WO2018084553A1 - 철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 - Google Patents
철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 Download PDFInfo
- Publication number
- WO2018084553A1 WO2018084553A1 PCT/KR2017/012220 KR2017012220W WO2018084553A1 WO 2018084553 A1 WO2018084553 A1 WO 2018084553A1 KR 2017012220 W KR2017012220 W KR 2017012220W WO 2018084553 A1 WO2018084553 A1 WO 2018084553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon monoxide
- gas
- industrial
- nitrogen
- volume
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/002—Evacuating and treating of exhaust gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/38—Removal of waste gases or dust
- C21C5/40—Offtakes or separating apparatus for converter waste gases or dust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/008—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/02—Treatment of the exhaust gas
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/04—Recirculation of the exhaust gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a high efficiency hybrid separation process technology using a membrane and an adsorbent capable of selectively separating and purifying carbon monoxide in the by-product gas generated in the industrial by-product gas, in particular, the steel industry.
- Efficient separation of high-purity carbon monoxide from other gases by-products included in Lintz Donawitz Gas (LDG), Blast Furnace Gas (BFG) and Corex Furnace Gas (CFG) It relates to a process for recovering.
- Carbon monoxide (CO), methane (CH 4 ) and hydrogen (H 2 ) generated as by-product gases in the steel industry can be used for various chemical materials as well as fuel.
- carbon monoxide is generally known as a toxic gas, but can be produced in various carbon compounds by biological or chemical conversion, and thus has a wide range of applications. Therefore, developing technology to separate and recover carbon monoxide from industrial by-product gas at high purity and low cost can be used as a raw material for high value-added chemicals.
- Lintz Donawitz Gas is mainly composed of a large amount of CO ( ⁇ 64%) and CO 2 ( ⁇ 18%), N 2 (16%). ), H 2 (2%) and the like.
- blast furnace gas BFG is CO (20%), CO 2 ( ⁇ 20%), N 2 (54%), H 2 (3.2%), COREX Furnace Gas (CFG) Is composed of CO (43%), CO 2 (33%), N 2 (2%), H 2 (21%) and CH 4 (1%) and contains a large amount of CO.
- COREX Furnace Gas COREX Furnace Gas
- Patent Document 1 gas adsorption method using copper chloride
- deep cooling method Cosorb method using CuAlCl 4 and organic solvent
- VPSA method using adsorbent etc. Due to the problem, it is limited to practical use.
- CO gas adsorption method using copper chloride
- N 2 When CO is separated from steel by-products by deep cooling, CO and N 2 have similar boiling points, making it difficult to selectively separate (boiling point, CO: -191.5 ° C, N 2 : -195.9 ° C).
- Absorption using CuAlCl 4 and toluene has high absorption capacity, but it is very sensitive to moisture, so it reacts explosively in the presence of trace amount of water and requires a rigorous pretreatment process.
- the present inventors have studied in depth to improve the disadvantages and problems of the prior art described above.
- the present inventors first permeately remove hydrogen and carbon dioxide from a high concentration of CO-containing steel by-product gas using a membrane separation process, and immediately adsorb high pressure carbon monoxide / nitrogen using a carbon monoxide-preferred adsorbent without introducing a pressure to obtain high purity.
- studying the composite process of separating / recovering the carbon monoxide of the present invention to solve the disadvantages and problems of the prior art presented above.
- the present invention supply unit for supplying industrial by-product gas containing carbon dioxide and carbon monoxide
- a membrane separation unit including a separation membrane module for concentrating carbon monoxide and nitrogen by removing carbon dioxide and hydrogen in the industrial by-product gas discharged from the supply unit;
- An adsorbent including an adsorbent capable of adsorbing carbon monoxide contained in the gas stream discharged from the membrane separator;
- It provides a carbon monoxide recovery system from the industrial by-product gas comprising a; desorption unit for desorbing carbon monoxide by depressurizing or heating the adsorbent of the adsorption unit.
- step 2 An adsorption step of adsorbing carbon monoxide by contacting the gas mixture passed through step 1 with an adsorbent (step 2);
- It provides a method for recovering carbon monoxide from the industrial by-product gas comprising a desorption step (step 3) of desorbing carbon monoxide from the adsorbent adsorbed carbon monoxide.
- the carbon monoxide recovery method according to the present invention is significantly superior in the yield of carbon monoxide finally recovered compared to the conventionally known carbon monoxide recovery method, it is possible to make a variety of basic or fine chemicals industry for recovering carbon monoxide having a high value added in a large capacity It can be used as an ordinary process.
- FIG. 1 is a schematic diagram showing an example of a carbon monoxide recovery system according to the present invention.
- FIGS. 2 and 3 are schematic diagrams showing an example of a membrane separation system according to the present invention.
- the present invention supply unit for supplying industrial by-product gas containing carbon dioxide, nitrogen and carbon monoxide;
- a membrane separation unit including a separation membrane module for concentrating carbon monoxide and nitrogen by removing carbon dioxide and hydrogen in the industrial by-product gas discharged from the supply unit;
- An adsorbent including an adsorbent capable of adsorbing carbon monoxide contained in the gas stream discharged from the membrane separator;
- It provides a carbon monoxide recovery system from the industrial by-product gas comprising a; desorption unit for desorbing carbon monoxide by depressurizing or heating the adsorbent of the adsorption unit.
- the supply unit 10 supplies an industrial by-product gas containing carbon monoxide, nitrogen and carbon dioxide.
- the industrial by-product gas containing carbon dioxide, nitrogen and carbon monoxide is preferably a converter gas, a blast furnace gas (BFG) and a corex furnace gas (CFG) generated in the steelmaking process of the steel industry.
- BFG blast furnace gas
- CFG corex furnace gas
- the industrial by-product gas containing carbon dioxide, nitrogen and carbon monoxide is converted to converter gas, blast furnace gas (BFG) and corex furnace gas (CFG) generated in the steelmaking process of the steel industry. )as,
- the composition of the by-product gas is carbon monoxide (CO) 15% by volume to 70% by volume; 2 vol% to 60 vol% nitrogen (N 2 ); 0.2 vol% to 25 vol% hydrogen (H 2 ); Carbon dioxide (CO 2 ) 5% to 40% by volume; And 0.2% by volume to 10% by volume of water vapor (H 2 O),
- the supply unit 10 the supply device for supplying industrial by-product gas containing carbon dioxide, nitrogen and carbon monoxide (11); A first agglomerator (12) for removing water or oil in the droplet state contained in the gas stream supplied from the feeder; And a filtration device 13 for removing fine dust in the gas stream discharged from the first agglomerator.
- the supply device 11 is a device for supplying the industrial by-product gas containing carbon dioxide, nitrogen and carbon monoxide as described above.
- the first agglomerator 12 may remove water in a droplet state or oil in a droplet state contained in an industrial by-product gas including carbon dioxide, nitrogen, and carbon monoxide supplied from the supply device 11.
- the first agglomerator may be a coalescer.
- the filtering device 13 may remove impurities in the form of particles contained in the industrial by-product gas containing carbon dioxide, nitrogen, and carbon monoxide supplied from the supply device 11.
- the filter device is preferably equipped with a filter cloth, the filter cloth may be used in the form of a bag filter or cartridge.
