WO2018087945A1 - 耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法 - Google Patents

耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法 Download PDF

Info

Publication number
WO2018087945A1
WO2018087945A1 PCT/JP2017/013200 JP2017013200W WO2018087945A1 WO 2018087945 A1 WO2018087945 A1 WO 2018087945A1 JP 2017013200 W JP2017013200 W JP 2017013200W WO 2018087945 A1 WO2018087945 A1 WO 2018087945A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant coating
wear
sliding
particle size
oxide
Prior art date
Application number
PCT/JP2017/013200
Other languages
English (en)
French (fr)
Inventor
吉澤 廣喜
渡辺 光敏
幸浩 下田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201780061467.9A priority Critical patent/CN109804104B/zh
Priority to EP17869814.8A priority patent/EP3540095A4/en
Priority to JP2018550019A priority patent/JP6741076B2/ja
Publication of WO2018087945A1 publication Critical patent/WO2018087945A1/ja
Priority to US16/379,836 priority patent/US11673194B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/12Manufacture by removing material by spark erosion methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2112Aluminium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the present disclosure relates to a sliding component having an abrasion resistant coating and a method for forming the abrasion resistant coating.
  • a wear-resistant coating provided on a sliding surface of a sliding component such as a gas turbine component is formed by depositing a cobalt (Co) alloy stellite alloy, triballoy alloy, or the like by TIG welding or the like.
  • Patent Document 1 discloses that a steam turbine long blade joins a Co-based alloy stellite alloy to a blade tip portion by TIG welding.
  • an object of the present disclosure is to provide a sliding component having a wear-resistant coating capable of improving the wear resistance in a high-temperature environment exceeding 1000 ° C. and a method for forming the wear-resistant coating.
  • a sliding component provided with an abrasion resistant coating includes a sliding component and an abrasion resistant coating provided on a sliding surface of the sliding component, and the abrasion resistant coating includes the sliding component.
  • a first oxide that is laminated on the moving surface includes metal particles including Ni, Co, and Cr, covers the surface of the metal particles, is composed mainly of Al oxide, and includes Y oxide. And a layer.
  • the wear-resistant coating is formed between the metal particles covered with the first oxide layer, and the main component is Cr oxide. It has the 2nd oxide layer comprised.
  • the metal particles further include at least one of Al and Y.
  • the sliding part is a gas turbine part.
  • the gas turbine component is a turbine blade having a shroud portion including a Z notch, and the wear resistant coating is a sliding surface of the Z notch. Is provided.
  • the method for forming an abrasion-resistant film according to an embodiment of the present invention includes an electrode forming step for forming an electrode for discharge surface treatment, and a discharge surface treatment by generating a discharge between the electrode and the sliding component.
  • a discharge surface treatment step for forming a wear-resistant coating on the sliding surface of the sliding component, and the electrode forming step is made of an alloy containing Ni, Co, Cr, Al, and Y.
  • the raw material powder is pulverized to form an electrode powder forming step of forming a large particle size powder having an average particle size of 8 ⁇ m or less and a small particle size powder having a particle size of 3 ⁇ m or less, the large particle size powder, A granulation step of mixing and granulating a small particle size powder to form the granulated powder, a compression molding step of compressing and molding the granulated powder to form a green compact, and heating the green compact And firing to form the electrode made of a sintered body.
  • the green compact in the firing step, is fired at 750 ° C. or higher and 1000 ° C. or lower.
  • the abrasion resistance coating is excellent in oxidation resistance in a high temperature environment exceeding 1000 ° C., so that the wear resistance of the sliding component provided with the abrasion resistance coating can be improved.
  • it is sectional drawing which shows the structure of the sliding component provided with the abrasion-resistant film.
  • it is a flowchart which shows the formation method of an abrasion-resistant film.
  • it is a schematic diagram which shows the structure of an electric discharge machining apparatus.
  • it is a schematic diagram in the cross section of the abrasion-resistant film formed by discharge surface treatment.
  • it is a schematic diagram in the cross section of the abrasion-resistant film containing a 2nd oxide layer.
  • it is the schematic which shows the structure of the turbine blade which has a shroud part containing Z notch.
  • it is a figure which shows the waveform of the discharge pulse electric current when generating a pulse-form discharge between an electrode and a base material.
  • it is a SEM photograph in the cross section of the abrasion-resistant film formed by discharge surface treatment.
  • it is a SEM photograph in the cross section of the abrasion-resistant film after a continuous oxidation test.
  • it is a graph which shows the film thickness measurement result of the abrasion-resistant film before and behind a continuous oxidation test.
  • it is a figure which shows the repeated oxidation test method.
  • it is a graph which shows the film thickness measurement result of the abrasion-resistant film before and behind a repeated oxidation test.
  • it is a graph showing the result of the repeated oxidation test in T-800.
  • it is a figure for demonstrating a fretting abrasion test.
  • FIG. 1 is a cross-sectional view showing a configuration of a sliding component 10 having an abrasion resistant coating.
  • the sliding component 10 provided with the abrasion resistant coating includes a sliding component 12 and an abrasion resistant coating 14 provided on the sliding surface of the sliding component 12.
  • the sliding component 12 is a gas turbine component or the like, for example, a component exposed to a high temperature environment exceeding 1000 ° C. such as an aircraft jet engine component or an industrial gas turbine component.
  • aircraft jet engine parts include turbine blades that integrate a shroud portion.
  • the sliding component 12 is made of, for example, a Ni-based alloy, a ceramic-based composite material (CMC), or the like.
  • a Ni-based alloy a single crystal alloy, a unidirectionally solidified alloy, or the like can be used.
  • CMC ceramic matrix composite material
  • SiC / SiC composite material it is possible to use a SiC / SiC composite material in which a SiC matrix is reinforced with SiC fibers.
  • the sliding surface of the sliding component 12 is subjected to, for example, fretting wear that is repeatedly subjected to minute repeated sliding when a surface pressure is applied, impact wear that repeats periodic pressure and sliding, and the like.
  • the wear-resistant coating 14 is laminated on the sliding surface of the sliding component 12, covers the metal particles containing Ni, Co, and Cr, the surface of the metal particles, and the main component is composed of Al oxide. And a first oxide layer containing a Y oxide.
  • the film thickness of the wear resistant coating 14 is preferably, for example, 100 ⁇ m to 500 ⁇ m.
  • the metal particles are laminated on the sliding surface of the sliding component 12 and include Ni (nickel), Co (cobalt), and Cr (chromium).
  • Ni nickel
  • Co cobalt
  • Cr chromium
  • a plurality of metal particles are laminated on the sliding surface of the sliding component 12.
  • the metal particles are formed in a dendritic shape, for example.
  • Ni and Co have a function of improving heat resistance and high temperature hardness in a high temperature environment exceeding 1000 ° C. by alloying.
  • the metal particles may contain at least one of Ni and Co as a main component.
  • the main component is a component that is contained in the largest amount among the components contained in the metal particles.
  • the metal particles may contain Ni as a main component, may contain Co as a main component, and may contain Ni and Co as main components.
  • the Ni content in the metal particles is, for example, 47 mass% or more and 58 mass% or less
  • the Co content is, for example, 24 mass% or more and 29 mass% or less. It is good to do.
  • the Cr oxide is chromium oxide (Cr 2 O 3 ) or the like.
  • the Cr content in the metal particles may be, for example, 11% by mass or more and 19% by mass or less.
  • the metal particles may further be alloyed by containing at least one of Al (aluminum) and Y (yttrium).
  • the metal particles may contain Al, Y may be contained, or both Al and Y may be contained. Even when Al oxide or Y oxide in the first oxide layer described later is consumed due to wear or the like, Al and Y contained in the metal particles are selectively oxidized to supply Al oxide and Y oxide. This is because it becomes possible.
  • the Al content in the metal particles may be, for example, 9% by mass or less.
  • the Y content in the metal particles is preferably 0.5% by mass or less, for example.
  • the first oxide layer covers the surface of the metal particles, the main component is composed of Al oxide, and contains Y oxide.
  • the first oxide layer has a function of suppressing oxidation of the metal particles and improving lubricity.
  • the main component is a component that is contained most in the components contained in the first oxide layer.
  • the 1st oxide layer should just cover at least one part of the surface of a metal particle, and it is preferable to cover the whole surface of a metal particle.
  • Al oxide is a more stable oxide than Cr oxide and Si oxide even in a high temperature environment exceeding 1000 ° C.
  • Al oxide forms a dense protective film having excellent oxidation resistance. Since the Al oxide is contained as a main component in the first oxide layer, the oxidation of the metal particles can be suppressed even in a high temperature environment exceeding 1000 ° C. In addition, since the Al oxide is excellent in lubricity even in a high temperature environment exceeding 1000 ° C., the wear resistance can be improved.
  • the Al oxide is aluminum oxide (Al 2 O 3 ) or the like.
  • the Y oxide has a function of improving the adhesion between the metal particles and the first oxide layer. Even when the sliding component 10 provided with the wear-resistant coating is repeatedly exposed to heat, the peeling of the first oxide layer can be suppressed. In addition, when the sliding component 12 or the metal particle contains a small amount of S (sulfur), Y is combined with S to suppress the generation of voids.
  • the Y oxide is yttrium oxide (Y 2 O 3 ) or the like.
  • the first oxide layer may further contain at least one of Ni oxide such as nickel oxide, Co oxide such as cobalt oxide, and Cr oxide such as chromium oxide.
  • the abrasion resistant coating 14 may be formed between metal particles covered with the first oxide layer, and may have a second oxide layer whose main component is composed of Cr oxide.
