WO2018082563A1 - 驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置 - Google Patents

驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置 Download PDF

Info

Publication number
WO2018082563A1
WO2018082563A1 PCT/CN2017/108931 CN2017108931W WO2018082563A1 WO 2018082563 A1 WO2018082563 A1 WO 2018082563A1 CN 2017108931 W CN2017108931 W CN 2017108931W WO 2018082563 A1 WO2018082563 A1 WO 2018082563A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
transistor
voltage
photoelectric
Prior art date
Application number
PCT/CN2017/108931
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
吕敬
陈小川
王磊
刘冬妮
卢鹏程
付杰
肖丽
岳晗
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/780,747 priority Critical patent/US10560647B2/en
Publication of WO2018082563A1 publication Critical patent/WO2018082563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • Embodiments of the present disclosure relate to a driving circuit and a driving method, an active pixel sensor, an image sensor, and an electronic device.
  • the camera has the ability to shoot video or capture still images.
  • the image sensor of the camera includes an active pixel sensor that senses light through an active pixel sensor when the camera takes an image.
  • the active pixel sensor converts the sensed light into a photoelectric current
  • the image sensor converts the photoelectric current into pixel values of the pixel and stores it in an image file to form an image.
  • At least one embodiment of the present disclosure provides a driving circuit of an active pixel sensor including a reset circuit, a photoelectric sensing circuit, a signal forming circuit, a signal conversion circuit, and a signal output circuit.
  • the reset circuit is coupled to the photo-sensing circuit, the signal forming circuit, and the signal conversion circuit, and configured to transmit a first voltage to the photo-sensing circuit and the signal under control of a reset signal a circuit for resetting the photo-sensing circuit and the signal forming circuit;
  • the photo-sensing circuit is coupled to the signal forming circuit, configured to perform photoelectric conversion on incident light illumination under control of the first control signal to form a photoelectric voltage signal;
  • the signal forming circuit is further connected to the signal conversion circuit, configured to transmit the photoelectric voltage signal to the signal conversion circuit under the control of the second control signal, and to compensate the photoelectric voltage signal Transmitting to the signal conversion circuit;
  • the signal output circuit is coupled to the signal conversion circuit and the signal forming circuit, configured to transmit
  • the reset circuit is further connected to the first voltage terminal and the reset signal terminal to receive the reset signal and the first voltage;
  • the sensing circuit is further connected to the ground end and the first control signal end to ground and receive the first control signal;
  • the signal forming circuit is further connected to the second control signal end to receive the second control signal;
  • the signal output circuit is further coupled to the second voltage terminal and the third control signal terminal to receive the second voltage and the second control signal.
  • the signal forming circuit includes: a second capacitor, a fourth transistor, and a fifth transistor; wherein the first pole of the fourth transistor and the first capacitor Connected to one end, a second pole of the fourth transistor is connected to the signal conversion circuit, a gate of the fourth transistor receives the second control signal; a first pole of the fifth transistor and the signal a switching circuit is connected, a second pole of the fifth transistor is coupled to the first end of the second capacitor, a gate of the fifth transistor receives the second control signal; and a second end of the second capacitor Receiving the second voltage.
  • the reset circuit includes: a first transistor and a second transistor; wherein a gate of the first transistor receives the reset signal, the first transistor The first pole receives the first voltage, the second pole of the first transistor is coupled to the photo sensing circuit; the gate of the second transistor receives the reset signal, the first of the second transistor The pole receives the first voltage, and the second pole of the second transistor is coupled to the signal forming circuit and the signal conversion circuit.
  • the photo sensing circuit includes: a photodiode, a third transistor, and a first capacitor, wherein an anode of the photodiode is grounded, and a cathode and a cathode of the photodiode a first pole connection of the third transistor; a gate of the third transistor receiving the first control signal, a second pole of the third transistor and a first end of the first capacitor, the first A second pole of the transistor is coupled to the signal forming circuit, and a second end of the first capacitor is coupled to ground.
  • the signal conversion circuit includes a driving transistor, wherein a gate of the driving transistor and a first end of the second capacitor and a fifth transistor a diode connected to a second pole of the second transistor; a source of the driving transistor is coupled to the signal output circuit, a first pole of the fifth transistor; a drain of the driving transistor and the signal The output circuit and the second pole of the fourth transistor are connected.
  • the signal output circuit includes: a sixth transistor and a seventh transistor, wherein a gate of the sixth transistor receives the third control a signal, a first pole of the sixth transistor receives the second voltage, a second pole of the sixth transistor is coupled to a source of the driving transistor, and a gate of the seventh transistor receives the third a control signal, a first pole of the seventh transistor being coupled to a drain of the drive transistor, and a second pole of the seventh transistor being coupled to an output of the signal conversion circuit.
  • the reset circuit, the photo sensing circuit, the signal forming circuit, the signal conversion circuit, and the signal output circuit are each formed using a P-type transistor.
  • At least one embodiment of the present disclosure also provides an active pixel sensor including any of the above described drive circuits.
  • At least one embodiment of the present disclosure also provides an image sensor including a plurality of pixel units arranged in an array, the at least one pixel unit including the above-described active pixel sensor.
  • At least one embodiment of the present disclosure also provides an electronic device including the above image sensor.
  • At least one embodiment of the present disclosure also provides a driving method of a driving circuit of the above active pixel sensor, comprising: a reset phase, a light sensation accumulation phase, a discharge phase, and a signal acquisition phase.
  • the reset phase the reset circuit transmits the first voltage to the signal forming circuit and the photo sensing circuit to reset the photo sensing circuit and the signal forming circuit; a photo-sensing circuit that photoelectrically converts incident light to form the photo-voltage signal; in the discharging phase, the signal forming circuit transmits the photo-voltage signal to the signal conversion circuit,
  • the signal conversion circuit converts the photoelectric voltage signal into a compensated photoelectric voltage signal; in the signal acquisition phase, the signal output circuit outputs the second voltage to the signal conversion circuit, and the signal conversion The circuit outputs a photoelectric current signal to the signal output circuit according to the compensated photoelectric voltage signal.
  • a reset signal is provided, and a first voltage of the first voltage terminal is transmitted to the signal under control of the reset signal Forming a circuit and the photo-sensing circuit to reset the photo-sensing circuit and the signal forming circuit; providing a first control signal during the light-sensing accumulation phase, the photo-sensing circuit being illuminated by the incident light And performing photoelectric conversion to form the photoelectric voltage signal under control of the first control signal; in the discharging phase, providing a second control signal, the signal forming circuit being controlled under the control of the second control signal Transmitting the photoelectric voltage signal to the signal conversion circuit, the signal conversion circuit converting the photoelectric voltage signal into the compensated photoelectric voltage signal Providing a third control signal, in the signal acquisition phase, under the control of the third control signal, the signal output circuit outputs the second voltage to the signal conversion circuit, and the signal conversion circuit is The compensated photovoltage signal outputs the photocurrent signal to
  • the signal forming circuit transmits the photoelectric voltage signal to the signal conversion circuit under the control of the second control signal, the signal conversion circuit Converting the photoelectric voltage signal into the compensated photoelectric voltage signal, comprising: the fourth transistor and the fifth transistor being turned on under the control of the second control signal; and the photoelectric voltage signal of the first capacitor passing through the fourth
  • the transistor is coupled to a drain of the driving transistor and flows out of a source of the driving transistor to form a gate voltage signal; the gate voltage signal is transmitted to the second capacitor through the fifth transistor.
  • a first voltage of the first voltage terminal is transmitted to a signal forming circuit and a photo sensing circuit under control of the reset signal to reset the photoelectric
  • the sensing circuit and the signal forming circuit include: under the control of the reset signal, the first transistor and the second transistor are turned on, the first voltage is transmitted to the first capacitor through the first transistor, and passes through the second transistor Transfer to the second capacitor.
  • the photo sensing circuit performs photoelectric conversion under the control of the incident light illumination and the first control signal to form the photoelectric voltage signal, including
  • the third transistor turns on the photodiode and the first capacitor under the control of the first control signal; the photodiode turns on the first capacitor and the ground end under the illumination of the incident light,
  • the first capacitor discharges to the ground and forms a photovoltage signal after the discharging.
  • a signal output circuit outputs the second voltage to the signal conversion circuit, the signal conversion circuit being The compensated photovoltage signal, outputting the photoelectric current signal to the signal output circuit, comprising: conducting, by the third control signal, the sixth transistor and the seventh transistor being turned on; the second voltage Transmitting to a source of the driving transistor through a sixth transistor, a gate voltage signal of the second capacitor is transmitted to a gate of the driving transistor; a drain of the driving transistor outputs a photoelectric current signal and passes through the first Seven transistor outputs.
  • FIG. 1 is a block diagram showing a structure of a driving circuit of an active pixel sensor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a driving circuit of another active pixel sensor according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a driving circuit of another active pixel sensor according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a driving circuit of another active pixel sensor according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a timing signal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of signal transmission in a reset phase according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of signal transmission during a light sensation accumulation phase according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of signal transmission during a discharge phase according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of signal transmission in a signal acquisition phase according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of an active pixel sensor according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of a driving method of an active pixel sensor according to an embodiment of the present disclosure.
  • the active pixel sensor may include a photodiode and a source follower, the anode of the photodiode may be connected to the first voltage terminal, the cathode may be connected to the gate of the source follower, and the source of the source follower is connected to the second voltage terminal.
  • the drain is connected to the bus of the camera, and the second voltage terminal outputs a constant voltage Vdd to the source of the source follower.
