-31 Ctod試験片の作製方法および塑性歪調整用治具
EP17870227.0A EP3540408A1 (en) 2016-11-09 2017-10-31 Method of manufacturing ctod test piece, and plastic strain adjusting jig

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016219236 2016-11-09
JP2016-219236 2016-11-09

Publications (1)

Publication Number Publication Date
WO2018088273A1 true WO2018088273A1 (ja) 2018-05-17

Family

ID=62109537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039331 WO2018088273A1 (ja) 2016-11-09 2017-10-31 Ctod試験片の作製方法および塑性歪調整用治具

Country Status (6)

Country Link
US (1) US20200072719A1 (ja)
EP (1) EP3540408A1 (ja)
JP (1) JP6648836B2 (ja)
KR (1) KR20190077503A (ja)
CN (1) CN109964110A (ja)
WO (1) WO2018088273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726607A (zh) * 2018-07-17 2020-01-24 宁国市中英橡胶有限公司 一种新型拉力机
JP7371822B1 (ja) * 2022-07-11 2023-10-31 Jfeスチール株式会社 3点曲げctod試験片の作製方法
WO2024014181A1 (ja) * 2022-07-11 2024-01-18 Jfeスチール株式会社 3点曲げctod試験片の作製方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603449U (ja) * 1983-06-21 1985-01-11 三井造船株式会社 硬質溶接継手の破壊靭性試験片
JPH0245800Y2 (ja) 1984-05-24 1990-12-04
JPH08297080A (ja) * 1995-04-26 1996-11-12 Mitsubishi Heavy Ind Ltd 小型試験片による破壊靭性試験方法
JP2011001697A (ja) * 2009-06-16 2011-01-06 Tokai Rika Co Ltd 電子キー
JP2011169745A (ja) 2010-02-18 2011-09-01 Ihi Corp 脆性き裂停止破壊靱性の測定方法
US20130135460A1 (en) * 2011-05-27 2013-05-30 Airbus Operations Gmbh Method for the detection of a possible joint defect in a friction stir weld seam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245800U (ja) 1988-09-22 1990-03-29

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603449U (ja) * 1983-06-21 1985-01-11 三井造船株式会社 硬質溶接継手の破壊靭性試験片
JPH0245800Y2 (ja) 1984-05-24 1990-12-04
JPH08297080A (ja) * 1995-04-26 1996-11-12 Mitsubishi Heavy Ind Ltd 小型試験片による破壊靭性試験方法
JP2011001697A (ja) * 2009-06-16 2011-01-06 Tokai Rika Co Ltd 電子キー
JP2011169745A (ja) 2010-02-18 2011-09-01 Ihi Corp 脆性き裂停止破壊靱性の測定方法
US20130135460A1 (en) * 2011-05-27 2013-05-30 Airbus Operations Gmbh Method for the detection of a possible joint defect in a friction stir weld seam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Japan Welding Engineering Society Standards, WES 1108, Standard test method for crack-tip opening displacement fracture toughness measurement", THE JAPAN WELDING ENGINEERING SOCIETY, 1995

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726607A (zh) * 2018-07-17 2020-01-24 宁国市中英橡胶有限公司 一种新型拉力机
JP7371822B1 (ja) * 2022-07-11 2023-10-31 Jfeスチール株式会社 3点曲げctod試験片の作製方法
WO2024014181A1 (ja) * 2022-07-11 2024-01-18 Jfeスチール株式会社 3点曲げctod試験片の作製方法

Also Published As

Publication number Publication date
JPWO2018088273A1 (ja) 2019-09-26
CN109964110A (zh) 2019-07-02
JP6648836B2 (ja) 2020-02-14
EP3540408A1 (en) 2019-09-18
US20200072719A1 (en) 2020-03-05
KR20190077503A (ko) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2018088273A1 (ja) Ctod試験片の作製方法および塑性歪調整用治具
KR101769952B1 (ko) 삼축응력 해석 방법
EP3531107B1 (en) Jig assembly comprising bending jig and apparatus and method for measurng bending tensile strenght using the same
US20130091955A1 (en) Method and apparatus for measuring residual stresses in a component
WO2023085023A1 (ja) 遅れ破壊評価用の治具、せん断端面の遅れ破壊評価方法、及び試験片
JP2017053788A (ja) レール端面平面度測定治具
JP2008281390A (ja) 曲げ試験治具の製造方法、曲げ試験治具および曲げ試験装置
Weeks et al. Direct comparison of single-specimen clamped SE (T) test methods on X100 line pipe steel
CN109540694B (zh) 用于测试ⅱ型裂纹断裂韧性的预制裂纹偏置三点弯试验装置
CN106404553B (zh) 三点弯曲试样延性断裂韧性jic辅助测试装置以及测试方法
Park et al. Low-constraint toughness testing of two SE (T) methods in a single specimen
US4000644A (en) Method and apparatus for testing tensile properties
JP2009085856A (ja) スポット溶接装置を用いた金属板隙間計測方法およびその装置
Deole et al. Analysis of fracture in sheet bending and roll forming
JP6607178B2 (ja) 管材の応力腐食割れ試験方法
KR20170028157A (ko) 용접부 품질 평가를 위한 시뮬레이션 장치
KR102487305B1 (ko) 후판 용접부 역변형 측정 장치
JP2007315810A (ja) 繰返し応力センサ
KR100978094B1 (ko) 피측정물의 변형 측정장치
JP4000089B2 (ja) 応力腐食割れ試験方法
CN109100215B (zh) 一种用于拉扭材料试验机夹具的对中装置和对中方法
WO2019101977A1 (en) Test specimen
JP2021113706A (ja) 応力評価方法、曲げ加工性評価方法、および金属部材の製造方法
JP2004291088A (ja) 鋼材の表面品質の検査方法
CN1776352A (zh) 测定金属管壁厚的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016101

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017870227

Country of ref document: EP

Effective date: 20190611