WO2018084549A1 - 경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법 - Google Patents

경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법 Download PDF

Info

Publication number
WO2018084549A1
WO2018084549A1 PCT/KR2017/012207 KR2017012207W WO2018084549A1 WO 2018084549 A1 WO2018084549 A1 WO 2018084549A1 KR 2017012207 W KR2017012207 W KR 2017012207W WO 2018084549 A1 WO2018084549 A1 WO 2018084549A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard material
metal
support
cutting mechanism
cutting
Prior art date
Application number
PCT/KR2017/012207
Other languages
English (en)
French (fr)
Inventor
강제임스
Original Assignee
강제임스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강제임스 filed Critical 강제임스
Publication of WO2018084549A1 publication Critical patent/WO2018084549A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K5/00Making tools or tool parts, e.g. pliers
    • B21K5/12Making tools or tool parts, e.g. pliers other cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor

Definitions

  • the present invention relates to a cutting mechanism having a cutting edge comprising a hard material and a method of manufacturing the cutting mechanism.
  • Kitchen knives such as kitchen knives, knives and forks are estimated at more than $ 10 billion annually and the razor market at over $ 14 billion annually.
  • Diamond, Cubic Boron Nitride (cBN), Tungsten Carbide (WC), Tungsten, TiN, Chromium Boride and Chromium Carbide are the strongest materials known.
  • cBN and other hard materials are already used for cutting and polishing.
  • the hard materials are not provided in the finished shape.
  • the hard materials are provided in powder form, so there is a limitation that they must be used in a form attached to the surface to be applied through a process such as brazing or plating.
  • Another limitation is that, for example, diamond burns out above 700 ° C.
  • the ultra-hard material layer comprising a diamond formed on one side or both sides of the obliquely cut surface is no longer able to reproduce the tip when the end of the knife is removed most of the
  • the process of grinding the blade involves grinding the outermost layer and reducing the radius of the tip. In this process, the abrasive layer is removed and the durability of the blade is easily degraded.
  • a brazing material may be used to attach a hard material such as diamond by the welding method, but most welding apparatuses generate a temperature exceeding 6000 ° C. There is a problem that is lost.
  • brazing alloys are often based on expensive materials such as gold or silver, even if a thick layer can be formed technically, there is a practical limit to apply to most cutting edges.
  • An object of the present invention is to provide a cutting mechanism, such as a kitchen knife, and a method of manufacturing the same.
  • the present invention is provided with a beveled blade on one side, the body made of a first metal, the second metal is provided with a beveled blade and disposed on at least part of the other side of the beveled blade of the body And a hard material layer disposed at an interface between the body and the support to form an edge with the body and the support, wherein the hard material layer is formed from the edge to a predetermined depth along the interface of the body and the support.
  • a cutting mechanism having a cutting edge comprising a hard material is provided.
  • FIG. 2 schematically shows a cutting mechanism according to the present invention.
  • the cutting mechanism 1 according to the present invention includes a body 10 made of a first metal and an inclined blade on one side, and made of a second metal.
  • a support 20 having an inclined blade substantially symmetrical to the inclined blade and disposed on at least a part of the inclined blade of the body 10, between the body 10 and the support 20
  • a thin hard material layer 30 disposed at an interface of the hard material layer 30 to a predetermined depth from an edge portion 40 where the inclined blades of the body 10 and the support 20 meet. It is characterized by that.
  • the cutting mechanism 1 includes three layers of the hard material layer 30 disposed on the interface between the body 10 and the support 20 and the body 10 and the support 20 from a cutting line to a predetermined depth. Form a structure.
  • the first metal constituting the body 10 may be used without limitation as long as it is a material capable of satisfying physical properties such as strength, durability, and toughness required for a cutting device, and a material having good bonding with the support 20 is preferable.
  • As the first metal for example, general steel or stainless steel may be used.
  • the second metal constituting the support 20 while satisfying the properties such as strength, durability, toughness required for the cutting mechanism, without degrading the properties of the particles constituting the hard material layer 30, the hard material layer 30 A material that can serve to make the particles constituting the well attached to the body 10 is preferable.
  • the diamond particles when using the diamond particles as the hard material constituting the hard material layer 30, since the diamond particles are oxidized at 700 °C or more, a metal that can be attached at a low temperature is preferable.
  • the second metal constituting the support 20 may be selected according to the material of the hard material layer 30 used as described above.
  • a metal such as amorphous metal or stainless steel may be used.
  • the hard material constituting the hard material layer 30 is made of a material having excellent hardness, and the hardness is two times or more, preferably three times or more, and more preferably about 4 times to 10 times the hardness of the first metal.
  • One having a hardness of can be used.
  • diamond diamond, heavy metals, metal carbides, metal oxides, metal nitrides, metal borides, metal carbonitrides, metal borides, metal carbonates, and the like may be used.
  • diamond tungsten, cBN ( Cubic Boron Nitride), tungsten carbide (WC), titanium nitride (TiN), titanium carbonitride (TiCN), chromium boride, chromium carbide and the like can be used.
  • shapes of the particles constituting the hard material layer 30 may be various shapes such as sphere shape, fiber shape, plate shape, and flake shape.
  • the hard material layer 30 is preferably made of a mixed layer between the hard material particles and the second metal, wherein the second metal serves as a binder for fixing the hard material particles, the hard material in the hard material layer 30 It is more preferable that the distance between the ash particles is contained so as to be 100 nm or more and 0.1 mm or less in the second metal so that the cutting performance can be improved by maintaining the micro tooth shape of the edge portion.
  • the hard material layer 30 may be formed of a mixed layer between hard material particles and eutectic metal, and when the melting point of the process metal is 1,200 to 1,300, it is preferable to keep the temperature of the bonding process low. .
  • FIG. 3 shows a process of manufacturing the cutting mechanism 1 according to the present invention. As shown in FIG. 3, the cutting mechanism 1 according to the present invention may be manufactured through the following process.
  • the body 10 is made of a first metal and has a structure in which one end is cut out.
  • the support body 20 has a shape that is coupled to the cut structure of the body 10 and attaches hard material particles to a portion of the interface side to be joined to form a hard material layer 30.
  • the body 10 and the support 20 are bonded.
  • edge portion 40 is formed by processing to form an inclined blade around the hard material layer 30.
  • the step of forming the inclined blade may be performed simultaneously in the cutting or molding process in the process of manufacturing the body 10 and the support 20, not necessarily according to the above-described process sequence.
  • Joining of the body 10 and the support 20 may be made through various metal processing processes such as forging and welding.
  • the cutting mechanism having the composite structure and the manufacturing method thereof according to the present invention provide the following advantages.
  • the cutting mechanism according to the present invention includes a body made of a first metal and having a beveled blade on one side, and a second metal made of a beveled blade, and having at least a portion of the beveled blade of the body. It consists of a three-layer structure comprising a support body disposed on the other side, and a hard material layer disposed at an interface between the body and the support to form a cutting line, and through the introduction of such a three-layer structure, made of a hard material such as diamond You can make kitchen knives with cutting edges.