  • Vth K(Vdd-Vrst-Vth) 2
  • Vth is equal to the voltage drop between the gate and the source.
  • the photodiode produces a different gate voltage Vrst at the gate of the source follower, which in turn causes the source follower to generate a different photocurrent.
  • the camera's bus can get different photocurrents, so that the camera produces pixel values of different pixels according to different photoelectric currents.
  • the voltage drop Vth between the gate and the source of different source followers is different, so that the photoelectric current generated by the active pixel sensor may be different under the same illumination, so that the camera generates different pixel values according to the photoelectric current, and the captured image The picture is distorted.
  • Embodiments of the present disclosure provide a driving circuit and a driving method thereof, an active pixel sensor, and an electronic device.
  • the driving circuit of the active pixel sensor includes: a reset circuit, a photoelectric sensing circuit, a signal forming circuit, a signal conversion circuit, and a signal output circuit.
  • the reset circuit is coupled to the photo-sensing circuit, the signal forming circuit, and the signal conversion circuit, and configured to transmit a first voltage to the photo-sensing circuit and the signal under control of a reset signal a circuit for resetting the photo-sensing circuit and the signal forming circuit;
  • the photo-sensing circuit is coupled to the signal forming circuit, configured to perform photoelectric conversion on incident light illumination under control of the first control signal to form a photoelectric voltage signal;
  • the signal forming circuit is further connected to the signal conversion circuit, configured to transmit the photoelectric voltage signal to the signal conversion circuit under the control of the second control signal, and to compensate the photoelectric voltage signal Transmitting to the signal conversion circuit;
  • the signal output circuit is coupled to the signal conversion circuit and the signal forming circuit, configured to transmit a second voltage to the signal conversion circuit and the signal under control of a third control signal Forming a circuit and outputting a photoelectric current signal;
  • the signal conversion circuit being configured to form according to the photoelectric voltage signal Said compensation
  • an embodiment of the present disclosure provides a driving circuit of an active pixel sensor (APS) that can be used for an image sensor.
  • the driving circuit includes a reset circuit 1, a photo sensing circuit 2, a signal forming circuit 3, a signal converting circuit 4, and a signal output circuit 5.
  • the reset circuit 1 is connected to the first voltage terminal Vcom, the reset signal terminal Reset, the photoelectric sensing circuit 2, the signal forming circuit 3 and the signal conversion circuit 4 for controlling the first voltage under the control of the reset signal of the reset signal terminal Reset
  • the first voltage of the terminal Vcom is transmitted to the photo-sensing circuit 2 and the signal forming circuit 3, thereby resetting the photo-sensing circuit 2 and the signal forming circuit 3.
  • the photoelectric sensing circuit 2 is further connected to the ground GND, the first control signal end Scan1 and the signal forming circuit 3 for photoelectric conversion under the control of the incident light and the first control signal of the first control signal end Scan1, for example Discharges to the ground and forms a photovoltage signal V 1 after discharge.
  • Signal forming circuit 3 is further connected to the second control signal terminal and the signal conversion circuit 4 Scan2, under control of the second control signal a second control signal terminal of the photoelectric Scan2 voltage signal V 1 is transmitted to the signal conversion circuit 4.
  • the signal output circuit 5 is connected to the second voltage terminal Vdd, the third control signal terminal Scan3, and the signal conversion circuit 4 for controlling the second voltage terminal Vdd under the control of the third control signal of the third control signal terminal Scan3.
  • the two voltages V dd are transmitted to the signal conversion circuit 4.
  • the signal forming circuit 3 compensates the photovoltage signal V 1 in cooperation with the signal conversion circuit 4, and transmits the compensated photovoltage signal V 2 to the signal conversion circuit 4.
  • 4 signal according to photoelectric conversion circuit voltage after the photo signal voltage V 1 is formed compensated signal, a voltage signal by a photoelectric gate voltage signal to obtain the compensated V 2, the signal conversion circuit 4 in the gate voltage signal and the second voltage V 2
  • the photoelectric current signal I is formed under the control of V dd .
  • the photoelectric current signal I is not affected by the voltage drop Vth of the signal conversion circuit 4, and the problem of image picture distortion taken by the image sensor of the active pixel circuit can be avoided.
  • the signal output circuit 5 under the control of a third control signal before the second Scan3 voltage V dd transmitted to the signal conversion circuit 4, thus preventing the signal conversion circuit 4 is always connected to Vdd and a second voltage terminal, the signal The conversion circuit 4 serves as a good protection.
  • the process of generating the photoelectric current signal I by the signal conversion circuit 4 requires four periods of time, namely: a reset phase t1, a light-sensing accumulation phase t2, a discharge phase t3, and a signal acquisition phase t4.
  • the reset phase t1 transmits the first voltage for resetting; in the light sensing accumulation phase t2, the photoelectric sensing circuit 2 performs photoelectric conversion to form a photoelectric voltage signal; in the discharging phase t3, the signal forming circuit 3 Transmitting the photoelectric voltage signal V 1 to the signal conversion circuit 4, and the signal conversion circuit 4 forms a compensated photoelectric voltage signal; in the signal acquisition phase t4, the signal output circuit 5 transmits the second voltage V dd , and the signal conversion circuit 4 is The compensated photovoltage signal forms a photocurrent signal I.
  • the reset circuit 1 includes a first transistor T1 and a second transistor T2.
  • the gate of the first transistor T1 is connected to the reset signal terminal Reset, the first pole thereof is connected to the first voltage terminal Vcom, and the second pole thereof is connected to the photoelectric sensing circuit 2.
  • the gate of the second transistor T2 is connected to the reset signal terminal Reset, the first pole thereof is connected to the first voltage terminal Vcom, and the second pole thereof is connected to the signal forming circuit 3 and the signal conversion circuit 4.
  • the first transistor T1 and the second transistor T2 may be the same transistor, that is, the second pole of the transistor is simultaneously connected to the photo sensing circuit 2, the signal forming circuit 3, and the signal converting circuit 4.
  • the first transistor T1 and the second transistor T2 are turned on, and the first voltage of the first voltage terminal Vcom
  • the first transistor T1 is transmitted to the photo-sensing circuit 2, and is transmitted to the signal forming circuit 3 via the second transistor T2, thereby performing a reset operation on the photo-sensing circuit 2 and the signal forming circuit 3.
  • the photo-sensing circuit 2 includes a photodiode D1, a third transistor T3, and a first capacitor C1.
  • the anode of the photodiode D1 is connected to the ground, and the cathode and the third transistor T3 are connected.
  • the gate of the third transistor T3 is connected to the first control signal terminal Scan1, and the second electrode thereof is connected to the first end of the first capacitor C1, the second pole of the first transistor T1 and the signal forming circuit 3, and the first capacitor C1 The second end is grounded.
  • the first capacitor C1 stores the first voltage of the first voltage terminal Vcom transmitted by the reset circuit.
  • the third transistor T3 turns on the photodiode D1 and the first capacitor C1, and the photodiode D1 performs photoelectric conversion under the irradiation of incident light. becomes reverse-conducting, while the first capacitor C1 is discharged to the ground, and at the end of the light sensing t2 accumulation phase the first capacitor C1 stores a voltage signal to the photo signal voltage V 1.
  • the signal forming circuit 3 includes a second capacitor C2, a fourth transistor T4, and a fifth transistor T5; a first pole of the fourth transistor T4 and a first end of the first capacitor C1 Connected, the second pole is connected to the signal conversion circuit 4, the gate is connected to the second control signal end Scan2; the first pole of the fifth transistor T5 is connected to the signal conversion circuit 4, and the first end of the second pole and the second capacitor C2 Connected, the gate is connected to the second control signal end Scan2; the second end of the second capacitor C2 is connected to the second voltage terminal Vdd.
  • the signal conversion circuit 4 includes a driving transistor D2, a gate of the driving transistor D2 and a first end of the second capacitor C2, a second pole of the fifth transistor T5, and a second transistor T2 The two-pole connection; the source of the driving transistor D2 is connected to the first electrode of the signal output circuit 5 and the fifth transistor T5; the drain of the driving transistor D2 is connected to the signal output circuit 5 and the second electrode of the fourth transistor T4.
  • V GS voltage drop between the V th, between the gate and source of the driving transistor D2 in the source and drain.
  • Vth is also the threshold voltage of the driving transistor D2.
  • the reset circuit 1, the photo induction circuit 2, the signal forming circuit 3, the signal conversion circuit 4, and the signal output circuit 5 are indicated by broken lines.
  • the signal output circuit 5 includes a sixth transistor T6 and a seventh transistor T7.
  • the gate of the sixth transistor T6 is connected to the third control signal end Scan3, the first pole and the first The second voltage terminal Vdd is connected, the second pole thereof is connected to the source of the driving transistor D2, the gate of the seventh transistor T7 is connected to the third control signal terminal Scan3, the first pole is connected to the drain of the driving transistor D2, and the second pole thereof is connected.
  • the pole is connected to the output of the signal conversion circuit.
  • the second pole of the seventh transistor T7 is used to output the photoelectric current signal I generated by the signal conversion circuit. Second pole of the seventh transistor T7 For example, it is electrically connected to a signal processing circuit.
  • the sixth transistor T6 and the seventh transistor T7 are both turned on under the control of the third control signal of the third control signal terminal Scan3, and the second voltage V dd of the second voltage terminal Vdd passes through the sixth transistor.
  • T6 is transmitted to the driving transistor D2 electrode; gate voltage signal V 2 of the second capacitor C2 is transmitted to the gate of the drive transistor D2, the driving transistor 2 is turned under the action of the second capacitor C2 stores a gate voltage signal V 2 is The operation is in a saturated state, whereby the driving transistor D2 can output the photocurrent signal I from the drain and output through the seventh transistor T7.
  • the reset circuit, the photo sensing circuit, the signal forming circuit, the signal conversion circuit, and the signal output circuit may each employ a P-type transistor; for example, the first transistor T1, the second transistor T2, and the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, the seventh transistor T7, and the driving transistor D2 are all P-type transistors.
  • the transistors used in at least one embodiment of the present disclosure may each be a thin film transistor or a field effect transistor or other switching devices having the same characteristics.
  • the source and drain of the transistor used here may be structurally symmetrical, so that the source and the drain may be structurally indistinguishable.
  • one of the extreme source and the other is the drain. Therefore, the source and the drain of all or part of the transistor in the embodiment of the present disclosure. It is interchangeable as needed.
  • the transistors can be divided into N-type and P-type transistors according to the characteristics of the transistors. Embodiments of the present disclosure are described by taking a P-type transistor as an example.
