WO2018082528A1 - 一种信息传输方法及设备 - Google Patents

一种信息传输方法及设备 Download PDF

Info

Publication number
WO2018082528A1
WO2018082528A1 PCT/CN2017/108398 CN2017108398W WO2018082528A1 WO 2018082528 A1 WO2018082528 A1 WO 2018082528A1 CN 2017108398 W CN2017108398 W CN 2017108398W WO 2018082528 A1 WO2018082528 A1 WO 2018082528A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signal
channel
base station
antenna port
Prior art date
Application number
PCT/CN2017/108398
Other languages
English (en)
French (fr)
Inventor
秦熠
栗忠峰
任毅
孙裕
窦圣跃
任海豹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019008986A priority Critical patent/BR112019008986A2/pt
Priority to EP21177308.0A priority patent/EP3937389B1/en
Priority to KR1020197014714A priority patent/KR102221412B1/ko
Priority to CA3042828A priority patent/CA3042828C/en
Priority to JP2019521764A priority patent/JP6957835B2/ja
Priority to EP17867580.7A priority patent/EP3534636B1/en
Publication of WO2018082528A1 publication Critical patent/WO2018082528A1/zh
Priority to US16/289,121 priority patent/US10498511B2/en
Priority to US16/696,595 priority patent/US11329779B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to an information transmission method and device.
  • a user equipment In a Long Term Evolution (LTE) system, a user equipment (User Equipment, UE) can perform uplink channel quality estimation according to the received SRS by using Sounding Reference Signals (SRS) sent to the base station. Wait for the operation.
  • SRS Sounding Reference Signals
  • the low-frequency spectrum resources have become increasingly tense.
  • the 3rd Generation Partnership Project (3GPP) will allocate frequency resources.
  • the rich HF is incorporated into the spectrum used by next-generation wireless communication systems.
  • a wireless communication system using a low frequency as an operating frequency a wireless communication system using a high frequency as an operating frequency has a large transmission loss, that is, a wireless using a high frequency as an operating frequency at the same transmission power.
  • the coverage of the communication system is much lower than that of a wireless communication system that uses low frequency as the operating frequency. Therefore, in order to improve the coverage of wireless communication systems using high frequencies as operating frequencies, the industry has introduced beamforming techniques.
  • Embodiments of the present invention provide an information transmission method and device, which implement beamforming for SRS.
  • the embodiment of the present invention adopts the following technical solutions:
  • a first aspect of the embodiments of the present invention provides an information transmission method, including:
  • the base station configures at least one first resource for the UE, where the first resource is used by the UE to send the target channel and/or the signal, and the base station sends the first indication information to the UE, where the first indication information is used to indicate the correspondence between the first resource and the beam.
  • the beam is an uplink transmit beam or a downlink receive beam or a downlink transmit beam or an uplink receive beam.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends a first indication for indicating the correspondence between the first resource and the beam by sending the UE to the UE.
  • the information is such that the UE can determine the beam required to transmit the target channel and/or the signal according to the first resource and the first indication information.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • At least one first resource may be included in a resource group, and the resource group may include at least one resource subgroup.
  • the target channel and/or The signal may include at least one of the following: an SRS, a Physical Random Access Channel (PRACH), a Physical Uplink Shared Channel (PUSCH), and a Physical Uplink Control Channel (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • uplink tracking signal uplink discovery signal, uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the beam may be identified by at least one of: a port, a precoding matrix, a spatial characteristic parameter, and the beam may also be a spatial filter (spatial) Filtering).
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the correspondence between the first resource and the beam may be indicated in different manners.
  • the first indication information may include: an identifier of each first resource in the resource subgroup, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam corresponding to the identifier of each resource subgroup.
  • the first indication information may include: an identifier of each resource subgroup, and a number of each beam in the beam group corresponding to the identifier of each resource subgroup, where the beam group includes at least one beam (where different resources are included) Subgroups can correspond to the same beam set).
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam group corresponding to the identifier of each resource subgroup (where the identifiers of different resource subgroups may correspond to the same beam group number) ).
  • the first indication information may include: a number of each beam in the beam group.
  • the first indication information may include: a number of the beam group.
  • the first indication information may include: an identifier of each resource subgroup, and an optional range of a beam corresponding to the identifier of each resource subgroup.
  • the first indication information may include: an identifier of each first resource, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and a number of each beam in the beam group corresponding to the identifier of each first resource, where the beam group includes at least one beam (where different The first resource may correspond to the same beam set).
  • the first indication information may include: an identifier of each first resource, and a number of a beam group corresponding to the identifier of each first resource (where the identifiers of different first resources may correspond to the same beam group) Numbering).
  • the first indication information may include: an identifier of each first resource, and an optional range of a beam corresponding to the identifier of each first resource.
  • the base station For the first mode, the base station indicates, by using the first indication information, that the first resource of the same resource subgroup is used, and the UE uses different transmit beams to send the target channel and/or the signal. In this case, correspondingly, the pre-defined or pre-configured In a manner, the base station uses the same receive beam to receive the target channel and/or signal for all the first resources of the same resource subgroup.
  • the base station For mode 2 to mode 6, the base station indicates all the firsts for the same resource subgroup by using the first indication information. For the resource, the UE uses the same transmit beam to transmit the target channel and/or the signal. In this case, the base station may adopt different receiving for the first resource of the same resource subgroup in a pre-defined or pre-configured manner. The beam receives the target channel and/or signal.
  • the user equipment uses the uplink transmit beam paired with the downlink transmit beam or the uplink receive beam to transmit a target channel and/or signal on each sub-resource.
  • the first indication information may be configuration information.
  • the configuration information can be carried in higher layer signaling.
  • the first indication information may be configuration information and a configuration indication.
  • the configuration information is used to indicate the correspondence between the first resource and the beam (the configuration information may include multiple configurations at the same time), and the configuration information may be carried in the high layer signaling; the configuration indication is used to indicate that the UE is performing the target channel and/or When the signal is transmitted, which one of the multiple configurations in the configuration information is used, the configuration indication may be carried in a Downlink Control Indicator (DCI).
  • DCI Downlink Control Indicator
  • the information transmission method may further include: the base station sends a number for indicating the beam to the UE. Configuration information of the correspondence with the beam.
  • the number of the beam may be the order of the beams selected by the base station.
  • the information transmission may further include: the base station sends the UE to the UE to divide the resource group. A second indication information for at least one resource subgroup.
  • the information transmission method is configured before the base station configures the UE for the at least one first resource.
  • the method may further include: the base station receiving the capability indication information sent by the UE, where the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type;
  • the configuring, by the base station, the at least one first resource for the UE may include: configuring, by the base station, the at least one first resource for the UE according to the capability indication information.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • the beam may also be a spatial filter, pre-coded or spatially weighted.
  • a second aspect of the embodiments of the present invention provides an information transmission method, including:
  • the base station configures at least one first resource for the UE, where the first resource is used by the UE to send the target channel and/or the signal, and the base station sends the first indication information to the UE, where the first indication information is used to indicate the correspondence between the first resource and the second resource. relationship.
  • the correspondence between the first resource and the second resource may include at least one of the following:
  • An antenna port of the target channel and/or signal has a quasi-co-located QCL relationship with an antenna port of the channel and/or signal transmitted on the second resource;
  • the target channel and/or signal is transmitted using the same beam as the channel and/or signal transmitted on the second resource;
  • the target channel and/or signal is transmitted using the same spatial filter as the channel and/or signal transmitted on the second resource.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends, by using the UE, a corresponding relationship between the first resource and the second resource.
  • An indication information so that the UE can determine a beam required to transmit the target channel and/or the signal according to the first resource and the first indication information and the second resource; or, so that the UE can determine to send according to the first indication information and the second resource.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • the beam may also be a spatial filter, pre-coded or spatially weighted.
  • the at least one first resource is included in a resource group, and the resource group may include at least one resource subgroup.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the second resource may include: a time domain resource and a frequency domain resource used by the UE to send information to the base station before transmitting the target channel and/or the signal. At least one of a code domain resource and an antenna port; or the second resource may include: a time domain resource, a frequency domain resource, and a code domain resource used by the base station to send information to the UE before transmitting the target channel and/or the signal At least one of the antenna ports.
  • the second resource may be a resource used for transmission of at least one of the following channels and/or signals: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam reference signal, uplink motion reference signal, uplink solution
  • the physical downlink control channel may be a control resource set (CORESET) or a physical downlink control channel that carries control information of a random access response or a system message.
  • the physical downlink shared channel may be a physical downlink shared channel that carries system messages.
  • the first indication information may include: a correspondence between each first resource and the second resource in the resource subgroup.
  • the base station indicates, by using the first indication information, that each first resource of the resource sub-group corresponds to a different second resource, that is, for the first resource of the same resource sub-group, the UE uses different transmit beams to send the target channel and And/or the signal, in this case, correspondingly, the base station can receive the target channel and/or signal by using the same receiving beam for all the first resources of the same resource subgroup in a predefined or pre-configured manner.
  • the first indication information may specifically include: an identifier of each first resource in the resource subgroup, and an identifier of each first resource Corresponding second resource identifier; or the first indication information specifically includes: an antenna port for indicating a signal of each first resource and a antenna port of a signal of the second resource having quasi co-location (Quasi Co-Location, QCL The information of the relationship; or the first indication information specifically includes: an identifier of the second resource corresponding to each first resource.
  • the identifier of the second resource may be included, and the number of identifiers of the second resource is the same as the quantity of the first resource.
  • the correspondence between each second resource and the first resource in the second resource indicated by the first indication information may be predefined.
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • the first indication information may include: a correspondence between each resource subgroup and the second resource.
  • the base station indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE sends the same transmit beam to all the first resources of the same resource sub-group.
  • the target channel and/or signal in this case, correspondingly, may be used in a predefined or pre-configured manner such that the base station receives the target channel and/or signal using different receive beams for the first resource of the same resource subgroup.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup.
  • the first indication information may include: information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource; or the first indication information may specifically
  • the identifier includes: a identifier of the second resource corresponding to each resource subgroup.
  • the first indication information may include: a correspondence between each resource subgroup and a second resource group, where the second resource group includes at least one Two resources.
  • the base station indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE sends the same transmit beam to all the first resources of the same resource sub-group.
  • the target channel and/or signal in this case, correspondingly, may be used in a predefined or pre-configured manner such that the base station receives the target channel and/or signal using different receive beams for the first resource of the same resource subgroup.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup.
  • the identifier of each second resource in the resource group; or the first indication information may specifically include: an identifier of each resource subgroup, and an identifier of the second resource group corresponding to the identifier of each resource subgroup; or
  • the first indication information may specifically include: information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information may include: an identifier of each second resource in the second resource group; or the first indication information may include the first The identifier of the second resource group.
  • the first indication information includes the identifier of the second resource group
  • the second resource quantity in the second resource group is the same as the quantity of the first resource subgroup in the first resource group
  • the first indication information Corresponding relationship between the second resource in the indicated second resource group and the first resource subgroup in the first resource group is predefined.