  • the main component is a component that is contained most in the components contained in the second oxide layer.
  • the second oxide layer is formed between the particles between the metal particles covered with the first oxide layer and the metal particles covered with the first oxide layer.
  • Cr oxide is superior to Al oxide in lubricity in a temperature environment of 1000 ° C. or lower. Since the second oxide layer is mainly composed of Cr oxide, it is possible to further improve the wear resistance in a temperature environment of 1000 ° C. or lower in the middle of reaching a high temperature environment exceeding 1000 ° C.
  • the Cr oxide is chromium oxide (Cr 2 O 3 ) or the like.
  • the second oxide layer may further include at least one of Ni oxide such as nickel oxide, Co oxide such as cobalt oxide, Al oxide such as aluminum oxide, and Y oxide such as yttrium oxide. .
  • FIG. 2 is a flowchart showing a method for forming the abrasion-resistant coating 14.
  • the method for forming the abrasion-resistant coating 14 includes an electrode forming step (S10) and a discharge surface treatment step (S12).
  • the electrode forming step (S10) is a step of forming an electrode for discharge surface treatment.
  • the electrode forming step (S10) includes an electrode powder forming step, a granulating step, a compression molding step, and a firing step.
  • a raw material powder made of an alloy containing Ni, Co, Cr, Al, and Y is pulverized, a large particle size powder having an average particle size of 8 ⁇ m or less, and a particle size of 3 ⁇ m. It is a step of forming the following small particle size powder.
  • an alloy powder containing Ni, Co, Cr, Al, and Y is used.
  • an alloy powder containing at least one of Ni and Co as a main component may be used.
  • the main component is a component that is contained in the largest amount among the components contained in the raw material powder.
  • the raw material powder for example, NiCoCrAlY alloy powder or CoNiCrAlY alloy powder can be used.
  • the raw material powder includes, for example, 20 mass% to 26 mass% Co, 15 mass% to 19 mass% Cr, and 11 mass%.
  • an alloy powder formed by an atomizing method or the like can be used.
  • an alloy powder having a 90% cumulative particle size (D 90 ) of the cumulative particle size distribution smaller than 22 ⁇ m may be used.
  • the raw material powder is pulverized with a jet mill or the like to form a large particle size powder having an average particle size of 8 ⁇ m or less and a small particle size powder having a particle size of 3 ⁇ m or less.
  • a jet mill a swirl type jet mill or the like can be used.
  • the pulverization pressure is preferably 0.4 MPa or more and 2.6 MPa or less.
  • the large particle size powder is classified and collected by a cyclone or the like, and the small particle size powder is collected and collected by a bag filter or the like.
  • the shape of the large particle size powder may be a spherical shape or a polygonal shape.
  • the shape of the small particle size powder is preferably scaly.
  • the reason why the particle size of the small particle size powder is 3 ⁇ m or less is that when the particle size of the small particle size powder exceeds 3 ⁇ m, the density of the electrode tends to increase.
  • the particle size of the small particle size powder may be 1 ⁇ m or less.
  • the average particle size is, for example, the particle size distribution obtained by accumulating the particle size distribution results from the smaller particle size using the particle size distribution of the particles measured by the laser diffraction / scattering method, and the accumulated value becomes 50%. (Median diameter).
  • the granulation step is a step of forming a granulated powder by mixing and granulating a large particle size powder having an average particle size of 8 ⁇ m or less and a small particle size powder having a particle size of 3 ⁇ m or less.
  • a slurry in which a large particle size powder and a small particle size powder are mixed is prepared.
  • the mixing ratio of the large particle size powder and the small particle size powder when the total of the large particle size powder and the small particle size powder is 100% by mass, the large particle size powder is 30% by mass or more and less than 100% by mass. It is good to do. This is because when the large particle size powder is less than 30% by mass, the density of the electrode increases and the thermal conductivity of the electrode tends to increase.
  • the slurry is prepared by mixing a large particle size powder, a small particle size powder, a binder, and a lubricant with the solvent stored in the storage tank and stirring and mixing with a stirrer or the like.
  • a binder for example, a thermoplastic resin such as polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), or polyvinyl alcohol (PVA), or a polysaccharide substance such as agar is used.
  • a lubricant stearic acid, paraffin wax, zinc stearate, or the like can be used.
  • the lubricant may be added in an amount of 1% by mass to 10% by mass in the slurry.
  • a granulated powder is formed using a spray dryer or the like.
  • the slurry is sprayed from the nozzle of the spray dryer into a high-temperature nitrogen gas atmosphere in the spray dryer. Thereby, the solvent contained in the slurry is dried and removed, and a granulated powder is formed.
  • the compression molding process is a process in which the granulated powder is compression molded to form a green compact.
  • the molding die is filled with the granulated powder and pressed by a press device. Thereby, the granulated powder is compression-molded to form a green compact.
  • the surface pressure when the pressure is applied by the press device is preferably 10 MPa to 30 MPa, for example.
  • the tap density (bulk density) of the green compact is preferably 3.5 g / cm 3 to 4.5 g / cm 3 .
  • compression molding process may be combined with CIP (cold isostatic pressing).
  • the firing step is a step in which the green compact is heated and fired to form an electrode made of a sintered body.
  • the green compact is fired using a heating furnace such as a vacuum heating furnace or an atmospheric furnace. In a vacuum, in an inert atmosphere, or in a reducing atmosphere, the green compact is heated and sintered with a heater or the like. Firing is preferably performed to such an extent that the bonding at the contact portion between the powder particles is moderately strong with the electrode powder maintaining its shape.
  • the firing temperature may be 750 ° C. or higher and 1000 ° C. or lower. This is because when the firing temperature is lower than 750 ° C., the bonding at the contact portion between the powder particles may be weakened. This is because when the firing temperature is higher than 1000 ° C., the bonding at the contact portion between the powder particles may be excessively strong.
  • the holding time at the firing temperature is preferably 5 hours or more and 15 hours or less.
  • the electrode for the diffusion surface treatment preferably has an electrical resistivity of 1 m ⁇ ⁇ cm to 30 m ⁇ ⁇ cm. There is a negative correlation between the thermal conductivity and the electrical resistivity. When the thermal conductivity is low, the electrical conductivity is lowered, and thus the electrical resistivity is increased. If the electrical resistivity of the electrode is within this range, the pulse discharge cycle can be sufficiently followed, and the thermal conductivity can be moderately suppressed. This makes it difficult for the heat of the discharge plasma to escape from the tip of the electrode, so that the temperature of the tip of the electrode can be kept high. Thus, an electrode for discharge surface treatment is formed.
  • a discharge is generated between the discharge surface treatment electrode and the sliding component 12 to perform a discharge surface treatment, and the wear-resistant coating 14 is formed on the sliding surface of the sliding component 12. It is a process to do.
  • FIG. 3 is a schematic diagram showing the configuration of the electric discharge machining apparatus 20.
  • the electric discharge machining apparatus 20 includes a bed 22.
  • the bed 22 is provided with a table 24.
  • the table 24 is provided with a liquid tank 26 for storing an electrically insulating liquid L such as insulating oil.
  • the liquid tank 26 is provided with a jig 28 on which the sliding component 12 formed of Ni alloy or the like can be set.
  • an electrode holder 32 that holds an electrode 30 for discharge surface treatment is provided so as to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the electrode holder 32 is configured to be rotatable about the Z axis as a rotation axis.
  • a discharge power supply device 34 is electrically connected to the jig 28 and the electrode holder 32.
  • As the discharge power supply 34 a known discharge power supply can be used.
  • the sliding component 12 is set on the jig 28.
  • the electrode holder 32 holding the electrode 30 for discharge surface treatment in the X-axis direction or the Y-axis direction, the electrode 30 is positioned with respect to the sliding component 12.
  • a pulsed discharge is generated between the electrode 30 and the sliding component 12 by the discharge power supply device 34 in the electrically insulating liquid L.
  • the electrode material or a reaction material of the electrode material is attached to the sliding surface of the sliding component 12 to form the wear resistant coating 14.
  • a part of the electrode material is separated from the electrode by a blast or electrostatic force due to the discharge, and melted or semi-molten by the heat of the discharge plasma. It becomes the state of.
  • Part of the separated electrode material moves toward the sliding component 12 in a molten or semi-molten state, reaches the sliding surface of the sliding component 12 and re-solidifies into metal particles.
  • the electrode material at the tip of the electrode moves to the sliding surface of the sliding component 12 one after another, and accumulates while resolidifying there. Thereby, metal particles are laminated on the sliding surface of the sliding component 12.
  • FIG. 4 is a schematic view in a cross section of the abrasion-resistant coating 14 formed by the discharge surface treatment.
  • the wear-resistant coating film 14 formed by the discharge surface treatment includes metal particles A, and a first oxide layer B that covers the surfaces of the metal particles A, is composed mainly of Al oxide, and includes Y oxide. is doing.
  • the discharge surface treatment in the electrically insulating liquid has been described. However, the discharge surface treatment may be performed in the atmosphere or the like.
  • the wear-resistant coating 14 can be formed on the sliding surface of the sliding component 12. According to the discharge surface treatment, since the local coating is possible, it is possible to form the wear-resistant coating 14 only at a necessary portion of the sliding component 12.
  • the operation of the sliding component 10 having the wear resistant coating will be described.