- the membrane separator 20 concentrates carbon monoxide and nitrogen by removing carbon dioxide and hydrogen in the industrial by-product gas discharged from the supply unit 10, and includes a membrane module. .
- the membrane separator 20 concentrates carbon monoxide by separating carbon dioxide and nitrogen in the industrial by-product gas including carbon dioxide, nitrogen, and carbon monoxide.
- Industrial by-product gas containing carbon monoxide to be concentrated contains 10% to 90% by volume of carbon monoxide, 15% to 60% by volume of carbon dioxide as impurities, 0% to 20% by volume of methane, 0% by volume % To 30% by volume of hydrogen, 0% to 60% by volume of nitrogen.
- carbon monoxide is separated from the industrial by-product gas and concentrated at a concentration of 20% by volume to 80% by volume.
- the membrane separator 20 may include a first compressor 21 for compressing a gas stream supplied from the supply unit 10; A first cooler (22) for removing the heat of compression of the gas stream exiting the first compressor and controlling the temperature of the gas stream to be constant; And a membrane separation device 23 including a separation membrane module.
- the adsorption unit 30 includes an adsorbent capable of adsorbing carbon monoxide contained in the gas stream discharged from the membrane separation unit 20.
- the adsorption unit 30 may include an adsorption tower 31 for adsorbing carbon monoxide contained in the carbon monoxide-containing gas mixture.
- the size of the adsorption layer filled with the adsorbent of the adsorption tower 31 is preferably in the range of 20 cm or more in diameter and 200 cm or more in length, but the size of the adsorption layer is not limited thereto, considering the adsorption force of the adsorbent and pressure loss in the adsorption layer. You can choose the optimal size.
- the adsorption tower 31 may be equipped with a jacket for supplying cooling water to remove the heat generated by the adsorption reaction.
- step 2 An adsorption step of adsorbing carbon monoxide by contacting the gas mixture passed through step 1 with an adsorbent (step 2);
- the by-product gas composition carbon monoxide (CO) 15% by volume to 70% by volume; 2 vol% to 60 vol% nitrogen (N 2 ); 0.2 vol% to 25 vol% hydrogen (H 2 ); Carbon dioxide (CO 2 ) 5% to 40% by volume; And 0.2% by volume to 10% by volume of water vapor (H 2 O),
- polymer membrane examples include polydimethylsiloxane (PDMS) resin, polyacetylene resin, polybenzimidazole (PBI, polybenzimidazole) resin, polyimide (PI, polyimide) resin, polybenzoxazole (PBO, polybenzoxazole) resin, poly Ribbenzithiazole (PBZ, polybenzithiazole) resins, polypyrrolone (PPy, polypyrrolone) resins and poly (amide-6-b-ethylene oxide) resins.
- PDMS polydimethylsiloxane
- PBI polybenzimidazole
- PI polyimide
- PBO polybenzoxazole
- PBZ poly Ribbenzithiazole
- polypyrrolone PPy, polypyrrolone
- the adsorption process includes an adsorbent capable of adsorbing carbon monoxide contained in the gas stream discharged from the membrane separation process.
- the adsorption process is a process for adsorbing carbon monoxide contained in the carbon monoxide-containing gas mixture.
- the contents of carbon dioxide and water vapor of the mixed gas containing carbon monoxide are respectively lowered to 0.5 vol% or less, and hydrogen is preferably lowered to 0.5 vol% or less.
- the desorption process may be carried out at a temperature of 50 °C or more and pressure conditions of 0.15 bar to 0.2 bar,
- the carbon monoxide separation / recovery process performed in the present invention is a pilot scale separation / recovery process as shown in FIG. 1.
- the concrete implementation method of the carbon monoxide recovery and refining process for steel converter gas (Converter gas) of the steel industry will be described below in accordance with FIG.
- Pretreatment process In the pretreatment process (10), the converter industry of the steel industry was supplied to remove moisture and dust contained in the exhaust gas from the agglomerator 12 and the filtration device 13.
- the first agglomerator was equipped with a 200 mesh stainless steel mesh having a thickness of 20 cm, the stainless steel mesh having a diameter of 30 cm and a length of 60 cm.
- the filtering device is equipped with a bag filter made of polyester, the diameter of the bag filter is 30 cm, the length is 80 cm.
- the supply flow rate of the steel converter gas of the steel industry used in the carbon monoxide recovery and purification process (100) was adjusted to 60 Nm 3 / hr and the composition is as follows.
- the gas mixture discharged from the pretreatment process 10 is membraned at a pressure of 7 bar and a temperature of 20 ° C. using a compressor 21 and a cooler 22.
- the separator was supplied to the separator 23, and a polysulfone resin hollow fiber membrane module having a 100 m 2 area and a 100 m 2 area of Air Lane, a membrane manufacturer, was mounted.
- a gas mixture containing 90.1% by volume of carbon dioxide and 9% hydrogen was obtained at a flow rate of 21.6 Nm 3 / hr, and a gaseous mixture containing 79.8% by volume of carbon monoxide and 20% by volume of nitrogen was 38.4 Nm 3 at the remaining side. / hr flow rate.
- Adsorption step In the adsorption step 30, 79.8% by volume of carbon monoxide and 20% by volume of nitrogen (38.4 Nm 3 / hr) discharged from the remaining side of the membrane separation device 23 in the membrane separation step 20 are adsorbed. Feed to the process to selectively adsorb / separate carbon monoxide.
- the adsorption layers filled with the adsorbent of the adsorption tower 31 are each 20 cm in diameter and 200 cm in length.
- the adsorption tower 31 was filled with zeolite 5A in which CuCl 2 was dispersed.
- the adsorption tower 31 is equipped with a jacket for supplying cooling water to remove heat generated by the adsorption reaction.
- the adsorption tower was operated at room temperature and a pressure of 7 bar.
- the adsorbed carbon monoxide can be desorbed by decompression (0.15 ⁇ 0.2 atm) or at a high temperature (> 50 °C) state in this embodiment by heating to a temperature of 60 °C desorbed carbon monoxide, Gas composition was detected.
- the recovery rate of carbon monoxide finally obtained in the desorption process is about 90%.
- the carbon monoxide recovery method according to the present invention is significantly superior in the yield of carbon monoxide finally recovered compared to the conventionally known carbon monoxide recovery method, it is possible to make a variety of basic or fine chemicals industry for recovering carbon monoxide having a high value added in a large capacity It can be used as an ordinary process.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 산업부생가스 특히 철강산업에서 발생하는 부생가스 중 일산화탄소를 선택적으로 분리 및 정제할 수 있는 분리막과 흡착제를 이용한 고효율 혼성 분리공정기술에 관한 것으로, 상세하게는, 제철전로 공정 중 발생하는 제철전로가스에 포함되어 있는 부생가스 중 고순도의 일산화탄소를 다른 가스로부터 효율적으로 분리/회수하기 위한 공정에 관한 것이다. 본 발명은 부생가스에서 수분, 금속, 분진 등 불순물을 제거하는 전처리 공정과 일산화탄소, 이산화탄소, 수소, 질소 등이 포함된 부생가스를 막분리하여 일산화탄소 및 질소를 농축하는 막분리 공정, 가스 혼합물을 흡착제에 접촉시켜 일산화탄소를 흡착시키는 공정과 일산화탄소를 흡착시킨 흡착제로부터 일산화탄소를 탈착시키는 탈착공정으로 구성된다.