  • the signal conversion circuit generates the photoelectric current signal I, and the detailed operation process of the above active pixel sensor in the reset phase t1, the light sensing accumulation phase t2, the discharge phase t3, and the signal acquisition phase t4, respectively, is as follows.
  • the reset terminal Reset outputs a reset signal of a low level, and under the control of the reset signal, the first transistor T1 and the second transistor T2 are turned on, thereby forming the photoelectric sensing circuit 2 and the signal.
  • Circuit 3 is reset.
  • the first capacitor C1 and the second capacitor C2 are both connected to the first voltage terminal Vcom, and the first voltage terminal Vcom transmits the first voltage V 0 to the first capacitor C1 and the second capacitor C2, and the first capacitor C1 and The second capacitor C2 stores the first voltage V 0 .
  • the voltage signal of the control point N is also set to the first voltage V 0 .
  • the first control signal terminal Scan1 outputs a first control signal of a high level
  • the third transistor T3 is turned off under the control of the first control signal
  • the second control signal terminal Scan2 outputs a high voltage.
  • a second control signal, the fourth transistor T4 and the fifth transistor T5 are turned off under the control of the second control signal;
  • the third control signal terminal Scan3 outputs a third control signal of a high level, at the third control signal Under the control of the sixth transistor T6 and the seventh transistor T7 are turned off.
  • the dotted line in Fig. 6 indicates the unconnected circuit, and the solid line indicates the connected circuit, and the subsequent cases will not be described one by one.
  • the reset signal terminal Reset outputs a reset signal of a high level, and the first transistor T1 and the second transistor T2 are turned off under the control of the reset signal.
  • the first control signal end Scan1 outputs a first control signal of a low level, and the third transistor T3 is turned on under the control of the first control signal to turn on the photodiode D1 and the first capacitor C1; the photodiode D1 is in the incident light Under the illumination, the first capacitor C1 is discharged to the ground end due to the photoelectric conversion, and the voltage signal stored in the first capacitor C1 is the photoelectric voltage signal V 1 at the end of the light absorption accumulation phase t2.
  • the second control signal terminal Scan2 outputs a second control signal of a high level, and the fourth transistor T4 and the fifth transistor T5 are turned off under the control of the second control signal;
  • the third control The signal terminal Scan3 outputs a third control signal of a high level, and under the control of the third control signal Sscan3, the sixth transistor T6 and the seventh transistor T7 are turned off.
  • the degree of reverse conduction of the photodiode D1 is different, so that the degree of discharge of the first capacitor C1 to the ground end in the discharge phase t2 is also different; at the end of the discharge phase t2, The voltage signal stored in the first capacitor C1 is different in magnitude of the photovoltage signal V 1 .
  • the reset signal terminal Reset outputs a reset signal of a high level, and the first transistor T1 and the second transistor T2 are turned off under the control of the reset signal.
  • the first control signal terminal Scan1 outputs a first control signal of a high level, and the third transistor T3 is turned off under the control of the first control signal.
  • a second control signal terminal outputs a low level Scan2 a second control signal, the fourth transistor T4 and the fifth transistor T5 is turned on under control of the second control signal; since the second capacitor C2 is output to a first voltage V 0 The gate of the driving transistor D2, the first voltage V 0 is a low voltage signal, and the driving transistor D2 is also turned on under the control of the first voltage V 0 .
  • the third control signal terminal Scan3 outputs a third control signal of a high level, and the sixth transistor T6 and the seventh transistor T7 are turned off under the control of the third control signal.
  • the reset signal terminal Reset outputs a reset signal of a high level, and the first transistor T1 and the second transistor T2 are turned off under the control of the reset signal.
  • the first control signal terminal Scan1 outputs a first control signal of a high level, and the third transistor T3 is turned off under the control of the first control signal.
  • the second control signal terminal Scan2 outputs a second control signal of a high level, and the fourth transistor T4 and the fifth transistor T5 are turned off under the control of the second control signal.
  • the third control signal terminal Scan3 outputs a third control signal of a low level, and the sixth transistor T6 and the seventh transistor T7 are turned on under the control of the third control signal; the second voltage V dd outputted by the second voltage terminal Vdd passes The sixth transistor T6 is transmitted to the source of the driving transistor D2; the gate voltage signal V 2 stored by the second capacitor C2 is transmitted to the gate of the driving transistor D2, so that the driving transistor D2 is turned on and operates in a saturated state, thus driving the transistor D2 outputs the photocurrent signal I from the drain:
  • the photocurrent signal I is output through the seventh transistor T7.
  • the photoelectric conversion signal formed by the signal conversion circuit under the control of the compensated gate voltage signal V 2 is not affected by the voltage drop V th of the signal conversion circuit, and the image sensor of the active pixel sensor of the above embodiment is avoided.
  • One embodiment of the present disclosure also provides an active pixel sensor that includes a drive circuit provided by any of the embodiments of the present disclosure.
  • an embodiment of the present disclosure further provides an image sensor, the image transmission
  • the sensor includes a plurality of pixel units arranged in an array, the at least one pixel unit comprising an active pixel sensor provided by any of the embodiments of the present disclosure.
  • the image sensor includes, for example, a pixel unit array of X rows and Y columns, and X row lines (selection signal lines Em) and Y column lines (readout lines RL) are formed correspondingly.
  • the image sensor may further include peripheral circuits such as a row driving circuit, a column driving circuit, an amplifying circuit, and a preprocessing circuit.
  • peripheral circuits such as a row driving circuit, a column driving circuit, an amplifying circuit, and a preprocessing circuit.
  • the pixel unit array and the peripheral circuit may be formed on a silicon substrate, a glass substrate, a quartz substrate, or the like, for example, by a semiconductor integrated circuit fabrication process (for example, a CMOS integrated circuit fabrication process), for example, the silicon substrate may be, for example, single crystal silicon.
  • CMOS integrated circuit fabrication process for example, the silicon substrate may be, for example, single crystal silicon.
  • An embodiment of the present disclosure also provides an electronic device including the image sensor provided by any of the embodiments of the present disclosure.
  • the electronic device can be a digital camera, a mobile phone, a tablet, a laptop, a watch, glasses, a camera, and the like.
  • the active pixel sensor since the active pixel sensor includes the driving circuit provided in Embodiment 1, and in the driving circuit, the signal forming circuit forms the compensated gate voltage signal by passing the photoelectric voltage signal V 1 through the signal conversion circuit.
  • V 2 V 1 -V th
  • the second voltage terminal inputs a second voltage V dd to the signal conversion circuit, so that the signal conversion circuit forms the photoelectric current signal I:
  • the photoelectric conversion signal formed by the signal conversion circuit under the control of the compensated gate voltage signal V 2 is not affected by the voltage drop V th of the signal conversion circuit, and the image distortion of the image captured by the active pixel sensor image sensor is avoided. The problem.
  • an embodiment of the present disclosure further provides a driving method of an active pixel sensor, the driving method including a reset phase, a light sensation accumulation phase, a discharge phase, and a signal acquisition phase.
  • Step 201 In the reset phase, the reset signal terminal outputs a reset signal, and the first voltage of the first voltage terminal is transmitted to the signal forming circuit and the photoelectric sensing circuit under the control of the reset signal.
  • Step 202 In the light absorption accumulation stage, the photoelectric sensing circuit performs photoelectric conversion under incident light irradiation to form a photoelectric voltage signal.
  • Step 203 In the discharging phase, the signal forming circuit transmits the photoelectric voltage signal to the signal conversion circuit, and the signal conversion circuit converts the photoelectric voltage signal into a compensated photoelectric voltage signal.
  • Step 204 In the signal acquisition phase, the signal output circuit outputs the second voltage to the signal conversion circuit, and the signal conversion circuit inputs according to the compensated photoelectric voltage signal. A photocurrent signal is output to the signal output circuit.
  • the foregoing step 201 may include: the first transistor and the second transistor are turned on under the control of the reset signal of the reset signal terminal, and the first voltage of the first voltage terminal is transmitted to the first through the first transistor.
  • the capacitor is transmitted to the second capacitor through the second transistor.
  • the foregoing step 202 may include the following sub-steps:
  • Sub-step 2021 The third transistor turns on the photodiode and the first capacitor under the control of the first control signal at the first control signal terminal.
  • Sub-step 2022 The photodiode turns on the first capacitor and the ground terminal under the irradiation of incident light, the first capacitor discharges to the ground, and forms a photoelectric voltage signal after discharging.
  • the foregoing step 203 may include the following sub-steps:
  • Sub-step 2031 the fourth transistor and the fifth transistor are turned on under the control of the second control signal at the second control signal terminal.
  • Sub-step 2032 the photovoltage signal of the first capacitor is transmitted to the drain of the driving transistor through the fourth transistor, and flows out from the source of the driving transistor to form a gate voltage signal.
  • Sub-step 2033 The gate voltage signal is transmitted to the second capacitor through the fifth transistor.
  • the foregoing step 204 may include the following sub-steps:
  • Sub-step 2041 The sixth transistor and the seventh transistor are turned on under the control of the third control signal at the third control signal terminal.
  • Sub-step 2042 the second voltage of the second voltage terminal is transmitted to the source of the driving transistor through the sixth transistor, and the gate voltage signal of the second capacitor is transmitted to the gate of the driving transistor.
  • Sub-step 2043 The drain of the drive transistor outputs a photocurrent signal and is output through the seventh transistor.
  • the photoelectric voltage signal is transmitted to the signal conversion circuit through the signal forming circuit, and the signal conversion circuit obtains the compensated photoelectric voltage signal according to the photoelectric voltage signal, such that the signal conversion circuit is in the compensated photoelectric A photocurrent signal is formed under the control of the voltage signal and the second voltage. Since the compensated photoelectric voltage signal is obtained after the signal forming circuit and the signal conversion circuit, the compensated photoelectric voltage signal eliminates the voltage drop of the signal conversion circuit on the basis of the photoelectric voltage signal, so that the compensated photoelectric The photoelectric current signal formed by the voltage signal is not affected by the voltage drop of the signal conversion circuit, and the problem of image picture distortion taken by the image sensor of the active pixel sensor of the above embodiment is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置。所述驱动电路包括重置电路(1)、光电感应电路(2)、信号形成电路(3)、信号转换电路(4)和信号输出电路(5)。重置电路(1)重置光电感应电路(2)和信号形成电路(3);光电感应电路(2)对入射光照射进行光电转换以形成光电电压信号;信号形成电路(3)将光电电压信号传输给信号转换电路(4),并将补偿后的光电电压信号传输给信号转换电路(4);信号输出电路(5)将第二电压传输至信号转换电路(4)和信号形成电路(3),并输出光电电流信号;信号转换电路(4)形成补偿后的光电电压信号,并输出光电电流信号给信号输出电路(5)。该驱动电路能够避免拍摄的图像画面失真的问题。