  • the low-temperature malleability of the liquid metal used in one embodiment of the present invention allows the three kinds of materials used in the three-layer structure to be bonded without deterioration by heat, thereby improving the ease of manufacture compared to the conventional structure.
  • a thin layer of hard material formed at the center can be sharpened using a common kitchen knife manufacturing tool.
  • the biggest advantage of the three-layer cutting device according to the present invention is that the hard material is always present in the cutting tool edge. Since a thin layer of hard material is disposed at a predetermined depth at the interface between the first metal and the second metal (that is, the center of the cutting mechanism), the hard material is naturally edged.
  • the hard material exists in the depth direction, even if the blade is changed several times, the hard material is always positioned at the leading end so that the cutting performance of the cutting mechanism can be maintained continuously without decreasing the cutting performance.
  • the cutting mechanism consisting of the three-layer structure according to the present invention can impart considerable flexibility to the design and function.
  • knives such as fillet knives require considerable flexibility.
  • the medical knife requires elasticity and toughness. By separating the durability of the blade from the knife frame, a typical compromise can be eliminated.
  • the three-layer structure may use a hard material such as steel, titanium, aluminum or even ceramic as a base.
  • Maintaining a distance of less than 0.1 mm between hard particle particles can suppress crack propagation, making the entire matrix more tough.
  • the metal body may not be heat treated for maximum blade durability, the toughness of the entire blade can be improved.
  • FIG. 1 is a schematic view for explaining the damage process of the blade of a conventional kitchen knife formed a diamond layer.
  • Figure 2 schematically shows a cutting mechanism according to the present invention.
  • FIG 3 shows a process for manufacturing a cutting mechanism according to the present invention.
  • FIG. 4 is a schematic view of a cutting edge of a kitchen knife having a three-layer structure according to one embodiment of the present invention.
  • FIG. 5 is a schematic diagram for explaining cracks and propagation thereof when the body of the kitchen knife is made of amorphous metal.
  • Figure 6 is a schematic diagram for explaining the state of the microstructure of the edge portion of the kitchen knife according to the present invention.
  • FIG. 7 is a schematic diagram of a kitchen knife having a three-layer structure according to another embodiment of the present invention.
  • FIG. 4 is a schematic view of a blade portion of a kitchen knife having a three-layer structure according to a preferred embodiment of the present invention.
  • the first metal constituting the body 10 is made of steel (steel) excellent in ductility
  • the support 20 The second metal is made of an amorphous metal.
  • the hard material layer 30 is composed of a mixed structure of hard particles such as a second metal and diamond, cBN.
  • the tensile strength of the amorphous metal used in the embodiment of the present invention is approximately 270 kPsi, which is 3 to 5 times the diamond brazing alloy.
  • amorphous alloy As an amorphous alloy that can be used, the composition shown in Table 1 may be used, but Zr-Ti-Cu-Ni-Be, Zr-Ti-Cu-Ni-Al, Zr-Ti-Ni-Be, Zr Various amorphous alloys such as -Cu-Ni-Al-based amorphous alloys may be used, but are not necessarily limited thereto.
  • Amorphous alloy Composition (atomic%) One Fe Mo Ni Cr P C B 68.00 5.00 5.00 2.00 12.50 5.00 2.50 2 Fe Mo Ni Cr P C B Si 68.00 5.00 5.00 2.00 11.00 5.00 2.50 1.50 3 Pd Cu Co P 44.48 32.35 4.05 19.11 4 Pd Ag Si P 77.50 6.00 9.00 7.50 5 Pd Ag Si P Ge 79.00 3.50 9.50 6.00 2.00 6 Pt Cu Ag P B Si 74.70 1.50 0.30 18.0 4.00 1.50
  • the support 20 made of an amorphous metal having a hard material layer 30 of thin diamond (or other hard material) in the middle, and steel Characterized in that formed in a three-layer composite structure of the body 10 made of.
  • the support 20 made of an amorphous metal serves to attach the hard material particles to the body 10 without degrading the properties of the hard material particles constituting the hard material layer 30.
  • diamond when diamond is used as a hard material, diamond particles are oxidized at 700 ° C. or higher, so a process of attaching them at a low temperature is essential.
  • amorphous metals used in the preferred embodiment of the present invention there is malleability at 500 to 650 ° C. In this way, the bonding can be performed without damaging the diamond particles. That is, the complex structure can be implemented through a simple process.
  • low process temperatures not only protect hard materials, but also enable the use of lower cost hard materials.
  • the brittleness of the amorphous metal is complemented by the steel constituting the body, and the amorphous metal and the hard material maintain durability, so that the performance of the cutting mechanism is kept constant. It is possible to significantly increase its lifespan while maintaining it.
  • the amorphous metal forms an outer structure of the inclined blade, and a layer in which hard material particles are mixed is formed from the tip of the support 20 to a predetermined depth, and this geometric shape is characterized by the characteristics of the blade and the overall cutting performance. Serves to improve
  • amorphous metal when only the amorphous metal is used as the base and a hard material layer is formed on one side to make a cutting edge, it may be easily broken similarly to ceramics. Vulnerability of amorphous metals makes it difficult to use as a base material to accept hard materials, once there is no mechanism to prevent crack propagation.
  • the amorphous metal does not perform a cutting function and maintains the edge 40 formed of a hard material such as diamond or cBN. .
  • the hard material layer 30 maintains a shape in which a plurality of hard material particles are fixed to the amorphous metal, and the hard material particles form a sawtooth structure protruding from the amorphous metal matrix.
  • This sawtooth structure gives the effect of being able to cut more easily when cutting the workpiece with the cutting mechanism.
  • FIG. 7 is a schematic diagram of a kitchen knife having a three-layer structure according to another embodiment of the present invention.
  • the knife having a three-layer structure is formed of steel having excellent ductility of the first metal constituting the body 10, and supporting the support 20.
  • the second metal is made of a metal of the welding wire (welding wire) component.
  • the hard material layer 30 is made of a mixture of eutectic metallic powder and hard particles such as WC, W or cBN.
  • another embodiment of the present invention is characterized in that the second metal constituting the support 20 and the hard material layer 30 are manufactured differently.
  • welding processes such as TIG, MIG, or laser welding are very economical processes of joining metals, but their process temperatures are 3,000 to 6,000 ° C, which can melt W or cBN, which are used as hard materials. Therefore, when it is going to use such a joining method, it is important to lower process temperature so that a hard material etc. may not be damaged.
  • the metal of the welding wire component has a melting point of about 1,280 ° C. in general steel. Since melting
  • the hard material layer 30 is used as a mixture of eutectic metallic powder and hard particles such as WC, W or cBN.
  • the process metal is used with a melting point of 1,200 to 1,300 ° C, Compared with steel, the melting point is about 200 ° C.
  • the hard material layer is to be bonded to a thin layer of the mixture to the body 10 or the support 20 in a three-layer structure using an adhesive, and then a heat source is applied to dissolve all the metals contained in the three layers to be fully integrated. At this time, the lower the required temperature, the more advantageous.
  • the process metal powder is used for the hard material layer 30 to lower the process temperature.
  • the temperature applied to the hard material layer 30 at the time of joining the three layers can be lowered by about 300 to 500 ° C. as compared to at the time of joining the normal welding wire. Will be.
  • the technique of lowering the temperature applied to the hard material layer 30 in the three-layer bonding process is preferable because it can greatly widen the range of hard materials that can be used.
  • Examples of the material that can be used as the metal for the support 20 and the material that can be used as the process metal constituting the hard material layer are shown in Table 2 below.
  • another embodiment of the present invention is not limited to the following material composition, and is not particularly limited as long as it can implement the above-described technical features.