  • the metal particles contained in the wear-resistant coating 14 Since the main component is covered with the first oxide layer made of Al oxide, the oxidation of the metal particles is suppressed.
  • the first oxide layer contains Y oxide, so that the adhesion between the metal particles and the first oxide layer is improved. As a result, peeling of the first oxide layer is suppressed.
  • the wear-resistant coating 14 includes the first oxide layer, the lubricity with other parts is enhanced and the wear resistance is improved.
  • FIG. 5 is a schematic view in a cross section of the abrasion-resistant coating 14 including the second oxide layer.
  • the wear-resistant coating 14 covers the metal particles A and the surfaces of the metal particles A, the main component is composed of Al oxide, the first oxide layer B containing Y oxide, and the first oxide layer B.
  • the second oxide layer C is formed between the broken metal particles A and the main component is composed of Cr oxide.
  • the oxidation treatment step can be performed at 600 ° C. or higher in an oxidizing atmosphere such as the air.
  • an oxidizing atmosphere such as the air.
  • Cr contained in the metal particles is diffused and oxidized on the surface side of the first oxide layer, so that the main component is between the metal particles covered with the first oxide layer. It becomes possible to form the 2nd oxide layer comprised by Cr oxide.
  • the second oxide layer can be formed before the sliding component 10 having the wear resistant coating is exposed to the actual environment.
  • FIG. 6 is a schematic view showing a configuration of a turbine blade 40 having a shroud portion including a Z notch.
  • the turbine blade 40 includes a blade portion 42, a dovetail portion 44, and a shroud portion 46.
  • the shroud portion 46 includes a Z notch 48.
  • the shroud portion 46 including the Z notch 48 is in contact with the adjacent shroud portions 46 indicated by a two-dot chain line and the side surface 50 of the Z notch 48.
  • the turbine blades 40 rotate at high speed during operation and are not only subjected to periodic deformation and vibration, but are also exposed to high-temperature combustion gases.
  • the side surface 50 of the Z notch 48 slides while receiving a high surface pressure at a high temperature, so that wear increases.
  • the wear resistant coating 14 on the side surface 50 of the Z notch 48, it is possible to improve the wear resistance of the side surface 50 of the Z notch 48.
  • the abrasion-resistant coating 14 by the discharge surface treatment, it is possible to form a film with high accuracy while suppressing deformation even in a narrow portion such as the side surface 50 of the Z notch 48.
  • the wear-resistant coating is laminated on the sliding surface of the sliding component, covers the metal particles containing Ni, Co, and Cr, the surface of the metal particles, and the main component Is made of an Al oxide and has a first oxide layer containing a Y oxide, so that the wear resistance can be improved even in a high temperature environment exceeding 1000 ° C.
  • NiCoCrAlY alloy powder was used as the raw material powder.
  • P1365-2 from Carpenter Powder Products was used as the raw material powder.
  • the alloy composition of the raw material powder is 23% by mass of Co, 17% by mass of Cr, 12.5% by mass of Al, 0.6% by mass of Y, 0.8% by mass of Si, 8% by mass of Mn, and the balance is composed of Ni and inevitable impurities.
  • 90% cumulative particle size (D 90 ) of the cumulative particle size distribution was smaller than 22 ⁇ m.
  • the raw material powder was pulverized by a swirling jet mill at a compressor pressure of 1.2 MPa.
  • the large particle size powder was collected with a cyclone, and the small particle size powder was collected with a bag filter.
  • As the electrode powder a spherical large particle size powder having an average particle size of 8 ⁇ m or less and a flaky small particle size powder having a particle size of 3 ⁇ m or less were used.
  • a large particle size powder and a small particle size powder were mixed and granulated to form a granulated powder.
  • a slurry was prepared by mixing and stirring the large particle size powder, the small particle size powder, the binder, the lubricant, and the solvent with a stirrer.
  • An acrylic resin binder was used as the binder.
  • Stearic acid was used for the lubricant.
  • Isopropyl alcohol (IPA) was used as the solvent.
  • the large particle size powder is 70% by mass and the small particle size powder is 30% by mass.
  • a metal powder was mixed with 2% by mass of a binder, 200 mass% of isopropyl alcohol (IPA) was further added and stirred to prepare a slurry, and then the solvent was dried using a spray dryer to form a granulated powder.
  • IPA isopropyl alcohol
  • this granulated powder was compression molded to form a green compact.
  • the granulated powder was filled into a molding die and pressed by a press device to be compression molded.
  • the press pressure was 3t.
  • the size of the green compact was a rectangular shape of 14 mm long ⁇ 110 mm wide ⁇ 7 mm high.
  • After press molding, the green compact was subjected to cold isostatic pressing.
  • the pressure for cold isostatic pressing was set to 25 MPa to 35 MPa.
  • the green compact was heated and fired to obtain a sintered body.
  • About the baking method while flowing the mixed gas of argon gas and hydrogen gas, it baked, drawing a vacuum with a rotary pump.
  • Mixed gas was set to 95 wt% Ar-5 wt% H 2.
  • the electrical resistivity was adjusted by setting the firing temperature in the range of 750 ° C. to 950 ° C. and holding time of 6 hours. In this way, an electrode for diffusion surface treatment was formed.
  • the electrical resistivity of the electrode was measured by the four probe method. An electrode having an electric resistivity in the range of 1 m ⁇ ⁇ cm to 20 m ⁇ ⁇ cm could be coated. From this measurement result, it was found that it can be used as an electrode for diffusion surface treatment.
  • FIG. 7 is a diagram showing a waveform of a discharge pulse current when a pulsed discharge is generated between an electrode and a substrate.
  • the peak current value Ip in the initial part of the waveform of the discharge pulse current supplied between the electrode and the substrate is set to 30A or 40A, and the peak current value Ie in the middle and subsequent parts is adjusted from 1A to 25A.
  • the pulse width te of the discharge pulse current was adjusted from 2 ⁇ s to 30 ⁇ s.
  • the rest time was set to 64 ⁇ s.
  • the film thickness of the abrasion-resistant film was set to 300 ⁇ m to 400 ⁇ m.
  • FIG. 8 is an SEM photograph of the cross section of the wear-resistant coating formed by the discharge surface treatment.
  • the wear-resistant coating was composed of metal particles laminated on the surface of the substrate and a first oxide layer formed so as to cover the surface of the metal particles. The metal particles were formed in a dendritic shape.
  • the composition of the metal particles was composed of 47% by mass of Ni, 24% by mass of Co, 19% by mass of Cr, 9% by mass of Al, and 1% by mass of O.
  • the composition of the first oxide layer is 9% Ni, 5% Co, 5% Cr, 44% Al, 7% Y, 30% O, Consisted of.
  • the first oxide layer was mainly composed of Al oxide and contained Y oxide.
  • FIG. 9 is an SEM photograph of a cross section of the wear-resistant coating after the continuous oxidation test.
  • the wear-resistant coating after the continuous oxidation test is composed of metal particles laminated on the surface of the substrate, a first oxide layer formed so as to cover the surface of the metal particles, and a metal covered with the first oxide layer. And a second oxide layer formed between the particles.
  • the composition of the metal particles was composed of 58% by mass of Ni, 29% by mass of Co, 11% by mass of Cr, and 2% by mass of O.
  • the composition of the first oxide layer is 3% by weight Ni, 2% by weight Co, 10% by weight Cr, 45% by weight Al, 5% by weight Y, and 35% by weight O. Consisted of.
  • the first oxide layer was mainly composed of Al oxide and contained Y oxide.
  • the composition of the second oxide layer is 15% by weight Ni, 16% by weight Co, 29% by weight Cr, 13% by weight Al, 1% by weight Y, and 26% by weight O. Consisted of.
  • the second oxide layer was mainly composed of Cr oxide.
  • FIG. 10 is a graph showing the film thickness measurement results of the abrasion-resistant coating before and after the continuous oxidation test.
  • the horizontal axis indicates before the oxidation test and after 100 hours of oxidation
  • the vertical axis indicates the film thickness of the wear-resistant coating. Almost no change in the thickness of the abrasion-resistant coating was observed before and after the continuous oxidation test.
  • FIG. 11 is a diagram showing a repeated oxidation test method.
  • the film thickness of the abrasion-resistant coating was measured before and after repeated oxidation tests.
  • the film thickness of the abrasion-resistant coating was measured up to 500 cycles every 100 cycles.
  • FIG. 12 is a graph showing the film thickness measurement results of the abrasion-resistant coating before and after the repeated oxidation test. In the graph of FIG. 12, the horizontal axis indicates the number of cycles, and the vertical axis indicates the thickness of the wear-resistant coating. Almost no change in the thickness of the abrasion-resistant coating was observed before and after the repeated oxidation test.
  • FIG. 13 is a graph showing the results of repeated oxidation tests at T-800.
  • the horizontal axis indicates the oxidation time
  • the vertical axis indicates the increase in oxidation weight.
  • T-800 a weight decrease due to peeling of the oxide film was observed. From this result, it was found that when the abrasion-resistant film is formed of T-800, it cannot be used in a high temperature environment exceeding 1000 ° C.
  • FIG. 14 is a diagram for explaining the fretting wear test.
  • a wear-resistant film is formed on the sliding surfaces of the upper jig A and the lower jig B by the same discharge surface treatment as described above. The sliding surface was made to oppose, surface pressure was loaded, and it was made to swing in the direction shown by the arrow, and the amount of wear was evaluated.
  • the test conditions were a maximum surface pressure of 7 MPa, a sliding amount (amplitude) of ⁇ 0.5 mm, a sliding surface diameter of 5 mm ⁇ , a sliding frequency of 100,000 times, and a frequency of 40 Hz.
  • the test environment was 1080 ° C. in an air atmosphere.
  • the wear amount of the wear-resistant coating on the upper jig A and the lower jig B was measured. It is clear that the sum of the wear amount of the wear-resistant coating of the upper jig A and the wear amount of the wear-resistant coating of the lower jig B is 114 ⁇ m, and shows excellent wear resistance even in a high temperature environment exceeding 1000 ° C. became.
  • the present disclosure is useful for gas turbine parts and the like because it is possible to improve the wear resistance of sliding parts having a wear-resistant coating in a high temperature environment exceeding 1000 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