  • the base station indicates, by using the first indication information, that all the first resources of the same resource subgroup correspond to the same second resource, that is, For all the first resources of the same resource sub-group, the UE sends the target channel and/or signal by using the same transmit beam.
  • the same resource sub-group can be made in a predefined or pre-configured manner.
  • the first resource, the base station receives the target channel and/or signal using different receive beams.
  • the first indication information may further include: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information may include: a correspondence between each first resource and the second resource.
  • the first indication information may specifically include: an identifier of each first resource, and an identifier corresponding to the identifier of each first resource.
  • the identifier of the second resource may be: the first indication information may specifically include: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the correspondence between each first resource and the second resource group, the second resource group includes at least one second resource.
  • the first indication information may specifically include: an identifier of each first resource, and a second corresponding to the identifier of each first resource An identifier of each of the second resources in the resource group; or the first indication information may include: an identifier of each first resource, and an identifier of the second resource group corresponding to the identifier of each first resource; or The first indication information may specifically include: information indicating that the antenna port of the signal of each first resource and the antenna port of the signal of the second resource group have a QCL relationship; or the first indication information may specifically include: An identifier of each second resource in the second resource group corresponding to each of the first resources: or the first indication information may include: an identifier of the second resource group corresponding to each first resource:
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • the second resource group includes one or more second resources.
  • having a QCL relationship refers to having the same antenna port parameters.
  • having a QCL relationship means that the reference signal corresponding to the antenna port has the same parameter, or the QCL relationship means that the user equipment can determine an antenna port having a QCL relationship with the antenna port according to the parameter of one antenna port.
  • the parameter, or QCL relationship means that the two antenna ports have the same parameters, or the QCL relationship means that the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), average departure angle AOD, AOD extension, receive antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, resource identification, transmit power angle spectrum (PAS, Power Azimuth Spectrum), receiver At least one of PAS, PAS.
  • the beam includes at least one of the following, a precoding, a weight number, a beam number, and a spatial filter.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Different antenna port numbers at different times and / or frequencies and / or code domains
  • the resource identifier includes a Channel State Information Reference Signal (CSI-RS) resource identifier, or an SRS resource identifier, used to indicate a beam on the resource, or a resource identifier of the synchronization signal/synchronization signal block, or PRACH
  • CSI-RS Channel State Information Reference Signal
  • SRS Resource identifier
  • the resource identifier of the preamble sequence transmitted or the resource identifier of the DMRS is used to indicate the beam on the resource.
  • two signals may have the same AOA or AOD for indicating the same reception.
  • Beam or transmit beam For example, for the QCL relationship between the downlink signal and the uplink signal or between the uplink signal and the downlink signal port, the AOA and the AOD of the two signals may have a corresponding relationship, or the AOD and the AOA of the two signals have a corresponding relationship, that is, the beam may be utilized.
  • the uplink transmit beam is determined according to the downlink receive beam, or the downlink receive beam is determined according to the uplink transmit beam.
  • a signal transmitted on a port having a QCL relationship may also be understood as having a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and a transmitting beam corresponding to the receiving beam (corresponding to mutual reciprocity) Scenario), a receive beam corresponding to the transmit beam (corresponding to a scene with reciprocity).
  • a signal transmitted on a port having a QCL relationship can also be understood as receiving or transmitting a signal using the same spatial filter.
  • the spatial filter can be at least one of: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the signal transmitted on the port with the QCL relationship can also be understood as having a corresponding beam pair link (BPL).
  • the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL. Upstream BPL, downlink BPL corresponding to the uplink BPL.
  • the QCL relationship described above may have other names without changing the technical nature.
  • it may also be referred to as a spatial QCL relationship or a reciprocal QCL relationship.
  • the first indication information may be configuration information.
  • the configuration information can be carried in higher layer signaling.
  • the first indication information may be configuration information and a configuration indication.
  • the configuration information is used to indicate the correspondence between the first resource and the beam or the second resource (the configuration information may include multiple configurations at the same time), the configuration information may be carried in the high layer signaling, and the configuration indication is used to indicate that the UE is performing the target. Which of the plurality of configurations in the configuration information is used for the transmission of the channel and/or signal, the configuration indication can be carried in the DCI.
  • the time offset of the time unit and the second resource where the channel carrying the first indication information is located is predefined or according to the base station Three configuration information is determined.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the first resource and the second resource is predefined or determined according to the third configuration information of the base station.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the second resource and the time unit in which the channel carrying the first indication information is located is predefined or according to the fourth configuration of the base station Information is determined.
  • the time offset may be a positive value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the second resource and the first resource is predefined or determined according to the third configuration information of the base station.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the information transmission method may further include: the base station sends the UE the resource group for the UE. Divided into second indication information of at least one resource subgroup.
  • the information transmission method before the base station configures at least one first resource for the UE may further include: the base station receiving the capability indication information sent by the UE, where the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type; And configuring, by the base station, the at least one first resource for the UE may include: configuring, by the base station, at least one first resource for the UE according to the capability indication information.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • a third aspect of the embodiments of the present invention provides an information transmission method, including:
  • the UE acquires at least one first resource configured by the base station for the UE, where the first resource is used by the UE to send the target channel and/or the signal, and the UE receives the first indication information, where the first indication information is used to indicate the correspondence between the first resource and the beam.
  • the beam is an uplink transmit beam or a downlink receive beam or a downlink transmit beam or an uplink receive beam.
  • the UE acquires at least one first resource that is configured by the base station to transmit the target channel and/or the signal, and receives the corresponding relationship between the first resource and the beam that is sent by the base station.
  • First indication information In this way, the UE can determine the beam required to transmit the target channel and/or the signal according to the first resource and the first indication information, and can send the target channel on the first resource and the beam required to transmit the target channel and/or the signal. And / or signal.
  • the target channel and/or signal is SRS
  • the UE implements beamforming of the SRS by transmitting the SRS using the determined beam required to transmit the target channel and/or signal.
  • the at least one first resource may be included in a resource group, and the resource group may include at least one resource subgroup.
  • the information transmission method may further include:
  • the UE determines, according to the first resource and the first indication information, a beam required to transmit the target channel and/or the signal, that is, an uplink transmission beam, and transmits the target channel and/or the signal on the first resource and the uplink transmission beam.
  • the UE may directly determine the uplink transmission beam according to the correspondence between the first resource and the first resource and the beam; when the beam is the downlink reception beam, the UE may first according to the first resource and the first Corresponding relationship between a resource and a beam determines a downlink receiving beam, and then, according to a downlink receiving beam, a corresponding relationship between the uplink and downlink beams (the correspondence between the uplink and downlink beams can be obtained by the reciprocity of the uplink and downlink channels) determines an uplink transmitting beam; When the beam is a downlink transmission beam, the UE may firstly correspond to the first resource and the first resource and the beam.
  • the downlink transmit beam is determined, and then the downlink receive beam is determined by using the corresponding relationship between the uplink and downlink beams according to the downlink transmit beam, and finally the uplink transmit beam is determined according to the downlink receive beam and the corresponding relationship between the uplink and downlink beams.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the beam may be a port or may be pre-coded.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the first indication information may include: an identifier of each first resource in the resource subgroup, and a number of a beam corresponding to the identifier of each first resource.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmit beam is specific, the UE determines the number of the beam corresponding to the identifier of the first resource, and then determines the uplink transmit beam according to the beam corresponding to the number of the beam. .
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam corresponding to the identifier of each resource subgroup.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmit beam is specific, the UE determines the identifier of the resource subgroup to which the first resource belongs, and determines a beam corresponding to the identifier of the resource subgroup. Number, and then determine the uplink transmit beam based on the beam corresponding to the number of the beam.
  • the first indication information may include: an identifier of each resource subgroup, and a number of each beam in the beam group corresponding to the identifier of each resource subgroup, and the beam group includes at least one beam.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmit beam is specific, the UE determines the identifier of the resource subgroup to which the first resource belongs, and determines the beam group corresponding to the identifier of the resource subgroup. The number of each beam in the beam is then determined based on one beam in the beam group.
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam group corresponding to the identifier of each resource subgroup.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmit beam is specific, the UE determines the identifier of the resource subgroup to which the first resource belongs, and determines the beam group corresponding to the identifier of the resource subgroup. The number is then determined based on a beam in the beam set.
  • the first indication information may include: a number of each beam in the beam group, or the first indication information may include: a number of the beam group.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmission beam is specific, the UE determines an uplink transmission beam according to one beam in the beam group, and the resource subgroup to which the first resource belongs corresponds to one beam.
  • the first indication information may include: an identifier of each resource subgroup, and an optional range of a beam corresponding to the identifier of each resource subgroup.
  • the UE may determine, according to the first resource and the first indication information, that the uplink transmit beam is specific, the UE determines the identifier of the resource subgroup to which the first resource belongs, and determines a beam corresponding to the identifier of the resource subgroup. An optional range is then determined based on the selectable range of the beam.
  • the first indication information may include: an identifier of each first resource, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and an identifier of each first resource The number of each beam in the corresponding beam group, and the beam group includes at least one beam.
  • the first indication information may include: an identifier of each first resource, and a number of a beam group corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and an optional range of a beam corresponding to the identifier of each first resource.
  • the information transmission method may further include: the UE receiving, by the base station, the indication beam The correspondence between the number and the beam configuration information.
  • the beam corresponding to the number may be determined according to the configuration information.
  • the number of the beam may be the order of the beams selected by the base station.
  • the information transmission method may further include: the UE receiving, by the base station, the resource for the UE The group is divided into second indication information of at least one resource subgroup, and may divide the resource group into at least one resource subgroup according to the second indication information.
  • the information transmission method may further include: the UE transmitting capability indication information to the base station, where the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type.
  • the capability type includes: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • a fourth aspect of the embodiments of the present invention provides an information transmission method, including:
  • the UE acquires at least one first resource configured by the base station for the UE, where the first resource is used by the UE to send the target channel and/or the signal, and the UE receives the first indication information, where the first indication information is used to indicate the first resource and the second resource. Correspondence.
  • the correspondence between the first resource and the second resource may include at least one of the following:
  • An antenna port of the target channel and/or signal has a quasi-co-located QCL relationship with an antenna port of the channel and/or signal transmitted on the second resource;
  • the target channel and/or signal is transmitted using the same beam and/or signal as transmitted over the second resource
  • the target channel and/or signal is transmitted using the same spatial filter as the channel and/or signal transmitted on the second resource.
  • the UE acquires at least one first resource that is configured by the base station to transmit the target channel and/or the signal, and receives the correspondence between the first resource and the second resource that is sent by the base station.
  • the first indication of the relationship In this way, the UE may determine, according to the first resource and the first indication information, a beam required to transmit the target channel and/or the signal, or determine, according to the first indication information and the second resource, a required target for transmitting the target channel and/or signal.
  • the beam can also transmit the target channel and/or signal on the first resource and the beam required to transmit the target channel and/or signal.