Description

驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置 技术领域
本公开的实施例涉及一种驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置。
背景技术
摄像头具有拍摄视频或拍摄静态图像功能。摄像头的图像传感器包括有源像素传感器,在摄像头拍摄图像时,图像传感器通过有源像素传感器感应光线。有源像素传感器将感应到光线转换成光电电流,图像传感器将该光电电流转换成像素点的像素值并保存在图像文件中,从而形成一幅图像。
发明内容
本公开的至少一个实施例提供了一种有源像素传感器的驱动电路,该有源像素传感器的驱动电路包括:重置电路、光电感应电路、信号形成电路、信号转换电路和信号输出电路。所述重置电路与所述光电感应电路、所述信号形成电路和所述信号转换电路连接,配置为在复位信号的控制下,将第一电压传输至所述光电感应电路和所述信号形成电路,以重置所述光电感应电路和所述信号形成电路;所述光电感应电路与所述信号形成电路连接,配置为在第一控制信号的控制下,对入射光照射进行光电转换以形成光电电压信号;所述信号形成电路还与所述信号转换电路连接,配置为在第二控制信号的控制下将所述光电电压信号传输给所述信号转换电路,并将补偿后的光电电压信号传输给所述信号转换电路;所述信号输出电路与所述信号转换电路、信号形成电路连接,配置为在第三控制信号的控制下将第二电压传输至所述信号转换电路和所述信号形成电路,并输出光电电流信号;所述信号转换电路配置为根据所述光电电压信号形成所述补偿后的光电电压信号,并根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路。
例如,本公开的至少一个实施例的驱动电路中,所述重置电路还与第一电压端和复位信号端连接,以接收所述复位信号和所述第一电压;所述光电 感应电路还与接地端和第一控制信号端连接,以接地以及接收所述第一控制信号;所述信号形成电路还与第二控制信号端连接,以接收所述第二控制信号;所述信号输出电路还与第二电压端和第三控制信号端连接,以接收所述第二电压和所述第二控制信号。
例如,本公开的至少一个实施例的驱动电路中,所述信号形成电路包括:第二电容、第四晶体管和第五晶体管;其中,所述第四晶体管的第一极与第一电容的第一端连接,所述第四晶体管的第二极与所述信号转换电路连接,所述第四晶体管的栅极接收所述第二控制信号;所述第五晶体管的第一极与所述信号转换电路连接,所述第五晶体管的第二极与所述第二电容的第一端连接,所述第五晶体管的栅极接收所述第二控制信号;所述第二电容的第二端接收所述第二电压。
例如,本公开的至少一个实施例的驱动电路中,所述重置电路包括:第一晶体管和第二晶体管;其中,所述第一晶体管的栅极接收所述复位信号,所述第一晶体管的第一极接收所述第一电压,所述第一晶体管的第二极与所述光电感应电路连接;所述第二晶体管的栅极接收所述复位信号,所述第二晶体管的第一极接收所述第一电压,所述第二晶体管的第二极与所述信号形成电路和所述信号转换电路连接。
例如,本公开的至少一个实施例的驱动电路中,所述光电感应电路包括:光电二极管、第三晶体管和第一电容,其中,所述光电二极管的阳极接地,所述光电二极管的阴极与所述第三晶体管的第一极连接;所述第三晶体管的栅极接收所述第一控制信号,所述第三晶体管的第二极与所述第一电容的第一端、所述第一晶体管的第二极和所述信号形成电路连接,所述第一电容的第二端接地。
例如,本公开的至少一个实施例的驱动电路中,所述信号转换电路包括驱动晶体管,其中,所述驱动晶体管的栅极与所述第二电容的第一端、所述第五晶体管的第二极和所述第二晶体管的第二极连接;所述驱动晶体管的源极与所述信号输出电路、所述第五晶体管的第一极连接;所述驱动晶体管的漏极与所述信号输出电路、所述第四晶体管的第二极连接。
例如,本公开的至少一个实施例的驱动电路中,所述信号输出电路包括:第六晶体管和第七晶体管,其中,所述第六晶体管的栅极接收所述第三控制 信号,所述第六晶体管的第一极接收所述第二电压,所述第六晶体管的第二极与所述驱动晶体管的源极连接;所述第七晶体管的栅极接收所述第三控制信号,所述第七晶体管的第一极与所述驱动晶体管的漏极连接,所述第七晶体管的第二极与所述信号转换电路的输出端连接。
例如,本公开的至少一个实施例的驱动电路中,所述重置电路、所述光电感应电路、所述信号形成电路、所述信号转换电路和所述信号输出电路均采用P型晶体管形成。
本公开的至少一个实施例还提供了一种有源像素传感器,该有源像素传感器包括上述任一驱动电路。
本公开的至少一个实施例还提供了一种图像传感器,该图像传感器包括排列为阵列的多个像素单元,至少一个像素单元包括上述有源像素传感器。
本公开的至少一个实施例还提供了一种电子装置,包括上述图像传感器。
本公开的至少一个实施例还提供了一种上述有源像素传感器的驱动电路的驱动方法,包括:重置阶段、光感积累阶段、放电阶段、信号采集阶段。在所述重置阶段,所述重置电路将所述第一电压传输至所述信号形成电路和所述光电感应电路,以重置所述光电感应电路和所述信号形成电路;在所述光感积累阶段,所述光电感应电路对入射光照射进行光电转换以形成所述光电电压信号;在所述放电阶段,所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成补偿后的光电电压信号;在所述信号采集阶段,所述信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号输出光电电流信号给所述信号输出电路。
例如,在根据本公开的至少一个实施例的驱动方法中,在所述重置阶段,提供复位信号,在所述复位信号的控制下将所述第一电压端的第一电压传输至所述信号形成电路和所述光电感应电路,以重置所述光电感应电路和所述信号形成电路;在所述光感积累阶段,提供第一控制信号,所述光电感应电路在所述入射光照射下和所述第一控制信号的控制下,进行光电转换以形成所述光电电压信号;在所述放电阶段,提供第二控制信号,在所述第二控制信号的控制下所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成所述补偿后的光电电压信 号;在所述信号采集阶段,提供第三控制信号,在所述第三控制信号的控制下,信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路。
例如,在根据本公开的至少一个实施例的驱动方法中,在所述第二控制信号的控制下所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成补偿后的光电电压信号,包括:在所述第二控制信号的控制下,第四晶体管和第五晶体管导通;所述第一电容的光电电压信号经过第四晶体管传输至驱动晶体管的漏极,并从所述驱动晶体管的源极流出形成栅极电压信号;所述栅极电压信号经过所述第五晶体管传输至第二电容。
例如,在根据本公开的至少一个实施例的驱动方法中,在所述复位信号的控制下将所述第一电压端的第一电压传输至信号形成电路和光电感应电路,以重置所述光电感应电路和所述信号形成电路,包括:在所述复位信号的控制下,第一晶体管和第二晶体管导通,所述第一电压经过第一晶体管传输至第一电容,以及经过第二晶体管传输至第二电容。
例如,在根据本公开的至少一个实施例的驱动方法中,所述光电感应电路在所述入射光照射和所述第一控制信号的控制下,进行光电转换以形成所述光电电压信号,包括:在所述第一控制信号的控制下,第三晶体管导通光电二极管和所述第一电容;所述光电二极管在所述入射光照射下,导通所述第一电容和接地端,所述第一电容向所述接地端放电,并在所述放电后形成光电电压信号。
例如,在根据本公开的至少一个实施例的驱动方法中,在所述第三控制信号的控制下,信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路,包括:在所述第三控制信号的控制下,第六晶体管和第七晶体管导通;所述第二电压经过第六晶体管传输至所述驱动晶体管的源极,所述第二电容的栅极电压信号传输至所述驱动晶体管的栅极;所述驱动晶体管的漏极输出光电电流信号并经过所述第七晶体管输出。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是本公开一实施例提供的一种有源像素传感器的驱动电路结构框图;
图2是本公开一实施例提供的另一种有源像素传感器的驱动电路结构示意图;
图3是本公开一实施例提供的另一种有源像素传感器的驱动电路结构示意图;
图4是本公开一实施例提供的另一种有源像素传感器的驱动电路结构示意图;
图5是本公开一实施例提供的时序信号的示意图;
图6是本公开一实施例提供的在重置阶段的信号传输的示意图;
图7是本公开一实施例提供的在光感积累阶段的信号传输的示意图;
图8是本公开一实施例提供的在放电阶段的信号传输的示意图;
图9是本公开一实施例提供的在信号采集阶段的信号传输的示意图;
图10是本公开一实施例提供有源像素传感器的示意图;
图11是本公开一实施例提供的一种有源像素传感器的驱动方法流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元 件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