Abstract

본 발명은 경질재료를 포함하는 절삭날을 구비한 절삭기구에 관한 것이다. 본 발명에 따른 절삭기구는 일측에 경사진 날을 구비하며 제1금속으로 이루어진 몸체, 제2금속으로 이루어지며 경사진 날을 구비하고 상기 몸체의 경사진 날의 적어도 일부의 타측에 배치되는 지지체 및 상기 몸체와 상기 지지체의 계면에 배치되어 상기 몸체 및 지지체와 함께 인선(edge)을 형성하는 경질재층을 포함하고, 상기 경질재층은 상기 인선으로부터 몸체 및 지지체의 계면을 따라 소정 깊이까지 형성되어 있는 것을 특징으로 한다.

Description

경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법
본 발명은 경질재료를 포함하는 절삭날을 구비한 절삭기구와 이 절삭기구를 제조하는 방법에 관한 것이다.
식칼, 나이프, 포크 등의 주방용 칼 시장은 연간 100억 달러 이상, 면도기 시장은 연간 140억 달러 이상으로 추산된다.
잔디깎는 기계부터, 커피그라인더, 산업용 종이절단기 등 전체적인 절삭날 시장은 매우 넓다.
주방에 존재하는 많은 무뎌진 칼과 반복적으로 구매하는 면도날로부터 입증된 바와 같이, 강(steel)은 쉽게 녹슬고 무뎌진다. 달에 간 지는 40년을 넘었으나 절삭날 기술의 발전은 더딘 상태이다.
Diamaze 라는 한 독일회사는 다이아몬드 날은 강에 비해 1000배 이상 길게 그 날카로움을 유지할 수 있다고 보고하였다. 다이아몬드와 cBN(Cubic Boron Nitride), 텅스텐 탄화물(WC, Tungsten carbide), 텅스텐, TiN, 크롬 붕화물, 크롬 탄화물 등은 알려진 가장 강한 소재들이다. 물론 다이아몬드, cBN 및 다른 경질재는 이미 절삭용이나 연마용으로 사용되고 있다.
그런데 이러한 경질재들이 주방용 칼이나 면도날에 사용되지 못한 이유로는 다음과 같은 점을 들 수 있다.
상기 경질재들은 완성된 모양으로 제공되지 않는다.
대부분의 경우, 경질재들이 분말상으로 제공되므로 브레이징이나 도금과 같은 공정을 통해 적용 대상 표면에 부착된 형태로 사용되어야 하는 제한성이 있다.
한편, 경질재들이 적용되는 다른 형태로는, 금속 베이스의 표면에 얇은 2차원적인 표면층으로 존재하는 것이다.
또 다른 한계점은 예를 들어 다이아몬드의 경우 700℃ 이상에서는 타버리는 점이다.
강(steel)은 보통 1400℃ 이상에서 용해되고 구리는 보통 1300℃ 이상에서 용해되기 때문에, 강이나 구리합금과 같은 고강도 합금은 베이스에 다이아몬드 연마재를 부착하는데 사용되기 어렵다.
이러한 다이아몬드 분말을 베이스에 부착하기 위하여, 매우 낮은 융점을 갖는 새로운 브레이징 합금이 개발되고 있으나, 이러한 브레이징 합금은 유동성의 향상과 다이아몬드와의 젖음성에 초점을 맞추어 개발되었기 때문에, 두꺼운 3차원 형상으로 만들기에는 충분하지 않은 물성을 갖는다. 이와 같이 두꺼운 3차원 형상을 만들기 어렵기 때문에 양쪽에 비스듬하게 깎인 많은 주방 식칼류와 같은 절삭기구에 있어서 치명적인 문제점이 발생한다.
한편, 첨부된 도 1에 도시된 바와 같이, 비스듬하게 깎인 면의 일측 또는 양측의 면에 형성된 다이아몬드를 포함하는 초경질재층은 칼의 최선단부가 제거되면 더 이상 선단부를 재생할 수 없게 되는데, 대부분의 날을 가는 과정은 최외곽층을 연마하고 선단부의 반경을 줄이는 과정을 포함하며, 이 과정에서 연마층이 제거되어 날의 내구성이 쉽게 저하되게 된다.
이러한 이유로, 다이아몬드와 같은 경질재가 식칼과 같은 부분에 부착되는 방식으로 적용될 때 한계를 가지며, 이는 증착법도 동일하다.
또한, 3차원적인 두꺼운 층을 형성하기 위하여 브레이징 재료를 사용하여 용접방법으로 다이아몬드와 같은 경질재료를 부착할 수 있으나, 대부분의 용접기구는 6000℃를 초과하는 온도를 발생하므로, 접합과정에서 다이아몬드가 소실되는 문제점이 있다.
또한, 브레이징 합금은 금이나 은과 같은 고가의 물질을 베이스로 하는 경우가 많기 때문에, 설사 기술적으로 두꺼운 층의 형성이 가능하다고 해도 대부분의 절삭날에 적용하기에는 현실적인 한계가 있다.
본 발명은 종래에 비해 내구성이 현저하게 향상된 주방용 식칼류와 같은 절삭기구와 이의 제조방법을 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위해 본 발명은, 일측에 경사진 날을 구비하며 제1금속으로 이루어진 몸체, 제2금속으로 이루어지며 경사진 날을 구비하고 상기 몸체의 경사진 날의 적어도 일부의 타측에 배치되는 지지체 및 상기 몸체와 상기 지지체의 계면에 배치되어 상기 몸체 및 지지체와 함께 인선(edge)을 형성하는 경질재층을 포함하고, 상기 경질재층은 상기 인선으로부터 몸체 및 지지체의 계면을 따라 소정 깊이까지 형성되어 있는, 경질재료를 포함하는 절삭날을 구비한 절삭기구를 제공한다.
