WO2018088096A1 - 磁気共鳴イメージング装置及び計算画像生成方法 - Google Patents

磁気共鳴イメージング装置及び計算画像生成方法 Download PDF

Info

Publication number
WO2018088096A1
WO2018088096A1 PCT/JP2017/036823 JP2017036823W WO2018088096A1 WO 2018088096 A1 WO2018088096 A1 WO 2018088096A1 JP 2017036823 W JP2017036823 W JP 2017036823W WO 2018088096 A1 WO2018088096 A1 WO 2018088096A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
magnetic resonance
subject
imaging apparatus
resonance imaging
Prior art date
Application number
PCT/JP2017/036823
Other languages
English (en)
French (fr)
Inventor
陽 谷口
久晃 越智
亨 白猪
悦久 五月女
俊 横沢
知樹 雨宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/342,111 priority Critical patent/US10866296B2/en
Publication of WO2018088096A1 publication Critical patent/WO2018088096A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5618Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using both RF and gradient refocusing, e.g. GRASE

Definitions

  • the present invention relates to a magnetic resonance imaging technique, and more particularly to a technique for estimating an object parameter by calculation.
  • a magnetic resonance imaging (MRI) apparatus uses a signal intensity or phase information of a nuclear magnetic resonance signal obtained from an atom constituting a tissue of a subject, mainly a hydrogen nucleus, to obtain a nuclear density (proton density) image of the tissue, An image of a moving part such as a blood flow is acquired.
  • the signal intensity and phase of the nuclear magnetic resonance signal are determined by the conditions at the time of imaging and the characteristics of the apparatus and the tissue of the subject.
  • a technique has been widely used in MRI apparatuses for obtaining and imaging, as parameters, characteristics that can be analyzed with respect to the relationship with the nuclear magnetic resonance signal among the characteristics of the apparatus and the tissue of the subject. Yes.
  • One such technique is to take a plurality of images with different imaging parameters and obtain subject parameters and device parameters by calculation for each pixel.
  • the imaging parameters are the repetition time, the set intensity of the high-frequency magnetic field, the phase of the high-frequency magnetic field, and the subject parameters are the longitudinal relaxation time, the transverse relaxation time, the spin density, the resonance frequency, the diffusion coefficient, and the irradiation of the high-frequency magnetic field.
  • intensity distribution Such as intensity distribution.
  • Device parameters include magnetic field strength, reception sensitivity distribution, etc., but also depend on the subject.
  • An image having the obtained object parameter value as a pixel value is called a calculation image or map.
  • Patent Document 1 a procedure for acquiring maps such as relaxation time, frequency, irradiation intensity of a high-frequency magnetic field, spin density, resonance frequency, etc. as a subject parameter or an apparatus parameter is a gradient echo (GE) -based high-speed method.
  • GE gradient echo
  • An RF-soiled GE that is an imaging sequence is disclosed as an example.
  • T2 longitudinal relaxation time
  • T2 * is a transverse relaxation time including the effect of static magnetic field inhomogeneity
  • T2 is a spin echo (SE: Spin Echo) imaging sequence.
  • SE Spin Echo
  • T2 is a more important parameter than T2 * in grasping the state of the tissue, and a T2 weighted image is more widely used than a T2 * weighted image in general clinical examinations.
  • a T2-weighted image can be obtained by using an SE-based imaging sequence.
  • an SE-based imaging sequence has a longer imaging time than a GE-based imaging sequence. Further, if it is attempted to acquire not only T2 but also T2 * and other parameters, a longer shooting time is required.
  • the present invention has been made in view of the above circumstances, and an object thereof is to obtain a plurality of subject parameter maps at high speed.
  • an imaging sequence that generates both gradient echoes and spin echoes is used, and the values of one or more parameters are calculated using the gradient echoes.
  • the value of another parameter is calculated using echo.
  • the parameter value obtained by calculating the other parameter may be used.
  • the MRI apparatus of the present invention includes a measurement unit that applies a high-frequency magnetic field and a gradient magnetic field to a subject and measures a nuclear magnetic resonance signal emitted from the subject, a control unit that controls the measurement unit according to a pulse sequence, and the measurement Using a nuclear magnetic resonance signal acquired by the unit and a signal function of the pulse sequence, a parameter calculation unit that calculates a parameter value of an object parameter related to the characteristics of the object, and the control unit includes the As the pulse sequence, the measurement unit is controlled using a pulse sequence that measures at least two types of nuclear magnetic resonance signals after one excitation high-frequency magnetic field is applied, and the parameter calculation unit includes the two types of nuclear magnetic resonance.
  • One of the signals is used to calculate parameter values of one or more subject parameters including the first subject parameter, and the two types of nuclear magnetic resonance signals are calculated. Using the other, to calculate a parameter value for one or more subject parameters including different second analyte parameters of said first object parameters.
  • the calculation image generation method of the present invention is characterized in that the characteristics of the subject are obtained using echo signals obtained by executing a pulse sequence including gradient echo measurement and subsequent spin echo measurement a plurality of times while changing the value of imaging parameters.
  • a method for generating a calculated image of an object parameter related to an object, wherein two or more objects including a first object parameter using the gradient echo obtained by a plurality of imaging and the signal function of the pulse sequence The parameter value of the parameter is calculated, and the parameter value of the second parameter is calculated using the spin echo obtained by a plurality of imaging operations and the signal function after the gradient echo measurement.
  • the present invention it is possible to obtain a plurality of parameters at high speed by calculating the parameters in stages using a plurality of nuclear magnetic resonance signals obtained in a single imaging sequence.
  • the spin echo for T2 calculation can be measured by using the waiting time after measuring the gradient echo. Therefore, it becomes possible to acquire the T2 map while minimizing the extension of the photographing time.
  • Functional block diagram of a computer. 6 is a flow showing the operation of the MRI apparatus of the embodiment.
  • (A), (b) is a figure which shows the image obtained by the parameter set of FIG. 6, respectively, (c), (d) is a calculation image obtained from the image of (a), respectively, The figure which shows the calculation image obtained from an image.
  • FIG. 1 is a block diagram showing a schematic configuration of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 irradiates a high-frequency magnetic field and a nuclear magnetism with a magnet 101 that generates a static magnetic field, a gradient coil 102 that generates a gradient magnetic field, a sequencer 104, a gradient magnetic field power source 105, a high-frequency magnetic field generator 106, and the like.
  • a transmission / reception coil 107 that detects a resonance signal, a receiver 108, a calculator 109, a display 111, and a storage device 112 are provided.
  • a transmission coil and a reception coil may be provided separately.
  • the magnet 101, the gradient magnetic field coil 102, the gradient magnetic field power source 105, the sequencer 104, the high frequency magnetic field generator 106, the transmission / reception coil 107, and the receiver 108 are collectively referred to as a measurement unit 110.
  • a subject (for example, a living body) 103 is placed on a bed (table) in a static magnetic field generated by a magnet 101.
  • the sequencer 104 sends commands to the gradient magnetic field power source 105 and the high frequency magnetic field generator 106 to generate a gradient magnetic field and a high frequency magnetic field, respectively.
  • the high frequency magnetic field is applied to the subject 103 through the transmission / reception coil 107.
  • a nuclear magnetic resonance signal generated from the subject 103 is received by the transmission / reception coil 107 and detected by the receiver 108.
  • the sequencer 104 sets a nuclear magnetic resonance frequency (detection reference frequency f0) as a reference for detection.
  • the detected signal is sent to the computer 109, where signal processing such as image reconstruction is performed.
  • the result is displayed on the display 111. If necessary, the detected signal and measurement conditions can be stored in the storage device 112.
  • the sequencer 104 normally performs control so that each device operates at a timing and intensity programmed in advance.
  • a program that particularly describes a high-frequency magnetic field, a gradient magnetic field, and the timing and intensity of signal reception is called a pulse sequence (imaging sequence).
  • imaging sequence a program that particularly describes a high-frequency magnetic field, a gradient magnetic field, and the timing and intensity of signal reception.
  • the MRI apparatus of this embodiment stores an imaging sequence that generates both gradient echoes and spin echoes.
  • the computer 109 includes a CPU and a memory, functions as a control unit that controls the operation of each unit described above, and functions as a calculation unit that performs various signal processing and calculations. Specifically, the echo signal is measured by operating the measurement unit according to the pulse sequence. The obtained echo signal is subjected to various signal processing to obtain a desired image. The image includes a calculated image in which the subject parameter is a pixel value. Programs and algorithms for control and computation are stored in the storage device 112, and the functions of the computer 109 are realized by the CPU of the computer 109 loading and executing the program stored in the storage device 112. Is done. Note that some of the functions of the computer 109 may be realized by hardware such as PLD (programmable logic device).