有源像素传感器可以包括光电二极管和源随器等部件,光电二极管的阳极可以与第一电压端连接,阴极可以与源随器的栅极连接;源随器的源极与第二电压端连接,漏极连接到摄像头的总线上,第二电压端向源随器的源极输出恒定电压Vdd。当光电二极管有入射光照射时,光电二极管可以进行光电转换,从而拉低源随器栅极的栅极电压Vrst,使源随器导通,此时在源随器的漏极产生光电电流I=K(Vdd-Vrst-Vth)2,Vth等于栅极和源极之间的压降。随着入射光的光照强度不同,光电二极管在源随器的栅极产生的栅极电压Vrst不同,进而使源随器的漏极产生光电电流不同。摄像头的总线就可得到不同的光电电流,使摄像头根据不同的光电电流产生不同像素的像素值。不同源随器的栅极和源极之间的压降Vth不同,这样在相同光照下可能有源像素传感器产生的光电电流不同,使得摄像头根据该光电电流产生了不同的像素值,拍摄的图像画面失真。
本公开的实施例提供了一种驱动电路及其驱动方法、有源像素传感器及电子装置。该有源像素传感器的驱动电路包括:重置电路、光电感应电路、信号形成电路、信号转换电路和信号输出电路。所述重置电路与所述光电感应电路、所述信号形成电路和所述信号转换电路连接,配置为在复位信号的控制下,将第一电压传输至所述光电感应电路和所述信号形成电路,以重置所述光电感应电路和所述信号形成电路;所述光电感应电路与所述信号形成电路连接,配置为在第一控制信号的控制下,对入射光照射进行光电转换以形成光电电压信号;所述信号形成电路还与所述信号转换电路连接,配置为在第二控制信号的控制下将所述光电电压信号传输给所述信号转换电路,并将补偿后的光电电压信号传输给所述信号转换电路;所述信号输出电路与所述信号转换电路、信号形成电路连接,配置为在第三控制信号的控制下将第二电压传输至所述信号转换电路和所述信号形成电路,并输出光电电流信号;所述信号转换电路配置为根据所述光电电压信号形成所述补偿后的光电电压 信号,并根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路。该驱动电路能够避免拍摄的图像画面失真的问题。
参见图1,本公开的一个实施例提供了一种有源像素传感器(APS)的驱动电路,该有源像素传感器可以用于图像传感器。该驱动电路包括:重置电路1、光电感应电路2、信号形成电路3、信号转换电路4和信号输出电路5。
重置电路1与第一电压端Vcom、复位信号端Reset、光电感应电路2、信号形成电路3和信号转换电路4连接,用于在复位信号端Reset的复位信号的控制下,将第一电压端Vcom的第一电压传输至光电感应电路2和信号形成电路3,从而将光电感应电路2和信号形成电路3进行重置。
光电感应电路2还与接地端GND、第一控制信号端Scan1和信号形成电路3连接,用于在入射光照射下和第一控制信号端Scan1的第一控制信号的控制下进行光电转换,例如向接地端放电并在放电后形成光电电压信号V1
信号形成电路3还与第二控制信号端Scan2和信号转换电路4连接,用于在第二控制信号端Scan2的第二控制信号的控制下将光电电压信号V1传输给信号转换电路4。
信号输出电路5与第二电压端Vdd、第三控制信号端Scan3和信号转换电路4连接,用于在第三控制信号端Scan3的第三控制信号的控制下,将第二电压端Vdd的第二电压Vdd传输给信号转换电路4。
信号形成电路3在信号转换电路4的配合下对光电电压信号V1进行补偿,并将补偿后的光电电压信号V2传输给信号转换电路4。信号转换电路4用于根据光电电压信号V1形成补偿后的光电电压信号,由补偿后的光电电压信号得到栅极电压信号V2,信号转换电路4在栅极电压信号V2和第二电压Vdd的控制下形成光电电流信号I。光电电压信号V1经过信号转换电路4形成栅极电压信号V2=V1-Vth,其中Vth是信号转换电路4产生的压降。信号转换电路4形成的光电电流信号I=K(VGS-Vth)2,其中,VGS=Vdd-V2;光电电流信号I:
I=K(Vdd-V2-Vth)2=K[Vdd-(V1-Vth)-Vth]2=K(Vdd-V1)2
所以,这时光电电流信号I不受信号转换电路4的压降Vth的影响,可以避免采用该有源像素电路的图像传感器拍摄的图像画面失真的问题。
在本实施例中,信号输出电路5在第三控制信号Scan3的控制下才将第二电压Vdd传输给信号转换电路4,这样防止信号转换电路4始终与第二电压端Vdd相连,对信号转换电路4起到很好的保护作用。
信号转换电路4产生光电电流信号I的过程需要经过四个时间段,分别为:重置阶段t1、光感积累阶段t2、放电阶段t3和信号采集阶段t4。在重置阶段t1内,重置电路1传输第一电压以进行重置;在光感积累阶段t2内,光电感应电路2进行光电转换形成光电电压信号;在放电阶段t3内,信号形成电路3将光电电压信号V1传输给信号转换电路4,以及信号转换电路4形成补偿后的光电电压信号;在信号采集阶段t4内,信号输出电路5传输第二电压Vdd,以及信号转换电路4根据补偿后的光电电压信号形成光电电流信号I。
可选的,参见图2,在一个示例中,重置电路1包括第一晶体管T1和第二晶体管T2。第一晶体管T1的栅极与复位信号端Reset连接,其第一极与第一电压端Vcom连接,其第二极与光电感应电路2连接。第二晶体管T2的栅极与复位信号端Reset连接,其第一极与第一电压端Vcom连接,其第二极与信号形成电路3和信号转换电路4连接。在另一个示例中,上述第一晶体管T1和第二晶体管T2可以是同一个晶体管,也即该晶体管的第二极同时连接到光电感应电路2、信号形成电路3和信号转换电路4。
在图2所示出的示例中,在重置阶段t1内,在复位信号端Reset的复位信号的控制下,第一晶体管T1和第二晶体管T2导通,第一电压端Vcom的第一电压经过第一晶体管T1传输给光电感应电路2,经过第二晶体管T2传输给信号形成电路3,由此对光电感应电路2和信号形成电路3进行重置操作。
可选的,参见图3,在一个示例中,光电感应电路2包括光电二极管D1、第三晶体管T3和第一电容C1,光电二极管D1的阳极与接地端连接,阴极与第三晶体管T3的第一极连接。
第三晶体管T3的栅极与第一控制信号端Scan1连接,其第二极与第一电容C1的第一端、第一晶体管T1的第二极和信号形成电路3连接,第一电容C1的第二端接地。
在重置阶段t1内,第一电容C1存储由重置电路传输的第一电压端Vcom 的第一电压。在光感积累阶段t2内,在第一控制信号端Scan1的第一控制信号的控制下,第三晶体管T3导通光电二极管D1和第一电容C1,光电二极管D1在入射光照射下进行光电转换,变得反向导通,此时第一电容C1向接地端放电,并在光感积累阶段t2结束时第一电容C1存储的电压信号为光电电压信号V1
可选的,参见图4,在一个示例中,信号形成电路3包括第二电容C2、第四晶体管T4和第五晶体管T5;第四晶体管T4的第一极与第一电容C1的第一端连接,第二极与信号转换电路4连接,栅极与第二控制信号端Scan2连接;第五晶体管T5的第一极与信号转换电路4连接,第二极与第二电容C2的第一端连接,栅极与第二控制信号端Scan2连接;第二电容C2的第二端与第二电压端Vdd连接。
可选的,在一个示例中,信号转换电路4包括驱动晶体管D2,该驱动晶体管D2的栅极与第二电容C2的第一端、第五晶体管T5的第二极和第二晶体管T2的第二极连接;驱动晶体管D2的源极与信号输出电路5、第五晶体管T5的第一极连接;驱动晶体管D2的漏极与信号输出电路5、第四晶体管T4的第二极连接。此时,驱动晶体管D2的源极和漏极之间具有压降Vth,栅极和源极之间的电压为VGS。Vth也即驱动晶体管D2的阈值电压。
在图4所示出的示例中,用虚线框标出了重置电路1、光电感应电路2、信号形成电路3、信号转换电路4和信号输出电路5。
在放电阶段t3内,在第二控制信号端Scan2的第二控制信号的控制下,第四晶体管T4和第五晶体管T5均导通;第一电容C1内的光电电压信号V1经过第四晶体管T4传输至驱动晶体管D2的漏极;驱动晶体管D2从源极输出栅极电压信号V2,V2=V1-Vth,该栅极电压信号V2为经过补偿的光电电压信号并经过第五晶体管T5传输至第二电容C2以存储在第二电容C2。
可选的,仍参见图4,在一个示例中,信号输出电路5包括第六晶体管T6和第七晶体管T7,第六晶体管T6的栅极与第三控制信号端Scan3连接,第一极与第二电压端Vdd连接,其第二极与驱动晶体管D2的源极连接;第七晶体管T7的栅极与第三控制信号端Scan3连接,第一极与驱动晶体管D2的漏极连接,其第二极与信号转换电路的输出端连接。第七晶体管T7的第二极用于输出信号转换电路产生的光电电流信号I。第七晶体管T7的第二极 例如与信号处理电路电连接。
在信号采集阶段t4内,在第三控制信号端Scan3的第三控制信号的控制下第六晶体管T6和第七晶体管T7均导通,第二电压端Vdd的第二电压Vdd经过第六晶体管T6传输至驱动晶体管D2的源极;第二电容C2的栅极电压信号V2传输至驱动晶体管D2的栅极,驱动晶体管2在第二电容C2存储的栅极电压信号V2的作用下导通且工作于饱和状态,由此驱动晶体管D2可以从漏极输出光电电流信号I并经过第七晶体管T7输出。
在本公开的至少一个示例中,重置电路、光电感应电路、信号形成电路、信号转换电路和信号输出电路可以均采用P型晶体管;例如,第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7和驱动晶体管D2均为P型晶体管。