도 2는 본 발명에 따른 절삭기구를 개략적으로 나타낸 것이다. 도 2에 도시된 바와 같이, 본 발명에 따른 절삭기구(1)는, 일측에 경사진 날을 구비하며 제1금속으로 이루어진 몸체(10)와, 제2금속으로 이루어지며 상기 몸체(10)의 경사진 날과 실질적으로 대칭을 이루는 경사진 날을 구비하고 상기 몸체(10)의 경사진 날의 적어도 일부의 타측에 배치되는 지지체(20)와, 상기 몸체(10)와 상기 지지체(20) 사이의 계면에 배치되는 얇은 경질재층(30)을 포함하고, 상기 경질재층(30)은 몸체(10)와 지지체(20)의 경사진 날이 만나는 인선(edge)부(40)로부터 소정 깊이까지 형성되어 있는 것을 특징으로 한다.
이와 같이, 본 발명에 따른 절삭기구(1)는 인선으로부터 소정 깊이까지 몸체(10)와 지지체(20) 및 몸체(10)와 지지체(20)의 경계면에 배치되는 경질재층(30)의 3층 구조를 이룬다.
상기 몸체(10)를 이루는 제1금속은 절삭기구에 요구되는 강도, 내구성, 인성 등의 물성을 충족시킬 수 있는 물질이면 제한 없이 사용될 수 있으며, 상기 지지체(20)와의 접합이 양호한 물질이 바람직하다. 상기 제1금속으로는 예를 들어, 일반 강(steel)이나 스테인리스강(stainless steel)이 사용될 수 있다.
상기 지지체(20)를 이루는 제2금속은, 절삭기구에 요구되는 강도, 내구성, 인성 등의 물성을 충족시키면서 상기 경질재층(30)을 구성하는 입자들의 특성을 저하시키지 않고, 경질재층(30)을 구성하는 입자들이 몸체(10)에 잘 부착되도록 하는 역할을 할 수 있는 물질이 바람직하다.
특히, 경질재층(30)을 구성하는 경질재로 다이아몬드 입자를 사용할 경우, 다이아몬드 입자는 700℃ 이상에서 산화되므로, 낮은 온도에서, 부착이 될 수 있는 금속이 바람직하다. 이와 같이 사용되는 경질재층(30)의 물질에 맞추어 지지체(20)를 구성하는 제2금속이 선택될 수 있다.
예를 들어, 제2금속으로는 비정질 금속이나 스테인리스강(stainless steel)과 같은 금속이 사용될 수 있다.
상기 경질재층(30)을 이루는 경질재는, 경도가 우수한 재료로 이루어지는 것이 바람직하며, 상기 제1금속에 비해 경도가 2배 이상, 바람직하게는 3배 이상, 더 바람직하게는 4배~10배 정도의 경도를 갖는 것을 사용할 수 있다.
이러한 경질재로는, 다이아몬드, 중금속, 금속 탄화물, 금속 산화물, 금속 질화물, 금속 붕화물, 금속 탄질화물, 금속 붕질화물, 금속 탄산질화물 등이 사용될 수 있으며, 예를 들어, 다이아몬드, 텅스텐, cBN(Cubic Boron Nitride), 텅스텐 탄화물(WC), 티타늄 질화물(TiN), 티타늄 탄질화물(TiCN), 크롬 붕화물, 및 크롬 탄화물 등이 사용될 수 있다.
또한, 상기 경질재층(30)을 구성하는 입자의 형상은, 구(sphere) 형상, 파이버(fiber) 형상, 판(plate) 형상, 플레이크(flake) 형상 등 다양한 형상이 가능하다.
또한, 상기 경질재층(30)은 경질재 입자와 상기 제2금속 간의 혼합층으로 이루어지는 것이 바람직하며, 이때 제2금속은 경질재 입자를 고정하는 바인더 역할을 하고, 상기 경질재층(30)에 있어서 경질재 입자 간의 거리는 상기 제2금속 내에서 100nm 이상 ~ 0.1mm 이하가 되도록 포함되는 유지하는 것이 인선(edge)부의 마이크로 톱니 형상을 유지하도록 하여 절삭성능을 향상시킬 수 있어 보다 바람직하다.
또한, 상기 경질재층(30)은 경질재 입자와 공정금속(eutectic metal)간의 혼합층으로 이루어질 수 있고, 공정금속의 융점이 1,200 ~ 1,300인 것을 사용할 경우, 접합공정의 온도를 낮게 유지할 수 있어 바람직하다.
도 3은 본 발명에 따른 절삭기구(1)를 제조하는 과정을 나타낸 것이다. 도 3에 도시된 바와 같이, 본 발명에 따른 절삭기구(1)는 다음과 같은 공정을 통해 제조될 수 있다.
먼저, 제1금속으로 이루어지며 일 단부가 절결된 구조를 갖는 몸체(10)를 제조한다.
상기 몸체(10)의 절결된 구조에 결합되는 형상을 가지고, 상기 결합되는 계면 측의 일부에 경질재 입자를 부착하여 경질재층(30)을 형성한 구조의 지지체(20)를 제조한다.
상기 경질재층(30)이 상기 몸체(10) 및 지지체(20)의 사이에 배치되도록 한 후, 몸체(10)와 지지체(20)를 접합한다.
그리고 상기 경질재층(30)을 중심으로 경사진 날을 형성하도록 가공하여 인선부(40)를 형성한다.
한편, 경사진 날을 형성하는 공정은, 반드시 상기한 공정 순서에 의하지 않고, 몸체(10)와 지지체(20)를 제조하는 과정에 절삭가공 또는 성형공정에서 동시에 수행할 수도 있다.
상기 몸체(10) 및 지지체(20)의 접합은 단조가공, 용접가공 등 다양한 금속가공 공정을 통해 이루어질 수 있다.
본 발명에 따른 복합구조를 갖는 절삭기구와 그 제조방법은 다음과 같은 이점을 제공한다.
1) 제조 용이성 : 본 발명에 따른 절삭기구는 일측에 경사진 날을 구비하며 제1금속으로 이루어진 몸체와, 제2금속으로 이루어지며 경사진 날을 구비하고 상기 몸체의 경사진 날의 적어도 일부의 타측에 배치되는 지지체, 및 상기 몸체와 상기 지지체의 사이의 계면에 배치되어 인선을 이루는 경질재층을 포함하는 3층 구조로 이루어지고, 이러한 3층 구조의 도입을 통해, 다이아몬드와 같은 경질재로 이루어진 인선이 구비된 주방용 칼을 만들 수 있게 된다.