Description
본 발명은 산업 부생가스 특히 철강산업에서 발생하는 부생가스 중 일산화탄소를 선택적으로 분리 및 정제할 수 있는 분리막과 흡착제를 이용한 고효율 혼성 분리공정기술에 관한 것으로, 상세하게는, 제철전로 공정 중 발생하는 제철전로가스 (Lintz Donawitz Gas: LDG)), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)에 포함되어 있는 부생가스중 고순도의 일산화탄소를 다른 가스로부터 효율적으로 분리/회수하기 위한 공정에 관한 것이다.
철강산업에서 부생가스로 발생되는 일산화탄소(CO), 메탄(CH4), 수소(H2) 등은 연료뿐 아니라 다양한 화학재료로 사용 가능하다. 특히 일산화탄소는 일반적으로 독성가스로 알려져있으나 생물학적 또는 화학적 전환으로 다양한 탄소화합물로 생산 가능하여 활용범위가 매우 넓다. 따라서 일산화탄소를 산업 부생가스로부터 고순도 및 저비용으로 분리회수하는 기술을 개발하면 고부가가치 화학제품 원료로 활용할 수 있다.
철강 산업의 부생가스 중 제철전로 공정에서 발생하는 제철전로가스 (Lintz Donawitz Gas: LDG)는 다량의 CO (~64%)가 주를 이루고 CO2 (~18%), N2 (16%), H2 (2%) 등으로 구성되어 있다. 또한, 고로가스 (Blast Furnace Gas: BFG)는 CO(20%), CO2(~20%), N2(54%), H2(3.2%), 코렉스로가스(COREX Furnace Gas: CFG)는 CO(43%), CO2(33%), N2(2%), H2(21%), CH4(1%)로 구성되어 있어 다량의 CO 가 함유되어 있다. 이와 같은 다성분의 혼합가스로부터 일산화탄소를 회수하기 위해서는 저에너지 고효율의 분리/회수공정이 요구된다.
기존 대형 CO 회수기술로는 염화구리를 이용한 가스 흡착방법(특허문헌 1), 심냉법, CuAlCl4 와 유기용매를 이용한 Cosorb법, 흡착제를 이용한 VPSA법 등이 개발되고 활용되고 있으나, 각 공정이 가지는 문제점으로 인해 실용화에 제한되고 있다. 심냉법을 이용하여 철강부생가스로부터 CO를 분리할 경우 CO와 N2의 비점이 비슷하여 선택적 분리가 힘들다 (끓는점, CO: -191.5℃, N2: -195.9℃). CuAlCl4 와 톨루엔을 이용한 흡수법의 경우 높은 흡수능을 갖는 반면 수분에 매우 민감하여 미량의 물이 존재할 경우 폭발적으로 반응하여 엄격한 전처리 공정이 요구되며 흡수제 재생 시 높은 열에너지를 요구되고 고온 사용에 따른 유독성 용액의 누출로 인한 경제적, 환경문제 등을 가지고 있어 적합하지 않다. 또한, 제올라이트나 활성탄과 같은 기공성 물질을 CuCl2와 혼합하여 만든 흡착제의 경우 다성분의 혼합가스 상태에서 선택성과 흡착능을 유지하기 힘들어 효율적 측면에서 산업적으로 이용하는데 제약을 받는다.
이에, 본 발명자들은 상기한 선행 기술의 단점과 문제점을 개선하기 위하여 심도 있게 연구하였다. 그 결과, 본 발명자들은 고농도의 CO 함유 철강부생가스에서 일차적으로 수소와 이산화탄소를 막분리공정을 이용하여 투과 제거하고 고압의 일산화탄소/질소를 일산화탄소 선호 흡착제를 이용하여 별도의 압력 도입 없이 바로 흡착시켜 고순도의 일산화탄소를 분리/회수하는 복합공정을 연구하여 상기 제시된 선행기술의 단점과 문제점을 해결하여 본 발명에 이르게 되었다.
[선행기술문헌]
- 대한민국 공개특허 제10-2006-0045486호
본 발명의 목적은 철강산업에서 발생하는 기체 혼합물 또는 배기가스로부터 고부가치 화학원료용으로 사용할 수 있는 고순도(99 부피% 이상)의 일산화탄소를 고회수율(90 % 이상)로 회수하는 공정을 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 이산화탄소 및 일산화탄소를 포함하는 산업부생가스를 공급하기 위한 공급부;
상기 공급부로부터 배출되는 산업부생가스 내 이산화탄소와 수소를 제거하여 일산화탄소와 질소를 농축하는 분리막모듈을 포함하는 막분리부;
상기 막분리부로부터 배출되는 가스 스트림 내 함유된 일산화탄소를 흡착할 수 있는 흡착제를 포함하는 흡착부; 및
상기 흡착부의 흡착제를 감압 또는 가열하여 일산화탄소를 탈착시키는 탈착부;를 포함하는 산업부생가스로부터 일산화탄소 회수 시스템을 제공한다.
나아가, 본 발명은 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 막분리하여 일산화탄소를 농축하는 막분리공정(단계 1);
상기 단계 1을 거친 가스 혼합물을 흡착제에 접촉시켜 일산화탄소를 흡착시키는 흡착공정(단계 2); 및
상기 일산화탄소를 흡착시킨 흡착제로부터 일산화탄소를 탈착시키는 탈착공정(단계 3);을 포함하는 산업부생가스로부터 일산화탄소의 회수방법을 제공한다.
본 발명에 따른 일산화탄소 회수방법은 종래에 알려진 일산화탄소 회수방법에 비해 최종적으로 회수되는 일산화탄소의 수율이 현저히 우수하므로, 다양한 기초 또는 정밀화학물질을 만들 수 있어 고부가 가치를 갖는 일산화탄소를 대용량으로 회수하기 위한 산업적인 공정으로 활용할 수 있는 효과가 있다.
도 1은 본 발명에 따른 일산화탄소 회수 시스템의 일례를 나타낸 모식도이다.
도 2 및 도 3은 본 발명에 따른 막분리부 시스템의 일례를 나타낸 모식도이다.
본 발명은 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 공급하기 위한 공급부;
상기 공급부로부터 배출되는 산업부생가스 내 이산화탄소와 수소를 제거하여 일산화탄소와 질소를 농축하는 분리막모듈을 포함하는 막분리부;
상기 막분리부로부터 배출되는 가스 스트림 내 함유된 일산화탄소를 흡착할 수 있는 흡착제를 포함하는 흡착부; 및
상기 흡착부의 흡착제를 감압 또는 가열하여 일산화탄소를 탈착시키는 탈착부;를 포함하는 산업부생가스로부터 일산화탄소 회수 시스템을 제공한다.
이때, 본 발명에 따른 일산화탄소 회수 시스템의 일례를 도 1의 모식도를 통해 나타내었으며, 이하, 도 1에 나타낸 모식도를 참조하여 본 발명에 따른 일산화탄소 회수 시스템을 상세히 설명한다.