  • PLD programmable logic device
  • FIG. 2 shows a configuration example of the computer 109 for realizing the above-described processing.
  • the computer 109 includes a control unit 210 that controls the entire apparatus including the measurement unit and the calculation unit, and a calculation unit 230.
  • the calculation unit 230 includes an image reconstruction unit 231, a signal function generation unit 233, a parameter estimation unit 235, and an image generation unit 237.
  • the signal function generation unit 233, the parameter estimation unit 235, and the image generation unit 237 which are functional units as parameter calculation units among the functional units of the calculation unit 230, are computers provided independently from the MRI apparatus 100. Therefore, it may be realized in a computer capable of transmitting and receiving data to and from the computer 109 of the MRI apparatus 100.
  • FIG. 3 shows an outline of a procedure for creating a calculation image.
  • a combination of a plurality of shooting conditions is determined in advance and stored in the storage device 112 (S301).
  • the control unit 210 sets one of the plurality of imaging conditions, controls the measurement unit 110, executes a predetermined pulse sequence, and measures an echo signal, here, a gradient echo and a spin echo.
  • Shooting is performed (S302).
  • S303 For each echo signal, when the number of measurements necessary for image reconstruction is completed, shooting is performed under different shooting conditions (S303). Shooting is repeated until shooting of all combinations of planned shooting conditions is completed.
  • the computer 109 (signal function generating unit 233) generates the signal function (S304).
  • the computer 109 (image reconstruction unit 231) reconstructs an image (GE image and SE image) for each of the two types of echo signals obtained by a plurality of photographing, and the parameter estimation unit 235 uses the pixel values of these images.
  • the parameter is estimated using the signal function generated by the signal function generation unit 233 (S305). Note that some of the calculations performed by the computer 109 may be performed in parallel with the shooting before the shooting is completed. If the shooting sequence is the same, the signal function is the same even if the shooting conditions are different. Therefore, by storing the generated signal function, it is not necessary to generate the signal function every time shooting is performed, and the same signal function can be used repeatedly.
  • the parameter estimation includes estimation using a gradient echo (estimation of a first parameter) and estimation using a spin echo (estimation of a second parameter), and different types of parameters are calculated in each process.
  • the image generation unit 237 creates an image, that is, a calculated image (parameter image) having pixel values as values for all or some of the calculated parameters (S306).
  • the image generation unit 237 creates a display image including the calculation image as a display image or further including the calculation image, and displays the display image on the display 111 (S307).
  • the imaging conditions are parameters (imaging parameters) that can be arbitrarily set by the user during execution of the imaging sequence. Specifically, the repetition time (TR), the echo time (TE), the set intensity of the high-frequency magnetic field (flip angle ( Flip Angle (FA)), high-frequency magnetic field phase increment ( ⁇ ), and the like. In the present embodiment, a plurality of combinations of these values are prepared.
  • an imaging sequence that generates both gradient echoes and spin echoes after the application of one excitation pulse is used as the imaging sequence.
  • an imaging sequence for example, a sequence combining an RF-soiled GE sequence and an SE sequence (hereinafter referred to as a GE-SE sequence) can be used.
  • the RF-soiled GE sequence can perform 3D imaging at high speed, and the pixel values of the images obtained by this imaging sequence are mainly relaxation parameters T1, T2 *, spin density ⁇ , and apparatus parameters. It depends on B1 and Sc.
  • FIG. 4A An example of the GE-SE sequence is shown in FIG. 4A.
  • RF, A / D, Gs, Gp, and Gr represent a high-frequency magnetic field, signal reception, a slice gradient magnetic field, a phase encoding gradient magnetic field, and a readout gradient magnetic field, respectively.
  • This figure shows a case where the axis of the phase encoding gradient magnetic field Gp is uniaxial, but in the case of a 3D-sequence, a biaxial phase encoding gradient magnetic field is used.
  • This GE-SE sequence uses the waiting time after the echo measurement of the RF-soiled GE sequence to generate a spin echo by an inverted RF pulse.
  • the sequence up to the gradient echo measurement is shown in FIG. It is the same as the spoiled GE sequence. That is, first, the application of the slice gradient magnetic field pulse 401 and the irradiation of the radio frequency magnetic field (RF) pulse 402 excite magnetization of a certain slice in the target object. Next, after applying a slice rephase gradient magnetic field pulse 403, a phase encoding gradient magnetic field pulse 404, and a dephase readout gradient magnetic field 405, a nuclear magnetic resonance signal (gradient echo, first echo) while applying a readout gradient magnetic field pulse 406 is applied. ) 407 is measured. Finally, a phase encoding gradient magnetic field pulse 408 for dephase is applied.
  • RF radio frequency magnetic field
  • the application of the slice gradient magnetic field pulse 409-1 and irradiation of the inversion pulse 410-1 reverse the magnetization in the slice.
  • the nuclear magnetic resonance signal spin echo, second echo
  • a phase encoding gradient magnetic field pulse 414-1 for dephase is applied.
  • the same sequence as the sequence from the application of the slice gradient magnetic field pulse 409-1 to the application of the phase encoding gradient magnetic field pulse 414-1 for dephasing is repeated as many times as necessary.
  • a total of four inversion pulses (410-1 to 410-4) are applied, and a total of four spien echoes from the second echo to the fifth echo are measured (413- 1 to 413-4).
  • the procedure from the RF pulse 402 irradiation to the last spin echo measurement is repeated at a repetition time TR, and each echo from the first echo to the fifth echo is measured a plurality of times.
  • the intensity (phase encoding amount kp) of the phase encoding gradient magnetic field pulse (404, 408, 411-1 to 411-4, 414-1 to 414-4) is changed at each repetition, and the phase increment value of the RF pulse 402 is changed.
  • the number of inversion pulses in the GE-SE sequence is arbitrary. However, when the repetition time is as short as several tens of milliseconds, an even number is desirable. This is because, like RF-soiled GE, the waiting time required until the next excitation is shortened to shorten the imaging time. In other words, RF-soiled GE is designed so that the magnetization excited by the excitation pulse has some longitudinal magnetization component facing the direction of the static magnetic field, and the waiting time until the next excitation pulse can be shortened. ing.
  • the inversion pulse is irradiated, the longitudinal magnetization is reversed, and when it is irradiated again, the direction of the original static magnetic field is restored. As described above, by making the inversion pulse an even number of times, the longitudinal magnetization can be set in the direction of the static magnetic field before the next excitation pulse as in the RF-soiled GE in this sequence.
  • RF-soiled GE that does not use an inversion pulse is also used.
  • the imaging parameter set is a combination of imaging parameters such as FA (flip angle), TR (repetition time), TE (echo time), inversion pulse interval, and ⁇ (RF phase increment value) as predetermined parameter values.
  • FA flip angle
  • TR repetition time
  • TE echo time
  • RF phase increment value
  • the parameter value is determined in consideration of the type of subject parameter to be calculated.
  • the FA is set to about 5 to 60 degrees in a normal RF-soiled GE, but is made as small as possible in the present embodiment. This is due to the following reason.
  • the estimated values of T1 and T2 are also influenced by the protein concentration, and T1 and T2 different from the case where T1 and T2 are individually measured by a normal method are obtained.
  • the maximum value of TR is determined in consideration of the imaging sequence used and the number of inversion pulses. For example, in the GE-SE sequence, since an inversion pulse is added to the RF-soiled GE, the TR becomes longer than that of the RF-soiled GE. For this reason, it is better that the shooting parameter set using the GE-SE sequence has a long TR. Note that if the interval between the inversion pulses and TR of the GE-SE sequence is increased, the estimation accuracy of the long T2 is improved, but the imaging time is increased.
  • the phase increment ⁇ of the RF pulse changes the phase of the RF pulse in order to make the influence of the transverse relaxation different.
  • signals having different influences of the transverse relaxation can be obtained.
  • the effect of lateral relaxation is eliminated by setting the phase increment to about 20 degrees, so the increment is changed within a range below that.
  • the TE and the inversion pulse interval are determined in consideration of device restrictions and SAR. These imaging parameters may be fixed values.
  • the number of shooting parameter sets is equal to or greater than the number of parameters estimated in parameter estimation described later (the number of unknowns). In this embodiment, since the number of unknowns is 4 (T1, T2, B1, Sc), the shooting parameter set is 4 or more. As the number of parameter sets, that is, the number of images obtained by shooting the parameter set increases, the estimation accuracy improves, but the shooting time increases accordingly.
  • FIG. 1 An example of a parameter set selected to minimize noise based on the error propagation law is shown in FIG.
  • six shooting parameter sets P1 to P each consisting of combinations of 10 degrees, 40 degrees FA, 2 degrees, 5 degrees, 7 degrees, 8 degrees, 22 degrees and TR of 10 ms, 30 ms, 40 ms, are set.
  • P6 is determined.
  • the gradient echo TEs are all set to 3 ms.