특히, 본 발명의 일 실시형태에서 사용한 리퀴드메탈의 저온 가단성(malleability)은 열에 의한 열화 없이 3층 구조에 사용된 3종류의 물질이 접합되도록 하여 종래의 구조에 비해 제조 용이성이 향상된다.
특히, 중심에 형성된 얇은 경질재층은 일반적인 식칼 제조 공구를 사용하여 날카롭게 만들 수 있다.
2) 절삭 성능 : 본 발명에 따른 3층 구조로 이루어진 절삭기구의 가장 큰 장점은 경질재가 항상 절삭기구 인선에 존재하는 것이다. 제1금속과 제2금속의 경계면(즉, 절삭기구의 중심부)에 얇은 경질재층이 소정 깊이로 배치되어 있기 때문에 자연적으로 경질재가 인선을 이룬다.
또한, 경질재가 깊이 방향으로 존재하므로, 날을 여러 번 갈아도 경질재가 항상 선단에 위치하여 절삭기구의 절삭성능이 감소하지 않고 최초의 상태를 계속해서 유지할 수 있게 된다.
3) 디자인 자유도 : 본 발명에 따른 3층 구조로 이루어진 절삭기구는 디자인과 기능에 상당한 유연성을 부여할 수 있다. 예를 들어, 필레 나이프와 같은 칼들은 상당한 유연성이 요구된다. 또한, 텍티컬 나이프는 탄성과 인성이 요구된다. 날의 내구성을 칼의 프레임으로부터 분리함으로써, 전형적인 타협점을 제거할 수 있다. 또한, 3층 구조는 강, 티타늄, 알루미늄 또는 심지어 세라믹과 같은 경질 재료를 베이스로 사용할 수 있다.
4) 인성 : 세라믹과 65HRC 이상으로 처리된 강은 매우 취약하다. 그런데 리퀴드메탈은 단면 두께가 0.1mm 이하가 될 때 취약성이 제거된다. 심지어 다이아몬드도 얇은 단면 두께에서는 연성을 구비할 수 있다.
경질재 입자 간의 거리를 0.1mm 미만으로 유지하는 것은 크랙 전파를 억제할 수 있어 전체 기지를 보다 인성이 있도록 만든다.
또한, 금속 몸체는 최대 날 내구성을 위하여 열처리하지 않을 수 있기 때문에 전체 날의 인성을 향상시킬 수 있다.
도 1은 다이아몬드층을 형성한 종래의 주방용 칼의 날부의 손상과정을 설명하기 위한 개략도이다.
도 2는 본 발명에 따른 절삭기구를 개략적으로 나타낸 것이다.
도 3은 본 발명에 따른 절삭기구를 제조하는 과정을 나타낸 것이다.
도 4는 본 발명의 일 실시형태에 따른 3층 구조를 갖는 주방용 칼의 절삭날의 개략도이다.
도 5는 주방용 칼의 몸체를 비정질 금속으로 하였을 때 발생하는 크랙과 이의 전파를 설명하기 위한 개략도이다.
도 6은 본 발명에 따른 주방용 칼의 인선부의 미세조직 상태를 설명하기 위한 개략도이다.
도 7은 본 발명의 다른 실시형태에 따른 3층 구조를 갖는 주방용 칼의 개략도이다.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 4는 본 발명의 바람직한 실시형태에 따른 3층 구조를 갖는 주방용 칼의 날 부분의 개략도이다. 도 4에 도시된 바와 같이, 본 발명의 바람직한 실시형태에 따른 3층 구조의 칼은, 몸체(10)를 이루는 제1금속이 연성이 우수한 강(steel)으로 이루어지고, 상기 지지체(20)를 이루는 제2금속은 비정질 금속으로 이루어진 것을 특징으로 한다. 상기 경질재층(30)은 제2금속과 다이아몬드, cBN과 같은 경질 입자와의 혼합조직으로 이루어진다.
강(steel)은 싸고 연한 반면에 비정질 금속이나 경질재인 다이아몬드 등은 단단하지만 취약하고 비싸다. 그러나 이러한 재료들을 적절한 형상으로 조합할 경우, 다른 재료가 갖지 못한 특성을 보완할 수 있어, 성능과 가격을 최적화할 수 있다.
본 발명의 실시예에서 사용한 비정질 금속의 인장강도는 대략 270kPsi인데, 이러한 인장강도는 다이아몬드 브레이징 합금의 3~5배 수준이다.
사용될 수 있는 비정질 합금으로는 아래 표 1과 같은 조성이 사용될 수 있으나, Zr-Ti-Cu-Ni-Be계, Zr-Ti-Cu-Ni-Al계, Zr-Ti-Ni-Be계, Zr-Cu-Ni-Al계 비정질 합금 등 다양한 비정질 합금이 사용될 수 있으며, 반드시 이에 한정되는 것은 아니다.
비정질합금 조성 (원자%)
1 Fe Mo Ni Cr P C B
68.00 5.00 5.00 2.00 12.50 5.00 2.50
2 Fe Mo Ni Cr P C B Si
68.00 5.00 5.00 2.00 11.00 5.00 2.50 1.50
3 Pd Cu Co P
44.48 32.35 4.05 19.11
4 Pd Ag Si P
77.50 6.00 9.00 7.50
5 Pd Ag Si P Ge
79.00 3.50 9.50 6.00 2.00
6 Pt Cu Ag P B Si
74.70 1.50 0.30 18.0 4.00 1.50
본 발명의 바람직한 실시형태에 따른 절삭기구는, 도 4에 도시된 바와 같이, 중간에 얇은 다이아몬드(또는 다른 경질재)의 경질재층(30)을 구비한 비정질 금속으로 이루어진 지지체(20)와, 강으로 이루어진 몸체(10)의 3층의 복합구조로 형성된 것을 특징으로 한다.
이러한 구조는 전술한 종래기술의 기술적 또는 경제적 문제를 해결한다.