  • the target channel and/or signal is SRS
  • the UE implements beamforming of the SRS by transmitting the SRS using the determined beam required to transmit the target channel and/or signal.
  • the beam may also be a spatial filter, pre-coded or spatially weighted.
  • the at least one first resource is included in a resource group, and the resource group may include at least one resource subgroup.
  • the information transmission method may further include: the UE according to the first resource and the first indication information
  • the second resource is determined, and a beam required to transmit the target channel and/or the signal, that is, an uplink transmit beam, is determined according to the beam corresponding to the second resource, and the UE transmits the target channel and/or signal on the first resource and the uplink transmit beam.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the second resource may include: a time domain resource and a frequency domain used by the UE to send information to the base station before transmitting the target channel and/or the signal. At least one of a resource, a code domain resource, and an antenna port; or the second resource may include: a time domain resource, a frequency domain resource, and a code domain used by the base station to send information to the UE before transmitting the target channel and/or the signal At least one of a resource and an antenna port.
  • the second resource may be a resource used for transmission of at least one of the following channels and/or signals: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam reference signal, uplink motion reference signal, uplink solution
  • the physical downlink control channel may be a control resource set (CORESET) or a physical downlink control channel that carries control information of a random access response or a system message.
  • the physical downlink shared channel may be a physical downlink shared channel that carries system messages.
  • the first indication information may include: a correspondence between each first resource and the second resource in the resource subgroup.
  • the first indication information may specifically include: an identifier of each first resource in the resource subgroup, and an identifier of each first resource The identifier of the corresponding second resource; or the first indication information specifically includes: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource; or, the first indication The information specifically includes: an identifier of the second resource corresponding to each first resource.
  • the first indication information includes the identifier of the second resource corresponding to each first resource
  • the identifier of the second resource may be included, and the number of identifiers of the second resource is the same as the quantity of the first resource.
  • the correspondence between each second resource and the first resource in the second resource indicated by the first indication information may be predefined. .
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • the first indication information may include: a correspondence between each resource subgroup and the second resource.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup
  • the first indication information may include: information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource; or the first indication information may specifically
  • the identifier includes: a identifier of the second resource corresponding to each resource subgroup.
  • the first indication information may include: a correspondence between each resource subgroup and a second resource group, where the second resource group includes at least one Two resources.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup The identifier of each second resource in the resource group; or the first indication information may specifically include: an identifier of each resource subgroup, and an identifier of the second resource group corresponding to the identifier of each resource subgroup; or The first indication information may specifically include: information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information may include: an identifier of each second resource in the second resource group; or the first indication information includes the second The ID of the resource group.
  • the first indication information includes the identifier of the second resource group
  • the second resource quantity in the second resource group is the same as the quantity of the first resource subgroup in the first resource group
  • the first indication information Corresponding relationship between the second resource in the indicated second resource group and the first resource subgroup in the first resource group is predefined.
  • the first indication information may further include: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information may include: a correspondence between each first resource and the second resource.
  • the first indication information may specifically include: an identifier of each first resource, and an identifier corresponding to the identifier of each first resource.
  • the identifier of the second resource may be: the first indication information may specifically include: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the correspondence between each first resource and the second resource group, the second resource group includes at least one second resource.
  • the first indication information may specifically include: an identifier of each first resource, and a second corresponding to the identifier of each first resource An identifier of each of the second resources in the resource group; or the first indication information may include: an identifier of each first resource, and an identifier of the second resource group corresponding to the identifier of each first resource; or The first indication information may specifically include: information indicating that the antenna port of the signal of each first resource and the antenna port of the signal of the second resource group have a QCL relationship; or the first indication information may specifically include: An identifier of each second resource in the second resource group corresponding to each of the first resources: or the first indication information may include: an identifier of the second resource group corresponding to each first resource.
  • the first indication information may also include: a correspondence between each first resource and an optional range of the beam.
  • the second resource group includes one or more second resources.
  • having a QCL relationship refers to having the same antenna port parameters.
  • having a QCL relationship means that the reference signal corresponding to the antenna port has the same parameter, or the QCL relationship means that the user equipment can determine an antenna port having a QCL relationship with the antenna port according to the parameter of one antenna port.
  • the parameter, or QCL relationship means that the two antenna ports have the same parameters, or the QCL relationship means that the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), average departure angle AOD, AOD extension, receive antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, resource identification, transmit power angle spectrum (PAS, Power Azimuth Spectrum), receiver At least one of PAS, PAS.
  • the beam includes at least one of the following, a precoding, a weight number, a beam number, and a spatial filter.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a CSI-RS resource identifier, or an SRS resource identifier, used to indicate a beam on the resource. Or the resource identifier of the synchronization signal/synchronization signal block, or the resource identifier of the preamble sequence transmitted on the PRACH, or the resource identifier of the DMRS, used to indicate the beam on the resource.
  • two signals may have the same AOA or AOD for indicating the same reception.
  • Beam or transmit beam For example, for the QCL relationship between the downlink signal and the uplink signal or between the uplink signal and the downlink signal port, the AOA and the AOD of the two signals may have a corresponding relationship, or the AOD and the AOA of the two signals have a corresponding relationship, that is, the beam may be utilized.
  • the uplink transmit beam is determined according to the downlink receive beam, or the downlink receive beam is determined according to the uplink transmit beam.
  • a signal transmitted on a port having a spatial QCL relationship may also be understood as having a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and a transmitting beam corresponding to the receiving beam (corresponding to mutual An easy scenario), a receive beam corresponding to the transmit beam (corresponding to a scene with reciprocity).
  • a signal transmitted on a port having a spatial QCL relationship can also be understood as receiving or transmitting a signal using the same spatial filter.
  • the spatial filter can be at least one of: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • a signal transmitted on a port having a spatial QCL relationship may also be understood as having a corresponding beam pair link (BPL), and the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL.
  • the corresponding uplink BPL is the downlink BPL corresponding to the uplink BPL.
  • the QCL relationship described above may have other names without changing the technical nature.
  • it may also be referred to as a spatial QCL relationship or a reciprocal QCL relationship.
  • the information transmission method may further include: the UE receiving, by the base station, the UE The resource group is divided into second indication information of the at least one resource subgroup, and the resource group is divided into at least one resource subgroup according to the second indication information.
  • the information transmission method may further include: the UE transmitting capability indication information to the base station, where the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • the time offset of the time unit in which the channel carrying the first indication information is located and the second resource is predefined or according to the base station Three configuration information is determined.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the first resource and the second resource is predefined or determined according to the third configuration information of the base station.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the second resource and the time unit in which the channel carrying the first indication information is located is predefined or according to the fourth configuration of the base station Information is determined.
  • the time offset may be a positive value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • the time offset of the second resource and the first resource is predefined or determined according to the third configuration information of the base station.
  • the time offset may be a positive value, a negative value or 0.
  • the time unit can be a time slot, a subframe, a symbol or a mini time slot.
  • a fifth aspect of the embodiments of the present invention provides a base station, including:
  • a configuration unit configured to configure, by the UE, at least one first resource, where the first resource is used by the UE to send the target channel and/or the signal, and the sending unit is configured to send the first indication information to the UE, where the first indication information is used to indicate A correspondence between a resource and a beam, where the beam is an uplink transmit beam or a downlink receive beam or a downlink transmit beam or an uplink receive beam.
  • the at least one first resource may be included in a resource group, and the resource group may include at least one resource subgroup.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the beam may be a port or may be pre-coded.
  • the first resource may be The at least one of the following includes: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the correspondence between the first resource and the beam may be indicated in different manners.
  • the first indication information may include: an identifier of each first resource in the resource subgroup, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam corresponding to the identifier of each resource subgroup.
  • the first indication information may include: an identifier of each resource subgroup, and a number of each beam in the beam group corresponding to the identifier of each resource subgroup, where the beam group includes at least one beam (where different resources are included) Subgroups can correspond to the same beam set).
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam group corresponding to the identifier of each resource subgroup (where the identifiers of different resource subgroups may correspond to the same beam group number) ).
  • the first indication information may include: a number of each beam in the beam group.
  • the first indication information may include: a number of the beam group.
  • the first indication information may include: an identifier of each resource subgroup, and an optional range of a beam corresponding to the identifier of each resource subgroup.
  • the first indication information may include: an identifier of each first resource, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and a number of each beam in the beam group corresponding to the identifier of each first resource, where the beam group includes at least one beam (where different The first resource may correspond to the same beam set).
  • the first indication information may include: an identifier of each first resource, and a number of a beam group corresponding to the identifier of each first resource (where the identifiers of different first resources may correspond to the same beam group) Numbering).
  • the first indication information may include: an identifier of each first resource, and an optional range of a beam corresponding to the identifier of each first resource.
  • the sending unit indicates, by using the first indication information, that the first resource of the same resource subgroup is used, and the UE uses different transmit beams to send the target channel and/or the signal.
  • the corresponding unit may be pre-defined or pre-configured. In such a way that the base station uses the same receive beam to receive the target channel and/or signal for all the first resources of the same resource subgroup.
  • the sending unit indicates, by using the first indication information, that all the first resources of the same resource subgroup are used by the UE to send the target channel and/or the signal by using the same transmit beam.
  • a pre-defined or pre-configured manner such that for a first resource of the same resource sub-group, the base station receives the target channel and/or signal using different receive beams.
  • the user equipment uses the uplink transmit beam paired with the downlink transmit beam or the uplink receive beam to transmit a target channel and/or signal on each sub-resource.
  • the first indication information may be configuration information.
  • the configuration information can be carried in higher layer signaling.
  • the first indication information may be configuration information and a configuration indication.
  • the configuration information is used to indicate the correspondence between the first resource and the beam (the configuration information may include multiple configurations at the same time), and the configuration information may be carried on the upper layer.
  • the configuration indication is used to indicate which one of the multiple configurations in the configuration information is used by the UE when performing the transmission of the target channel and/or the signal, and the configuration indication may be carried in the DCI.
  • the sending unit is further configured to send, to the UE, configuration information that is used to indicate a correspondence between the number of the beam and the beam.
  • the number of the beam may be the order of the beams selected by the base station.
  • the sending unit is further configured to send, to the UE, second indication information that is used by the UE to divide the resource group into the at least one resource subgroup.
  • the base station may further include: a receiving unit, configured to receive the capability sent by the UE Instructing information, the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type; correspondingly, a configuration unit is specifically configured to receive The capability indication information received by the unit configures the UE with at least one first resource.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • a sixth aspect of the embodiments of the present invention provides a base station, including:
  • a configuration unit configured to configure, by the UE, at least one first resource, where the first resource is used by the UE to send the target channel and/or the signal, and the sending unit is configured to send the first indication information to the UE, where the first indication information is used to indicate the first The correspondence between a resource and a second resource.
  • the at least one first resource is included in a resource group, and the resource group may include at least one resource subgroup.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the second resource may include: a time domain resource and a frequency domain resource used by the UE to send information to the base station before transmitting the target channel and/or the signal. At least one of a code domain resource and an antenna port; or the second resource may include: a time domain resource, a frequency domain resource, and a code domain resource used by the base station to send information to the UE before transmitting the target channel and/or the signal At least one of the antenna ports.