  • the imaging sequence is P3 with the longest TR, the GE-SE sequence shown in FIG. 4A, and the rest of the imaging sequence is the RF-soiled GE shown in FIG.
  • the interval between inversion pulses of the GE-SE sequence is 8 ms.
  • the measurement unit 110 captures a plurality of images using the plurality of imaging parameter sets described above under the control of the control unit 210. That is, a plurality of times of imaging are performed while changing the imaging parameter set, and a plurality of gradient images (GE images) and a plurality of spin echo images (SE images) are obtained.
  • GE images gradient images
  • SE images spin echo images
  • echoes obtained by the GE-SE sequence in FIG. 4A are arranged in k space as shown in FIG. 4B for each echo number, and an image is reconstructed by performing two-dimensional inverse Fourier transform. . For example, a first echo image is reconstructed from the first echo, and a second echo image is reconstructed from the second echo.
  • the first echo image is a GE image
  • the second and subsequent echo images are SE images.
  • one GE image is obtained by one imaging.
  • 6 GE images and 4 SE images are obtained.
  • the calculation unit 230 calculates the subject parameter and the apparatus parameter using the plurality of images acquired as described above.
  • processing of the calculation unit 230 related to parameter calculation will be described with reference to FIG.
  • FIG. 8 is a diagram showing the relationship between each process and input and output data.
  • the signal function generation unit 233 When the shooting sequence is determined, the signal function generation unit 233 generates a function (signal function) representing the signal intensity of each pixel obtained by the shooting sequence by numerical simulation.
  • a signal function of a GE-SE sequence is generated.
  • the signal function fs is a function of imaging parameters (FA, TR, TE, ⁇ ), apparatus parameters, and subject parameters, and is expressed as follows.
  • T1, T2, and ⁇ are the longitudinal relaxation time, lateral relaxation time, and spin density of the subject parameter, respectively, and B1 and Sc are parameters that depend on the characteristics of the device and the properties of the subject (herein referred to as device parameters).
  • device parameters RF irradiation intensity and receiving coil sensitivity.
  • B1 is a coefficient of FA at the time of photographing, it is converted into a product form with FA.
  • ⁇ and Sc act on the signal intensity as proportional coefficients, they are put out of the function, and TE is also put out of the function because it affects the signal intensity in the form of an exponential function.
  • equation (1) can be rewritten as the equation in the second stage.
  • a function f that is the basis of fs is created by numerical simulation. That is, the spin density ⁇ and B1 and Sc of the imaging target are set to 1 and TE is set to 0, and arbitrary values are set for the subject parameters T1 and T2, and the imaging parameters FA, TR, and ⁇ are set for these.
  • the signal is calculated by numerical simulation with comprehensive changes.
  • the range of parameter values to be changed includes the range of imaging parameters used for actual imaging (FIG. 3: S302) and the range of T1 and T2 of the subject.
  • An example of each parameter value of the imaging parameter and the subject parameter is shown below. The number after the parameter is the number to be changed, and the numerical value after “:” is the parameter value.
  • An imaging parameter set (173400 sets in the above example) 810 composed of all combinations of these imaging parameters and subject parameters is constructed, and each signal value is calculated by computer simulation.
  • an object model in which spins are arranged on lattice points, an imaging sequence, imaging parameters, and apparatus parameters are input, and a Bloch equation, which is a basic equation of the magnetic resonance phenomenon, is solved and a magnetic resonance signal is output.
  • the object model is given as a spatial distribution of spins ( ⁇ , M 0 , T1, T2).
  • is a magnetic rotation ratio
  • M 0 is thermal equilibrium magnetization (spin density)
  • T1 and T2 are longitudinal relaxation time and transverse relaxation time, respectively.
  • the Bloch equation is a first-order linear ordinary differential equation and is expressed by the following equation.
  • (x, y, z) represents a three-dimensional orthogonal coordinate system, and z is equal to the direction of the static magnetic field (intensity is B 0 ).
  • (Mx, My, Mz) is spin
  • Gx, Gy, Gz are gradient magnetic field strengths in the subscript direction
  • H 1 is high-frequency magnetic field strength
  • ⁇ f 0 is the frequency of the rotating coordinate system.
  • a signal function f is created by interpolation, and fs 820 is created according to equation (1).
  • interpolation linear interpolation or spline interpolation of about 1st to 3rd order can be used.
  • the signal function fs can also be expressed by the following equation (3) obtained by modifying the equation (1).
  • FIG. 9 shows a part of the signal function f created as described above.
  • the signal function f obtained by the above simulation is a five-dimensional function with TR, FA, ⁇ , T1, and T2 as variables.
  • the parameter estimation is performed by using a plurality of imaging parameter sets 530 (S802), and using the echo-specific images 840 and 850 and the imaging sequence signal function 820, the subject of the actual imaging.
  • T2 * is estimated using a GE image
  • T2 is estimated using an SE image (first parameter estimation)
  • T2 is estimated using an SE image (second parameter estimation).
  • T1, T2, B1, and a are estimated using a plurality of GE images and the signal function 820 generated in the signal function generation S801. More specifically, the unknown values T1 and T2, B1, and a are estimated by fitting the signal value I for each pixel to the signal function fs (Equation (3)) generated in S801.
  • the function fitting can be performed by the least square method represented by Expression (4).
  • I is a pixel value of an image captured with a predetermined imaging parameter set (FA, ⁇ , TR, TE), and ⁇ is T1, T2, and B1 estimated by the signal function of Expression (3).
  • A is the sum of the residuals between the value calculated by substituting a and the pixel value of the image.
  • T1 and T2, B1, and a are estimated so that the total sum ⁇ of the residuals is minimized.
  • T2 estimated here is T2 * because a gradient echo image is used as the original image.
  • the estimated T1 and T2 *, B1, and a are output as parameters 860. Since the parameter is calculated as a numerical value for each pixel, it becomes a map of each parameter, that is, a calculated image.
  • T2 is estimated using a plurality of spin echo images 850.
  • Expression (5) representing T2 attenuation of the MR signal is used as a signal function.
  • T2 and a ′ are estimated by fitting the value I to equation (5).
  • the TEs of the four images SE1 to SE4 are, for example, 8 ms, 16 ms, 24 ms, and 32 ms, respectively, when the inversion pulse interval is 8 ms.
  • T1 calculated in the first parameter estimation S803 can be used as T1.
  • the function fitting can be performed by a least square method that minimizes a residual between a pixel value of an image obtained by photographing and a value calculated from the signal function (5).
  • T2 estimated in this way is different from T2 * obtained in the first parameter estimation, and is a “true lateral relaxation time” that is not affected by the static magnetic field inhomogeneity.
  • the parameter estimation unit 235 outputs T2 as a parameter.
  • “a ′” is the parameter a estimated in the first parameter estimation S803, T1, T2 (T2 *), and B1 as shown in the equation (6). It is expressed using. Therefore, in the second parameter estimation S804, only T2 may be estimated after giving in advance the values of a, T1, T2 (T2 *), and B1 calculated in S803 as the correct value of “a ′”. Thereby, the number of unknowns is reduced from two to one, so that the estimation accuracy of T2 is improved.
  • the above is parameter estimation processing S305 in FIG.
  • the calculated image may be generated for all the estimated parameters or for some parameters.
  • a T1 weighted image or a T2 / T2 * weighted image may be generated using a T1 image or a T2 / T2 * image.
  • the image generation unit 237 displays the generated calculation image or emphasized image on the display 111 in various display forms.
  • the display form may be, for example, a calculation image in which pixel values are expressed in black and white shading, or may be displayed in color.
  • the calculation image may be displayed alone or in parallel with the proton density image obtained in the photographing (S302). It is also possible to display parameter values and value ranges of specific parts as numerical values.
  • the GE echo and the SE echo can be obtained without extending the entire imaging time by performing the imaging sequence for acquiring the spin echo using the waiting time of the GE system sequence.
  • Two types of echoes can be acquired.
  • the number of spin echoes acquired in the GE-SE sequence is four, but this number is arbitrary as long as it is one or more.
  • the number of spin echoes may be 1 or more.
  • the number of spin echoes needs to be two or more.
  • the number of spin echoes is larger. Practically, it is desirable that the number is 3 or more.
  • the imaging sequence for measuring one gradient echo is adopted in the parameter set with a short TR (for example, P1, P2, and P4 to P6 in FIG. 6), but the first echo is used in the RF-soiled GE in FIG.
  • a multi-echo sequence for measuring second, third,..., Gradient echoes can be used.
  • the same phase encoding as that of the first echo to the echoes after the second echo, it is possible to acquire images of echoes having different TEs. Thereby, the estimation accuracy of the subject parameter can be increased as in the second modification.
  • ⁇ Modification 4> B1, T1, T2 *, and a are calculated in the first parameter estimation S803, and a (a ′) and T2 are calculated in the second parameter estimation S804, but T2 * and T2 Other parameters may be estimated by any process. However, by using the parameter estimated in one process for the other estimation process, the number of unknowns can be reduced, the number of necessary images (for example, the number of spin echoes) can be reduced, and the imaging time can be shortened.
  • DESCRIPTION OF SYMBOLS 100 MRI apparatus, 101: Magnet which generate