먼저, 비정질 금속으로 이루어진 지지체(20)는, 경질재층(30)을 구성하는 경질재 입자들의 특성을 저하시키지 않으면서, 경질재 입자들이 몸체(10)에 부착되도록 하는 역할을 한다. 한편, 경질재로 다이아몬드를 사용할 경우, 다이아몬드 입자는 700℃ 이상에서 산화되므로 낮은 온도에서 부착시키는 공정이 필수적인데, 본 발명의 바람직한 실시예에서 사용한 비정질 금속들의 경우, 500~650℃에서 가단성이 있어, 다이아몬드 입자의 손상 없이 접합이 가능하게 된다. 즉, 간단한 공정을 통해 상기한 복합구조의 구현이 가능하다. 또한, 낮은 공정온도는 경질재를 보호할 뿐 아니라 보다 저가의 경질재를 사용할 수 있도록 한다.
본 발명의 바람직한 실시 형태와 같은 3층 구조를 가지게 될 경우, 비정질 금속이 갖는 취성(brittleness)를 몸체를 이루는 강이 보완하고, 비정질 금속과 경질재가 내구성을 유지함으로써, 절삭기구의 성능을 일정하게 유지하면서 동시에 수명을 현저하게 늘릴 수 있게 된다.
또한, 상기 비정질 금속은 경사진 날의 한 외측구조를 형성하고, 지지체(20)의 선단부로부터 소정 깊이까지는 경질재 입자가 혼합된 층이 형성되어 있는데, 이러한 기하학적 형상은 날의 특성과 전체 절삭 성능을 향상시키는 역할을 한다.
도 5에 도시된 바와 같이, 비정질 금속만을 베이스로 하고, 일측에 경질재층을 형성하여 절삭날을 만들 경우, 세라믹과 유사하게 쉽게 부러질 수 있다. 비정질 금속의 취약점은 일단 크랙이 생성되면, 크랙의 전파를 막을 수 있는 메카니즘이 없어, 경질재를 수용하는 기초재료로 사용되기 어렵게 한다.
이에 비해, 본 발명의 바람직한 실시형태에서 제안하는 3층 복합구조의 경우, 비정질 금속은 절삭 기능을 수행하지 않고, 다이아몬드나 cBN과 같은 경질재로 형성된 인선부(40)를 유지하는 기능을 수행한다.
또한, 도 6에 도시된 바와 같이, 경질재층(30)은 다수의 경질재 입자가 비정질 금속에 고정된 형태를 유지하고 있고, 경질재 입자는 비정질 금속 기지로부터 돌출된 톱니형상 구조를 형성한다. 이러한 톱니형상 구조는 절삭기구로 피절삭재를 자를 때 보다 용이하게 자를 수 있도록 하는 효과를 부여한다.
도 7은 본 발명의 다른 실시형태에 따른 3층 구조를 갖는 주방용 칼의 개략도이다.
도 7에 도시된 바와 같이, 본 발명의 다른 실시형태에 따른 3층 구조의 칼은, 몸체(10)를 이루는 제1금속이 연성이 우수한 강(steel)으로 이루어지고, 상기 지지체(20)를 이루는 제2금속은 용접 와이어(welding wire) 성분의 금속으로 이루어진 것을 특징으로 한다. 경질재층(30)은 공정금속(eutectic metallic powder)와 WC, W 또는 cBN과 같은 경질 입자와의 혼합물질로 이루어진다.
즉, 본 발명의 다른 실시형태는 지지체(20)를 이루는 제2금속과 경질재층(30)을 다르게 제조한 것을 특징으로 한다.
한편, TIG, MIG, 또는 레이저 용접과 같은 용접 공정은 매우 경제적으로 금속을 접합할 수 있는 공정이나, 이들의 공정온도는 3,000 ~ 6,000℃ 정도로 경질재로 사용되는 W나 cBN도 녹일 수 있는 온도이기 때문에, 이러한 접합법을 사용하고자 할 경우에는, 경질재 등을 손상시키지 않을 정도로 공정 온도를 낮추는 것이 중요하다.
본 발명의 바람직한 실시 형태와 같이, 지지체(20)를 이루는 제2금속을 용접 와이어(welding wire) 성분의 금속으로 할 경우, 용접 와이어 성분의 금속은 융점이 약 1,280℃ 정도로 일반적인 강(steel)에 비해 융점이 약 200℃ 정도 낮기 때문에, 3층 구조를 만드는 접합공정의 공정 온도를 낮출 수 있다.
또한, 경질재층(30)을 공정금속(eutectic metallic powder)와 WC, W 또는 cBN과 같은 경질 입자와의 혼합물질로 사용하는데, 상기 공정금속을 융점이 1,200 ~ 1,300℃인 것을 사용하게 되면, 강(steel)에 비해 융점이 약 200℃ 정도 낮은 온도에서 접합이 가능해진다.
상기 경질재층은 상기 혼합물질의 얇은 층을 몸체(10) 또는 지지체(20)에 접착제를 사용하여 3층 구조로 접착한 후 열원을 가하여 3층에 포함된 금속이 모두 용해되어 완전히 일체화되어야 하는데, 이때 요구되는 온도는 낮을 수록 유리한데, 본 발명의 다른 실시형태에서는 경질재층(30)에 공정금속 분말을 사용하여 공정온도를 낮춘다.
또한, 공정금속의 사용과 함께 용접 과정에 수냉식 지그를 사용할 경우, 3층의 접합 시에 경질재층(30)에 가해지는 온도를 통상적인 용접 와이어의 접합시에 비해 약 300 ~ 500℃ 정도 낮출 수 있게 된다. 이와 같이 3층의 접합 공정에 있어서 경질재층(30)에 가해지는 온도를 낮추는 기술은 사용될 수 있는 경질재의 범위를 크게 넓힐 수 있어 바람직하다.
지지체(20)용 금속으로 사용될 수 있는 물질과 경질재층을 구성하는 공정금속으로 사용될 수 있는 물질의 예는 아래 표 2와 같다. 그러나 본 발명의 다른 실시 형태는 아래 물질 조성에 한정되지 않고, 전술한 기술적 특징을 구현할 수 있는 것이라면 특별히 제한되지 않는다.
물질 조성(mass%)
와이어금속 Cr B Si Mn Fe
30 3.6 1.5 1.5 Bal.
공정 금속분말 CR B Si Fe
44.5 6 2 Bal.