需要说明的是,本公开的至少一个实施例中采用的晶体管均可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管除栅极之外的两极,直接描述了其中一极为源极,另一极为漏极,所以本公开实施例中全部或部分晶体管的源极和漏极根据需要是可以互换的。此外,按照晶体管的特性区分可以将晶体管分为N型和P型晶体管,本公开的实施例均以P型晶体管为例进行说明。基于本公开对P型晶体管实现方式的描述和教导,本领域普通技术人员在没有做出创造性劳动前提下能够容易想到本公开实施例采用N型晶体管的实现方式,因此,这些实现方式也是在本公开的保护范围内的。
图5是复位信号和各控制信号分别在重置阶段t1、光感积累阶段t2、放电阶段t3和信号采集阶段t4中的时序信号图。信号转换电路产生光电电流信号I,上述有源像素传感器分别在重置阶段t1、光感积累阶段t2、放电阶段t3和信号采集阶段t4的详细工作过程如下。
在重置阶段t1内,参见图6,复位端Reset输出低电平的复位信号,在该复位信号的控制下第一晶体管T1和第二晶体管T2导通,从而将光电感应电路2和信号形成电路3重置。具体而言,第一电容C1和第二电容C2均与第一电压端Vcom连通,第一电压端Vcom将第一电压V0传输至第一电容C1和第二电容C2,第一电容C1和第二电容C2储存该第一电压V0。另外, 控制点N的电压信号也被设置为该第一电压V0
并且,在重置阶段t1内,第一控制信号端Scan1输出高电平的第一控制信号,在该第一控制信号的控制下第三晶体管T3关断;第二控制信号端Scan2输出高电平的第二控制信号,在该第二控制信号的控制下第四晶体管T4和第五晶体管T5关断;第三控制信号端Scan3输出高电平的第三控制信号,在该第三控制信号的控制下,第六晶体管T6和第七晶体管T7关断。图6中虚线表示未连通的电路,实线表示连通的电路,在后续出现相同情况不再一一说明。
在光感积累阶段t2内,参见图7,复位信号端Reset输出高电平的复位信号,在该复位信号的控制下第一晶体管T1和第二晶体管T2关断。第一控制信号端Scan1输出低电平的第一控制信号,在该第一控制信号的控制下第三晶体管T3导通,将光电二极管D1与第一电容C1导通;光电二极管D1在入射光的照射下由于光电转换而反向导通,使得第一电容C1向接地端放电;在光感积累阶段t2结束时,第一电容C1内储存的电压信号即为光电电压信号V1
而且,在光感积累阶段t2内,第二控制信号端Scan2输出高电平的第二控制信号,在该第二控制信号的控制下第四晶体管T4和第五晶体管T5关断;第三控制信号端Scan3输出高电平的第三控制信号,在该第三控制信号Sscan3的控下,第六晶体管T6和第七晶体管T7关断。
需要说明的是:在不同强度的入射光照射下,光电二极管D1反向导通的程度不同,使得在放电阶段t2内第一电容C1向接地端放电的程度也不同;在放电阶段t2结束时,第一电容C1内储存的电压信号即为光电电压信号V1的大小也不同。
在放电阶段t3内,参见图8,复位信号端Reset输出高电平的复位信号,在该复位信号的控制下第一晶体管T1和第二晶体管T2关断。第一控制信号端Scan1输出高电平的第一控制信号,在该第一控制信号的控制下第三晶体管T3关断。
第二控制信号端Scan2输出低电平的第二控制信号,在该第二控制信号的控制下第四晶体管T4和第五晶体管T5导通;由于第二电容C2将第一电压V0输出给驱动晶体管D2的栅极,该第一电压V0为低压信号,在该第一 电压V0的控制下驱动晶体管D2也导通。这样第一电容C1的光电电压信号V1经过第四晶体管T4传输至驱动晶体管D2的漏极,驱动晶体管D2再从其源极输出栅极电压信号V2,并将该栅极电压信号V2经过第五晶体管T5对第二电容C2进行充电,将第二电容C2的电压充电至栅极电压信号V2的电压相等,该栅极电压信号V2=V1-Vth,由此第二电容C2存储了栅极电压信号V2
另外,在放电阶段t3内,第三控制信号端Scan3输出高电平的第三控制信号,在该第三控制信号的控制下第六晶体管T6和第七晶体管T7关断。
在信号采集阶段t4内,参见图9,复位信号端Reset输出高电平的复位信号,在该复位信号的控制下第一晶体管T1和第二晶体管T2关断。第一控制信号端Scan1输出高电平的第一控制信号,在该第一控制信号的控制下第三晶体管T3关断。第二控制信号端Scan2输出高电平的第二控制信号,在该第二控制信号的控制下第四晶体管T4和第五晶体管T5关断。
第三控制信号端Scan3输出低电平的第三控制信号,在该第三控制信号的控制下第六晶体管T6和第七晶体管T7导通;第二电压端Vdd输出的第二电压Vdd经过第六晶体管T6传输至到驱动晶体管D2的源极;第二电容C2存储的栅极电压信号V2传输到驱动晶体管D2的栅极,使得驱动晶体管D2导通并工作在饱和状态,这样驱动晶体管D2从漏极输出光电电流信号I:
I=K(VGS-Vth)2=K(Vdd-V2-Vth)2=K[Vdd-(V1-Vth)-Vth]2=K(Vdd-V1)2
通过第七晶体管T7输出该光电电流信号I。
在本公开实施例中,由于信号形成电路将光电电压信号V1传输给信号转换电路,信号转换电路形成补偿后的栅极电压信号V2=V1-Vth,第二电压端将第二电压Vdd传输给信号转换电路,这样信号转换电路形成光电电流信号I:
I=K(VGS-Vth)2=K[Vdd-(V1-Vth)-Vth]2=K(Vdd-V1)2
所以,信号转换电路在补偿后的栅极电压信号V2控制下所形成的光电电流信号不受信号转换电路的压降Vth的影响,避免采用上述实施例的有源像素传感器的图像传感器拍摄的图像画面失真的问题。
本公开的一个实施例还提供了一种有源像素传感器,该有源像素传感器包括本公开任一实施例所提供的驱动电路。
如图10所示,本公开的一个实施例还提供了一种图像传感器,该图像传 感器包括排列为阵列的多个像素单元,至少一个像素单元包括本公开任一实施例所提供的有源像素传感器。该图像传感器例如包括X行Y列的像素单元阵列,相应地形成有X条行线(选择信号线Em)和Y条列线(读出线RL)。
除了像素单元阵列之外,该图像传感器还可以包括行驱动电路、列驱动电路、放大电路、预处理电路等外围电路。像素单元阵列和外围电路例如可以通过半导体集成电路制备工艺(例如CMOS集成电路制备工艺)形成在硅衬底、玻璃衬底、石英衬底上等,例如,该硅衬底例如可以为单晶硅衬底或绝缘体上硅(SOI)衬底等。
本公开的一个实施例还提供了一种电子装置,该电子装置包括本公开任一实施例提供的图像传感器。例如,该电子装置可以是数字照相机、移动电话、平板电脑、笔记本电脑、手表、眼镜、摄像头等。
在本公开实施例中,由于有源像素传感器包括实施例一提供的驱动电路,又由于在该驱动电路中,信号形成电路将光电电压信号V1经过信号转换电路形成补偿后的栅极电压信号V2=V1-Vth,第二电压端向信号转换电路输入第二电压Vdd,这样信号转换电路形成光电电流信号I:
I=K(VGS-Vth)2=K[Vdd-(V1-Vth)-Vth]2=K(Vdd-V1)2
所以,信号转换电路在补偿后的栅极电压信号V2控制下所形成的光电电流信号不受信号转换电路的压降Vth的影响,避免包括该有源像素传感器图像传感器拍摄的图像画面失真的问题。
参见图11,本公开的实施例还提供了一种有源像素传感器的驱动方法,该驱动方法包括重置阶段、光感积累阶段、放电阶段和信号采集阶段。
步骤201:在重置阶段,复位信号端输出复位信号,在该复位信号的控制下将第一电压端的第一电压传输至信号形成电路和光电感应电路。
步骤202:在光感积累阶段,光电感应电路在入射光照射下进行光电转换以形成光电电压信号。
步骤203:在放电阶段,所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成补偿后的光电电压信号。
步骤204:在信号采集阶段,所述信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号,输 出光电电流信号给所述信号输出电路。
可选的,在一个示例中,上述步骤201可以包括:在复位信号端的复位信号的控制下,第一晶体管和第二晶体管导通,第一电压端的第一电压经过第一晶体管传输至第一电容,经过第二晶体管传输至第二电容。
可选的,在一个示例中,上述步骤202可以包括如下的子步骤:
子步骤2021:在第一控制信号端的第一控制信号的控制下,第三晶体管导通光电二极管和第一电容。
子步骤2022:该光电二极管在入射光照射下,导通第一电容和接地端,第一电容向接地端放电,并在放电后形成光电电压信号。
可选的,在一个示例中,上述步骤203可以包括如下的子步骤:
子步骤2031:在第二控制信号端的第二控制信号的控制下,第四晶体管和第五晶体管导通。
子步骤2032:第一电容的光电电压信号经过第四晶体管传输至驱动晶体管的漏极,并从驱动晶体管的源极流出形成栅极电压信号。
子步骤2033:该栅极电压信号经过第五晶体管传输至第二电容。
可选的,在一个示例中,上述步骤204可以包括如下的子步骤:
子步骤2041:在第三控制信号端的第三控制信号的控制下,第六晶体管和第七晶体管导通。
子步骤2042:第二电压端的第二电压经过第六晶体管传输至驱动晶体管的源极,第二电容的栅极电压信号传输至驱动晶体管的栅极。
子步骤2043:驱动晶体管的漏极输出光电电流信号并经过第七晶体管输出。