耐摩耗被膜を備えた摺動部品(10)は、摺動部品(12)と、摺動部品(12)の摺動面に設けられる耐摩耗被膜(14)と、を備え、耐摩耗被膜(14)は、摺動部品(12)の摺動面に積層されており、Niと、Coと、Crと、を含む金属粒子と、金属粒子の表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層と、を有している。

Description

耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法
 本開示は、耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法に関する。
 従来、ガスタービン部品等の摺動部品における摺動面に設けられる耐摩耗被膜は、コバルト(Co)系合金のステライト合金やトリバロイ合金等を、TIG溶接等により肉盛して形成されている。特許文献1には、蒸気タービン長翼は、Co系合金のステライト合金を、TIG溶接によって翼先端部に接合することが示されている。
特開2013-1949号公報
 ところで、ジェットエンジン等の高性能化に伴って、ガスタービン部品等の摺動部品は、1000℃を超える高温環境に曝される場合がある。ステライト合金やトリバロイ合金等のCo系合金は、このような高温環境に曝されると、酸化被膜がスポーリングして剥離する可能性がある。このことからCo系合金で形成された耐摩耗被膜が1000℃を超える高温環境に曝されると、酸化被膜が剥離して、耐摩耗性が低下する場合がある。
 そこで本開示の目的は、1000℃を超える高温環境において、耐摩耗性を向上させることが可能な耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法を提供することである。
 本発明の実施形態に係る耐摩耗被膜を備えた摺動部品は、摺動部品と、前記摺動部品の摺動面に設けられる耐摩耗被膜と、を備え、前記耐摩耗被膜は、前記摺動面に積層されており、Niと、Coと、Crと、を含む金属粒子と、前記金属粒子の表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層と、を有している。
 本発明の実施形態に係る耐摩耗被膜を備えた摺動部品において、前記耐摩耗被膜は、前記第1酸化物層で覆われた金属粒子同士の間に形成され、主成分がCr酸化物で構成される第2酸化物層を有している。
 本発明の実施形態に係る耐摩耗被膜を備えた摺動部品において、前記金属粒子は、更に、Al及びYの少なくとも一方を含む。
 本発明の実施形態に係る耐摩耗被膜を備えた摺動部品において、前記摺動部品は、ガスタービン部品である。
 本発明の実施形態に係る耐摩耗被膜を備えた摺動部品において、前記ガスタービン部品は、Zノッチを含むシュラウド部を有するタービン翼であり、前記耐摩耗被膜は、前記Zノッチの摺動面に設けられている。
 本発明の実施形態に係る耐摩耗被膜の形成方法は、放電表面処理用の電極を形成する電極形成工程と、前記電極と、摺動部品との間に放電を発生させて放電表面処理し、前記摺動部品の摺動面に、耐摩耗被膜を形成する放電表面処理工程と、を備え、前記電極形成工程は、Niと、Coと、Crと、Alと、Yと、を含む合金からなる原料粉末を粉砕して、平均粒径が8μm以下の大粒径粉末と、粒径が3μm以下の小粒径粉末と、を形成する電極粉末形成工程と、前記大粒径粉末と、前記小粒径粉末とを混合して造粒し、造粒粉末を形成する造粒工程と、前記造粒粉末を圧縮成形し、圧粉体を成形する圧縮成形工程と、前記圧粉体を加熱して焼成し、焼結体からなる前記電極とする焼成工程と、を有する。
 本発明の実施形態に係る耐摩耗被膜の形成方法において、前記焼成工程は、前記圧粉体を750℃以上1000℃以下で焼成する。
 上記構成によれば、1000℃を超える高温環境において、耐摩耗被膜の耐酸化性に優れているので、耐摩耗被膜を備えた摺動部品の耐摩耗性を向上させることができる。
本発明の実施の形態において、耐摩耗被膜を備えた摺動部品の構成を示す断面図である。 本発明の実施の形態において、耐摩耗被膜の形成方法を示すフローチャートである。 本発明の実施の形態において、放電加工装置の構成を示す模式図である。 本発明の実施の形態において、放電表面処理により形成した耐摩耗被膜の断面における模式図である。 本発明の実施の形態において、第2酸化物層を含む耐摩耗被膜の断面における模式図である。 本発明の実施の形態において、Zノッチを含むシュラウド部を有するタービン翼の構成を示す概略図である。 本発明の実施の形態において、電極と、基材との間にパルス状の放電を発生させるときの放電パルス電流の波形を示す図である。 本発明の実施の形態において、放電表面処理で形成した耐摩耗被膜の断面におけるSEM写真である。 本発明の実施の形態において、連続酸化試験後の耐摩耗被膜の断面におけるSEM写真である。 本発明の実施の形態において、連続酸化試験前後における耐摩耗被膜の膜厚測定結果を示すグラフである。 本発明の実施の形態において、繰返し酸化試験方法を示す図である。 本発明の実施の形態において、繰返し酸化試験前後における耐摩耗被膜の膜厚測定結果を示すグラフである。 本発明の実施の形態において、T-800における繰返し酸化試験の結果を示すグラフである。 本発明の実施の形態において、フレッティング摩耗試験を説明するための図である。
 以下に本発明の実施の形態について図面を用いて詳細に説明する。図1は、耐摩耗被膜を備えた摺動部品10の構成を示す断面図である。耐摩耗被膜を備えた摺動部品10は、摺動部品12と、摺動部品12の摺動面に設けられる耐摩耗被膜14と、を備えている。
 摺動部品12は、ガスタービン部品等であり、例えば、航空機用のジェットエンジン部品、産業用のガスタービン部品等の1000℃を超える高温環境に曝される部品である。航空機用のジェットエンジン部品としては、例えば、シュラウド部を一体化しているタービン翼等がある。
 摺動部品12は、例えば、Ni基合金、セラミックス基複合材料(CMC)等で形成されている。Ni基合金には、単結晶合金や一方向凝固合金等を用いることができる。セラミックス基複合材料(CMC)には、SiCマトリックスをSiC繊維で強化したSiC/SiC複合材料等を用いることが可能である。
 摺動部品12の摺動面には、例えば、面圧が負荷されて微小な繰り返し摺動を繰り返すフレッティング摩耗や、周期的な圧力と摺動とを繰り返すインパクト摩耗等が発生する。
 耐摩耗被膜14は、摺動部品12の摺動面に積層されており、Niと、Coと、Crと、を含む金属粒子と、金属粒子の表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層と、を有している。耐摩耗被膜14の膜厚は、例えば、100μmから500μmとするとよい。
 金属粒子は、摺動部品12の摺動面に積層されており、Ni(ニッケル)と、Co(コバルト)と、Cr(クロム)と、を含んでいる。金属粒子は、摺動部品12の摺動面に複数積層されている。金属粒子は、例えば、樹枝状等に形成されている。
 Niと、Coとは、合金化することで、1000℃を超える高温環境において、耐熱性や高温硬さを向上させる機能を有している。金属粒子は、Ni及びCoの少なくとも一方を主成分として含んでいるとよい。ここで主成分とは、金属粒子に含まれる成分のなかで、最も多く含まれている成分のことである。金属粒子は、Niを主成分として含んでいてもよく、Coを主成分として含んでいてもよく、Ni及びCoを主成分として含んでいてもよい。金属粒子がNiを主成分として含む場合には、金属粒子におけるNiの含有率を、例えば、47質量%以上58質量%以下とし、Coの含有率を、例えば、24質量%以上29質量%以下とするとよい。
 Crは、選択酸化により潤滑性に優れるCr酸化物を形成することから、耐摩耗性を向上させる機能を有している。Cr酸化物は、酸化クロム(Cr)等である。金属粒子におけるCrの含有率は、例えば、11質量%以上19質量%以下とするとよい。
 金属粒子は、更に、Al(アルミニウム)及びY(イットリウム)の少なくとも一方を含有して合金化していてもよい。金属粒子は、Alを含有していてもよく、Yを含有していてもよく、AlとYとの両方を含有していてもよい。後述する第1酸化物層中のAl酸化物やY酸化物が摩耗等により消耗した場合でも、金属粒子に含まれるAlやYが選択酸化されてAl酸化物やY酸化物を供給することが可能となるからである。金属粒子におけるAlの含有率は、例えば、9質量%以下とするとよい。金属粒子におけるYの含有率は、例えば、0.5質量%以下とするとよい。
 第1酸化物層は、金属粒子の表面を覆い、主成分がAl酸化物で構成されており、Y酸化物を含んでいる。第1酸化物層は、金属粒子の酸化を抑制すると共に、潤滑性を向上させる機能を有している。ここで主成分とは、第1酸化物層に含まれる成分のなかで、最も多く含まれている成分のことである。また、第1酸化物層は、金属粒子の表面の少なくとも一部を覆っていればよく、金属粒子の表面全体を覆っていることが好ましい。
 Al酸化物は、1000℃を超える高温環境でも、Cr酸化物やSi酸化物よりも安定な酸化物である。また、Al酸化物は、耐酸化性に優れる緻密な保護被膜を形成する。Al酸化物は、第1酸化物層に主成分として含まれているので、1000℃を超える高温環境でも金属粒子の酸化を抑制することができる。また、Al酸化物は、1000℃を超える高温環境でも潤滑性に優れることから、耐摩耗性を向上させることができる。Al酸化物は、酸化アルミニウム(Al)等である。
 Y酸化物は、金属粒子と、第1酸化物層との間の密着性を高める機能を有している。耐摩耗被膜を備えた摺動部品10が繰返し熱曝露される場合でも、第1酸化物層の剥離を抑制することができる。また、Y酸化物は、摺動部品12または金属粒子が微量にS(硫黄)を含む場合には、YがSと結びついてボイドの発生を抑制することができる。Y酸化物は、酸化イットリウム(Y)等である。
 第1酸化物層は、更に、酸化ニッケル等のNi酸化物、酸化コバルト等のCo酸化物及び酸化クロム等のCr酸化物の少なくとも1つを含んでいてもよい。
 耐摩耗被膜14は、第1酸化物層で覆われた金属粒子同士の間に形成され、主成分がCr酸化物で構成される第2酸化物層を有していてもよい。ここで主成分とは、第2酸化物層に含まれる成分のなかで、最も多く含まれている成分のことである。第2酸化物層は、第1酸化物層で覆われた金属粒子と、第1酸化物層で覆われた金属粒子との間の粒間に形成されている。
 Cr酸化物は、1000℃以下の温度環境で、Al酸化物よりも潤滑性に優れている。第2酸化物層は、主成分がCr酸化物で構成されているので、1000℃を超える高温環境に至る途中の1000℃以下の温度環境での耐摩耗性をより高めることができる。Cr酸化物は、酸化クロム(Cr)等である。第2酸化物層は、更に、酸化ニッケル等のNi酸化物、酸化コバルト等のCo酸化物、酸化アルミニウム等のAl酸化物及び酸化イットリウム等のY酸化物の少なくとも1つを含んでいてもよい。