  • the first indication information may include: a correspondence between each first resource and the second resource in the resource subgroup.
  • the sending unit indicates, by using the first indication information, that each first resource of the resource sub-group corresponds to a different second resource, that is, for the first resource of the same resource sub-group, the UE uses different transmit beams to send the target channel. And/or the signal, in this case, correspondingly, in a pre-defined or pre-configured manner, the base station uses the same receive beam to receive the target channel and/or signal for all the first resources of the same resource sub-group.
  • the first indication information may include: an identifier of each of the first resources in the resource sub-group, and an identifier of the second resource corresponding to the identifier of each of the first resources; or the first indication information specifically includes:
  • the antenna port of the signal has information of QCL relationship with the antenna port of the signal of the second resource.
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • the first indication information may include: a correspondence between each resource subgroup and the second resource.
  • the sending unit indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE uses the same transmit beam for all the first resources of the same resource sub-group.
  • the target channel and/or the signal is transmitted.
  • the base station can receive the target channel and/or the signal by using different receiving beams for the first resource of the same resource subgroup in a pre-defined or pre-configured manner.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup
  • the identifier of the resource may include: information indicating that the antenna port of the signal of each resource subgroup and the antenna port of the signal of the second resource have a QCL relationship.
  • the first indication information may include: a correspondence between each resource subgroup and a second resource group, where the second resource group includes at least one Two resources.
  • the sending unit indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE uses the same transmit beam for all the first resources of the same resource sub-group.
  • the target channel and/or the signal is transmitted.
  • the base station can receive the target channel and/or the signal by using different receiving beams for the first resource of the same resource subgroup in a pre-defined or pre-configured manner.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup The identifier of each second resource in the resource group; or the first indication information may specifically include: an identifier of each resource subgroup, and an identifier of the second resource group corresponding to the identifier of each resource subgroup; or The first indication information may specifically include: information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information may include: an identifier of each second resource in the second resource group; or the first indication information may include the first The identifier of the second resource group.
  • the sending unit indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE uses the same transmit beam for all the first resources of the same resource sub-group.
  • the target channel and/or the signal is transmitted.
  • the base station can receive the target channel and/or the signal by using different receiving beams for the first resource of the same resource subgroup in a pre-defined or pre-configured manner.
  • the first indication information may further include: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information may include: a correspondence between each first resource and the second resource.
  • the first indication The information may include: an identifier of each first resource, and an identifier of the second resource corresponding to the identifier of each first resource; or the first indication information may specifically include: a signal used to indicate each first resource
  • the antenna port has information about the QCL relationship with the antenna port of the signal of the second resource.
  • the correspondence between each first resource and the second resource group, the second resource group includes at least one second resource.
  • the first indication information may specifically include: an identifier of each first resource, and a second corresponding to the identifier of each first resource An identifier of each of the second resources in the resource group; or the first indication information may include: an identifier of each first resource, and an identifier of the second resource group corresponding to the identifier of each first resource; or The first indication information may specifically include: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • having a QCL relationship refers to having the same antenna port parameter.
  • having a QCL relationship means that the reference signal corresponding to the antenna port has the same parameter, or the QCL relationship means that the user equipment can determine an antenna port having a QCL relationship with the antenna port according to the parameter of one antenna port.
  • the parameter, or QCL relationship means that the two antenna ports have the same parameters, or the QCL relationship means that the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, AOA, average AOA, AOA extension, AOD, average departure angle AOD, AOD extension, receive antenna spatial correlation At least one of a sexual parameter, a transmit beam, a receive beam, and a resource identifier.
  • the beam includes at least one of the following, a precoding, a weight sequence number, and a beam sequence number.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a CSI-RS resource identifier, or an SRS resource identifier.
  • the first indication information may be configuration information.
  • the configuration information can be carried in higher layer signaling.
  • the first indication information may be configuration information and a configuration indication.
  • the configuration information is used to indicate the correspondence between the first resource and the beam (the configuration information may include multiple configurations at the same time), and the configuration information may be carried in the high layer signaling; the configuration indication is used to indicate that the UE is performing the target channel and/or When the signal is transmitted, which of the plurality of configurations in the configuration information is adopted, the configuration indication can be carried in the DCI.
  • the sending unit is further configured to send, to the UE, second indication information that is used by the UE to divide the resource group into the at least one resource subgroup.
  • the base station may further include: a receiving unit, configured to receive the capability sent by the UE Instructing information, the capability indication information includes a maximum number of beams supported by the UE in the capability type, or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type; correspondingly, a configuration unit, specifically And configuring at least one first resource for the UE according to the capability indication information received by the receiving unit.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • a seventh aspect of the embodiments of the present invention provides a UE, including:
  • An acquiring unit configured to acquire, by the base station, at least one first resource configured by the base station, where the first resource is used by the UE to send the target channel and/or the signal
  • the receiving unit is configured to receive, by the receiving base station, first indication information, where the first indication information is used by Indicates a correspondence between the first resource and the beam, where the beam is an uplink transmit beam or a downlink receive beam or a downlink transmit beam or an uplink receive beam.
  • the at least one first resource may be included in a resource group, and the resource group may include at least one resource subgroup.
  • the UE may further include:
  • a determining unit configured to determine, according to the first resource acquired by the acquiring unit and the first indication information received by the receiving unit, a beam required to transmit the target channel and/or the signal, that is, an uplink transmitting beam.
  • a sending unit configured to send the target channel and/or the signal on the uplink transmit beam determined by the first resource and the determining unit.
  • the determining unit may determine the uplink sending beam according to the correspondence between the first resource and the first resource and the beam, and when the beam is the downlink receiving beam, the determining unit may first determine the first resource according to the first resource. Corresponding relationship between the first resource and the beam determines the downlink receiving beam, and then according to the downlink receiving beam, the corresponding relationship between the uplink and downlink beams (the correspondence between the uplink and downlink beams can be obtained by the reciprocity of the uplink and downlink channels) determines the uplink transmitting beam.
  • the determining unit may first determine the downlink transmission beam according to the correspondence between the first resource and the first resource and the beam, and then determine the downlink reception beam by using the corresponding relationship between the uplink and downlink beams according to the downlink transmission beam. Finally, according to the downlink receiving beam, the uplink transmitting beam is determined by using the correspondence between the uplink and downlink beams.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the beam may be a port or may be pre-coded.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the first indication information may include: an identifier of each first resource in the resource subgroup, and a number of a beam corresponding to the identifier of each first resource.
  • the determining unit is specifically configured to determine a number of a beam corresponding to the identifier of the first resource, and then determine an uplink transmit beam according to the beam corresponding to the number of the beam.
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam corresponding to the identifier of each resource subgroup.
  • the determining unit is specifically configured to determine an identifier of the resource subgroup to which the first resource belongs, and determine a number of the beam corresponding to the identifier of the resource subgroup, and then according to the wave corresponding to the number of the beam The bundle determines the uplink transmit beam.
  • the first indication information may include: an identifier of each resource subgroup, and a number of each beam in the beam group corresponding to the identifier of each resource subgroup, and the beam group includes at least one beam.
  • the determining unit is specifically configured to determine an identifier of the resource subgroup to which the first resource belongs, and determine a number of each beam in the beam group corresponding to the identifier of the resource subgroup, and then according to one of the beam groups The beam determines the upstream transmit beam.
  • the first indication information may include: an identifier of each resource subgroup, and a number of a beam group corresponding to the identifier of each resource subgroup.
  • the determining unit is specifically configured to determine the identifier of the resource subgroup to which the first resource belongs, determine the number of the beam group corresponding to the identifier of the resource subgroup, and then determine the uplink sending according to one beam in the beam group. Beam.
  • the first indication information may include: a number of each beam in the beam group, or the first indication information may include: a number of the beam group.
  • the determining unit is specifically configured to determine an uplink sending beam according to one beam in the beam group, where the resource subgroup to which the first resource belongs corresponds to one beam.
  • the first indication information may include: an identifier of each resource subgroup, and an optional range of a beam corresponding to the identifier of each resource subgroup.
  • the determining unit is specifically configured to determine an identifier of the resource subgroup to which the first resource belongs, and determine an optional range of the beam corresponding to the identifier of the resource subgroup, and then determine an uplink sending according to the optional range of the beam. Beam.
  • the first indication information may include: an identifier of each first resource, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and a number of each beam in the beam group corresponding to the identifier of each first resource, where the beam group includes at least one beam.
  • the first indication information may include: an identifier of each first resource, and a number of a beam group corresponding to the identifier of each first resource.
  • the first indication information may include: an identifier of each first resource, and an optional range of a beam corresponding to the identifier of each first resource.
  • the receiving unit is further configured to receive, by the base station, configuration information for indicating a number of the beam and a correspondence relationship between the beams.
  • the determining unit determines the number of the beam according to the first indication information
  • the beam corresponding to the number may be determined according to the configuration information received by the receiving unit.
  • the number of the beam may be the order of the beams selected by the base station.
  • the receiving unit is further configured to receive, by the base station, second indication information that is used by the base station to divide the resource group into the at least one resource subgroup. And dividing the resource group into at least one resource subgroup according to the second indication information.
  • the sending unit in order to enable the base station to configure resources for the UE according to the capability of the UE, is further configured to send the capability indication information, the capability indication information, to the base station.
  • the maximum number of beams supported by the UE in the capability type is included, or the capability indication information includes a quantized value of the maximum number of beams supported by the UE in the capability type.
  • the capability type includes: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • An eighth aspect of the embodiments of the present invention provides a UE, including:
  • An acquiring unit configured to acquire, by the base station, at least one first resource configured by the base station, where the first resource is used by the UE to send the target channel and/or the signal
  • the receiving unit is configured to receive, by the receiving base station, first indication information, where the first indication information is used by Indicates a correspondence between the first resource and the second resource.
  • the at least one first resource is included in a resource group, and the resource group may include at least one resource subgroup.
  • the UE may further include: a determining unit, configured to determine, according to the first resource and the first indication information, the second resource, and according to the The beam corresponding to the two resources determines a beam required to transmit the target channel and/or the signal, that is, an uplink transmit beam, and the transmitting unit is configured to send the target channel and/or the signal on the first resource and the uplink transmit beam.
  • a determining unit configured to determine, according to the first resource and the first indication information, the second resource, and according to the The beam corresponding to the two resources determines a beam required to transmit the target channel and/or the signal, that is, an uplink transmit beam
  • the transmitting unit is configured to send the target channel and/or the signal on the first resource and the uplink transmit beam.
  • the target channel and/or the signal may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, Uplink beam reference signal, uplink motion reference signal, uplink demodulation reference signal, and uplink phase tracking reference signal.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the second resource may include: a time domain resource and a frequency used by the sending unit to send information to the base station before transmitting the target channel and/or the signal. At least one of a domain resource, a code domain resource, and an antenna port; or the second resource may include: a time domain resource and a frequency domain resource used by the base station to send information to the UE before transmitting the target channel and/or the signal, At least one of a code domain resource and an antenna port.