본 발명에 따른 일산화탄소 회수 시스템(100)에 있어서, 공급부(10)는 일산화탄소, 질소 및 이산화탄소를 포함하는 산업부생가스을 공급한다.
상기 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스는 철강산업의 제철공정에서 발생하는 전로가스(Converter gas), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)가 바람직하다.
상기 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스는 일산화탄소가 10 부피% 이상, 20 부피% 이상, 30 부피% 이상, 40 부피% 이상 50 부피% 이상 또는 60 부피% 이상 이거나, 90 부피% 이하, 80 부피% 이하 또는 70 부피% 이하일 수 있다.
또한, 상기 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스는 수소, 산소, 수증기, 메탄, NOX(X= 1, 2, 3), SOX(X= 2, 3, 4), 금속 및 분진으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함할 수 있으며, 미량의 미세한 액적 상태의 수분, 유분 또는 미세한 입자 등을 포함할 수 있다.
더욱 구체적으로, 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스는 철강산업의 제철공정에서 발생하는 전로가스(Converter gas), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)로서,
상기 부생가스의 조성은 일산화탄소(CO) 15 부피% 내지 70 부피%; 질소(N2) 2부피% 내지 60부피%; 수소(H2) 0.2 부피% 내지 25 부피%; 이산화탄소(CO2) 5 부피% 내지 40 부피%; 및 수증기(H2O) 0.2 부피% 내지 10 부피%;일 수 있고,
일산화탄소(CO) 20 부피% 내지 65 부피%; 질소(N2) 2 부피% 내지 55 부피%; 수소(H2) 1 부피% 내지 21 부피%; 이산화탄소(CO2) 15 부피% 내지 35 부피%; 및 수증기(H2O) 0.5 부피% 내지 5 부피%;일 수 있다.
또한, 상기 공급부(10)는, 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 공급하기 위한 공급장치(11); 상기 공급장치로부터 공급된 가스 스트림 내 함유된 액적 상태의 수분 또는 유분을 제거하기 위한 제1 응집기(12); 및 상기 제1 응집기로부터 배출되는 가스 스트림 내 미세 분진을 제거하기 위한 여과장치(13);를 포함할 수 있다.
상기 공급장치(11)는 전술한 바와 같은 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 공급하기 위한 장치이다.
상기 제1 응집기(12)는 상기 공급장치(11)로부터 공급된 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스 중에 포함된 액적 상태의 수분 또는 액적 상태의 유분을 제거할 수 있다. 상기 제1 응집기는 코어레서(coalescer)일 수 있다.
상기 여과장치(13)는 상기 공급장치(11)로부터 공급된 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스 중에 포함된 입자 상태의 불순물을 제거할 수 있다. 상기 여과장치는 여과포가 장착되어 있는 것이 바람직하며, 상기 여과포는 백필터 형태 또는 카트리지 형태 등을 사용할 수 있다.
본 발명에 따른 일산화탄소 회수 시스템(100)에 있어서, 막분리부(20)는 상기 공급부(10)로부터 배출되는 산업부생가스 내 이산화탄소와 수소를 제거하여 일산화탄소와 질소를 농축하며, 분리막모듈을 포함한다.
구체적으로, 상기 막분리부(20)는 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스 내 이산화탄소와 질소 등을 분리하여 일산화탄소를 농축한다.
농축하고자 하는 일산화탄소를 포함하는 산업부생가스에는 10 부피% 내지 90 부피%의 일산화탄소를 함유하고 있으며, 불순물로서 15 부피% 내지 60 부피%의 이산화탄소와, 0 부피% 내지 20 부피%의 메탄, 0부피% 내지 30 부피%의 수소, 0 부피% 내지 60 부피%의 질소가 함유되어 있다. 상기 막분리부(20)에서는 일산화탄소를 산업부생가스로부터 분리하여 20 부피% 내지 80 부피%의 농도로 농축한다.
상기 막분리부(20)는, 상기 공급부(10)로부터 공급되는 가스 스트림을 압축하는 제1 압축기(21); 상기 제1 압축기로부터 배출되는 가스 스트림의 압축열을 제거하고 가스 스트림의 온도를 일정하게 조절하기 위한 제1 냉각기(22); 및 분리막 모듈을 포함하는 막분리장치(23);를 포함할 수 있다.
상기 제1 압축기(21)는 상기 공급부(10)에서 막분리부(20)로 가스 스트림을 공급할 때, 가스 스트림을 기 설정된 압력으로 압축하기 위한 장치 구성으로, 상기 제1 압축기는 2 bar 내지 15 bar 범위의 압력으로 기체 혼합물을 가압할 수 있다.
상기 제1 냉각기(22)는 상기 가스 스트림의 압축으로 인하여 발생한 압축열을 제거 및 온도를 일정하게 유지시키기 위한 장치 구성으로, 10 ℃ 내지 100 ℃의 온도로 일정하게 유지시킬 수 있다.
상기 막분리장치(23)은 적어도 1 개 이상의 고분자 분리막으로 구성된 분리막 모듈을 1 개 이상 포함할 수 있으며, 상기 분리막 모듈은 적어도 1 개, 2 개 또는 3 개 내지 4 개일 수 있다.
보다 상세하게는, 상기 막분리부(20)는 1단 또는 2단 이상, 또는 3단 이상의 분리막들이 직렬 또는 병렬로 상호 배열되어 연결될 수 있고, 1단에서 투과부의 농축된 일산화탄소 함유 기체혼합물이 다음의 흡착공정 또는 증류공정으로 연결될 수 있다. 이때, 잔류부는 추가적인 3단 또는 3단과 연결되어 추가적인 압축기 없이 최초의 압축기의 전단으로 연결되거나 또는 추가되는 압축기를 통해 최초의 압축기의 후단으로 재순환되는 연결되는 구조를 가질 수 있으며, 상기 기재된 일례와 같이 다단 막분리장치를 이용하여 수행될 수 있다(도2, 도3 참조).
상기 고분자 분리막의 이산화탄소/일산화탄소 선택도는 20 내지 50인 것이 바람직하고, 30 내지 40인 것이 더욱 바람직하다.
또한, 수소/일산화탄소 선택도는 20 내지 200인 것이 바람직하고, 60 내지 160인 것이 더욱 바람직하며, 80 내지 120인 것이 가장 바람직하다.
상기 고분자 분리막의 투과도(permeability)는 80 GPU 내지 1,000 GPU인 것이 바람직하고, 100 GPU 내지 700 GPU인 것이 더욱 바람직하며, 120 GPU 내지 650 GPU인 것이 가장 바람직하다.
상기 고분자 분리막은 폴리설폰계 고분자 수지, 폴리이미드계 고분자 수지, 폴리플루오로비닐리덴 고분자 수지 또는 이들을 조합한 수지 등을 기체 분리층의 주성분으로 하는 고분자 분리막을 사용할 수 있다.