 次に、耐摩耗被膜14の形成方法について説明する。図2は、耐摩耗被膜14の形成方法を示すフローチャートである。耐摩耗被膜14の形成方法は、電極形成工程(S10)と、放電表面処理工程(S12)と、を備えている。
 電極形成工程(S10)は、放電表面処理用の電極を形成する工程である。電極形成工程(S10)は、電極粉末形成工程と、造粒工程と、圧縮成形工程と、焼成工程と、を備えている。
 電極粉末形成工程は、Niと、Coと、Crと、Alと、Yと、を含む合金からなる原料粉末を粉砕して、平均粒径が8μm以下の大粒径粉末と、粒径が3μm以下の小粒径粉末と、を形成する工程である。
 原料粉末には、Niと、Coと、Crと、Alと、Yと、を含む合金粉末が用いられる。原料粉末には、Ni及びCoの少なくとも一方を主成分とする合金粉末を用いるとよい。ここで主成分とは、原料粉末に含まれる成分のなかで、最も多く含まれている成分のことである。原料粉末には、例えば、NiCoCrAlY合金粉末や、CoNiCrAlY合金粉末を用いることができる。原料粉末にNiを主成分とする合金粉末を用いる場合には、原料粉末には、例えば、20質量%以上26質量%のCoと、15質量%以上19質量%以下のCrと、11質量%以上14質量%以下のAlと、0.1質量%以上1質量%以下のYと、を含み、残部がNiと不可避的不純物とからなる合金粉末を用いることが可能である。原料粉末には、アトマイズ法等で形成した合金粉末を用いることができる。原料粉末には、例えば、累積粒度分布の90%累積粒径(D90)が22μmより小さい粒径の合金粉末を用いるとよい。
 原料粉末をジェットミル等で粉砕し、平均粒径が8μm以下の大粒径粉末と、粒径が3μm以下の小粒径粉末とを形成する。ジェットミルには、旋回流式ジェットミル等を用いることができる。粉砕圧力については、0.4MPa以上2.6MPa以下とするとよい。大粒径粉末は、サイクロン等で分級されて回収され、小粒径粉末は、バグフィルタ等で捕集されて回収される。大粒径粉末の形状は、球形状や多角形状であるとよい。小粒径粉末の形状は、鱗片状であるとよい。
 大粒径粉末と小粒径粉末とを用いることにより、電極としたときに、大粒径粉末の間に小粒径粉末を介在させることができる。これにより、電極の密度が過度に大きくならないように適度に調整され、電極の熱伝導率を低く抑えることが可能となる。その結果、放電プラズマの熱が電極の先端部から逃げ難くなるので、電極の先端部の温度が高くなり、電極材料が溶融または半溶融しやすくなる。
 大粒径粉末の平均粒径が8μm以下であるのは、大粒径粉末の平均粒径が8μmより大きいと、圧縮成形が難しくなるからである。小粒径粉末の粒径が3μm以下であるのは、小粒径粉末の粒径が3μmより大きくなると、電極の密度が大きくなりやすいからである。小粒径粉末の粒径は、1μm以下としてもよい。なお、平均粒径とは、例えば、レーザ回折・散乱法で測定した粒子の粒度分布を用いて、粒径の小さい方から粒度分布の結果を累積し、その累積した値が50%となる粒度(メディアン直径)である。
 造粒工程は、平均粒径が8μm以下の大粒径粉末と、粒径が3μm以下の小粒径粉末とを混合して造粒し、造粒粉末を形成する工程である。まず、大粒径粉末と、小粒径粉末とを混合したスラリを作製する。大粒径粉末と、小粒径粉末との混合比については、大粒径粉末と小粒径粉末との合計を100質量%としたとき、大粒径粉末が30質量%以上100質量%未満とするとよい。大粒径粉末が30質量%より少ないと、電極の密度が大きくなり、電極の熱伝導率が高くなり易いからである。
 スラリは、貯留槽内に貯留した溶剤に、大粒径粉末と、小粒径粉末と、バインダと、滑材とを入れて攪拌器等で攪拌混合して作製される。バインダには、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルメタクリエート(PMMA)、ポリビニルアルコール(PVA)等の熱可塑性樹脂、寒天等の多糖類物質が用いられる。滑材には、ステアリン酸、パラフィンワックス、ステアリン酸亜鉛等を用いることができる。滑材は、例えば、スラリ中に1質量%から10質量%添加されるとよい。
 スラリを作製した後、スプレードライア等を用いて造粒粉末を形成する。スプレードライアで造粒する場合には、スラリをスプレードライアのノズルから、スプレードライア内の高温の窒素ガス雰囲気中に噴射する。これにより、スラリに含まれる溶剤が乾燥して除去され、造粒粉末が形成される。
 圧縮成形工程は、造粒粉末を圧縮成形し、圧粉体を成形する工程である。成形金型に造粒粉末を充填し、プレス装置により加圧する。これにより、造粒粉末が圧縮成形されて、圧粉体が成形される。プレス装置で加圧するときの面圧は、例えば、10MPaから30MPaとするとよい。圧粉体のタップ密度(嵩密度)については、3.5g/cmから4.5g/cmとするとよい。
 また、圧縮成形工程は、CIP(冷間静水圧プレス)を組み合わせても良い。
 焼成工程は、圧粉体を加熱して焼成し、焼結体からなる電極とする工程である。圧粉体は、真空加熱炉や雰囲気炉等の加熱炉を用いて焼成される。真空中、不活性雰囲気中または還元雰囲気中において、ヒータ等により圧粉体に加熱処理を施して焼結させる。焼成は、電極粉末がその形状を保持した状態で、粉末粒子同士における接触部分での結合が適度に強くなる程度とするとよい。
 焼成温度については、750℃以上1000℃以下とするとよい。焼成温度が750℃より低い場合には、粉末粒子同士における接触部分での結合が弱くなる可能性があるからである。焼成温度が1000℃より高い場合には、粉末粒子同士における接触部分での結合が過度に強くなる可能性があるからである。焼成温度での保持時間については、5時間以上15時間以下とするとよい。
 拡散表面処理用の電極としては、電気抵抗率が1mΩ・cmから30mΩ・cmとなることが好ましい。熱伝導率と電気抵抗率とは負の相関があり、熱伝導率が低いと電気伝導度が低くなるので、電気抵抗率が大きくなる。電極の電気抵抗率がこの範囲にあれば、パルス放電の周期に十分追随でき、かつ、熱伝導性も適度に抑えられる。これにより、放電プラズマの熱が電極の先端部から逃げ難くなるので、電極の先端部の温度を高温に保つことができる。以上により、放電表面処理用の電極が形成される。
 放電表面処理工程(S12)は、放電表面処理用の電極と、摺動部品12との間に放電を発生させて放電表面処理し、摺動部品12の摺動面に耐摩耗被膜14を形成する工程である。
 まず、放電表面処理に用いられる放電加工装置について説明する。図3は、放電加工装置20の構成を示す模式図である。放電加工装置20は、ベッド22を備えている。ベッド22には、テーブル24が設けられている。テーブル24には、絶縁油等の電気絶縁性の液体Lを貯留する液槽26が設けられている。液槽26には、Ni合金等で形成された摺動部品12をセット可能な治具28が設けられている。テーブル24の上方には、放電表面処理用の電極30を保持する電極ホルダ32が、X軸方向、Y軸方向、及びZ軸方向へ移動可能に設けられている。電極ホルダ32は、Z軸を回転軸として回転可能に構成されている。治具28及び電極ホルダ32には、放電電源装置34が電気的に接続されている。放電電源装置34には、公知の放電電源装置を用いることが可能である。
 次に、放電表面処理方法について説明する。摺動部品12を治具28にセットする。放電表面処理用の電極30を保持した電極ホルダ32をX軸方向やY軸方向に移動させることにより、電極30を摺動部品12に対して位置決めする。次に、電極ホルダ32をZ軸方向へ往復移動させつつ、電気絶縁性の液体L中において、放電電源装置34により電極30と摺動部品12との間にパルス状の放電を発生させる。この放電のエネルギにより、電極材料または電極材料の反応物質を摺動部品12の摺動面に付着させて耐摩耗被膜14を形成する。
 具体的には、電極30と摺動部品12との間に放電が発生すると、電極材料の一部は、放電による爆風や静電気力によって電極から切り離されるとともに、放電プラズマの熱により溶融または半溶融の状態となる。切り離された電極材料の一部は、溶融または半溶融の状態で摺動部品12に向かって移動し、摺動部品12の摺動面に到達して再凝固して金属粒子となる。パルス状の放電を継続して発生させることにより、電極先端の電極材料が次々に摺動部品12の摺動面に移動し、そこで再凝固しつつ堆積する。これにより、摺動部品12の摺動面に、金属粒子が積層される。
 また、電極粉末の表面には、酸素が吸着している。この酸素により金属粒子に含まれるAlと、Yとが選択酸化される。これにより、金属粒子の表面を覆うようにして、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層が形成される。図4は、放電表面処理により形成した耐摩耗被膜14の断面における模式図である。放電表面処理により形成した耐摩耗被膜14は、金属粒子Aと、金属粒子Aの表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層Bと、を有している。なお、上記構成では、電気絶縁性の液体中での放電表面処理について説明したが、大気中等で放電表面処理を行ってもよい。
 以上により、摺動部品12の摺動面に、耐摩耗被膜14を形成することが可能となる。放電表面処理によれば、局所コーティングが可能であるので、摺動部品12の必要な箇所だけに耐摩耗被膜14を形成することができる。
 次に、耐摩耗被覆を備えた摺動部品10の作用について説明する。耐摩耗被覆を備えた摺動部品10が大気中等の酸化雰囲気で1000℃を超える高温環境に熱曝露されると共に、他の部品と摺動する場合には、耐摩耗被膜14に含まれる金属粒子は、主成分がAl酸化物からなる第1酸化物層で覆われているので、金属粒子の酸化が抑制される。耐摩耗被覆を備えた摺動部品10が繰返し熱曝露される場合でも、第1酸化物層にはY酸化物が含まれているので、金属粒子と第1酸化物層との密着性が高められて第1酸化物層の剥離が抑制される。また、耐摩耗被膜14には第1酸化物層が含まれているので、他の部品との潤滑性が高められて耐摩耗性が向上する。
 更に、1000℃を超える高温環境に至る途中の温度環境では、放電表面処理により形成した耐摩耗被膜14は、金属粒子に含まれるCrが酸化することにより、主成分がCr酸化物からなる第2酸化物層が、第1酸化物層で覆われた金属粒子同士の間に形成される。図5は、第2酸化物層を含む耐摩耗被膜14の断面における模式図である。耐摩耗被膜14は、金属粒子Aと、金属粒子Aの表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層Bと、第1酸化物層Bで覆われた金属粒子A同士の間に形成され、主成分がCr酸化物で構成される第2酸化物層Cと、を有している。放電表面処理により形成した耐摩耗被膜14が酸化雰囲気で熱曝露されると、主に、金属粒子Aに含まれるCrが第1酸化物層Bの表面側に拡散する。そして、第1酸化物層Bの表面側に拡散したCrが酸化されて、主成分がCr酸化物で構成される第2酸化物層Cが形成される。これにより、耐摩耗被膜14の耐摩耗性が、更に向上する。