  • the first indication information may include: a correspondence between each first resource and the second resource in the resource subgroup.
  • the first indication information may specifically include: an identifier of each first resource in the resource subgroup, and an identifier of each first resource The identifier of the corresponding second resource; or the first indication information specifically includes: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • the first indication information may include: a correspondence between each resource subgroup and the second resource.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup.
  • the identifier of the resource may include: information indicating that the antenna port of the signal of each resource subgroup and the antenna port of the signal of the second resource have a QCL relationship.
  • the first indication information may include: a correspondence between each resource subgroup and a second resource group, where the second resource group includes at least one Two resources.
  • the first indication information may specifically include: an identifier of each resource subgroup, and a second corresponding to the identifier of each resource subgroup.
  • An identifier of each of the second resources in the resource group; or the first indication information may specifically include: an identifier of each resource subgroup, and An identifier of the second resource group corresponding to the identifier of each resource subgroup; or the first indication information may specifically include: a signal indicating an antenna port of the signal of each resource subgroup and a signal of the second resource group
  • the antenna port has information about the QCL relationship.
  • the first indication information may include: an identifier of each second resource in the second resource group; or the first indication information includes the second The ID of the resource group.
  • the first indication information may further include: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information may include: a correspondence between each first resource and the second resource.
  • the first indication information may specifically include: an identifier of each first resource, and an identifier corresponding to the identifier of each first resource.
  • the identifier of the second resource may be: the first indication information may specifically include: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the correspondence between each first resource and the second resource group, the second resource group includes at least one second resource.
  • the first indication information may specifically include: an identifier of each first resource, and a second corresponding to the identifier of each first resource An identifier of each of the second resources in the resource group; or the first indication information may include: an identifier of each first resource, and an identifier of the second resource group corresponding to the identifier of each first resource; or The first indication information may specifically include: information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information may further include: a correspondence between each first resource and an optional range of the beam.
  • having a QCL relationship refers to having the same antenna port parameter.
  • having a QCL relationship means that the reference signal corresponding to the antenna port has the same parameter, or the QCL relationship means that the user equipment can determine an antenna port having a QCL relationship with the antenna port according to the parameter of one antenna port.
  • the parameter, or QCL relationship means that the two antenna ports have the same parameters, or the QCL relationship means that the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival AOA, average AOA, AOA extension, exit angle AOD, average departure angle AOD, AOD extension, Receiving at least one of an antenna spatial correlation parameter, a transmit beam, a receive beam, and a resource identifier.
  • the beam includes at least one of the following, a precoding, a weight sequence number, and a beam sequence number.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a CSI-RS resource identifier, or an SRS resource identifier.
  • the receiving unit is further And configured to receive, by the base station, second indication information that is used by the UE to divide the resource group into the at least one resource subgroup, and divide the resource group into the at least one resource subgroup according to the second indication information.
  • the sending unit in order to enable the base station to configure resources for the UE according to the capability of the UE, is further configured to send the capability indication information, the capability indication information, to the base station.
  • the maximum number of beams supported by the UE in the capability type is included, or the capability indication information includes a quantized value of the maximum number of beams supported by the UE in the capability type.
  • the capability type may include: a beam management phase and/or an optional range of the beam.
  • the capability type may be predefined or configured by the base station.
  • a ninth aspect of the embodiments of the present invention provides a capability reporting method, including:
  • the UE sends the capability indication information to the base station according to the capability type, where the capability indication information includes: the maximum number of beams supported by the UE in the capability type; or the capability indication information includes: a quantized value of the maximum number of beams supported by the UE in the capability type.
  • the capability reporting method provided by the embodiment of the present invention, the capability indication information that is sent by the UE to the base station according to the capability type, including the maximum beam number or the maximum beam number supported by the UE in the capability type, so that the base station can indicate according to the capability of the UE.
  • the information allocates the first resource to the UE, avoids the waste of resources caused by the excessive allocation of the first resource to the UE, or the problem that the beam search is incomplete due to the allocation of the first resource to the UE.
  • the capability type includes a beam management phase and/or an optional range of beams, and the beam is a port or precoding.
  • the capability type may be predefined or configured by the base station.
  • a tenth aspect of the embodiments of the present invention provides a capability reporting method, including:
  • the base station receives the capability indication information sent by the UE, where the capability indication information includes: a maximum number of beams supported by the UE in the capability type; or the capability indication information includes: a quantized value of the maximum number of beams supported by the UE in the capability type.
  • the base station receives the capability indication information that is sent by the UE and includes the maximum number of beams or the maximum number of beams supported by the UE in the capability type, so as to allocate the first information to the UE according to the capability indication information of the UE.
  • a resource avoids the waste of resources caused by allocating too many first resources to the UE, or the problem that the beam search is incomplete due to the allocation of too few first resources to the UE occurs.
  • the capability type includes a beam management phase and/or an optional range of beams, and the beam is a port or precoding.
  • the capability type may be predefined or configured by the base station.
  • An eleventh aspect of the embodiments of the present invention provides a UE, including:
  • a sending unit configured to send capability indication information to the base station according to the capability type, where the capability indication information includes: a maximum number of beams supported by the UE in the capability type; or the capability indication information includes: a maximum number of beams supported by the UE in the capability type Quantitative value.
  • the capability type includes a beam management phase and/or an optional range of beams, and the beam is a port or precoding.
  • the capability type may be predefined or configured by the base station.
  • a twelfth aspect of the embodiments of the present invention provides a base station, including:
  • a receiving unit configured to receive capability indication information sent by the UE, where the capability indication information includes: a maximum number of beams supported by the UE in the capability type; or the capability indication information includes: quantization of a maximum number of beams supported by the UE in the capability type value.
  • the capability type includes a beam management phase and/or an optional range of beams, the beam being a port or precoding.
  • the capability type may be predefined or configured by the base station.
  • a thirteenth aspect of the embodiments of the present invention provides a resource indication method, including:
  • the base station sends the indication information to the UE, where the indication information includes: a number of the beam and an identifier of the resource corresponding to the number of the beam, or a number of the resource and an identifier of the resource corresponding to the number of the resource.
  • the base station sends the indication information including the number of the beam and the identifier of the resource corresponding to the number of the beam to the UE, or the base station sends the number including the resource and the resource corresponding to the number of the resource to the UE.
  • the indication information of the identifier so that the UE determines a candidate set of beams or beams required to transmit the information according to the indication information, and implements beamforming by using the determined beam transmission information.
  • the base station may only number part of the resource identifiers in order to reduce the signaling overhead when the base station indicates the number of the beam or the number of the resource.
  • the beam may be a port or may be pre-coded.
  • the resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • a fourteenth aspect of the embodiments of the present invention provides a resource indication method, including:
  • the UE receives the base station sending indication information, where the indication information includes: a number of the beam and an identifier of the resource corresponding to the number of the beam, or a number of the resource and an identifier of the resource corresponding to the number of the resource.
  • the UE receives the identifier including the number of the beam and the identifier of the resource corresponding to the number of the beam, or the number of the resource and the identifier of the resource corresponding to the number of the resource, so that the UE can follow the indication according to the indication.
  • the information determines a candidate set of beams or beams required to transmit the information, and beamforming is achieved by transmitting information using the determined beam.
  • the base station may only number part of the resource identifiers in order to reduce the signaling overhead when the base station indicates the number of the beam or the number of the resource.
  • the beam may be a port or may be pre-coded.
  • the resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • a fifteenth aspect of the embodiments of the present invention provides a base station, including:
  • a sending unit configured to send the indication information to the UE, where the indication information includes: a number of the beam and an identifier of the resource corresponding to the number of the beam, or a number of the resource and an identifier of the resource corresponding to the number of the resource.
  • the beam may be a port or may be pre-coded.
  • the resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • a sixteenth aspect of the embodiments of the present invention provides a UE, including:
  • the receiving unit is configured to receive, by the base station, the indication information, where the indication information includes: a number of the beam, an identifier of the resource corresponding to the number of the beam, or a number of the resource, and an identifier of the resource corresponding to the number of the resource.
  • the beam may be a port or may be pre-coded.
  • the resource may be included At least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • a seventeenth aspect of the embodiments of the present invention provides a base station, including: a processor, a memory, and a transceiver;
  • the memory is configured to store a computer-executed instruction, and when the base station is in operation, the processor executes a memory-stored computer-executable instruction to cause the base station to perform the information transmission method of any of the first aspect or the possible implementation of the first aspect, Alternatively, performing the information transmission method according to any one of the second aspect or the possible implementation of the second aspect, or performing the capability according to any one of the tenth aspect or the possible implementation of the tenth aspect The resource transmission method of any one of the possible implementations of the thirteenth aspect or the thirteenth aspect.
  • An eighteenth aspect of the embodiments of the present invention provides a UE, including: a processor, a memory, and a transceiver;
  • the memory is configured to store a computer-executed instruction, and when the UE is in operation, the processor executes a memory-stored computer-executed instruction to cause the UE to perform the information transmission method according to any of the third aspect or the third aspect, Alternatively, performing the information transmission method according to any one of the fourth aspect or the possible implementation of the fourth aspect, or performing the capability according to any one of the ninth aspect or the possible implementation of the ninth aspect.
  • a nineteenth aspect of the embodiments of the present invention provides an information transmission method, including:
  • the base station configures at least one first resource for the user equipment UE, where the first resource is used by the UE to send the first channel and/or signal on the first antenna port;
  • the base station sends first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the second resource;
  • the base station receives, by the base station, a second channel and/or a signal sent by the UE on the second antenna port, where the base station receives the first channel and/or the UE sends the first antenna port Or a signal; wherein the first antenna port and the second antenna port have a quasi-co-located QCL relationship, or the UE sends the beam of the first channel and/or signal to send the first
  • the beams of the two channels and/or signals are the same; or,
  • the base station transmits a third channel and/or signal to the UE on the second resource and the third antenna port; the base station receives the first channel and/or signal sent by the UE on the first antenna port Wherein the first antenna port and the third antenna port have a quasi-co-located QCL relationship, or the UE transmits a beam of the first channel and/or signal and the UE receives the third channel and / or the beam of the signal is corresponding.
  • a twentieth aspect of the embodiments of the present invention provides an information transmission method, including:
  • the user equipment UE acquires at least one first resource configured by the base station for the UE, where the first resource is used by the UE to send a first channel and/or a signal on the first antenna port;
  • the UE Receiving, by the UE, the first indication information by the base station, where the first indication information is used to indicate a correspondence between the first resource and the second resource;
  • the first antenna port and the second antenna port have a quasi-co-located QCL relationship, or the UE sends a beam of the first channel and/or signal and the UE sends the second channel and / or the beam of the signal is the same; or,
  • the UE Receiving, by the UE, a third channel and/or signal sent by the base station on a second resource and a third antenna port; the UE transmitting the first channel and/or signal to the base station on a first antenna port Wherein the first antenna
  • the port has a quasi-co-located QCL relationship with the third antenna port, or the UE transmits a beam of the first channel and/or signal corresponding to a beam that the UE receives the third channel and/or signal .