Claims (11)

  1. 일측에 경사진 날을 구비하며 제1금속으로 이루어진 몸체,
    제2금속으로 이루어지며 경사진 날을 구비하고 상기 몸체의 경사진 날의 적어도 일부의 타측에 배치되는 지지체 및
    상기 몸체와 상기 지지체의 계면에 배치되어 상기 몸체 및 지지체와 함께 인선(edge)을 형성하는 경질재층을 포함하고,
    상기 경질재층은 상기 인선으로부터 몸체 및 지지체의 계면을 따라 소정 깊이까지 형성되어 있는, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  2. 제1항에 있어서,
    상기 경질재층은, 다이아몬드, cBN(Cubic Boron Nitride), 텅스텐 탄화물, 텅스텐, 티타늄 질화물, 티타늄 탄질화물, 크롬 붕화물, 및 크롬 탄화물 중에서 선택된 1종 이상을 포함하는 경질재를 포함하는, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  3. 제2항에 있어서,
    상기 경질재층은, 상기 경질재와 제2금속의 혼합조직으로 이루어진, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  4. 제2항에 있어서,
    상기 경질재층은, 상기 경질재와 공정금속(eutectic metal)의 혼합조직으로 이루어진, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  5. 제1항에 있어서,
    상기 제2금속은 비정질 금속으로 이루어진, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  6. 제1항에 있어서,
    상기 제2금속은 용접 스테인리스강인, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 제1금속은 탄소강 또는 스테인리스강인, 경질재료를 포함하는 절삭날을 구비한 절삭기구.
  8. 제1금속으로 이루어지며 일 단부가 절결된 구조를 갖는 몸체를 제조하는 공정과,
    상기 몸체의 절결된 구조에 결합되는 형상을 가지고, 상기 결합되는 계면 측의 일부에 경질재 입자를 부착하여 경질재층을 형성한 구조의 지지체를 제조하는 공정과,
    상기 경질재층이 상기 몸체 및 지지체의 사이에 배치되도록 한 후, 몸체와 지지체를 접합하는 공정을 포함하는, 절삭기구의 제조방법.
  9. 제8항에 있어서,
    상기 몸체와 지지체를 접합하는 공정은 용접공정으로 이루어지는, 절삭기구의 제조방법.
  10. 제8항에 있어서,
    상기 몸체와 지지체를 접합하는 공정은 단조공정으로 이루어지는, 절삭기구의 제조방법.
  11. 제10항에 있어서,
    상기 단조는 500~650℃에서 수행되는, 경질재료를 포함하는 절삭날을 구비한 절삭기구의 제조방법.
PCT/KR2017/012207 2016-11-01 2017-11-01 경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법 WO2018084549A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160144325 2016-11-01
KR10-2016-0144325 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018084549A1 true WO2018084549A1 (ko) 2018-05-11