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

複数の被検体パラメータマップを高速に取得する。このため、単一の撮影シーケンスにおいて、グラディエントエコーとスピンエコーの両方を発生させる撮影シーケンスを用いるとともに、グラディエントエコーを用いて、1以上のパラメータ例えば縦緩和時間T1及びみかけの横緩和時間T2*を算出し、スピンエコーを用いて別のパラメータ例えば真の横緩和時間T2を算出する。一方のパラメータの値を算出する際に、他方のパラメータ算出の際に算出したパラメータの値を用いることができる。

Description

磁気共鳴イメージング装置及び計算画像生成方法
 本発明は、磁気共鳴イメージング技術に関し、特に、計算によって被検体パラメータを推定する技術に関する。
 磁気共鳴イメージング(MRI)装置は、被検体の組織を構成する原子、主として水素原子の原子核から得られる核磁気共鳴信号の信号強度や位相情報を用いて、組織の原子核密度(プロトン密度)画像や血流などの動きのある部分の画像を取得する。核磁気共鳴信号の信号強度や位相は、撮像の際の条件、装置や被検体の組織の特性によって決まる。このことを利用して、近年、MRI装置で、装置や被検体の組織の特性のうち、核磁気共鳴信号との関係が解析可能な特性をパラメータとして計算により求め、画像化する技術が広まっている。
 このような技術の一つに、異なる撮影パラメータにて複数の画像を撮影し、ピクセルごとに被検体パラメータや装置パラメータを計算で求める方法がある。ここで、撮影パラメータとは繰り返し時間や高周波磁場の設定強度、高周波磁場の位相などであり、被検体パラメータとは縦緩和時間、横緩和時間、スピン密度、共鳴周波数、拡散係数、高周波磁場の照射強度分布などである。装置パラメータとは磁場強度、受信感度分布などであるが、被検体にも依存する。得られた被検体パラメータの値をピクセルの値とする画像は計算画像あるいはマップと呼ばれる。
 MRIでは撮影の目的に応じた種々の撮影シーケンスがあり、撮影シーケンスによっては、撮影パラメータと被検体パラメータあるいは装置パラメータとピクセル値の関係(信号関数)が解析的に求められており、この信号関数を用いることにより、被検体パラメータや装置パラメータを算出することができる。信号関数が解析的に求められていない撮影シーケンスでも、数値シミュレーションによって信号関数を構成することによって計算画像の生成を可能にする方法が提案されている(特許文献1)。
 特許文献1には、被検体パラメータあるいは装置パラメータとして、緩和時間、周波数、高周波磁場の照射強度、スピン密度、共鳴周波数などの各マップを取得する手順がグラディエントエコー(GE:Gradient Echo)系の高速撮影シーケンスであるRF-spoiled GEを例として開示されている。
特開2011-024926号公報
 被検体パラメータの一つである緩和時間には、縦緩和時間T1、横緩和時間T2の二種類がある。さらに横緩和時間T2は、撮影方法によってT2そのもの(真の横緩和時間)が得られる場合と見かけの横緩和時間T2*が得られる場合がある。T2*は静磁場不均一の影響を含む横緩和時間であり、静磁場不均一の影響が出るGE系の撮影シーケンスで、T2はスピンエコー(SE:Spin Echo)系の撮影シーケンスを用いてそれぞれ取得することができる。特許文献1では、GE系の撮影シーケンスを用いているため、算出される横緩和時間はT2*であり、T2を取得することはできない。
 組織の状態を把握する上で、T2はT2*よりも重要なパラメータであり、一般の臨床検査では、T2*強調像よりもT2強調像が広く用いられている。T2強調像は、SE系の撮影シーケンスを用いて得ることができるが、一般にSE系の撮影シーケンスは、GE系の撮影シーケンスに比べ、撮影時間が長い。またT2のみならず、T2*やその他のパラメータを取得しようとすると、さらに長い撮影時間が必要となる。
 本発明は、上記事情に鑑みてなされたもので、複数の被検体パラメータマップを高速に取得することを課題とする。
 上記課題を解決するため、本発明では、単一の撮影シーケンスにおいて、グラディエントエコーとスピンエコーの両方を発生させる撮影シーケンスを用いるとともに、グラディエントエコーを用いて1以上のパラメータの値を算出し、スピンエコーを用いて別のパラメータの値を算出する。一方のパラメータの値を算出する際に、他方のパラメータ算出で得たパラメータの値を用いてもよい。
 すなわち本発明のMRI装置は、被検体に高周波磁場及び傾斜磁場を印加し、被検体が発する核磁気共鳴信号を計測する計測部と、パルスシーケンスに従って前記計測部を制御する制御部と、前記計測部が取得した核磁気共鳴信号と前記パルスシーケンスの信号関数とを用いて、前記被検体の特性に関わる被検体パラメータのパラメータ値を算出するパラメータ算出部と、を備え、前記制御部は、前記パルスシーケンスとして、1回の励起用高周波磁場の印加後に少なくとも2種の核磁気共鳴信号を計測するパルスシーケンスを用いて前記計測部を制御し、前記パラメータ算出部は、前記2種の核磁気共鳴信号の一方を用いて、第一の被検体パラメータを含む1以上の被検体パラメータのパラメータ値を算出し、前記2種の核磁気共鳴信号の他方を用いて、前記第一の被検体パラメータとは異なる第二の被検体パラメータを含む1以上の被検体パラメータのパラメータ値を算出する。
 また本発明の計算画像生成方法は、グラディエントエコー計測とそれに続くスピンエコー計測とを含むパルスシーケンスを、撮影パラメータの値を変えて複数回実行することによって取得したエコー信号を用いて被検体の特性に関わる被検体パラメータの計算画像を生成する方法であって、複数回の撮影で得た前記グラディエントエコーと前記パルスシーケンスの信号関数とを用いて第一の被検体パラメータを含む2以上の被検体パラメータのパラメータ値を算出し、複数回の撮影で得た前記スピンエコーと、グラディエントエコー計測後の信号関数とを用いて第二のパラメータのパラメータ値を算出することを特徴とする。
 本発明によれば、単一の撮影シーケンスで得た複数の核磁気共鳴信号を用いて、段階的にパラメータを算出することにより、高速で複数のパラメータ取得を可能にする。また本発明が採用する撮影シーケンスでは、グラディエントエコーを計測した後の待ち時間を利用してT2算出用のスピンエコーを計測することができる。そのため、撮影時間の延長を最小限に抑えてT2マップを取得することができるようになる。
本発明が適用されるMRI装置の全体構成を示す図。 計算機の機能ブロック図。 実施形態のMRI装置の動作を示すフロー。 (a)撮影シーケンスの一実施形態を示す図、(b)撮影シーケンスで得たエコーからなるk空間データを示す図。 RF-spoiled GEシーケンスを示す図。 パラメータセットの一例を示す図。 (a)、(b)は、それぞれ、図6のパラメータセットで得られる画像を示す図、(c)、(d)は、それぞれ、(a)の画像から得られる計算画像、(b)の画像から得られる計算画像を示す図。 演算部の各処理と入力及び出力データの関係を示す図。 信号関数の一部を示す図。
 以下、図面を参照して、本発明の実施形態について説明する。本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
<装置構成>
 本発明が適用されるMRI装置の実施形態について説明する。図1は、本実施形態のMRI装置100の概略構成を示すブロック図である。MRI装置100は、静磁場を発生するマグネット101と、傾斜磁場を発生する傾斜磁場コイル102と、シーケンサ104と、傾斜磁場電源105と、高周波磁場発生器106と、高周波磁場を照射するとともに核磁気共鳴信号を検出する送受信コイル107と、受信器108と、計算機109と、ディスプレイ111と、記憶装置112とを備える。送受信コイル107は、図では単一のものを示しているが送信コイルと受信コイルとを別個に備えていてもよい。以下、マグネット101、傾斜磁場コイル102と傾斜磁場電源105、シーケンサ104、高周波磁場発生器106、送受信コイル107及び受信器108を総括して、計測部110ともいう。
 被検体(例えば、生体)103はマグネット101の発生する静磁場空間内の寝台(テーブル)に載置される。また、シーケンサ104は、傾斜磁場電源105と高周波磁場発生器106に命令を送り、それぞれ傾斜磁場および高周波磁場を発生させる。高周波磁場は、送受信コイル107を通じて被検体103に印加される。被検体103から発生した核磁気共鳴信号は送受信コイル107によって受波され、受信器108で検波が行われる。検波の基準とする核磁気共鳴周波数(検波基準周波数f0)は、シーケンサ104によりセットされる。検波された信号は、計算機109に送られ、ここで画像再構成などの信号処理が行われる。その結果は、ディスプレイ111に表示される。必要に応じて、記憶装置112に検波された信号や測定条件を記憶させることもできる。
 シーケンサ104は、通常、予めプログラムされたタイミング、強度で各装置が動作するように制御を行う。プログラムのうち、特に、高周波磁場、傾斜磁場、信号受信のタイミングや強度を記述したものはパルスシーケンス(撮影シーケンス)と呼ばれる。本実施形態のMRI装置では、後述するが、グラディエントエコーとスピンエコーの両方を発生させる撮影シーケンスが格納されている。
 計算機109は、CPUとメモリとを備え、上述した各部の動作を制御する制御部として機能するとともに、各種信号処理や演算を行う演算部として機能する。具体的には、パルスシーケンスに従って、計測部を動作させ、エコー信号を計測する。また、得られたエコー信号に対し、各種の信号処理を施し、所望の画像を得る。画像には、被検体パラメータをピクセルの値とする計算画像が含まれる。制御や演算のためのプログラムやアルゴリズムは記憶装置112に格納されており、記憶装置112に格納されたプログラムを、計算機109のCPUがメモリにロードして実行することにより計算機109の各機能が実現される。なお計算機109の機能の一部は、PLD(programmable logic device)等のハードウエアで実現されてもよい。
 上述した処理を実現するための計算機109の構成例を図2に示す。図示するように、計算機109は、計測部および演算部を含む装置全体の制御を行う制御部210と、演算部230とを含む。演算部230は、画像再構成部231、信号関数生成部233、パラメータ推定部235及び画像生成部237を含む。なお、演算部230の各機能部のうちパラメータ算出部としての機能部である、信号関数生成部233、パラメータ推定部235および画像生成部237は、MRI装置100とは独立に設けられた計算機であって、MRI装置100の計算機109とデータの送受信が可能な計算機において実現されてもよい。
<計算機の処理>
 次に本実施形態のMRI装置による計算画像作成について説明する。本実施形態では、一例として、パラメータとして縦緩和時間T1、横緩和時間T2、T2*、照射磁場強度比B1及び受信コイル感度Scを算出する場合を説明する。図3に、計算画像作成の手順の概要を示す。