  • a twenty-first aspect of the embodiments of the present invention provides a base station, including: a configuration unit, a sending unit, and a receiving unit;
  • the configuration unit is configured to configure at least one first resource for the user equipment UE, where the first resource is used by the UE to send a first channel and/or a signal on the first antenna port;
  • the sending unit is configured to send the first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the second resource;
  • the receiving unit is configured to receive, on a second resource, a second channel and/or a signal that is sent by the UE on the second antenna port, where the receiving unit is further configured to receive the UE on the first antenna port Transmitting the first channel and/or signal; wherein the first antenna port and the second antenna port have a quasi-co-located QCL relationship, or the UE transmits the first channel and/or signal
  • the beam is the same as the beam from which the UE transmits the second channel and/or signal; or
  • the sending unit is configured to send a third channel and/or a signal to the UE on the second resource and the third antenna port, where the receiving unit is further configured to receive, by the UE, the first antenna port The first channel and/or signal; wherein the first antenna port and the third antenna port have a quasi-co-located QCL relationship, or the UE transmits the beam and the signal of the first channel and/or signal The beam in which the UE receives the third channel and/or signal is corresponding.
  • a second aspect of the embodiments of the present invention provides a user equipment (UE), including: an acquiring unit, a receiving unit, and a sending unit;
  • UE user equipment
  • the acquiring unit is configured to acquire, by the base station, at least one first resource configured by the UE, where the first resource is used by the UE to send a first channel and/or a signal on the first antenna port;
  • the receiving unit is configured to receive, by the base station, first indication information, where the first indication information is used to indicate a correspondence between the first resource and the second resource;
  • the sending unit is configured to send a second channel and/or a signal to the base station on the second resource and the second antenna port, where the sending unit is further configured to send, to the base station, the first antenna port a first channel and/or a signal; wherein the first antenna port and the second antenna port have a quasi-co-located QCL relationship, or the transmitting unit transmits a beam and the signal of the first channel and/or signal Transmitting, by the sending unit, the beams of the second channel and/or the signal are the same; or
  • the receiving unit is configured to receive a third channel and/or a signal that is sent by the base station on the second resource and the third antenna port, where the sending unit is configured to send, to the base station, the first antenna port a first channel and/or a signal; wherein the first antenna port and the third antenna port have a quasi-co-located QCL relationship, or the transmitting unit transmits a beam and a signal of the first channel and/or signal
  • the receiving unit receives the beam of the third channel and/or signal correspondingly.
  • a twenty-third aspect of the embodiments of the present invention provides a computer storage medium, configured to store computer software instructions used by the base station, where the computer software instructions include a method for performing the foregoing information transmission method, a capability reporting method, or a resource indication method. Designed program.
  • a computer storage medium for storing the foregoing UE
  • Computer software instructions comprising a program designed to perform the above information transmission method, capability reporting method or resource indication method.
  • FIG. 1 is a simplified schematic diagram of a communication system to which an embodiment of the present invention may be applied according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of an information transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another information transmission method according to an embodiment of the present invention.
  • 5-1 is a schematic diagram of a relationship between resource slots according to an embodiment of the present invention.
  • FIG. 5-2 is a schematic diagram of another resource time slot relationship according to an embodiment of the present invention.
  • FIG. 5-3 is a schematic diagram of another resource slot relationship according to an embodiment of the present disclosure.
  • FIG. 5-4 is a schematic diagram of another resource slot relationship according to an embodiment of the present invention.
  • FIGS. 5-5 are schematic diagrams of another resource slot relationship according to an embodiment of the present invention.
  • 5-6 are schematic diagrams of another resource slot relationship according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another information transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a beam capability indication of a UE according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another information transmission method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for reporting capabilities according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a resource indication method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a correspondence between a resource and a beam according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • the embodiment of the present invention provides an information transmission method.
  • the basic principle is that the base station configures the UE to include at least one first resource, where the first resource is used for the UE to send the target channel and/or the signal. And sending, by the UE, first indication information, which is used to indicate a correspondence between the first resource and the beam, or a corresponding relationship between the first resource and the second resource, so that the UE can use the first resource and the first indication information.
  • the beam required to transmit the target channel and/or signal is determined.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • the beam may be identified by at least one of: a port, a precoding matrix, a spatial characteristic parameter; the beam may also be a spatial filtering.
  • a beam may also be understood as a spatial resource, and may refer to a transmit or receive precoding vector having energy transmission directivity.
  • the transmitting or receiving precoding vector can be identified by index information.
  • the energy transmission directivity may refer to a signal after receiving a precoding process through the precoding vector in a certain spatial position. The number has better receiving power, such as satisfying the receiving demodulation signal to noise ratio, etc.; the energy transmission directivity may also mean that the same signal transmitted from different spatial locations is received by the precoding vector to have different receiving power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device can use one or more of a plurality of different precoding vectors at the same time, ie, one or more beams can be formed at the same time.
  • the information of the beam can be identified by the index information.
  • the index information may be configured to correspond to a resource identifier (ID) of the UE.
  • the index information may correspond to an ID of a channel status information reference signal (CSI-RS) or
  • the resource may also correspond to the ID or resource of the configured Sounding Reference Signal (SRS).
  • the index information may also be index information of a signal or channel display or implicit bearer carried by the beam, for example, the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
  • the beam pair may include a transmit beam at the transmitting end and a receive beam at the receiving end, or also referred to as an uplink beam or a downlink beam.
  • the beam pair may include a transmit beam of the base station or a UE receive beam, or a UE transmit beam or a base station receive beam.
  • the target channel and/or signal involved in the embodiment of the present invention may include at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam reference signal, uplink motion reference signal, and uplink demodulation.
  • Reference signal upstream phase tracking reference signal.
  • the sounding reference signal is used for acquiring channel quality information and/or for beam management
  • the PRACH is used for uplink access
  • the PUSCH is used for at least uplink data transmission
  • the PUCCH is used for at least uplink control information transmission
  • the uplink demodulation reference signal is used for Uplink channel demodulation, uplink tracking signal, uplink discovery signal, uplink beam reference signal, uplink mobile reference signal for beam management and/or radio resource management (RRM) measurement, uplink phase tracking reference signal for phase track.
  • RRM radio resource management
  • the quasi co-located (QCL) relationship involved in the embodiments of the present invention may have the following meanings:
  • Having a QCL relationship means having the same antenna port parameter; or having a QCL relationship means that the reference signal corresponding to the antenna port has the same parameter, or the QCL relationship means that the user equipment can determine according to the parameters of one antenna port.
  • the parameter of one antenna port having a QCL relationship with the antenna port, or the QCL relationship means that the two antenna ports have the same parameter, or the QCL relationship means that the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), average departure angle AOD, AOD extension, receive antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, resource identification, transmit power angle spectrum (PAS, Power Azimuth Spectrum), receiver At least one of PAS, PAS.
  • the beam includes at least one of the following, a precoding, a weight number, a beam number, and a spatial filter.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a channel state information reference signal (Channel State Information Reference) Signal, CSI-RS) resource identifier, or SRS resource identifier, used to indicate the beam on the resource, or the resource identifier of the synchronization signal/synchronization signal block, or the resource identifier of the preamble sequence transmitted on the PRACH, or the resource identifier of the DMRS, Used to indicate the beam on the resource.
  • CSI-RS Channel State Information Reference
  • SRS Resource identifier
  • two signals may have the same AOA or AOD for indicating the same reception.
  • Beam or transmit beam For example, for the QCL relationship between the downlink signal and the uplink signal or between the uplink signal and the downlink signal port, the AOA and the AOD of the two signals may have a corresponding relationship, or the AOD and the AOA of the two signals have a corresponding relationship, that is, the beam may be utilized.
  • the uplink transmit beam is determined according to the downlink receive beam, or the downlink receive beam is determined according to the uplink transmit beam.
  • a signal transmitted on a port having a QCL relationship may also be understood as having a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and a transmitting beam corresponding to the receiving beam (corresponding to mutual reciprocity) Scenario), a receive beam corresponding to the transmit beam (corresponding to a scene with reciprocity).
  • a signal transmitted on a port having a QCL relationship can also be understood as receiving or transmitting a signal using the same spatial filter.
  • the spatial filter can be at least one of: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the signal transmitted on the port with the QCL relationship can also be understood as having a corresponding beam pair link (BPL).
  • the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL. Upstream BPL, downlink BPL corresponding to the uplink BPL.
  • the QCL relationship described above may have other names without changing the technical nature.
  • it may also be referred to as a spatial QCL relationship or a reciprocal QCL relationship.
  • the first resource involved in the embodiment of the present invention may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the second resource involved in the embodiment of the present invention may include: at least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the UE to send information to the base station before transmitting the target channel and/or the signal.
  • the second resource may include: at least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the base station to send information to the UE before transmitting the target channel and/or the signal.
  • the second resource in the embodiment of the present invention may be a resource used for transmitting at least one of the following channels and/or signals: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam reference signal , uplink mobile reference signal, uplink demodulation reference signal, primary synchronization signal, secondary synchronization signal, synchronization signal block, demodulation reference signal of physical broadcast channel, CSI-RS, tracking reference signal (TRS), phase tracking A phase tracking reference signal (PT-RS), a demodulation reference signal of a physical downlink control channel, and a demodulation reference signal of a physical downlink shared channel.
  • the physical downlink control channel may be a control resource set (CORESET) or a physical downlink control channel that carries control information of a random access response or a system message.
  • the physical downlink shared channel may be a physical downlink shared channel that carries system messages.
  • the communication system may include: a base station 11 and a UE 12.
  • the communication system may be an LTE system, a future evolved system of the LTE system, a wireless fidelity (Wi-Fi) system, a Worldwide Interoperability for Microwave Access (wimax) system, and a 3GPP related cellular. System, etc.
  • Wi-Fi wireless fidelity
  • Wimax Worldwide Interoperability for Microwave Access
  • the base station 11 may be a base station (BS) or a base station controller or a transmission reception point (TRP), gNB, or the like for wireless communication.
  • the base station 11 is a device deployed in the radio access network to provide wireless communication functions for the UE 12.
  • the main functions of the base station 11 are: management of radio resources, compression of an Internet Protocol (IP) header, and data flow of user equipment. Encryption, selection of Mobile Management Entity (MME) when UE12 attaches, routing of user plane data to Service Gateway (SGW), organization and transmission of paging messages, organization and transmission of broadcast messages, and movement Configuration of measurement and measurement reports for the purpose of sex or scheduling, etc.
  • IP Internet Protocol
  • MME Mobile Management Entity
  • the base station 11 can include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In systems with different wireless access technologies, the names of devices with base station functionality may vary. For example, in an LTE system, an evolved NodeB (eNB or eNodeB) is called a Node B (Node B) in a 3rd generation Telecommunication (3G) system. . As the communication technology evolves, the name "base station” may change. Moreover, in other possible cases, base station 11 may be other means of providing wireless communication functionality to UE 12. For convenience of description, in the embodiment of the present invention, a device that provides a wireless communication function for the UE 12 is referred to as a base station 11.