 なお、耐摩耗被膜14の形成方法において、放電表面処理工程(S12)の後に、第2酸化物層を形成するために酸化処理工程を設けてもよい。酸化処理工程は、大気中等の酸化雰囲気により、600℃以上で酸化処理を行うことができる。酸化処理を行うことで、金属粒子に含まれるCrが第1酸化物層の表面側に拡散して酸化されることにより、第1酸化物層で覆われた金属粒子同士の間に、主成分がCr酸化物で構成される第2酸化物層を形成することが可能となる。これにより、耐摩耗被膜を備えた摺動部品10が実環境に曝される前に、第2酸化物層を形成することができる。
 また、摺動部品12としてのガスタービン部品には、Zノッチを含むシュラウド部を有するタービン翼を好適に用いることができる。図6は、Zノッチを含むシュラウド部を有するタービン翼40の構成を示す概略図である。タービン翼40は、翼部42と、ダブテール部44と、シュラウド部46と、を備えている。シュラウド部46は、Zノッチ48を含んでいる。Zノッチ48を含むシュラウド部46は、2点鎖線で示す隣接するシュラウド部46同士と、Zノッチ48の側面50で互いに当接している。タービン翼40は、運転中高速回転し、周期的な変形や振動を受けるだけでなく、高温の燃焼ガスに曝される。このため、Zノッチ48の側面50は、高温で高い面圧を受けながら摺動するので摩耗が大きくなる。Zノッチ48の側面50に耐摩耗被膜14を設けることにより、Zノッチ48の側面50の耐摩耗性を向上させることが可能となる。また、耐摩耗被膜14を放電表面処理で形成することにより、Zノッチ48の側面50のような狭い箇所にも、変形を抑制して精度良く成膜することができる。
 以上、上記構成によれば、耐摩耗被膜は、摺動部品の摺動面に積層されており、Niと、Coと、Crと、を含む金属粒子と、金属粒子の表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層と、を有しているので、1000℃を超える高温環境でも耐摩耗性を向上させることが可能となる。
 (放電表面処理用の電極の形成)
 まず、放電表面処理用の電極の形成方法について説明する。原料粉末には、NiCoCrAlY合金粉末を用いた。原料粉末には、カーペンター・パウダー・プロダクツ社のP1365-2を用いた。原料粉末の合金組成は、23質量%のCoと、17質量%のCrと、12.5質量%のAlと、0.6質量%のYと、0.8質量%のSiと、0.8質量%のMnと、残部がNiと不可避的不純物とから構成されている。原料粉末には、累積粒度分布の90%累積粒径(D90)が22μmより小さい粒径のものを使用した。
 原料粉末を、旋回流式ジェットミルにより、コンプレッサ圧力1.2MPaで粉砕した。大粒径粉末は、サイクロンで回収し、小粒径粉末は、バグフィルタで回収した。電極粉末には、平均粒径が8μm以下の球状の大粒径粉末と、粒径が3μm以下の鱗片状の小粒径粉末と、を用いた。
 大粒径粉末と、小粒径粉末とを混合して造粒し、造粒粉末を形成した。大粒径粉末と、小粒径粉末と、バインダと、滑材と、溶剤とを攪拌器で混合攪拌してスラリを作製した。バインダには、アクリル樹脂系バインダを使用した。滑材には、ステアリン酸を使用した。溶剤には、イソプロピルアルコール(IPA)を使用した。
 大粒径粉末と小粒径粉末と合計を100質量%としたとき、大粒径粉末を70質量%、小粒径粉末を30質量%とした。金属粉末へバインダを2質量%混合し、さらにイソプロピルアルコール(IPA)を200質量%加えて撹拌することでスラリ作製後、スプレードライアを用いて溶剤を乾燥させて、造粒粉末を形成した。
 次に、この造粒粉末を圧縮成形して圧粉体を成形した。造粒粉末を成形金型内へ充填し、プレス装置でプレスして圧縮成形した。プレス圧については、3tとした。圧粉体のサイズについては、縦14mm×横110mm×高さ7mmの矩形状とした。プレス成形した後、圧粉体を冷間静水圧加圧処理した。冷間静水圧加圧の圧力については、25MPaから35MPaとした。
 圧粉体を加熱して焼成し、焼結体とした。焼成方法については、アルゴンガスと水素ガスとの混合ガスを流すと共に、ロータリーポンプで真空に引きながら焼成した。混合ガスは、95質量%Ar-5質量%Hとした。焼成温度は、750℃から950℃の範囲で保持時間を6時間として電気抵抗率を調整した。このようにして、拡散表面処理用の電極を形成した。
 電極について、四端子法により電気抵抗率を測定した。電極の電気抵抗率は、1mΩ・cmから20mΩ・cmの範囲のものがコーティング可能であった。この測定結果から、拡散表面処理用の電極として使用できることがわかった。
 (放電表面処理)
 実施例として、放電加工装置を用いて基材に対して絶縁油中で放電表面処理を行って、基材の表面に耐摩耗被膜を形成した。基材については、Ni合金で形成した。図7は、電極と、基材との間にパルス状の放電を発生させるときの放電パルス電流の波形を示す図である。放電条件については、電極と、基材との間に供給する放電パルス電流の波形の初期部分のピーク電流値Ipを30Aあるいは40Aとし、中期以降部分のピーク電流値Ieを1Aから25Aで調整し、放電パルス電流のパルス幅teを2μsから30μsで調整した。また、休止時間については64μsとした。電極を用いて基材に放電表面処理したところ、基材の表面に、耐摩耗被膜を形成可能であることがわかった。耐摩耗被膜の膜厚については、300μmから400μmとした。
 (耐摩耗被膜の評価)
 放電表面処理で形成した耐摩耗被膜について、走査型電子顕微鏡(SEM)で観察した。図8は、放電表面処理で形成した耐摩耗被膜の断面におけるSEM写真である。耐摩耗被膜は、基材の表面に積層した金属粒子と、金属粒子の表面を覆うようにして形成された第1酸化物層と、から構成されていた。金属粒子は、樹枝状に形成されていた。
 金属粒子と、第1酸化物層とについて、エネルギー分散型X線分光法(EDS)により、半定量分析を行った。金属粒子の組成は、47質量%のNiと、24質量%のCoと、19質量%のCrと、9質量%のAlと、1質量%のOとから構成されていた。第1酸化物層の組成は、9質量%のNiと、5質量%のCoと、5質量%のCrと、44質量%のAlと、7質量%のYと、30質量%のOとから構成されていた。第1酸化物層は、主成分がAl酸化物で構成されており、Y酸化物を含んでいた。
 (酸化試験)
 放電表面処理で形成した耐摩耗被膜の耐酸化性について評価した。酸化試験については、大気雰囲気中、1100℃で100時間、連続して曝露する連続酸化試験を行った。連続酸化試験後の耐摩耗被膜について、走査型電子顕微鏡(SEM)で観察した。図9は、連続酸化試験後の耐摩耗被膜の断面におけるSEM写真である。連続酸化試験後の耐摩耗被膜は、基材の表面に積層した金属粒子と、金属粒子の表面を覆うようにして形成された第1酸化物層と、第1酸化物層で覆われた金属粒子同士の間に形成された第2酸化物層と、から構成されていた。
 金属粒子と、第1酸化物層と、第2酸化物層とについて、エネルギー分散型X線分光法(EDS)により、半定量分析を行った。金属粒子の組成は、58質量%のNiと、29質量%のCoと、11質量%のCrと、2質量%のOとから構成されていた。第1酸化物層の組成は、3質量%のNiと、2質量%のCoと、10質量%のCrと、45質量%のAlと、5質量%のYと、35質量%のOとから構成されていた。第1酸化物層は、主成分がAl酸化物で構成されており、Y酸化物を含んでいた。第2酸化物層の組成は、15質量%のNiと、16質量%のCoと、29質量%のCrと、13質量%のAlと、1質量%のYと、26質量%のOとから構成されていた。第2酸化物層は、主成分がCr酸化物で構成されていた。
 連続酸化試験前後における耐摩耗被膜の膜厚を測定した。耐摩耗被膜の膜厚については、酸化試験前と、100時間酸化後に測定した。図10は、連続酸化試験前後における耐摩耗被膜の膜厚測定結果を示すグラフである。図10のグラフにおいて、横軸は、酸化試験前と、100時間酸化後とを示しており、縦軸は、耐摩耗被膜の膜厚を示している。連続酸化試験前後において、耐摩耗被膜の膜厚変化は、殆ど認められなかった。
 次に、他の酸化試験として、大気雰囲気中、室温から1100℃の間で、500サイクル曝露する繰返し酸化試験を行った。図11は、繰返し酸化試験方法を示す図である。繰返し酸化試験前後における耐摩耗被膜の膜厚測定を行った。耐摩耗被膜の膜厚については、100サイクルごとに500サイクルまで測定した。図12は、繰返し酸化試験前後における耐摩耗被膜の膜厚測定結果を示すグラフである。図12のグラフにおいて、横軸はサイクル数を示しており、縦軸は耐摩耗被膜の膜厚を示している。繰返し酸化試験前後において、耐摩耗被膜の膜厚変化は殆ど認められなかった。
 連続酸化試験及び繰返し酸化試験において、放電表面処理で形成した耐摩耗被膜の酸化による膜厚の増加や、酸化被膜の剥離等による膜厚の減少が殆ど認められず、耐摩耗被膜は、1000℃を超える高温環境でも優れた耐酸化性を有していることがわかった。
 比較例として、Co系合金のT-800について、繰返し酸化試験を行った。T-800の合金組成は、1.5質量%以下のNiと、1.5質量%以下のFeと、0.08質量%以下のCと、18質量%のCrと、28質量%のMoと、3.4質量%のSiと、残部がCoと不可避的不純物とから構成されている。繰返し酸化試験法は、図11に示す繰返し酸化試験方法と同様であるが、最高温度を1000℃とした。図13は、T-800における繰返し酸化試験の結果を示すグラフである。図13のグラフでは、横軸が酸化時間を示しており、縦軸が酸化重量増加を示している。T-800では、酸化被膜の剥離に起因する重量減少が認められた。この結果から、耐摩耗被膜をT-800で形成した場合には、1000℃を越える高温環境では使用できないことがわかった。
 (摩耗試験)
 次に、実施例における放電表面処理で形成した耐摩耗被膜についてフレッティング摩耗試験を行い、高温での耐摩耗特性を評価した。図14は、フレッティング摩耗試験を説明するための図である。フレッティング摩耗試験では、上側治具A及び下側治具Bの各々摺動面に、上記と同様の放電表面処理により耐摩耗被膜を形成し、上側治具Aと下側治具Bとの摺動面を対向させて面圧を負荷し、矢印で示す方向に振幅させて摩耗量を評価した。
 試験条件については、面圧を最大7MPa、摺動量(振幅)を±0.5mm、摺動面を直径5mmφ、摺動回数を10万回、周波数40Hzとした。試験環境については、大気雰囲気中、1080℃とした。摩耗試験後に、上側治具A及び下側治具Bの耐摩耗被膜の摩耗量を測定した。上側治具Aの耐摩耗被膜の摩耗量と、下側治具Bの耐摩耗被膜の摩耗量との合計が114μmとなり、1000℃を超える高温環境でも良好な耐摩耗特性を示すことが明らかとなった。
 本開示は、1000℃を超える高温環境において、耐摩耗被膜を備えた摺動部品の耐摩耗性を向上させることが可能であることから、ガスタービン部品等に有用なものである。