나아가. 상기 고분자 분리막의 구체적인 예로 폴리디메틸실록산(PDMS) 수지, 폴리아세틸렌 수지, 폴리벤즈이미다졸(PBI, polybenzimidazole) 수지, 폴리이미드(PI, polyimide) 수지, 폴리벤족사졸(PBO, polybenzoxazole) 수지, 폴리벤지시아졸(PBZ, polybenzithiazole) 수지, 폴리필롤론(PPy, polypyrrolone) 수지 및 폴리(아마이드-6-b-에틸렌 옥사이드) 수지 등을 포함할 수 있다.
본 발명에 따른 일산화탄소 회수 시스템(100)에 있어서, 상기 흡착부(30)는 상기 막분리부(20)로부터 배출되는 가스 스트림 내 함유된 일산화탄소를 흡착할 수 있는 흡착제를 포함한다.
상기 흡착부(30)는 일산화탄소 함유 기체 혼합물에 포함되어 있는 일산화탄소를 흡착시키기 위한 장치 구성이다. 상기 흡착부를 통해 일산화탄소만을 선택적으로 흡착하여 일산화탄소가 포함된 혼합기체의 이산화탄소 및 수증기의 함량을 각각 0.5% 이하로 낮추며, 유기탄화수소는 0.5% 이하로 낮추는 것이 바람직하다.
상기 흡착부(30)는, 일산화탄소 함유 기체 혼합물에 포함되어 있는 일산화탄소를 흡착시키기 위한 흡착탑(31)을 포함할 수 있다.
이때, 상기 흡착탑은 상기 분리부(20)로부터의 가스 스트림을 분리하여 공급할 수 있도록 두 개 이상의 흡착탑으로 구성될 수 있으며, 바람직하게는 2개의 흡착탑으로 구성될 수 있다.
상기 흡착탑(31)은 CuCl2가 분산된 실리카, 제올라이트, 활성탄, 알루미나 실리케이트 또는 탄소 몰레큘러 시브(molecular sieve)로 이루어지는 군으로부터 선택되는 1종 이상의 흡착제를 포함하는 것이 바람직하다.
상기 흡착탑(31)의 흡착제가 충진된 흡착층의 크기는 직경 20 cm 이상 길이 200 cm 이상의 범위가 바람직하지만, 흡착층의 크기가 이에 제한되는 것은 아니며 흡착제의 흡착력과 흡착층 내의 압력 손실을 고려하여 최적의 크기를 선택할 수 있다.
상기 흡착탑(31)은 일산화탄소를 흡착하는 하나의 흡착탑을 사용할 수 있으나, 하나의 흡착탑에 흡착된 일산화탄소를 탈착하는 동안 흡착공정을 멈추지 않고 지속할 수 있도록, 두 개 이상의 흡착탑이 구성되는 것이 바람직하고 4개 이상의 흡착탑이 더욱 바람직하다.
또한, 상기 흡착탑(31)은 흡착 반응에 의하여 발생하는 열을 제거하기 위하여 냉각수를 공급하는 자켓이 장착될 수 있다.
본 발명에 따른 일산화탄소 회수 시스템(100)에 있어서, 상기 탈착부(30)는 상기 흡착부(30)의 흡착탑을 감압 또는 가열함으로써 일산화탄소를 탈착시켜 회수하는 것을 특징으로 하며, 상기 가열 또는 감압을 위해 가열 수단 또는 감압 수단을 포함할 수 있다. 상기 탈착공정은 50 ℃ 이상의 온도 또는 0.15 bar 내지 0.2 bar의 압력 조건에서 수행될 수 있으며, 바람직하게는 60 ℃ 내지 100 ℃의 온도 또는 0.16 bar 내지 0.19 bar의 압력 조건에서 수행될 수 있다.
이와 같은, 본 발명의 일산화탄소 회수 시스템(100)을 통해 최종적으로 회수된 일산화탄소의 순도는 99 부피% 이상, 97 부피% 이상 또는 95 부피% 이상 일 수 있으며, 특히 철강산업의 부생가스로부터 일산화탄소의 회수율은 90 % 이상일 수 있다. 이에 따라, 99 부피% 이상, 97 부피% 이상 또는 95 부피% 이상의 고순도로 회수 및 회수된 일산화탄소는 연료뿐만 아니라 다양한 화학공정용 기초재료로 사용할 수 있다.
또한, 본 발명은
이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 막분리하여 일산화탄소를 농축하는 막분리공정(단계 1);
상기 단계 1을 거친 가스 혼합물을 흡착제에 접촉시켜 일산화탄소를 흡착시키는 흡착공정(단계 2); 및
상기 일산화탄소를 흡착시킨 흡착제로부터 일산화탄소를 탈착시키는 탈착공정(단계 3);을 포함하는 산업부생가스로부터 일산화탄소의 회수방법을 제공한다.
이하, 본 발명에 따른 일산화탄소의 회수방법에 대하여 각 단계별로 상세히 설명한다.
먼저, 상기 단계 1로 공급되는 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스는 철강산업의 제철공정에서 발생하는 전로가스(Converter gas), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)인 것이 바람직하다.
또한, 상기 일산화탄소 및 이산화탄소를 포함하는 산업부생가스는 일산화탄소가 10 부피% 이상, 20 부피% 이상, 30 부피% 이상, 40 부피% 이상 50 부피% 이상 또는 60 부피% 이상 이거나 90 부피% 이하, 80 부피% 이하 또는 70 부피% 이하일 수 있다.
나아가, 상기 이산화탄소 및 일산화탄소를 포함하는 산업 부생가스는 수소, 질소, 산소, 수증기, 메탄, NOX(X= 1, 2, 3), SOX(X= 2, 3, 4), 금속 및 분진으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함할 수 있으며, 미량의 미세한 액적 상태의 수분, 유분 또는 미세한 입자 등을 포함할 수 있다.
더욱 구체적으로, 이산화탄소 및 일산화탄소를 포함하는 산업부생가스는 철강산업의 제철공정에서 발생하는 부생가스로서,
상기 부생가스의 조성은, 일산화탄소(CO) 15 부피% 내지 70 부피%; 질소(N2) 2부피% 내지 60부피%; 수소(H2) 0.2 부피% 내지 25 부피%; 이산화탄소(CO2) 5 부피% 내지 40 부피%; 및 수증기(H2O) 0.2 부피% 내지 10 부피%;일 수 있고,
일산화탄소(CO) 20 부피% 내지 65 부피%; 질소(N2) 2부피% 내지 55부피%; 수소(H2) 1 부피% 내지 21 부피%; 이산화탄소(CO2) 15 부피% 내지 35 부피%; 및 수증기(H2O) 0.5 부피% 내지 5 부피%;일 수 있다.
본 발명에 따른 상기 일산화탄소의 회수방법에 있어서 단계 1 이전에 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스 내의 미량의 액적 상태의 수분, 유분 또는 입자 불순물을 제거하는 전처리 공정을 더 포함할 수 있다.
상기 전처리단계는 산업부생가스에 포함된 미량의 액적 상태의 수분, 유분 또는 입자 불순물을 제거하는 단계이다. 상기 수분 액적 또는 유분 액적을 제거하기 위하여 응집기(coalescer)를 사용할 수 있다. 상기 응집기는 미세한 액적들을 포집하여 큰 액적을 형성시키는 장치이며 산업에서 통상적으로 사용하는 장치를 사용할 수 있고, 특별하게 한정되지 않는다. 입자 상태의 입자 불순물은 여과포가 장착된 여과장치를 사용할 수 있는데, 상기 여과포는 백필터 형태 또는 카트리지 형태 등을 사용할 수 있다. 상기 여과포 또는 여과장치는 특별하게 한정되지 않으며, 통상적으로 사용하는 여과포나 여과장치를 사용할 수 있다.