 前提として、複数の撮影条件の組み合わせが予め決められ、記憶装置112に格納されている(S301)。制御部210は、これら複数の撮影条件のうちの一つの撮影条件を設定し、計測部110を制御して、所定のパルスシーケンスを実行し、エコー信号、ここではグラディエントエコーとスピンエコーを計測する撮影を行う(S302)。それぞれのエコー信号について、画像再構成に必要な数の計測が終了したならば、撮影条件を変えて、撮影を行う(S303)。計画した撮影条件の組み合わせすべての撮影が終了するまで、撮影を繰り返す。一方、計算機109(信号関数生成部233)は、撮影に用いる撮影シーケンスが決まるとその信号関数を生成する(S304)。計算機109(画像再構成部231)は、複数の撮影で得た2種のエコー信号についてそれぞれ撮影毎に画像(GE画像とSE画像)を再構成し、パラメータ推定部235がこれら画像のピクセル値と信号関数生成部233が生成した信号関数を用いてパラメータの推定を行う(S305)。なお計算機109が行う演算の一部は、撮影の終了前に撮影と並行して行ってもよい。また、撮影シーケンスが同じであれば撮影条件が異なっても信号関数は同じである。そのため、生成した信号関数を保存しておくことにより、撮影のたびに信号関数を生成する必要はなく、同じ信号関数を繰り返し使用することができる。
 パラメータの推定は、グラディエントエコーを用いた推定(第一のパラメータの推定)とスピンエコーを用いた推定(第二のパラメータの推定)を含み、それぞれの処理で異なる種類のパラメータを算出する。画像生成部237は、算出された複数のパラメータの全て或いは一部のパラメータについて、その値を画素値とする画像すなわち計算画像(パラメータ画像)を作成する(S306)。画像生成部237は、計算画像を表示画像として、或いはさらに計算画像を含む表示画像を作成し、ディスプレイ111に表示させる(S307)。
 以下、各処理の詳細を説明する。
[撮影条件の設定S301]
 この処理では、撮影シーケンスと撮影条件を設定する。撮影条件とは撮影シーケンス実行時に、ユーザが任意に設定可能なパラメータ(撮影パラメータ)であり、具体的には、繰り返し時間(TR)、エコー時間(TE)、高周波磁場の設定強度(フリップ角(Flip Angle:FA))、高周波磁場の位相の増分(θ)などがある。本実施形態では、これらの値を異ならせて、組み合わせたものを複数種用意しておく。
 まず撮影シーケンスについて説明する。本実施形態では、撮影シーケンスとして、1回の励起パルスの印加後に、グラディエントエコーとスピンエコーの両方を発生させる撮影シーケンスとを用いる。このような撮影シーケンスとして、例えば、RF-spoiled GEシーケンスとSEシーケンスを組み合わせたシーケンス(以下、GE-SEシーケンスという)を用いることができる。RF-spoiled GEシーケンスは、高速で3D撮影を行うことができ、この撮影シーケンスによって得られる画像のピクセル値は、主に被検体パラメータである緩和時間T1、T2*、スピン密度ρと、装置パラメータであるB1、Scに依存する。
 GE-SEシーケンスの一例を図4(a)に示す。なお図4(a)において、RF、A/D、Gs、Gp、Grはそれぞれ、高周波磁場、信号受信、スライス傾斜磁場、位相エンコード傾斜磁場、リードアウト傾斜磁場を表す。なお本図では、位相エンコード傾斜磁場Gpの軸が一軸の場合を示しているが、3D-シーケンスの場合には、2軸の位相エンコード傾斜磁場が用いられる。
 このGE-SEシーケンスは、RF-spoiled GEシーケンスのエコー計測後の待ち時間を利用して、反転RFパルスによりスピンエコーを発生させるもので、グラディエントエコー計測までのシーケンスは、図5に示すRF-spoiled GEシーケンスと同様である。即ち、まず、スライス傾斜磁場パルス401の印加とともに高周波磁場(RF)パルス402を照射し、対象物体内のあるスライスの磁化を励起する。次いでスライスリフェーズ傾斜磁場パルス403と位相エンコード傾斜磁場パルス404、ディフェーズ用リードアウト傾斜磁場405を印加した後、リードアウト傾斜磁場パルス406を印加しながら核磁気共鳴信号(グラディエントエコー、第1エコー)407を計測する。そして最後にディフェーズ用位相エンコード傾斜磁場パルス408を印加する。
 次に、スライス傾斜磁場パルス409-1の印加とともに反転パルス410-1を照射し、スライス内の磁化を反転する。次いで位相エンコード傾斜磁場パルス411-1を印加した後、リードアウト傾斜磁場パルス412-1を印加しながら核磁気共鳴信号(スピンエコー、第2エコー)を計測413-1する。そして最後にディフェーズ用位相エンコード傾斜磁場パルス414-1を印加する。
 これ以降、スライス傾斜磁場パルス409-1の印加からディフェーズ用位相エンコード傾斜磁場パルス414-1の印加までのシーケンスと同じシーケンスを必要回数だけ繰り返す。図4(a)の例では、全部で4個の反転パルス(410-1~410-4)、を印加して、第2エコーから第5エコーまで合計4個のスピエンエコーを計測(413-1~413-4)する。RFパルス402照射から最後のスピンエコー計測までの手順を繰り返し時間TRで繰り返し、第1エコーから第5エコーまでのそれぞれのエコーを複数回計測する。繰り返しごとに位相エンコード傾斜磁場パルス(404、408、411-1~411-4、414-1~414-4)の強度(位相エンコード量kp)を変化させるとともにRFパルス402の位相の増分値をθずつ変化させる(n番目のRFパルスの位相θは、θ=θn-1 +θ×nとなる)。RFの位相を繰り返し毎に所定量増分することにより、横緩和の影響を減らすことができる。
 なおGE-SEシーケンスの反転パルスの数は任意である。ただし、繰り返し時間が数十ミリ秒程度と短い場合には、偶数であることが望ましい。これは、RF-spoiled GEと同様、次の励起までに必要な待ち時間を短くして撮影時間を短くするためである。すなわち、RF-spoiled GEでは、励起パルスによって励起された磁化には、静磁場の方向を向いている縦磁化成分がある程度残っていて、次の励起パルスまでの待ち時間が短くできるように設計されている。ここで反転パルスを照射すると縦磁化が反転し、もう一度照射すると元の静磁場の向きに戻る。このように、反転パルスを偶数回にすることにより、本シーケンスにおいてもRF-spoiled GEと同様に次の励起パルスの前に縦磁化を静磁場の向きにすることができる。
 本実施形態では、所定数のグラディエントエコー画像を得るために、反転パルスを用いないRF-spoiled GEも併用する。
 次に撮影パラメータの組み合わせ(撮影パラメータセット)について説明する。撮影パラメータセットは、FA(フリップ角)、TR(繰り返し時間)、TE(エコー時間)、反転パルス間隔、及びθ(RF位相増分値)等の撮影パラメータをそれぞれ所定のパラメータ値として組み合わせたものであり、異なる複数の撮影パラメータセットを予め決めておき、異なる撮影パラメータセットで撮影を行う。なお組み合わせは、上述した全てのパラメータの値を異ならせる必要はなく、一部のパラメータは値を固定し、一部のパラメータの値だけを異ならせてもよい。組み合わせは、例えば誤差伝搬の法則に基づき、ノイズの影響を最小限にするように各パラメータの値の組み合わせとして選択することができる。
 パラメータの値は、算出すべき被検体パラメータの種類等を考慮して決める。例えば、FAは、通常のRF-spoiled GEでは5度から60度程度に設定されるが、本実施形態では、できるだけ小さくする。これは以下の理由による。FAが大きいと磁化移動効果が大きくなるため、信号強度がタンパクの影響を受けて小さくなる傾向にある。その結果、T1、T2の推定値もタンパク濃度の影響を受けた結果となり、通常の手法でT1、T2を個別に計測した場合とは異なるT1、T2が得られるからである。磁化移動効果の影響を抑えるためには、FAの最大値を40度程度に抑えることが望ましい。ただし、磁化移動効果の影響も加味したT1、T2を計測したい場合はこの限りではない。
 TRの最大値は、用いる撮影シーケンスや反転パルス数などを考慮して決定する。例えばGE-SEシーケンスは、RF-spoiled GEに反転パルスを追加しているため、RF-spoiled GEよりもTRが長くなる。そのため、GE-SEシーケンスを使う撮影パラメータセットは、TRが長いものにした方が良い。なお、GE-SEシーケンスの反転パルスの間隔とTRを長くすれば長いT2の推定精度が向上するが、撮影時間が長くなる。
 RFパルスの位相増分θは、横緩和の影響を異ならせるためにRFパルスの位相を変化させるものであり、位相増分θを変化させることで、横緩和の影響が異なる信号を得ることができる。一般に位相増分を20度程度とすることで横緩和の影響がなくなるので、それ以下の範囲で増分を変化させる。
 TE及び反転パルス間隔は、装置的な制約やSARを考慮して決める。これらの撮影パラメータは、固定値としてもよい。
 撮影パラメータセットの数は、後述するパラメータ推定において推定するパラメータの数(未知数の数)と同じかそれ以上とする。本実施形態は、未知数の数が4(T1、T2、B1、Sc)であるため、撮影パラメータセットは4以上とする。パラメータセット数即ち当該パラメータセットの撮影で得られる画像の数を多くすればするほど推定精度は向上するが、その分撮影時間が長くなる。
 誤差伝搬の法則に基いてノイズを最小化するように選択されたパラメータセットの一例を図6に示す。この例では、FAを10度、40度、θを2度、5度、7度、8度、22度、TRを10ms、30ms、40msにしたときの組み合わせからなる6つの撮影パラメータセットP1~P6を決定している。この撮影パラメータセットP1~P6では、グラディエントエコーのTEは全て3msとしている。撮影シーケンスは、TRが最も長いP3で図4(a)のGE-SEシーケンスとし、それ以外は図5のRF-spoiled GEとしている。またGE-SEシーケンスの反転パルスの間隔は8msである。
[撮影S302、S303]
 計測部110は、制御部210による制御のもと、上述した複数の撮影パラメータセットを用いて複数の画像を撮影する。即ち撮影パラメータセットを変えながら、複数回の撮影を行い、複数のグラディエント画像(GE画像)と複数のスピンエコー画像(SE画像)を得る。例えば図4(a)のGE-SEシーケンスによって得たエコーは、エコー番号毎に図4(b)に示すようなk空間に配置され、2次元逆フーリエ変換することによって画像が再構成される。例えば、第1エコーから第1エコー画像、第2エコーから第2エコー画像が再構成される。第1エコー画像はGE画像であり、第2エコー画像以降はSE画像である。図5に示す、1回の繰り返しで1つのグラディエントエコーを得るRF-spoiled GEの場合には、1回の撮影で一つのGE画像が得られる。図6に示すパラメータセットを用いた複数の撮影では、図7(a)、(b)に示すように、6枚のGE画像及び4枚のSE画像が得られる。
[パラメータ算出S304、S305]
 演算部230は、上述のように取得した複数の画像を用いて被検体パラメータ及び装置パラメータを算出する。以下、パラメータ算出に関わる演算部230の処理を、図8を参照して説明する。図8は各処理と入力及び出力データの関係を示す図である。
[信号関数生成(数値シミュレーション)S801]
 撮影シーケンスが決まると、信号関数生成部233は、数値シミュレーションによりその撮影シーケンスによって得られる各ピクセルの信号強度を表す関数(信号関数)を生成する。本実施形態ではGE-SEシーケンスの信号関数を生成する。信号関数fsは、撮影パラメータ(FA、TR、TE、θ)、装置パラメータ及び被検体パラメータの関数であり、以下のように表される。
Figure JPOXMLDOC01-appb-M000001