Claims (8)

  1.  耐摩耗被膜を備えた摺動部品であって、
     摺動部品と、
     前記摺動部品の摺動面に設けられる耐摩耗被膜と、
     を備え、
     前記耐摩耗被膜は、
     前記摺動面に積層されており、Niと、Coと、Crと、を含む金属粒子と、
     前記金属粒子の表面を覆い、主成分がAl酸化物で構成され、Y酸化物を含む第1酸化物層と、
     を有している、耐摩耗被膜を備えた摺動部品。
  2.  請求項1に記載の耐摩耗被膜を備えた摺動部品であって、
     前記耐摩耗被膜は、前記第1酸化物層で覆われた金属粒子同士の間に形成され、主成分がCr酸化物で構成される第2酸化物層を有している、耐摩耗被膜を備えた摺動部品。
  3.  請求項1に記載の耐摩耗被膜を備えた摺動部品であって、
     前記金属粒子は、更に、Al及びYの少なくとも一方を含む、耐摩耗被膜を備えた摺動部品。
  4.  請求項2に記載の耐摩耗被膜を備えた摺動部品であって、
     前記金属粒子は、更に、Al及びYの少なくとも一方を含む、耐摩耗被膜を備えた摺動部品。
  5.  請求項1から4のいずれか1つに記載の耐摩耗被膜を備えた摺動部品であって、
     前記摺動部品は、ガスタービン部品である、耐摩耗被膜を備えた摺動部品。
  6.  請求項5に記載の耐摩耗被膜を備えた摺動部品であって、
     前記ガスタービン部品は、Zノッチを含むシュラウド部を有するタービン翼であり、
     前記耐摩耗被膜は、前記Zノッチの摺動面に設けられている、耐摩耗被膜を備えた摺動部品。
  7.  耐摩耗被膜の形成方法であって、
     放電表面処理用の電極を形成する電極形成工程と、
     前記電極と、摺動部品との間に放電を発生させて放電表面処理し、前記摺動部品の摺動面に、耐摩耗被膜を形成する放電表面処理工程と、
     を備え、
     前記電極形成工程は、
     Niと、Coと、Crと、Alと、Yと、を含む合金からなる原料粉末を粉砕して、平均粒径が8μm以下の大粒径粉末と、粒径が3μm以下の小粒径粉末と、を形成する電極粉末形成工程と、
     前記大粒径粉末と、前記小粒径粉末とを混合して造粒し、造粒粉末を形成する造粒工程と、
     前記造粒粉末を圧縮成形し、圧粉体を成形する圧縮成形工程と、
     前記圧粉体を加熱して焼成し、焼結体からなる前記電極とする焼成工程と、
     を有する、耐摩耗被膜の形成方法。
  8.  請求項7に記載の耐摩耗被膜の形成方法であって、
     前記焼成工程は、前記圧粉体を750℃以上1000℃以下で焼成する、耐摩耗被膜の形成方法。
PCT/JP2017/013200 2016-11-09 2017-03-30 耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法 WO2018087945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780061467.9A CN109804104B (zh) 2016-11-09 2017-03-30 具备耐磨损被膜的滑动部件和耐磨损被膜的形成方法
EP17869814.8A EP3540095A4 (en) 2016-11-09 2017-03-30 SLIDING ELEMENT WITH ABRASION RESISTANT COATING FILM AND METHOD FOR SHAPING AN ABRASION RESISTANT COATING FILM
JP2018550019A JP6741076B2 (ja) 2016-11-09 2017-03-30 耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法
US16/379,836 US11673194B2 (en) 2016-11-09 2019-04-10 Slidable component including wear-resistant coating and method of forming wear-resistant coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218835 2016-11-09
JP2016218835 2016-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/379,836 Continuation US11673194B2 (en) 2016-11-09 2019-04-10 Slidable component including wear-resistant coating and method of forming wear-resistant coating