Family

ID=62076308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012207 WO2018084549A1 (ko) 2016-11-01 2017-11-01 경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018084549A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010049381A (ko) * 1999-07-14 2001-06-15 기미코 스에다 식칼 등 이기의 다이아몬드 또는 시비엔이 배합된 칼날재
KR100322779B1 (ko) * 1998-11-02 2002-07-08 채기웅 순간가열과냉각방식을이용한다이아몬드계절삭공구의제조방법과그에의해제조한다이아몬드계절삭공구
US20040226176A1 (en) * 2003-04-03 2004-11-18 Peterlin Dennis J. Razor blades having a non-linear cutting edge and a method for manufacture thereof
KR20130014826A (ko) * 2011-08-01 2013-02-12 김훈동 경도 및 내마모성이 우수한 다이아몬드 공구 및 그 제조 방법
WO2015199230A1 (ja) * 2014-06-27 2015-12-30 京セラ株式会社 立方晶窒化硼素焼結体および切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322779B1 (ko) * 1998-11-02 2002-07-08 채기웅 순간가열과냉각방식을이용한다이아몬드계절삭공구의제조방법과그에의해제조한다이아몬드계절삭공구
KR20010049381A (ko) * 1999-07-14 2001-06-15 기미코 스에다 식칼 등 이기의 다이아몬드 또는 시비엔이 배합된 칼날재
US20040226176A1 (en) * 2003-04-03 2004-11-18 Peterlin Dennis J. Razor blades having a non-linear cutting edge and a method for manufacture thereof
KR20130014826A (ko) * 2011-08-01 2013-02-12 김훈동 경도 및 내마모성이 우수한 다이아몬드 공구 및 그 제조 방법
WO2015199230A1 (ja) * 2014-06-27 2015-12-30 京セラ株式会社 立方晶窒化硼素焼結体および切削工具

Similar Documents

Publication Publication Date Title
AU2001275856C1 (en) Reducing metals as a brazing flux
CA1216158A (en) Composite compact component and a process for the production of the same
CA3173863A1 (en) Composite wear pad and methods of making the same
CN1014306B (zh) 低压粘结金刚石聚晶体及其制造方法
EP2556908A1 (en) Composite body
CN108748702B (zh) 金刚石锯片
WO2012070563A1 (ja) 接合体
CN102317014B (zh) 具有耐磨损的包覆层的切削刀具部件
WO2018084549A1 (ko) 경질재료를 포함하는 절삭날을 구비한 절삭기구와 이의 제조방법
US20180169796A1 (en) Brazing processes and brazed products
WO2020113798A1 (zh) 一种军工装甲凯夫拉层钻孔用长寿命超薄烧结钎焊孔钻及其生产工艺
JP2004060201A (ja) 高速回転操業条件ですぐれた耐微少欠け性を発揮する掘削工具の切刃片
JP2011212226A (ja) 抗菌性に優れた刃物と刃物用材およびその製造方法
KR102532558B1 (ko) 고체 다이아몬드 재료의 코팅 방법
Tillmann et al. Brazing of cutting materials
JP4960126B2 (ja) ロウ付けcBN工具
JP5656076B2 (ja) cBNインサート
WO2011145856A2 (ko) 와이어 공구
JPH11320219A (ja) 硬質焼結体スローアウェイチップとその製造方法
CN218362145U (zh) 一种包含断屑槽的车刀
CN107538362A (zh) 金刚石切磨工具及其制备方法
JPH0677976B2 (ja) 超硬物質の焼結複合体
JPH07308805A (ja) 硬質焼結体切削加工具
JP2002013377A (ja) 切刃片のろう付け接合部がすぐれた耐衝撃性および接合強度を有する掘削工具
JPH07138093A (ja) ダイヤモンド膜状体,その製造方法およびダイヤモンド被覆体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17866551

Country of ref document: EP

Kind code of ref document: A1