ここで、T1、T2、ρはそれぞれ被検体パラメータの縦緩和時間、横緩和時間、スピン密度であり、B1、Scは装置の特性及び被検体の特性に依存するパラメータ(ここでは装置パラメータという)であるRFの照射強度、受信コイルの感度である。ここで、B1は撮影時にはFAの係数となるため、FAとの積の形に変換しておく。また、ρとScは比例係数として信号強度に対して作用するため関数の外側に出し、TEも指数関数の形で信号強度にかかるため同様に関数の外側に出す。これにより式(1)は2段目の式のように書き換えることができる。
 信号関数fs820を作成するため、fsの基本となる関数fを数値シミュレーションによって作成する。すなわち、撮影対象のスピン密度ρとB1、Scをそれぞれ1、TEを0とした上で、被検体パラメータT1、T2に任意の値を設定し、これに対して撮影パラメータFA、TR、θを網羅的に変化させて数値シミュレーションにて信号を算出する。変化させるパラメータ値の範囲は、実際の撮影(図3:S302)に用いる撮影パラメータの範囲と、被検体のT1、T2の範囲が含まれるようにする。撮影パラメータと被検体パラメータの各パラメータ値の一例を以下に示す。パラメータの後の数字は、変化させる個数、「:」の後の数値はパラメータ値である。
 TR 4個 [ms]: 10, 20, 30, 40
 FA 10個 [度]: 5, 10, 15, 20, 25, 30, 35, 40, 50, 60
 θ 17個 [度]: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22
 T2 17個 [s]: 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.14, 0.19, 0.27, 0.38, 0.53, 0.74, 1.0, 1.4, 2.0, 2.8
 T1 15個 [s]: 0.05, 0.07, 0.1, 0.14, 0.19, 0.27, 0.38, 0.53, 0.74, 1.0, 1.5, 2.0, 2.8, 4.0, 5.6
 これら撮影パラメータと被検体パラメータのすべての組み合わせからなる撮影パラメータセット(上記例では173400個のセット)810を構成し、それぞれの信号値を計算機シミュレーションによって算出する。
 数値シミュレーションは、格子点上にスピンを配置した被検体モデルと撮影シーケンス、撮影パラメータ、装置パラメータを入力とし、磁気共鳴現象の基礎方程式であるBlochの式を解いて磁気共鳴信号を出力する。被検体モデルはスピンの空間分布(γ, M,T1, T2)として与えられる。ここで、γは磁気回転比、Mは熱平衡磁化(スピン密度)、T1とT2はそれぞれ縦緩和時間と横緩和時間である。磁気共鳴信号を画像再構成することにより、与えられた条件での画像を得ることができる。
 Blochの式は1階線形常微分方程式であり、次式で表される。
Figure JPOXMLDOC01-appb-M000002
ここで、(x,y, z)は3次元の直交座標系を表し、zは静磁場(強度がB)の向きに等しい。また、(Mx,My,Mz)はスピン、Gx,Gy,Gzはそれぞれ添字方向の傾斜磁場強度、Hは高周波磁場強度、Δfは回転座標系の周波数である。
 以上の計算機シミュレーションによって得られた信号値から、補間により信号関数fを作成し、式(1)に従ってfs820を作成する。補間には1次から3次程度の線形補間やスプライン補間を用いることが可能である。
信号関数fsは、式(1)を変形した次式(3)で表すこともできる。
Figure JPOXMLDOC01-appb-M000003
 上述のようにして作成した信号関数fの一部を図9に示す。上記シミュレーションで得られる信号関数fは、TR、FA、θ、T1、T2を変数とする5次元の関数であるが、図9ではT1、T2及びθを一定(T1=900ms、T2=100ms、θ=5度)とし、横軸と縦軸をそれぞれFA、TRとした2次元の関数の信号強度を表している。
[パラメータの推定]
 パラメータ推定は、複数の撮影パラメータセット530を用いて撮影(S802)することにより得たエコー毎の画像840、850と撮影シーケンスの信号関数820とを用いて、実際に撮影した被検体の被検体パラメータT1、T2(T2*)、及び、ρと装置パラメータ(受信感度分布)Scとの積a(=ρ×Sc)を算出する。T2*はGE画像をT2はSE画像を用いて推定され(第一のパラメータ推定)、T2はSE画像を用いて推定される(第二のパラメータ推定)。
[第一のパラメータ推定S803]
 複数枚のGE画像と、信号関数生成S801で生成した信号関数820を用いてT1とT2、B1、aを推定する。具体的には、ピクセルごとの信号値Iを、S801で生成した信号関数fs(式(3))対してフィッティングすることにより、未知数であるT1とT2、B1、aの推定を行う。関数フィッティグは、式(4)で表される最小二乗法により行うことができる。
Figure JPOXMLDOC01-appb-M000004
 式(4)中、Iは所定の撮影パラメータセット(FA、θ、TR、TE)にて撮影された画像のピクセル値、χは式(3)の信号関数に推定されたT1とT2、B1、aを代入することで算出される値と画像のピクセル値との残差の総和である。この残差の総和χが最小となるようなT1とT2、B1、aを推定する。ここで推定されるT2は、元画像にグラディエントエコー画像を用いているため、T2*である。そして、推定したT1とT2*、B1、aをパラメータ860として出力する。パラメータはピクセル毎の数値として算出されるので、各パラメータのマップ即ち計算画像となる。この例では、図7(c)に示すように、4つのパラメータの計算画像が得られる。
 なお受信感度分布Sc(=a/ρ)は一般のMRI装置では既存の方法を用いて容易に計測することが可能であるため、そのScとaとからスピン密度ρを求めることができる。
[第二のパラメータ推定S804]
 次に、複数枚のスピンエコー画像850を用いてT2を推定する。SE画像を用いたパラメータ推定では、信号関数として、MR信号のT2減衰を表す式(5)を用いる。
Figure JPOXMLDOC01-appb-M000005
 図4(a)に示す撮影シーケンスの例では、図7(b)に示すように第2エコーから第5エコーまでを用いた4つの画像SE1~SE4が得られ、これら画像のピクセルごとの信号値Iを、式(5)に対してフィッティングすることによりT2とa’を推定する。4つの画像SE1~SE4のTEは、例えば、反転パルスの間隔が8msの場合、それぞれ8ms、16ms、24ms、32msである。またT1は第一のパラメータ推定S803で算出されたT1を用いることができる。関数フィッティングは、第一の推定と同様に、撮影で得た画像のピクセル値と、信号関数(5)から算出した値との残差を最小化する最小二乗法により行うことができる。
 このように推定したT2は、第一のパラメータ推定で得たT2*とは異なり、静磁場不均一の影響を受けていない「真の横緩和時間」である。パラメータ推定部235は、T2をパラメータとして出力する。なお第二のパラメータ推定S804で推定されるパラメータのうち「a’」は、式(6)に示すように第一のパラメータ推定S803において推定したパラメータaとT1、T2(T2*)、B1を用いて表される。従って、第二のパラメータ推定S804では「a’」の正解値として、S803で算出したaとT1、T2(T2*)、B1の値をあらかじめ与えた上でT2だけを推定しても良い。それにより、未知数の数が2個から1個に減るため、T2の推定精度が向上する。以上が、図3のパラメータ推定処理S305である。
[画像生成S306、S307]
 画像生成部237は、推定した各パラメータ(T1、T2、T2*、a(=Sc×ρ)、B1)のパラメータ値を画素とする計算画像を生成する。計算画像は、推定した全てのパラメータについて生成してもよいし、一部のパラメータについて生成してもよい。またT1画像或いはT2/T2*画像を用いて、T1強調画像やT2/T2*強調画像を生成してもよい。
 画像生成部237は、生成した計算画像或いは強調画像を種々の表示形態でディスプレイ111に表示する。表示形態は、例えば、画素値を白黒濃淡で表した計算画像としてもよいし、色で表示してもよい。また計算画像単独で表示してもよいし、撮影(S302)で得たプロトン密度画像と並列に表示してもよい。また特定の部分のパラメータ値や値の範囲を数値として表示することも可能である。
 以上説明したように、本実施形態によれば、GE系シーケンスの待ち時間を利用してスピンエコーを取得する撮影シーケンスを行うことで、全体の撮影時間を延長することなくGEエコーとSEエコーの2種のエコーを取得することができる。これにより、T1、T2*、a(=Sc×ρ)、B1の各種マップに加えてT2マップを取得することができる。
<変形例1>
 上記実施形態では、GE-SEシーケンスにおいて取得するスピンエコーの数を4としたが、この数は1以上であれば任意である。例えば、第二のパラメータ処理S804において、「a’」の正解値として第一のパラメータ推定処理S803で算出した結果をあらかじめ与えて、T2を推定する場合には、未知数はT2の一つだけであるため、スピンエコー数は1以上であれば良い。また、「a’」とT2の二つを推定する場合にはスピンエコー数は2以上である必要がある。また、推定精度を高くするためには、スピンエコー数は多いほど良い。実用的には、3個以上であることが望ましい。
<変形例2>
 上記実施形態では、GE-SEシーケンスにおける反転パルスのパルス間隔を固定した例を説明したが、反転パルス間隔を異なるパラメータセットの撮影を追加してもよい。その場合、GE-SEシーケンスにおけるスピンエコー数が4であれば、スピンエコースピンエコーSEのTEが異なる画像が8つ得られるので、被検体パラメータの推定精度を高めることができる。或いはGE-SEシーケンスにおけるスピンエコー数を少なくして、撮影時間を短縮することも可能である。また、異なる反転パルス間隔のパラメータセットにおいてスピンエコー数は必ずしも等しくする必要はない。
<変形例3>
 上記実施形態では、TRの短いパラメータセット(例えば図6のP1、P2、P4~P6)では、一つのグラディエントエコーを計測する撮影シーケンスを採用したが、図5のRF-spoiled GEにおいて第一エコー407に続いて第二、第三・・・のグラディエントエコーを計測するマルチエコーシーケンスを用いることも可能である。この場合、第二エコー以降のエコーについても、第一エコーと同じ位相エンコードを付与することで、TEの異なる各エコーの画像を取得することができる。これにより上記変形例2と同様に、被検体パラメータの推定精度を高めることができる。
<変形例4>
 本実施形態では、第一のパラメータ推定S803で、B1、T1、T2*、及びaを算出し、第二のパラメータ推定S804で、a(a’)とT2を算出したが、T2*とT2以外のパラメータについては、いずれの処理で推定してもよい。但し、一方の処理で推定したパラメータを他方の推定処理に用いることで、未知数の数を減らし、必要な画像の数(例えばスピンエコーの数)を減らすことができ、撮影時間を短縮できる。
 以上、本発明の変形例を説明したが、これら変形例は技術的に矛盾しない限り適宜組み合わせて適用することも可能である。また本発明は上述した実施形態及びその変形例に限定されず、実施形態で示した要素のいくつかを省略したり、付加的な要素を追加したりすることも本発明に包含される。
100:MRI装置、101:静磁場を発生するマグネット、102:傾斜磁場コイル、104:シーケンサ、105:傾斜磁場電源、106:高周波磁場発生器、107:送受信コイル、108:受信器、109:計算機、111:ディスプレイ、112:記憶装置、210:制御部、230:演算部。