상기 전처리단계는 10 ℃ 내지 40 ℃의 온도 및 1 bar 내지 2 bar의 압력 조건에서 수행되는 것이 바람직하나, 상기 전처리단계의 운전 조건이 이에 제한되는 것은 아니다.
다음으로, 본 발명에 따른 일산화탄소의 회수방법에 있어서, 상기 막분리공정은 전처리단계를 거친 기체 혼합물을 막분리하여 일산화탄소를 농축한다.
상기 막분리공정은 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스에 포함된 일산화탄소를 선택적으로 분리하여 고농도로 농축하는 단계이다. 농축하고자 하는 일산화탄소 함유 기체 혼합물은 10 부피% 내지 90 부피%의 일산화탄소를 함유하고 있으며, 불순물로서 15 부피% 내지 60 부피%의 이산화탄소와, 0 부피% 내지 60 부피%의 질소가 함유되어 있다. 상기 막분리공정에서는 일산화탄소를 나머지 기체들로부터 분리하여 20 부피% 내지 80 부피%의 농도로 농축한다. 이와 같이 일산화탄소를 고수율 및 고농도로 농축하기 위해서 막분리공정에 사용하는 분리막은 일산화탄소의 이산화탄소에 대한 분리계수가 높아야 한다.
상기 막분리공정에는 적어도 1 개 이상의 고분자 분리막으로 구성된 분리막 모듈을 1 개 이상 사용할 수 있으며, 상기 분리막 모듈은 적어도 1 개, 2 개 또는 3 개 내지 4 개일 수 있다.
상기 고분자 분리막의 이산화탄소/일산화탄소 선택도는 20 내지 50인 것이 바람직하고, 30 내지 40인 것이 더욱 바람직하다.
또한, 수소/일산화탄소 선택도는 20 내지 200인 것이 바람직하고, 60 내지 160인 것이 더욱 바람직하며, 80 내지 120인 것이 가장 바람직하다.
상기 분리막의 투과도(permeability)는 80 GPU 내지 1,000 GPU인 것이 바람직하고, 100 GPU 내지 700 GPU인 것이 더욱 바람직하며, 120 GPU 내지 650 GPU인 것이 가장 바람직하다.
상기 분리막은 폴리설폰계 고분자 수지, 폴리이미드계 고분자 수지, 폴리플루오로비닐리덴 고분자 수지 또는 이들을 조합한 수지 등을 기체 분리층의 주성분으로 하는 고분자 분리막을 사용할 수 있다.
나아가. 상기 고분자 분리막의 구체적인 예로는 폴리디메틸실록산(PDMS) 수지, 폴리아세틸렌 수지, 폴리벤즈이미다졸(PBI, polybenzimidazole) 수지, 폴리이미드(PI, polyimide) 수지, 폴리벤족사졸(PBO, polybenzoxazole) 수지, 폴리벤지시아졸(PBZ, polybenzithiazole) 수지, 폴리필롤론(PPy, polypyrrolone) 수지 및 폴리(아마이드-6-b-에틸렌 옥사이드) 수지 등이 있다.
상기 막분리공정은 10 ℃ 내지 100 ℃의 온도에서, 2 bar 내지 15 bar의 공급 압력 및 진공 내지 3 bar의 투과 압력 조건으로 수행되는 것이 바람직하며, 30 ℃ 내지 70 ℃의 온도에서, 5 bar 내지 10 bar의 공급 압력 및 1 bar 내지 2 bar의 투과 압력의 조건으로 수행되는 것이 더욱 바람직하다.
또한, 상기 막분리공정은 1 단 또는 2 단 이상의 다단 막분리장치를 이용하여 수행될 수 있다.
상기 막분리단계만이 수행된 가스 스트림의 조성은 일산화탄소(CO) 20 부피% 내지 30 부피%; 질소(N2) 70부피% 내지 80부피%;일 수 있고,
일산화탄소(CO) 75 부피% 내지 85 부피%; 질소(N2) 15 부피% 내지 25 부피%;일 수 있으며,
일산화탄소(CO) 90 부피% 내지 96 부피%; 질소(N2) 4 부피% 내지 10 부피%;일 수 있다.
다음으로, 본 발명에 따른 일산화탄소 회수 방법에 있어서, 상기 흡착공정은 상기 막분리공정으로부터 배출되는 가스 스트림 내 함유된 일산화탄소를 흡착할 수 있는 흡착제를 포함한다.
상기 흡착공정은 일산화탄소 함유 기체 혼합물에 포함되어 있는 일산화탄소를 흡착시키기 위한 공정이다. 상기 흡착공정를 통해 일산화탄소만을 선택적으로 흡착하여 일산화탄소가 포함된 혼합기체의 이산화탄소 및 수증기의 함량을 각각 0.5 부피% 이하로 낮추며, 수소는 0.5 부피% 이하로 낮추는 것이 바람직하다.
상기 흡착공정은, 일산화탄소 함유 기체 혼합물에 포함되어 있는 일산화탄소를 흡착시키기 위한 흡착탑을 사용할 수 있다.
이때, 상기 흡착탑은 상기 막분리공정으로부터의 가스 스트림을 분리하여 공급할 수 있도록 2개 이상의 흡착탑을 사용할 수 있으며, 바람직하게는 2개의 흡착탑을 사용할 수 있다.
상기 흡착탑은 CuCl2가 분산된 실리카, 제올라이트, 활성탄, 알루미나 실리케이트 또는 탄소 몰레큘러 시브(molecular sieve)로 이루어지는 군으로부터 선택되는 1 종 이상의 흡착제를 포함할 수 있다.
상기 흡착탑의 흡착제가 충진된 흡착층의 크기는 직경 20cm이상 길이 200cm 이상의 범위가 바람직하지만, 흡착층의 크기가 이에 제한되는 것은 아니며 흡착제의 흡착력과 흡착층 내의 압력 손실을 고려하여 최적의 크기를 선택할 수 있다.
상기 흡착탑은 일산화탄소를 흡착하는 하나의 흡착탑을 사용할 수 있으나, 하나의 흡착탑에 흡착된 일산화탄소를 탈착하는 동안 흡착공정을 멈추지 않고 지속할 수 있도록, 2개 이상의 흡착탑을 사용하는 것이 바람직하다.
또한, 상기 흡착탑에는 흡착 반응에 의하여 발생하는 열을 제거하기 위하여 냉각수를 공급하는 자켓이 장착될 수 있다.
본 발명에 따른 일산화탄소 회수 방법에 있어서, 상기 탈착공정은 상기 흡착공정의 흡착탑을 감압 또는 가열함으로써 일산화탄소를 탈착시켜 회수하는 것을 특징으로 하며, 상기 가열 또는 감압을 위해 가열 수단 또는 감압 수단을 사용할 수 있다.