在本公开的至少一个实施例中,通过信号形成电路将光电电压信号传输至信号转换电路,信号转换电路根据该光电电压信号得到补偿后的光电电压信号,这样信号转换电路在该补偿后的光电电压信号和第二电压的控制下形成光电电流信号。由于补偿后的光电电压信号是经过信号形成电路和信号转换电路后得到的,使得补偿后的光电电压信号在光电电压信号的基础上消除了信号转换电路的压降,这样通过该补偿后的光电电压信号形成的光电电流信号不受信号转换电路的压降的影响,避免采用上述实施例的有源像素传感器的图像传感器拍摄的图像画面失真的问题。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年11月1日递交的中国专利申请第201610937403.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种有源像素传感器的驱动电路,包括:重置电路、光电感应电路、信号形成电路、信号转换电路和信号输出电路,其中:
    所述重置电路与所述光电感应电路、所述信号形成电路和所述信号转换电路连接,配置为在复位信号的控制下,将第一电压传输至所述光电感应电路和所述信号形成电路,以重置所述光电感应电路和所述信号形成电路;
    所述光电感应电路与所述信号形成电路连接,配置为在第一控制信号的控制下,对入射光照射进行光电转换以形成光电电压信号;
    所述信号形成电路还与所述信号转换电路连接,配置为在第二控制信号的控制下将所述光电电压信号传输给所述信号转换电路,并将补偿后的光电电压信号传输给所述信号转换电路;
    所述信号输出电路与所述信号转换电路、信号形成电路连接,配置为在第三控制信号的控制下将第二电压传输至所述信号转换电路和所述信号形成电路,并输出光电电流信号;
    所述信号转换电路配置为根据所述光电电压信号形成所述补偿后的光电电压信号,并根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路。
  2. 如权利要求1所述的驱动电路,其中,所述重置电路还与第一电压端和复位信号端连接,以接收所述复位信号和所述第一电压;
    所述光电感应电路还与接地端和第一控制信号端连接,以接地以及接收所述第一控制信号;
    所述信号形成电路还与第二控制信号端连接,以接收所述第二控制信号;
    所述信号输出电路还与第二电压端和第三控制信号端连接,以接收所述第二电压和所述第二控制信号。
  3. 如权利要求1或2所述的驱动电路,其中,所述信号形成电路包括:
    第二电容、第四晶体管和第五晶体管;
    其中,所述第四晶体管的第一极与第一电容的第一端连接,所述第四晶体管的第二极与所述信号转换电路连接,所述第四晶体管的栅极接收所述第二控制信号;
    所述第五晶体管的第一极与所述信号转换电路连接,所述第五晶体管的第二极与所述第二电容的第一端连接,所述第五晶体管的栅极接收所述第二控制信号;
    所述第二电容的第二端接收所述第二电压。
  4. 如权利要求3所述的驱动电路,其中,所述重置电路包括:
    第一晶体管和第二晶体管;
    其中,所述第一晶体管的栅极接收所述复位信号,所述第一晶体管的第一极接收所述第一电压,所述第一晶体管的第二极与所述光电感应电路连接;
    所述第二晶体管的栅极接收所述复位信号,所述第二晶体管的第一极接收所述第一电压,所述第二晶体管的第二极与所述信号形成电路和所述信号转换电路连接。
  5. 如权利要求1-4任一所述的驱动电路,其中,所述光电感应电路包括:
    光电二极管、第三晶体管和第一电容,
    其中,所述光电二极管的阳极接地,所述光电二极管的阴极与所述第三晶体管的第一极连接;
    所述第三晶体管的栅极接收所述第一控制信号,所述第三晶体管的第二极与所述第一电容的第一端、所述第一晶体管的第二极和所述信号形成电路连接,所述第一电容的第二端接地。
  6. 如权利要求1-5任一所述的驱动电路,其中,所述信号转换电路包括驱动晶体管,其中,所述驱动晶体管的栅极与所述第二电容的第一端、所述第五晶体管的第二极和所述第二晶体管的第二极连接;
    所述驱动晶体管的源极与所述信号输出电路、所述第五晶体管的第一极连接;
    所述驱动晶体管的漏极与所述信号输出电路、所述第四晶体管的第二极连接。
  7. 如权利要求1-6任一所述的驱动电路,其中,所述信号输出电路包括:
    第六晶体管和第七晶体管,
    其中,所述第六晶体管的栅极接收所述第三控制信号,所述第六晶体管的第一极接收所述第二电压,所述第六晶体管的第二极与所述驱动晶体管的源极连接;
    所述第七晶体管的栅极接收所述第三控制信号,所述第七晶体管的第一极与所述驱动晶体管的漏极连接,所述第七晶体管的第二极与所述信号转换电路的输出端连接。
  8. 如权利要求1-7任一权利要求所述的驱动电路,其中,所述重置电路、所述光电感应电路、所述信号形成电路、所述信号转换电路和所述信号输出电路均采用P型晶体管形成。
  9. 一种有源像素传感器,其中,所述有源像素传感器包括如权利要求1至8任一项权利要求所述的驱动电路。
  10. 一种图像传感器,包括排列为阵列的多个像素单元,至少一个像素单元包括如权利要求9所述的有源像素传感器。
  11. 一种电子装置,包括根据权利要求10的图像传感器。
  12. 一种根据权利要求1所述的有源像素传感器的驱动电路的驱动方法,包括:重置阶段、光感积累阶段、放电阶段、信号采集阶段,其中:
    在所述重置阶段,所述重置电路将所述第一电压传输至所述信号形成电路和所述光电感应电路,以重置所述光电感应电路和所述信号形成电路;
    在所述光感积累阶段,所述光电感应电路对入射光照射进行光电转换以形成所述光电电压信号;
    在所述放电阶段,所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成补偿后的光电电压信号;
    在所述信号采集阶段,所述信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号输出光电电流信号给所述信号输出电路。
  13. 如权利要求12所述的驱动方法,其中,
    在所述重置阶段,提供复位信号,在所述复位信号的控制下将所述第一电压端的第一电压传输至所述信号形成电路和所述光电感应电路,以重置所述光电感应电路和所述信号形成电路;
    在所述光感积累阶段,提供第一控制信号,所述光电感应电路在所述入射光照射下和所述第一控制信号的控制下,进行光电转换以形成所述光电电压信号;
    在所述放电阶段,提供第二控制信号,在所述第二控制信号的控制下所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成所述补偿后的光电电压信号;
    在所述信号采集阶段,提供第三控制信号,在所述第三控制信号的控制下,信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路。
  14. 如权利要求13所述的驱动方法,其中,在所述第二控制信号的控制下所述信号形成电路将所述光电电压信号传输给所述信号转换电路,所述信号转换电路将所述光电电压信号转换成补偿后的光电电压信号,包括:
    在所述第二控制信号的控制下,第四晶体管和第五晶体管导通;
    所述第一电容的光电电压信号经过第四晶体管传输至驱动晶体管的漏极,并从所述驱动晶体管的源极流出形成栅极电压信号;
    所述栅极电压信号经过所述第五晶体管传输至第二电容。
  15. 如权利要求13或14所述的驱动方法,其中,在所述复位信号的控制下将所述第一电压端的第一电压传输至信号形成电路和光电感应电路,以重置所述光电感应电路和所述信号形成电路,包括:
    在所述复位信号的控制下,第一晶体管和第二晶体管导通,所述第一电压经过第一晶体管传输至第一电容,以及经过第二晶体管传输至第二电容。
  16. 如权利要求13-15任一所述的驱动方法,其中,所述光电感应电路在所述入射光照射和所述第一控制信号的控制下,进行光电转换以形成所述光电电压信号,包括:
    在所述第一控制信号的控制下,第三晶体管导通光电二极管和所述第一电容;
    所述光电二极管在所述入射光照射下,导通所述第一电容和接地端,所述第一电容向所述接地端放电,并在所述放电后形成光电电压信号。
  17. 如权利要求13-16任一所述的驱动方法,其中,在所述第三控制信号的控制下,信号输出电路将所述第二电压输出给所述信号转换电路,所述信号转换电路根据所述补偿后的光电电压信号,输出所述光电电流信号给所述信号输出电路,包括:
    在所述第三控制信号的控制下,第六晶体管和第七晶体管导通;
    所述第二电压经过第六晶体管传输至所述驱动晶体管的源极,所述第二电容的栅极电压信号传输至所述驱动晶体管的栅极;
    所述驱动晶体管的漏极输出光电电流信号并经过所述第七晶体管输出。
PCT/CN2017/108931 2016-11-01 2017-11-01 驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置 WO2018082563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/780,747 US10560647B2 (en) 2016-11-01 2017-11-01 Driver circuit, driving method, active pixel sensor, image sensor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610937403.8 2016-11-01
CN201610937403.8A CN106340514B (zh) 2016-11-01 2016-11-01 一种有源像素传感器、驱动电路及驱动方法