  • a base station 11 a device that provides a wireless communication function for the UE 12 is referred to as a base station 11.
  • the UE 12 may include various handheld devices (such as mobile phones, smart terminals, multimedia devices, or streaming media devices, etc.) having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various Forms of mobile stations (Mobile Stations, MSs), terminal devices, and the like.
  • various handheld devices such as mobile phones, smart terminals, multimedia devices, or streaming media devices, etc.
  • in-vehicle devices wearable devices, computing devices, or other processing devices connected to the wireless modem
  • various Forms of mobile stations Mobile Stations, MSs
  • the devices mentioned above are collectively referred to as UE12.
  • FIG. 2 is a schematic diagram of a composition of a base station according to an embodiment of the present invention.
  • the base station may include: a processor 21, a memory 22, and a transceiver 23.
  • the processor 21 may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 may be a general-purpose central processing unit (CPU), or may be an application-specific integrated circuit (ASIC), or one or more programs for controlling the program of the present invention.
  • An integrated circuit such as one or more microprocessors (Digital Signal Processors, DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • the processor 21 can perform various functions of the terminal by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • the processor 21 may include one or more CPUs.
  • the processor 21 includes a CPU 0 and a CPU 1.
  • a base station can include multiple processors.
  • a processor 21 and a processor 25 are included.
  • Each of these processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 22 is used to store application code for executing the solution of the present invention and is controlled by the processor 21.
  • the processor 21 is configured to execute application code stored in the memory 22.
  • the transceiver 23 is configured to communicate with other devices or communication networks, such as an Ethernet, a Radio Access Network (RAN), a Wireless Local Area Networks (WLAN), and the like.
  • the transceiver 23 may include all or part of a baseband processor, and may also optionally include a radio frequency (RF) processor.
  • the RF processor is used to transmit and receive RF signals
  • the baseband processor is used to implement processing of a baseband signal converted by an RF signal or a baseband signal to be converted into an RF signal.
  • FIG. 3 is a schematic diagram of a composition of a UE according to an embodiment of the present invention.
  • the UE may include a processor 31, a memory 32, and a transceiver 33.
  • the processor 31 can be a processor or a collective name for a plurality of processing elements.
  • processor 31 may be a general purpose CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present invention, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the terminal by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • the processor 31 may include one or more CPUs.
  • the processor 31 includes a CPU 0 and a CPU 1.
  • the UE may include multiple processors.
  • a processor 31 and a processor 35 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • Memory 32 may be a ROM or other type of static storage device that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus. The memory can also be integrated with the processor.
  • the transceiver 33 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the transceiver 33 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the device structure shown in FIG. 3 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, a GPS module, a display screen, and the like, and details are not described herein.
  • FIG. 4 is a flowchart of an information transmission method according to an embodiment of the present invention. As shown in FIG. 4, the method may be include:
  • the base station configures at least one first resource for the UE.
  • the first resource is used by the UE to send a target channel and/or a signal.
  • the base station may configure the UE with at least one first resource for transmitting the target channel and/or signal (eg, time domain resources, frequency domain resources, One or more of a code domain resource and an antenna port).
  • the at least one first resource constitutes a resource group, and the resource group may include at least one resource subgroup.
  • all the first resources in the same resource subgroup may use the same frequency domain resource or the same code domain resource.
  • the base station may further configure a specific usage mode of the resource group for the UE.
  • the resource group configured for the UE may be specifically used by: periodically transmitting the target channel and/or signal by using the configured resource group; or aperiodicly using the configured resource group to transmit the target channel and/or signal, Rather, after receiving the DCI sent by the base station, the configured resource group is used to transmit the target channel and/or signal; or the semi-persistent configured resource group is used to transmit the target channel and/or signal, that is,
  • the DCI or MAC CE triggers activation and can be deactivated by DCI or MAC CE triggering. Alternatively, it can be activated by DCI or MAC CE, and activated after a period of time.
  • Protocol requirements can be configured by the base station, or can be activated after receiving the configuration information for a period of time, triggered by DCI or MAC CE, or activated after a period of time.
  • the time between receipt of configuration information and activation can be specified by the protocol (no base station configuration, local pre-storage or pre-configuration) or Through the base station configuration, the period between the activation to deactivation may (without the base station configuration, the local pre-stored or pre-configured) to a predetermined protocol or may be configured by the base station. .
  • the base station may further indicate, to the UE, a grouping manner of the configured resource group, that is, a grouping manner indicating to the UE that the configured resource group is divided into at least one resource subgroup.
  • the UE acquires at least one first resource that is configured by the base station for the UE.
  • the base station sends the first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the beam.
  • the beam is an uplink transmit beam or a downlink receive beam or a downlink transmit beam or an uplink receive beam.
  • the base station may send, to the UE, first indication information indicating a corresponding relationship between the first resource and the beam included in the resource group.
  • the UE receives, by the base station, the first indication information.
  • the UE determines an uplink transmit beam according to the first resource and the first indication information.
  • the UE may determine, according to the correspondence included in the first indication information, and the first resource included in the configured resource group, the destination channel and/or the signal to be sent.
  • the required beam that is, the uplink transmit beam.
  • the UE may directly determine the beam corresponding to the first resource as the uplink transmit beam; when the beam in the corresponding relationship is the downlink receive beam, the UE may acquire the first The downlink receiving beam corresponding to the resource, and then determining the uplink transmitting beam by using the corresponding relationship between the uplink and downlink beams according to the downlink receiving beam; and when the beam is the downlink transmitting beam, the UE may first respond according to the first resource and the first resource and the beam The relationship determines the downlink transmit beam, and then uses the corresponding relationship between the uplink and downlink beams according to the downlink transmit beam. The downlink receiving beam is determined, and finally, the uplink transmitting beam is determined according to the downlink receiving beam, and the corresponding relationship between the uplink and downlink beams is used.
  • the UE sends the target channel and/or signal on the first resource and the uplink transmit beam.
  • the target channel and/or the signal may be sent on the first resource and the determined uplink transmit beam to implement beamforming on the target channel and/or the signal.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends a first indication for indicating the correspondence between the first resource and the beam by sending the UE to the UE.
  • the information is such that the UE can determine the beam required to transmit the target channel and/or the signal according to the first resource and the first indication information.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • FIG. 5 is a flowchart of another information transmission method according to an embodiment of the present invention. As shown in FIG. 5, the method may include:
  • the base station configures at least one first resource for the UE.
  • the first resource is used by the UE to send a target channel and/or a signal.
  • the first resource is used by the UE to receive the target channel and/or signal.
  • the base station may configure the UE with at least one first resource for transmitting the target channel and/or signal (eg, time domain resources, frequency domain resources, One or more of a code domain resource and an antenna port).
  • at least one first resource for transmitting the target channel and/or signal eg, time domain resources, frequency domain resources, One or more of a code domain resource and an antenna port.
  • the at least one first resource constitutes a resource group, and the resource group may include at least one resource subgroup.
  • all the first resources in the same resource subgroup may use the same frequency domain resource or the same code domain resource.
  • the base station may also configure a specific usage mode of the resource group for the UE.
  • the usage may be: periodically transmitting the target channel and/or signal by using the configured resource group; or, aperiodicly using the configured resource group to transmit the target channel and/or signal after receiving the DCI sent by the base station.
  • the configured resource group is used to transmit the target channel and/or signal; or the semi-persistent configured resource group transmits the target channel and/or signal, that is, after receiving the DCI or MAC CE sent by the base station, Periodically, the configured resource group is used to transmit the target channel and/or signal, and the transmission is stopped after receiving the new DCI or MAC CE sent by the base station.
  • the base station may further indicate, to the UE, a grouping manner of the configured resource group, that is, indicate, to the UE, a grouping manner of dividing the configured resource group into at least one resource subgroup.
  • the UE acquires at least one first resource that is configured by the base station for the UE.
  • the base station may notify the UE of the foregoing first resource by signaling.
  • the base station sends the first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the second resource.
  • the UE transmits the other information to the base station by using the second resource and the corresponding beam before the UE sends the target channel and/or the signal to the base station; or the second resource is used by the base station before the UE sends the target channel and/or the signal to the base station.
  • the corresponding information is sent to the UE, that is, the correspondence between the second resource and the beam is known.
  • the base station may send a correspondence between the first resource and the second resource by sending the UE to the UE.
  • the UE determines, according to the first indication information, a beam required to transmit the target channel and/or the signal on the first resource, or determines a beam used by the base station to receive the target channel and/or the signal on the first resource.
  • the base station indicates, by using the first indication information, the correspondence between the first resource and the second resource in the resource group configured by the UE.
  • the second resource includes at least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the UE to send information to the base station before transmitting the target channel and/or the signal; or the second resource includes the UE At least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the base station to transmit information to the UE before transmitting the target channel and/or the signal.
  • the second resource involved in the embodiment of the present invention may be a resource used for transmission of at least one of the following channels and/or signals: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam Reference signal, uplink mobile reference signal, uplink demodulation reference signal, primary synchronization signal, secondary synchronization signal, synchronization signal block, demodulation reference signal of physical broadcast channel, CSI-RS, Tracking Reference Signal (TRS), A phase tracking reference signal (PT-RS), a demodulation reference signal of a physical downlink control channel, and a demodulation reference signal of a physical downlink shared channel.
  • the physical downlink control channel may be a control resource set (CORESET) or a physical downlink control channel that carries control information of a random access response or a system message.
  • the physical downlink shared channel may be a physical downlink shared channel that carries system messages.
  • the base station may send a correspondence between the second resource and the first resource, which are known to be in a beam-corresponding relationship, to the UE, so that the UE determines the required beam.
  • the base station may indicate, to the UE, the correspondence between each first resource and the second resource in the resource group configured for the UE in different manners.
  • the correspondence between the first resource and the second resource includes at least one of: an antenna port of a target channel and/or a signal, and a channel transmitted on the second resource, and/or The antenna port of the signal has a quasi-co-located QCL relationship; the transmit beam used by the target channel and/or signal is the same as the transmit beam of the channel and/or signal transmitted on the second resource; the transmit beam used for the target channel and/or signal Corresponding to a receive beam of a channel and/or signal transmitted on the second resource; a spatial filter employed by the target channel and/or signal is the same as a spatial filter of a channel and/or signal transmitted on the second resource
  • the relationship between the identifier of the second resource and the second resource may be predefined or configured by a base station.
  • the identifier of the second resource may be an SRI (SRS resource indicator) or a corresponding relationship between the base station configuration or the predefined second resource identifier and the SRI or SRS resource, which may enable the second
  • the identifier of the resource corresponds to a part of the SRS resource or SRI, and reduces the overhead indicated by the second resource.
  • the identifier of the second resource may be a CRI (CSI-RS resource indicator), or may be a base station configuration or a predefined second resource identifier and CRI or CSI.