Claims (14)

  1.  被検体に高周波磁場及び傾斜磁場を印加し、被検体が発する核磁気共鳴信号を計測する計測部と、
     パルスシーケンスに従って前記計測部を制御する制御部と、
     前記計測部が取得した核磁気共鳴信号と前記パルスシーケンスの信号関数とを用いて、前記被検体の特性に関わる被検体パラメータのパラメータ値を算出するパラメータ算出部と、を備え、
     前記制御部は、前記パルスシーケンスとして、1回の励起用高周波磁場の印加後に少なくとも2種の核磁気共鳴信号を計測するパルスシーケンスを用いて前記計測部を制御し、
     前記パラメータ算出部は、前記2種の核磁気共鳴信号の一方を用いて、第一の被検体パラメータを含む1以上の被検体パラメータのパラメータ値を算出し、前記2種の核磁気共鳴信号の他方を用いて、前記第一の被検体パラメータとは異なる第二の被検体パラメータを含む1以上の被検体パラメータのパラメータ値を算出することを特徴とする磁気共鳴イメージング装置。
  2.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記パラメータ算出部は、前記被検体パラメータとして、縦緩和時間T1、及び、横緩和時間T2及びみかけの横緩和時間T2*の少なくとも一つの被検体パラメータのパラメータ値を算出することを特徴とする磁気共鳴イメージング装置。
  3.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記2種の核磁気共鳴信号の一方はグラディエントエコーであり、他方はスピンエコーであることを特徴とする磁気共鳴イメージング装置。
  4.  請求項3に記載の磁気共鳴イメージング装置であって、
     前記第一の被検体パラメータは、みかけの横緩和時間T2*であり、前記第二の被検体パラメータは、横緩和時間(真の横緩和時間)T2であることを特徴とする磁気共鳴イメージング装置。
  5.  請求項4に記載の磁気共鳴イメージング装置であって、
     前記パラメータ算出部は、前記みかけの横緩和時間T2*を算出する際に、前記パルスシーケンスについて多数の撮像条件を設定した数値シミュレーションによって予め生成した信号関数を用いることを特徴とする磁気共鳴イメージング装置。
  6.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記パルスシーケンスの信号関数を生成する信号関数生成部をさらに備えることを特徴とする磁気共鳴イメージング装置。
  7.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記パラメータ算出部は、前記第一の被検体パラメータを算出する際に算出した前記第一の被検体パラメータ以外の被検体パラメータと前記2種の核磁気共鳴信号の他方とを用いて、前記第二の被検体パラメータを算出することを特徴とする磁気共鳴イメージング装置。
  8.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記パルスシーケンスは、RF-spoiled-GEシーケンスに反転RFパルスを追加した撮影シーケンスであることを特徴とする磁気共鳴イメージング装置。
  9.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記制御部は、予め定めた複数の撮影パラメータの、パラメータ値の組み合わせが異なる複数のパラメータセットを用いて、複数の計測を行うよう前記計測部を制御することを特徴とする磁気共鳴イメージング装置。
  10.  請求項9に記載の磁気共鳴イメージング装置であって、
     予め定めた前記複数のパラメータセットを格納する記憶部をさらに備えることを特徴とする磁気共鳴イメージング装置。
  11.  請求項9に記載の磁気共鳴イメージング装置であって、
     前記複数の撮影パラメータは、前記励起高周波磁場のフリップ角(FA)、前記励起用高周波磁場の位相増加分(θ)、及び、パルスシーケンスの繰り返し時間(TR)のいずれか一つを含むことを特徴とする磁気共鳴イメージング装置。
  12.  グラディエントエコー計測とそれに続くスピンエコー計測とを含むパルスシーケンスを、撮影パラメータの値を変えて複数回実行することによって取得したエコー信号を用いて被検体の特性に関わる被検体パラメータの計算画像を生成する方法であって、
     複数回の撮影で得た前記グラディエントエコーと前記パルスシーケンスの信号関数とを用いて第一の被検体パラメータを含む2以上の被検体パラメータを算出し、
     複数回の撮影で得た前記スピンエコーと、グラディエントエコー計測後の信号関数とを用いて第二のパラメータを算出することを特徴とする計算画像生成方法。
  13.  請求項12に記載の計算画像生成方法であって、
     前記パルスシーケンスの信号関数を生成するステップをさらに含むことを特徴とする計算画像生成方法。
  14.  請求項12に記載の計算画像生成方法であって、
     前記第二のパラメータの算出において、前記第一の被検体パラメータの算出の際に算出した前記第一の被検体パラメータ以外の被検体パラメータを用いることを特徴とする計算画像生成方法。