Publications (1)

Publication Number Publication Date
WO2018087945A1 true WO2018087945A1 (ja) 2018-05-17

Family

ID=62109204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013200 WO2018087945A1 (ja) 2016-11-09 2017-03-30 耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法

Country Status (5)

Country Link
US (1) US11673194B2 (ja)
EP (1) EP3540095A4 (ja)
JP (1) JP6741076B2 (ja)
CN (1) CN109804104B (ja)
WO (1) WO2018087945A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100244A1 (ja) * 2019-11-21 2021-05-27 株式会社Ihi 耐摩耗被膜を備える摺動部品及び耐摩耗被膜の形成方法
CN113439150A (zh) * 2019-03-12 2021-09-24 三菱动力株式会社 涡轮动叶片以及接触面制造方法
WO2023203797A1 (ja) * 2022-04-21 2023-10-26 株式会社Ihi 放電表面処理皮膜の除去方法
WO2023223583A1 (ja) * 2022-05-18 2023-11-23 株式会社Ihi 放電表面処理用電極及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245170B (zh) * 2021-04-30 2022-10-14 四川固锐德科技有限公司 用于重载车主减系统的蜗轮蜗杆的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172554A (ja) * 1987-12-25 1989-07-07 Toyota Motor Corp 溶射材料
JPH06322437A (ja) * 1993-05-11 1994-11-22 Nippon Steel Corp 炉内搬送用ハースロール
JP2001152803A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd シュラウドコンタクト面のコーティング方法およびシュラウド付き動翼
JP2013001949A (ja) 2011-06-16 2013-01-07 Hitachi Ltd 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258481A (ja) 1984-06-06 1985-12-20 Toyota Motor Corp 粒子分散表面被覆部材の製造方法
JPH10195547A (ja) 1997-01-08 1998-07-28 Nippon Steel Corp 耐摩耗性、耐ビルドアップ性に優れたハースロールおよびその製造方法
JP3801452B2 (ja) * 2001-02-28 2006-07-26 三菱重工業株式会社 耐摩耗性コーティング及びその施工方法
ES2347551T3 (es) * 2002-07-30 2010-11-02 Mitsubishi Denki Kabushiki Kaisha Electrodo para tratamiento superficial por descarga electrica, procedimiento de tratamiento superficial por descarga electrica y aparato de tratamiento superficial por descarga electrica.
JP3930403B2 (ja) 2002-09-06 2007-06-13 三菱重工業株式会社 タービン動翼及びタービン動翼の製造方法
EP1544321B1 (en) * 2002-09-24 2016-08-10 IHI Corporation Method for coating sliding surface of high temperature member
JP4289926B2 (ja) * 2003-05-26 2009-07-01 株式会社小松製作所 摺動材料、摺動部材および摺動部品並びにそれが適用される装置
JP4332636B2 (ja) 2004-01-29 2009-09-16 三菱電機株式会社 放電表面処理用電極の製造方法及び放電表面処理用電極
JP4504691B2 (ja) 2004-01-29 2010-07-14 三菱電機株式会社 タービン部品およびガスタービン
JP4997561B2 (ja) 2005-08-04 2012-08-08 独立行政法人産業技術総合研究所 高硬度皮膜形成用硬質合金上に硬質皮膜を形成した工具あるいは金型材料及びその製造方法
KR101108818B1 (ko) * 2006-09-11 2012-01-31 가부시키가이샤 아이에이치아이 방전표면처리용 전극의 제조방법 및 방전표면처리용 전극
DE112009000308T5 (de) * 2008-02-05 2011-01-20 Suzuki Motor Corp., Hamamatsu Funkenerosives Beschichtungsverfahren und dabei eingesetzte Grünlingelektrode
WO2010119865A1 (ja) 2009-04-14 2010-10-21 株式会社Ihi 放電表面処理用電極及びその製造方法
JP2012052206A (ja) * 2010-09-03 2012-03-15 Hitachi Ltd 熱遮蔽コーティング膜及びその製造方法、並びにそれを用いた耐熱合金部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172554A (ja) * 1987-12-25 1989-07-07 Toyota Motor Corp 溶射材料
JPH06322437A (ja) * 1993-05-11 1994-11-22 Nippon Steel Corp 炉内搬送用ハースロール
JP2001152803A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd シュラウドコンタクト面のコーティング方法およびシュラウド付き動翼
JP2013001949A (ja) 2011-06-16 2013-01-07 Hitachi Ltd 析出硬化型マルテンサイト系ステンレス鋼と、それを用いた蒸気タービン長翼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540095A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439150A (zh) * 2019-03-12 2021-09-24 三菱动力株式会社 涡轮动叶片以及接触面制造方法
US11946389B2 (en) 2019-03-12 2024-04-02 Mitsubishi Heavy Industries, Ltd. Turbine rotor blade and contact surface manufacturing method
WO2021100244A1 (ja) * 2019-11-21 2021-05-27 株式会社Ihi 耐摩耗被膜を備える摺動部品及び耐摩耗被膜の形成方法
JPWO2021100244A1 (ja) * 2019-11-21 2021-05-27
JP7251655B2 (ja) 2019-11-21 2023-04-04 株式会社Ihi 耐摩耗被膜を備える摺動部品及び耐摩耗被膜の形成方法
WO2023203797A1 (ja) * 2022-04-21 2023-10-26 株式会社Ihi 放電表面処理皮膜の除去方法
WO2023223583A1 (ja) * 2022-05-18 2023-11-23 株式会社Ihi 放電表面処理用電極及びその製造方法

Also Published As

Publication number Publication date
EP3540095A4 (en) 2020-03-25
US11673194B2 (en) 2023-06-13
JPWO2018087945A1 (ja) 2019-08-08
US20190233949A1 (en) 2019-08-01
CN109804104A (zh) 2019-05-24
JP6741076B2 (ja) 2020-08-19
CN109804104B (zh) 2021-03-30
EP3540095A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2018087945A1 (ja) 耐摩耗被膜を備えた摺動部品及び耐摩耗被膜の形成方法
US8574686B2 (en) Microwave brazing process for forming coatings
KR20130049768A (ko) 니켈 기재의 용사 분말 및 코팅, 및 그의 제조 방법
EP2017370B1 (en) Coating and method of forming coating
WO2004111394A1 (ja) タービン部品、ガスタービンエンジン、タービン部品の製造方法、表面処理方法、翼部品、金属部品、及び蒸気タービンエンジン
CN108265259B (zh) 一种用于TiAl合金的防护涂层及其制备方法
JP6855891B2 (ja) 溶射用粉末およびこれを用いた溶射皮膜の成膜方法
WO2006098210A1 (ja) 保護コート及び金属構造体
US20220235469A1 (en) Sliding component having wear-resistant coating and method for forming wear-resistant coating
US20220341008A1 (en) Ni-Cr-Mo-Based Alloy Member, Ni-Cr-Mo-Based Alloy Powder, and Composite Member
WO2023223583A1 (ja) 放電表面処理用電極及びその製造方法
Wang et al. Preparation and characterization of nanostructured Al 2 O 3-13wt.% TiO 2 ceramic coatings by plasma spraying
JPWO2004111302A1 (ja) 放電表面処理方法および放電表面処理装置
JP6457420B2 (ja) 溶射用粉末およびこれを用いたアブレーダブル溶射皮膜の成膜方法
Poblano-Salas et al. Flame sprayed LaNi 5-based mischmetal alloy: Building-up negative electrodes for potential application in Ni-based batteries
Haušild et al. High temperature oxidation of spark plasma sintered and thermally sprayed FeAl-based iron aluminides
Lisiecka et al. Atmospheric Plasma Spraying (APS) and Alloying as Methods to Modify Properties of the SSS Surface Layers
WO2023105917A1 (ja) 放電表面処理用の電極及びその製造方法
Roy Friction and Wear Behavior of Thermally Sprayed Oxide Coatings
JP2004353045A (ja) 硼化物系サーメット溶射用粉末
JP2004353046A (ja) 硼化物サーメット系溶射用粉末
JP3917567B2 (ja) 溶射用合金粉末およびその製造方法
Nykiel et al. PRESENTED: E-MRS 2004, STRASBOURG, 24-28 MAY, 2004 OXIDATION RESISTANCE OF CHROME CARBIDE COMPOSITES OBTAINED BY AIR PLASMA AND HVOF SPRAYING
Väisänen et al. Microstructure and properties of TiC-CrNiMo SHS spray powder and thermally sprayed coating
JP4984015B1 (ja) 放電表面処理用電極および放電表面処理用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017869814

Country of ref document: EP

Effective date: 20190611