Publications (1)

Publication Number Publication Date
WO2018082563A1 true WO2018082563A1 (zh) 2018-05-11

Family

ID=57840946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108931 WO2018082563A1 (zh) 2016-11-01 2017-11-01 驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置

Country Status (3)

Country Link
US (1) US10560647B2 (zh)
CN (1) CN106340514B (zh)
WO (1) WO2018082563A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340514B (zh) * 2016-11-01 2017-10-10 京东方科技集团股份有限公司 一种有源像素传感器、驱动电路及驱动方法
CN108449557B (zh) 2018-03-23 2019-02-15 上海芯仑光电科技有限公司 像素采集电路、光流传感器和光流及图像信息采集系统
CN112532899B (zh) * 2020-11-27 2023-06-30 京东方科技集团股份有限公司 光电转换电路、驱动方法、光电检测基板、光电检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249659A1 (en) * 2005-03-28 2006-11-09 Yoh Takano Photodetection apparatus with operation-mode switching
CN102930824A (zh) * 2012-11-13 2013-02-13 京东方科技集团股份有限公司 像素电路及驱动方法、显示装置
CN103595930A (zh) * 2012-08-16 2014-02-19 索尼公司 固态成像设备、驱动方法及电子设备
CN105789202A (zh) * 2016-05-20 2016-07-20 京东方科技集团股份有限公司 有源像素传感器电路、驱动方法和图像传感器
CN105933623A (zh) * 2016-06-29 2016-09-07 京东方科技集团股份有限公司 像素电路及其驱动方法、图像传感器及图像获取装置
CN106340514A (zh) * 2016-11-01 2017-01-18 京东方科技集团股份有限公司 一种有源像素传感器、驱动电路及驱动方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364605B1 (ko) * 2000-07-19 2002-12-16 (주) 픽셀플러스 넓은 동작 범위를 가지는 이미지 센서 픽셀
US7180544B2 (en) * 2001-03-05 2007-02-20 Matsushita Electric Industrial Co., Ltd. Solid state image sensor
JP4154268B2 (ja) * 2003-03-27 2008-09-24 キヤノン株式会社 撮像装置
JP4298685B2 (ja) * 2004-09-02 2009-07-22 キヤノン株式会社 シフトレジスタ、及び同シフトレジスタを用いた固体撮像装置、カメラ
JP4442675B2 (ja) * 2007-09-28 2010-03-31 ソニー株式会社 画素駆動回路および撮像装置ならびにカメラシステム
JP2009278241A (ja) * 2008-05-13 2009-11-26 Canon Inc 固体撮像装置の駆動方法および固体撮像装置
CN103021338B (zh) * 2012-12-24 2015-08-05 北京京东方光电科技有限公司 像素电路及其驱动方法、显示装置
CN103236238B (zh) * 2013-04-26 2015-07-22 北京京东方光电科技有限公司 像素单元控制电路以及显示装置
CN103456267B (zh) * 2013-08-26 2015-12-02 北京京东方光电科技有限公司 触控显示驱动电路及其驱动方法和显示装置
EP2924979B1 (en) * 2014-03-25 2023-01-18 IMEC vzw Improvements in or relating to imaging sensors
CN103971639B (zh) * 2014-05-06 2016-01-06 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、阵列基板及显示装置
CN104409050B (zh) * 2014-12-24 2017-02-15 京东方科技集团股份有限公司 Oled像素电路及其驱动方法、显示面板及显示装置
CN104700783B (zh) * 2015-04-03 2018-09-11 合肥鑫晟光电科技有限公司 像素驱动电路的驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249659A1 (en) * 2005-03-28 2006-11-09 Yoh Takano Photodetection apparatus with operation-mode switching
CN103595930A (zh) * 2012-08-16 2014-02-19 索尼公司 固态成像设备、驱动方法及电子设备
CN102930824A (zh) * 2012-11-13 2013-02-13 京东方科技集团股份有限公司 像素电路及驱动方法、显示装置
CN105789202A (zh) * 2016-05-20 2016-07-20 京东方科技集团股份有限公司 有源像素传感器电路、驱动方法和图像传感器
CN105933623A (zh) * 2016-06-29 2016-09-07 京东方科技集团股份有限公司 像素电路及其驱动方法、图像传感器及图像获取装置
CN106340514A (zh) * 2016-11-01 2017-01-18 京东方科技集团股份有限公司 一种有源像素传感器、驱动电路及驱动方法

Also Published As

Publication number Publication date
US20180359435A1 (en) 2018-12-13
US10560647B2 (en) 2020-02-11
CN106340514A (zh) 2017-01-18
CN106340514B (zh) 2017-10-10

Similar Documents

Publication Publication Date Title
US10608101B2 (en) Detection circuit for photo sensor with stacked substrates
TWI803506B (zh) 像素及該像素的運作方法
US10825854B2 (en) Stacked photo sensor assembly with pixel level interconnect
US10868990B2 (en) Active pixel sensor and driving method thereof, imager and electronic device
TWI232678B (en) Solid-state imaging apparatus and driving method thereof
JP4529834B2 (ja) 固体撮像装置、固体撮像装置の駆動方法および撮像装置
US10805565B2 (en) CMOS image sensor, pixel circuit and driving method thereof
KR20010034765A (ko) 전역 리셋을 갖는 이미징 어레이용 저-노이즈 액티브 픽셀센서
US20100157120A1 (en) Image sensor with controllable transfer gate off state voltage levels
KR20070055545A (ko) 화소 리셋 전압 부스팅 화소
US11006062B2 (en) Pixel sensing circuit and driving method thereof, image sensor and electronic device
KR20040065331A (ko) 클램프 회로를 갖는 이미지센서
WO2018001014A1 (zh) 像素电路及其驱动方法、图像传感器及图像获取装置
US20140374571A1 (en) Solid-state imaging device
JP2011103651A (ja) イメージセンサー及びその動作方法
CN107093417B (zh) 感光电路及其驱动方法、电子装置
WO2018082563A1 (zh) 驱动电路及驱动方法、有源像素传感器、图像传感器及电子装置
WO2019223329A1 (zh) 像素电路、显示面板、显示设备以及像素电路的控制方法
US9848145B2 (en) Imaging device including pixels
JP2016015680A (ja) 固体撮像素子および撮像装置
WO2018086342A1 (zh) 像素感应电路及其驱动方法、图像传感器、电子设备
US11006064B2 (en) CMOS image sensor and method of operating pixel array by CMOS image sensor
US10757354B2 (en) Pixel sensing circuit and driving method thereof, image sensor and electronic device
US20170187975A1 (en) Signal processing apparatus, control method, image sensor, and electronic apparatus
CN108495064A (zh) 像素电路及图像传感器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17867219

Country of ref document: EP

Kind code of ref document: A1