     
PCT/JP2017/036823 2016-11-14 2017-10-11 磁気共鳴イメージング装置及び計算画像生成方法 WO2018088096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,111 US10866296B2 (en) 2016-11-14 2017-10-11 Magnetic resonance imaging apparatus and calculation image generation method using pulse sequence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-221863 2016-11-14
JP2016221863A JP6721489B2 (ja) 2016-11-14 2016-11-14 磁気共鳴イメージング装置及び計算画像生成方法

Publications (1)

Publication Number Publication Date
WO2018088096A1 true WO2018088096A1 (ja) 2018-05-17

Family

ID=62110406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036823 WO2018088096A1 (ja) 2016-11-14 2017-10-11 磁気共鳴イメージング装置及び計算画像生成方法

Country Status (3)

Country Link
US (1) US10866296B2 (ja)
JP (1) JP6721489B2 (ja)
WO (1) WO2018088096A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161377B2 (ja) 2018-11-06 2022-10-26 富士フイルムヘルスケア株式会社 画像処理装置、及び、それを含む磁気共鳴イメージング装置及び磁気共鳴イメージングシステム
US11796618B2 (en) * 2019-07-12 2023-10-24 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for magnetic resonance imaging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221150A (ja) * 1988-02-29 1989-09-04 Shimadzu Corp Mriのデータ収集法
JPH04170938A (ja) * 1990-11-01 1992-06-18 Toshiba Corp 磁気共鳴イメージング方法
JPH0654816A (ja) * 1992-08-06 1994-03-01 Hitachi Ltd 核磁気共鳴を用いた検査方法
JPH0779949A (ja) * 1993-09-14 1995-03-28 Toshiba Corp 磁気共鳴映像装置
JPH0966043A (ja) * 1995-08-31 1997-03-11 Shimadzu Corp Mrイメージング装置
JPH11322A (ja) * 1997-04-11 1999-01-06 Univ Pennsylvania 磁気共鳴映像法(mri)における横方向緩和速度への可逆性寄与分測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445689A1 (de) * 1984-12-14 1986-06-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Verfahren und einrichtung zur ortsaufgeloesten untersuchung einer probe mittels magnetischer resonanz von spinmomenten
US4896113A (en) * 1988-11-25 1990-01-23 General Electric Company Use of repeated gradient echoes for noise reduction and improved NMR imaging
US5270654A (en) * 1991-07-05 1993-12-14 Feinberg David A Ultra-fast multi-section MRI using gradient and spin echo (grase) imaging
DE4432575C2 (de) 1993-09-14 2003-04-10 Toshiba Kawasaki Kk Verfahren zur Bildgebung der Gehirnfunktion mittels einer Kernspinresonanz-Vorrichtung und hieran angepasste Kernspinresonanz-Vorrichtung
US5594336A (en) * 1995-06-02 1997-01-14 Picker International, Inc. Three point technique using spin and gradient echoes for water/fat separation
JP2008541918A (ja) * 2005-06-01 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mr分子イメージングによる造影剤の分布情報の決定
JP5449903B2 (ja) 2009-07-29 2014-03-19 株式会社日立メディコ 磁気共鳴イメージング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221150A (ja) * 1988-02-29 1989-09-04 Shimadzu Corp Mriのデータ収集法
JPH04170938A (ja) * 1990-11-01 1992-06-18 Toshiba Corp 磁気共鳴イメージング方法
JPH0654816A (ja) * 1992-08-06 1994-03-01 Hitachi Ltd 核磁気共鳴を用いた検査方法
JPH0779949A (ja) * 1993-09-14 1995-03-28 Toshiba Corp 磁気共鳴映像装置
JPH0966043A (ja) * 1995-08-31 1997-03-11 Shimadzu Corp Mrイメージング装置
JPH11322A (ja) * 1997-04-11 1999-01-06 Univ Pennsylvania 磁気共鳴映像法(mri)における横方向緩和速度への可逆性寄与分測定方法

Also Published As

Publication number Publication date
US20190250231A1 (en) 2019-08-15
US10866296B2 (en) 2020-12-15
JP2018078959A (ja) 2018-05-24
JP6721489B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
JP5449903B2 (ja) 磁気共鳴イメージング装置
US11122988B2 (en) Magnetic resonance imaging apparatus
JP6371554B2 (ja) 磁気共鳴イメージング装置
US8754645B2 (en) Method for spatially resolved determination of an MR parameter
WO2012077543A1 (ja) 磁気共鳴イメージング装置及びコントラスト強調画像取得方法
Malik et al. Phase relaxed localized excitation pulses for inner volume fast spin echo imaging
JP2014518120A (ja) スペクトルモデルを用いて異なる化学種の分離を伴うmri
WO2018088096A1 (ja) 磁気共鳴イメージング装置及び計算画像生成方法
US11435423B2 (en) Image processing apparatus, magnetic resonance imaging apparatus including the same, and magnetic resonance imaging system
JP7020930B2 (ja) 磁気共鳴イメージング装置、磁気共鳴イメージングシステム及びパラメータ推定方法
JP5684888B2 (ja) 磁気共鳴イメージング装置
JP2013192578A (ja) 磁気共鳴イメージング装置及びプログラム
JP2018078959A5 (ja)
JP7377231B2 (ja) 磁気共鳴イメージング装置、及び、画像処理方法
CN113729684B (zh) 磁共振成像装置以及磁共振成像方法
JP6487554B2 (ja) 磁気共鳴イメージング装置
JP6114846B2 (ja) 磁気共鳴イメージング装置
JP6157976B2 (ja) 磁気共鳴イメージング装置、及び方法
JP5881869B2 (ja) 磁気共鳴イメージング装置
JP2024064249A (ja) 磁気共鳴イメージング装置、画像処理装置、及び画像処理方法
JP2016140417A (ja) 磁気共鳴イメージング装置及びfseシーケンスの照射位相制御法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870199

Country of ref document: EP

Kind code of ref document: A1