상기 탈착공정은 50 ℃ 이상의 온도 및 0.15 bar 내지 0.2 bar의 압력 조건에서 수행될 수 있으며,
바람직하게는 60 ℃ 내지 100 ℃의 온도 및 0.16 bar 내지 0.19 bar의 압력 조건에서 수행될 수 있다.
이와 같은, 본 발명의 일산화탄소 회수방법을 통해 최종적으로 회수된 일산화탄소의 순도는 99 부피% 이상, 97 부피% 이상 또는 95 부피% 이상이며, 특히 철강산업의 제철 전로가스(Converter gas)로부터 일산화탄소의 회수율은 90 % 이상이다. 이에 따라, 99 부피% 이상, 97 부피% 이상 또는 95 부피% 이상의 고순도로 회수 및 정제된 일산화탄소는 연료뿐만 아니라 다양한 화학공정용 기초재료로 사용할 수 있다.
이하, 하기 실시 예에 의하여 본 발명을 상세히 설명한다.
단, 하기 실시 예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시 예에 의해 한정되는 것은 아니다.
< 실시예 1> 철강산업의 제철 전로가스(Converter gas)의로부터 일산화탄소 회수 및 정제 방법
본 발명에서 실시한 일산화탄소의 분리/회수 공정은 도 1에 나타낸 바와 같은 파이롯트 규모의 분리/회수 공정이다. 철강산업의 제철 전로가스(Converter gas)를 대상으로 일산화탄소 회수 및 정제 공정의 구체적인 실시 방법을 도 1에 따라 아래에 기술한다.
(1) 전처리공정: 전처리공정(10)에서는 철강산업의 제철 전로가스(Converter gas)를 공급하여 응집기(12) 및 여과장치(13)에서 배출가스에 포함된 수분과 분진을 제거하였다. 상기 제1 응집기는 두께 20 cm의 200 메쉬(mesh) 스테인레스스틸 망을 장착하였으며, 상기 스테인레스스틸 망의 직경은 30 cm이고, 길이는 60 cm이다. 상기 여과장치는 폴리에스터 재질의 백필터가 장착되었으며, 상기 백필터의 직경은 30 cm이고, 길이는 80 cm이다. 일산화탄소의 회수 및 정제 공정(100)에 사용된 철강산업의 제철 전로가스의 공급유량은 60 Nm3/hr으로 조정하였고 조성은 다음과 같다.
-일산화탄소(CO): 63.5 부피%,
-질소(N2): 16 부피%
-수소(H2): 2 부피%
-이산화탄소(CO2): 17.5 부피%
-물(H2O): 1 부피%
(2) 막분리공정: 상기 막분리공정(20)에서는 상기 전처리공정(10)에서 배출된 기체 혼합물을 압축기(21)와 냉각기(22)를 이용하여 7 bar의 압력과 20 ℃의 온도로 막분리장치(23)에 공급하였으며, 분리막 제조회사인 에어레인의 100 m2 면적, 100 m2 면적의 폴리설폰계 수지 중공사막 모듈을 장착하였다. 막분리장치(23)에서 투과측으로 이산화탄소 90.1 부피%, 수소 9 % 함유 기체 혼합물을 21.6 Nm3/hr 유량으로 얻을 수 있었으며, 잔류측으로 일산화탄소 79.8 부피%, 질소 20 부피% 함유 기체 혼합물을 38.4 Nm3/hr 유량으로 얻을 수 있었다.
(3) 흡착공정: 흡착공정(30)에서는 상기 막분리공정(20)에서 막분리장치(23)의 잔류측에서 배출되는 일산화탄소 79.8 부피%, 질소 20 부피% (38.4 Nm3/hr)을 흡착공정에 공급하여 선택적으로 일산화탄소를 흡착/분리하였다. 흡착공정에서 흡착탑(31)의 흡착제가 충진된 흡착층은 각각 직경은 20 cm이고, 길이는 200 cm이다. 흡착탑(31)에는 CuCl2가 분산된 제올라이트 5A를 충진하였다. 흡착탑(31)은 흡착 반응에 의하여 발생하는 열을 제거하기 위하여 냉각수를 공급하는 자켓이 장착되었다. 흡착탑은 상온 및 7 bar의 압력에서 운전하였다.
(4) 탈착공정: 흡착된 일산화탄소를 감압 (0.15 ~ 0.2 atm)하거나 또는 고온 (> 50 ℃)상태로 만들어 탈착시킬 수 있으며 본 실시예에서는 60 ℃의 온도로 가열하여 일산화탄소를 탈착시키고, 이때의 가스 조성을 검출하였다.
-일산화탄소(CO): 99.9 부피%,
-질소(N2): 0.05 부피%
-이산화탄소(CO2): 0.05 부피%
상기 탈착공정에서 최종적으로 얻은 일산화탄소의 회수율은 약 90 %이다.
[부호의 설명]
100 : 일산화탄소 분리 및 회수 공정
10 : 공급부
11 : 공급장치
12 : 응집기
13 : 여과장치
20 : 막분리부
21 : 압축기
22 : 냉각기
23 : 막분리장치
30 : 흡착부, 탈착부
31 : 제1, 2 흡착탑
본 발명에 따른 일산화탄소 회수방법은 종래에 알려진 일산화탄소 회수방법에 비해 최종적으로 회수되는 일산화탄소의 수율이 현저히 우수하므로, 다양한 기초 또는 정밀화학물질을 만들 수 있어 고부가 가치를 갖는 일산화탄소를 대용량으로 회수하기 위한 산업적인 공정으로 활용할 수 있는 효과가 있다.
Claims (8)
- 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 공급하기 위한 공급부;상기 공급부로부터 배출되는 산업부생가스 내 이산화탄소와 수소를 제거하여 일산화탄소와 질소를 농축하는 분리막모듈을 포함하는 막분리부;상기 막분리부로부터 배출되는 가스 스트림 내 함유된 일산화탄소를 흡착할 수 있는 흡착제를 포함하는 흡착부; 및상기 흡착부의 흡착제를 감압 또는 가열하여 일산화탄소를 탈착시키는 탈착부;를 포함하는 산업부생가스로부터 99% 이상의 고순도 일산화탄소 회수 시스템.
- 제1항에 있어서,상기 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스는 철강산업의 제철전로가스 (Lintz Donawitz Gas: LDG), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)를 포함하는 산업부생가스로부터 일산화탄소 회수 시스템.
- 제1항에 있어서,상기 공급부는,이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스를 포함하는 가스 스트림을 공급하기 위한 공급장치;상기 공급장치로부터 공급된 가스 스트림 내 함유된 액적 상태의 수분 또는 유분을 제거하기 위한 제1 응집기; 및상기 제1 응집기로부터 배출되는 가스 스트림 내 미세 분진을 제거하기 위한 여과장치;를 포함하는 산업부생가스로부터 일산화탄소 회수 시스템.
- 제1항에 있어서,상기 분리막 모듈은 이산화탄소/일산화탄소 선택도가 20 내지 50인 고분자 분리막을 포함하는 산업부생가스로부터 일산화탄소 회수 시스템.
- 이산화탄소, 질소 및 일산화탄소를 포함하는 산업부생가스를 막분리하여 일산화탄소를 농축하는 막분리공정(단계 1);상기 단계 1을 거친 가스 혼합물을 흡착제에 접촉시켜 일산화탄소를 흡착시키는 흡착공정(단계 2); 및상기 일산화탄소를 흡착시킨 흡착제로부터 일산화탄소를 탈착시키는 탈착공정(단계 3);을 포함하는 산업부생가스로부터 일산화탄소의 회수방법.
- 제5항에 있어서,상기 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스는 철강산업의 제철전로가스 (Lintz Donawitz Gas: LDG), 고로가스 (Blast Furnace Gas: BFG) 및 코렉스로가스(COREX Furnace Gas: CFG)를 포함하는 산업부생가스로부터 일산화탄소의 회수방법.
- 제5항에 있어서,상기 단계 1로 공급되는 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스는 수소, 산소, 수증기, 메탄, NOX(X= 1, 2, 3), SOX(X= 2, 3, 4), 금속 및 분진으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 산업부생가스로부터 일산화탄소의 회수방법.
- 제5항에 있어서,상기 단계 1로 공급되는 이산화탄소, 질소 및 일산화탄소를 포함하는 산업 부생가스는 일산화탄소를 20 부피% 이상 포함하는 것을 특징으로 하는 산업부생가스로부터 일산화탄소의 회수방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160146484A KR20180050450A (ko) | 2016-11-04 | 2016-11-04 | 철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 |
KR10-2016-0146484 | 2016-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084553A1 true WO2018084553A1 (ko) | 2018-05-11 |
Family
ID=62076312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/012220 WO2018084553A1 (ko) | 2016-11-04 | 2017-11-01 | 철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180050450A (ko) |
WO (1) | WO2018084553A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110252068A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的脱硫净化方法 |
CN110252070A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的净化方法 |
CN110252069A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的脱硫方法 |
CN111871146A (zh) * | 2020-07-16 | 2020-11-03 | 中国能源建设集团广东省电力设计研究院有限公司 | 一种基于耦合膜分离法和吸附法的二氧化碳捕集系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102644171B1 (ko) * | 2021-10-29 | 2024-03-05 | 한국화학연구원 | 철강산업의 코크스 오븐 가스(cog)로부터 수소의 분리 및 회수 시스템 및 방법 |
CN115679024B (zh) * | 2022-11-10 | 2024-04-19 | 苏州盖沃净化科技有限公司 | 高炉或转炉煤气提纯还原性气体返回高炉碳减排的方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121118A (ja) * | 1997-07-02 | 1999-01-26 | Mitsubishi Kakoki Kaisha Ltd | 高純度一酸化炭素の製造方法 |
JPH11221420A (ja) * | 1998-02-09 | 1999-08-17 | Nippon Sanso Kk | 窒素及び/又は酸素及び精製空気の製造・供給装置及び方法 |
JP2010173985A (ja) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | 炭化水素系燃料の製造方法および炭化水素系燃料製造設備 |
KR20100122093A (ko) * | 2008-03-18 | 2010-11-19 | 제이에프이 스틸 가부시키가이샤 | 고로가스의 분리방법 및 장치 |
KR20140120904A (ko) * | 2012-01-10 | 2014-10-14 | 알스톰 테크놀러지 리미티드 | 원자력 발전소로부터의 유해한 가스 유출물의 여과 방법 |
-
2016
- 2016-11-04 KR KR1020160146484A patent/KR20180050450A/ko active Search and Examination
-
2017
- 2017-11-01 WO PCT/KR2017/012220 patent/WO2018084553A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1121118A (ja) * | 1997-07-02 | 1999-01-26 | Mitsubishi Kakoki Kaisha Ltd | 高純度一酸化炭素の製造方法 |
JPH11221420A (ja) * | 1998-02-09 | 1999-08-17 | Nippon Sanso Kk | 窒素及び/又は酸素及び精製空気の製造・供給装置及び方法 |
KR20100122093A (ko) * | 2008-03-18 | 2010-11-19 | 제이에프이 스틸 가부시키가이샤 | 고로가스의 분리방법 및 장치 |
JP2010173985A (ja) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | 炭化水素系燃料の製造方法および炭化水素系燃料製造設備 |
KR20140120904A (ko) * | 2012-01-10 | 2014-10-14 | 알스톰 테크놀러지 리미티드 | 원자력 발전소로부터의 유해한 가스 유출물의 여과 방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110252068A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的脱硫净化方法 |
CN110252070A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的净化方法 |
CN110252069A (zh) * | 2019-07-15 | 2019-09-20 | 湖北申昙环保新材料有限公司 | 高炉煤气的脱硫方法 |
CN111871146A (zh) * | 2020-07-16 | 2020-11-03 | 中国能源建设集团广东省电力设计研究院有限公司 | 一种基于耦合膜分离法和吸附法的二氧化碳捕集系统 |
Also Published As
Publication number | Publication date |
---|---|
KR20180050450A (ko) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018084553A1 (ko) | 철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 | |
WO2018016750A1 (ko) | 아산화질소 함유 기체 혼합물로부터 아산화질소의 회수 및 정제공정 | |
KR102059068B1 (ko) | 철강산업의 부생가스로부터 일산화탄소의 분리 및 회수공정 | |
US10207928B2 (en) | Combined membrane-pressure swing adsorption method for recovery of helium | |
EP0213525B1 (en) | Hybrid membrane/cryogenic process for hydrogen purification | |
KR100199883B1 (ko) | 실리콘 결정로로부터 아르곤을 회수하는 방법 | |
CN86104191A (zh) | 增强气体分离方法 | |
WO2018004314A1 (ko) | 아산화질소 선택성 기체 분리막 및 이를 이용한 아산화질소 정제방법 | |
KR890015954A (ko) | 현지의 고순도 질소제조시스템 및 공정 | |
WO2018066756A1 (ko) | 이산화탄소 분리 장치 | |
JP2002523208A (ja) | Sf6を含有するガスの分離法 | |
ES2183091T3 (es) | Recuperacion de gases nobles. | |
EP1498393B1 (en) | Method for the recovery and recycle of helium and chlorine | |
CA2374581C (en) | Isolation of sf6 from insulating gases in gas-insulated lines | |
US20150360165A1 (en) | Separation of biologically generated gas streams | |
WO2017078415A1 (ko) | 수은 함유 폐기물의 처리 장치 및 이러한 장치를 사용한 고순도 원소 수은의 회수 방법 | |
WO1996015843A1 (en) | Very high purity nitrogen by membrane separation | |
US6032484A (en) | Recovery of perfluorinated compounds from the exhaust of semiconductor fabs with recycle of vacuum pump diluent | |
JP4058278B2 (ja) | ヘリウム精製装置 | |
WO2016105156A1 (en) | Method and apparatus for purification of dimethyl carbonate using pervaporation | |
KR19990063265A (ko) | 공기 분리 플로우트 글라스 제조 장치 | |
JPS60174732A (ja) | 酸化エチレン製造プラントの排ガス回収法 | |
JP2638897B2 (ja) | Arガスの回収方法 | |
JP3191113B2 (ja) | アルゴンの回収方法 | |
WO2017030257A1 (ko) | 불화 온실 가스의 정제 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868248 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868248 Country of ref document: EP Kind code of ref document: A1 |