  • the second resource identifier may be a low overhead indicator (LOI), and the identifier of the second resource may be corresponding to a part of the CSI-RS resource or the CRI, and the overhead indicated by the second resource may be reduced.
  • LOI low overhead indicator
  • the first indication information includes a correspondence between each first resource and the second resource in the resource subgroup.
  • the mapping between the first resource and the second resource in the resource sub-group may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource in the resource sub-group, and each of the first resources Identifying an identifier of the corresponding second resource; or, the first indication information specifically includes an antenna port for indicating a target channel and/or a signal transmitted on each first resource, and an antenna port of a signal transmitted on the second resource, having a QCL Information about the relationship; or The first indication information specifically includes: an identifier of the second resource corresponding to each first resource.
  • the identifier of the one or more second resources may be included.
  • the number of the identifiers of the second resource is the same as the number of the first resources.
  • the correspondence between the second resource and the first resource in the second resource indicated by the first indication information may be predefined. For example, each of the second resources indicated by the first indication information sequentially corresponds to the first resource.
  • the first indication information further includes a correspondence between each first resource and an optional range of the beam.
  • the first indication information includes a correspondence between each resource subgroup and the second resource.
  • the corresponding relationship between each resource subgroup and the second resource may be indicated in the following manner: the first indication information specifically includes an identifier of each resource subgroup, and an identifier of the second resource corresponding to the identifier of each resource subgroup; or The first indication information specifically includes information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource; or the first indication information may specifically include: each resource subgroup The identifier of the corresponding second resource.
  • the base station indicates, by using the first indication information, that all the first resources of the same resource sub-group correspond to the same second resource, that is, the UE sends the same transmit beam to all the first resources of the same resource sub-group.
  • the target channel and/or signal in this case, correspondingly, may be used in a predefined or pre-configured manner such that the base station receives the target channel and/or signal using different receive beams for the first resource of the same resource subgroup.
  • the first indication information includes a correspondence between each resource subgroup and the second resource group, and the second resource group includes one or more second resources.
  • the corresponding relationship between the resource sub-group and the second resource group may be indicated in the following manner: the first indication information specifically includes an identifier of the resource sub-group, and an identifier of the second resource in the second resource group corresponding to the identifier of the resource sub-group; or The first indication information specifically includes an identifier of the resource subgroup, and an identifier of the second resource group corresponding to the identifier of the resource subgroup.
  • the first indication information includes an identifier of the second resource in the second resource group corresponding to the resource subgroup;
  • the first indication information includes an identifier of the second resource group corresponding to the resource group.
  • the second resource group in the second resource group is the same as the resource resource group in the resource group.
  • the correspondence between the second resource in the second resource group and the resource sub-group in the resource group may be predefined, for example, sequentially.
  • the second resource is an SRS resource
  • the second resource is a CSI-RS resource
  • the first resource is one port of the SRS resource
  • the first resource group is one or more SRS ports.
  • SRS resource, the first resource group contains an SRS resource group of one or more SRS resources.
  • the method for transmitting the first indication information may include: the base station may configure multiple candidate second resource groups by using high layer signaling, such as RRC signaling or MAC CE signaling, where the base station indicates the MAC CE or DCI signaling.
  • One candidate second resource group is the second resource group.
  • the one or more candidate second resource groups form a set of candidate second resource groups, and the base station configures one or more candidate second resource groups by using high layer signaling, such as RRC signaling or MAC CE signaling. Collection, The base station further indicates one of the candidate second resource groups by signaling, such as RRC signaling or MAC CE signaling, and the base station indicates one of the indicated candidate second resource group sets by MAC CE or DCI signaling.
  • the candidate second resource group is the second resource group.
  • the number of the second resources in the second resource group included in the set of the same candidate second resource group is the same, and the number of the second resources in the second resource group included in the set of different candidate second resource groups Can be different.
  • the UE may determine a set of candidate second resource groups according to the number of the first resource subgroups in the first resource group. For example, the determined number of second resources in the second resource group in the set of candidate second resource groups is equal to the number of the first resource subgroups in the first resource group.
  • a feasible embodiment is shown in Table 1. The UE determines a column in the table according to the number of the first resource subgroups in the first resource group, that is, determines a set of candidate second resource groups, for example, one resource group includes one.
  • the first resource subgroup is selected as the set 0 of the candidate second resource group, wherein each of the second resource groups in the set 0 of the candidate second resource group includes one second resource, because only the second resource group is a second resource, so the beam indication may directly indicate the identifier of the second resource; for example, if the resource group includes two first resource subgroups, then the candidate second resource group set 1 is selected, wherein the candidate second resource group Each of the second resource groups in the set 1 includes two second resources; for example, if the resource group includes four first resource subgroups, then the candidate second resource group set 2 is selected, wherein the candidate second resource Each of the second resource groups in the set 2 of the group includes four second resources.
  • the first resource group has a corresponding second resource.
  • the base station determines the row in the table by using the beam indication item in the MAC CE or DCI indication table, for example, the bit of the corresponding domain in the MAC CE or the DCI is “00”, and then selects the resource group 0.
  • the rows and columns in the table below are examples only, interchangeable, and the number of rows and/or columns can be increased or decreased, or it can be part of other tables.
  • the values in the fields in the following table are binary numbers, which can also be expressed in decimal, octal, or hexadecimal numbers.
  • the correspondence between the domain and the identity of the second resource can be represented by a list, a formula, a string of characters, an array, or a piece of code.
  • the number of first resource subgroups in the first column of the table can also be other values, here only as an example.
  • the first resource subgroup is an SRS resource as an example, and the table 1 may be changed to the following Table 2.
  • the identifier of the SRS/CSI-RS resource may be an SRI or a CRI, or the base station may configure or predefine the correspondence between the SRI or the CRI and the identifier of the SRS/CSI-RS resource.
  • the values in the fields in the following table are binary numbers, which can also be expressed in decimal, octal, or hexadecimal numbers.
  • Correspondence between the domain in the MAC CE or the DCI indicating the correspondence between the SRS resource and the SRS/CSI-RS resource and the identifier of the SRS/CSI-RS resource group, or the MAC CE or DCI used to indicate the SRS resource and the SRS The correspondence between the domain of the /CSI-RS resource correspondence and the identifier of the SRS/CSI-RS resource may be represented by a list, a formula, a string of characters, an array, or a piece of code.
  • the number of SRS resources in the first column of the table can also be other values, here only as an example.
  • the first indication information further includes: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information includes a correspondence between each first resource and the second resource.
  • the corresponding relationship between each first resource and the second resource may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource, and an identifier of the second resource corresponding to the identifier of each first resource; or The first indication information specifically includes information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource; or the first indication information includes the second corresponding to the first resource.
  • the identity of the resource specifically includes an identifier of each first resource, and an identifier of the second resource corresponding to the identifier of each first resource; or
  • the first indication information specifically includes information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource; or the first indication information includes the second corresponding to the first resource.
  • the first indication information includes a correspondence between each first resource and a second resource group, and the second resource group includes at least one second resource.
  • each first resource and the second resource group may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource, and each of the second resource groups corresponding to the identifier of each first resource An identifier of the second resource; or the first indication information specifically includes an identifier of each first resource, and an identifier of the second resource group corresponding to the identifier of each first resource; or the first indication information specifically includes The information indicating the antenna port of the signal of each first resource and the antenna port of the signal of the second resource group have a QCL relationship; or the first indication information specifically includes the identifier of the second resource group corresponding to the first resource.
  • the first indication information includes a correspondence between each first resource and an optional range of the beam.
  • the first indication information may be carried in the same signaling, or may be carried in different signaling, for example, when the first indication information is carried in different signaling,
  • the identifier of the first resource or the identifier of the first resource sub-group may be carried in the signaling 1.
  • the identifier of the first resource and the identifier of the first resource sub-group in the first indication information may be carried in the information. 2.
  • the first indication information may also be used to indicate that the user equipment selects a transmission beam of a target channel and/or a signal by itself, or a signal that has a QCL relationship with a target channel and/or a signal.
  • the domain used to indicate the correspondence between the first resource and the second resource in the MAC CE or DCI in Table 1 in Mode 5 Can be used to indicate that the target channel and/or signal uses the kth transmit beam previously used or the second resource is the second resource indicated by the previous kth, or the MAC CE in Table 2 in mode 5 or
  • the field used in the DCI to indicate the correspondence between the SRS resource and the SRS/CSI-RS resource may also be used to indicate that the target channel and/or the signal uses the kth transmit beam previously used, or the SRS/CSI-RS
  • the resource is the SRS/CSI-RS resource indicated by the kth time
  • the first indication information may also be used to indicate that the transmit beam used by the target channel and/or the signal is determined by the UE or is not limited to the antenna port used by the target channel and/or the signal.
  • Antenna port for QCL relationship may also be used to indicate that the transmit beam used by the target channel and/or the signal is determined by the UE or is not limited to the antenna port used by the target channel and/or the signal.
  • the domain used to indicate the correspondence between the first resource and the second resource in the MAC CE or DCI in Table 1 in the fifth mode may also be used to indicate that the transmit beam adopted by the target channel and/or the signal is determined by the UE or
  • the antenna port that has a QCL relationship with the antenna port used by the target channel and/or the signal is not limited, or the MAC CE or DCI in Table 2 in the fifth mode is used to indicate the correspondence between the SRS resource and the SRS/CSI-RS resource.
  • the domain may also be used to indicate that the transmit beam employed by the target channel and/or signal is determined by the UE itself or does not define an antenna port that has a QCL relationship with the antenna port used by the SRS.
  • the base station may send the third indication information, where the first indication information is included, or the identifier of the second resource is included in the first indication information, or the second resource group Identification so that signaling overhead is reduced when no indicator beam is needed.
  • the time domain interval between the second resource and the third resource or the first resource is predefined or configured by a base station.
  • the third resource is part or all resources for transmitting the first indication information.
  • the first indication information is carried in the RRC signaling or the MAC CE signaling
  • the identifier of the second resource in the first indication information, or the identifier of the second resource group is carried in the RRC signaling or the MAC CE signaling
  • the third The resource may be a time slot or a subframe or a symbol or a mini-slot in which the PDSCH where the RRC signaling or the MAC CE signaling is located.
  • a time slot is taken as an example.
  • the first indication information is carried in the DCI, or the identifier of the second resource in the first indication information, or the identifier of the second resource group is carried in the DCI
  • the third resource may be the time slot in which the PDCCH where the DCI is located or A sub-frame or a symbol or a mini-slot, in this embodiment, takes a time slot as an example.
  • the predefined second resource is a resource that sends the aperiodic signal
  • the second resource and the third resource The time domain interval of the resource or the first resource is the interval between the time slot in which the aperiodic signal is located and the time slot of the third resource or the first resource.
  • the base station may configure different signaling through the signal during the periodic transmission of the signal.
  • the beam therefore, needs to define the resource occupied by the second resource as a certain transmission of the corresponding periodically transmitted signal.
  • the first indication information is used to indicate a resource indication of the second signal transmitted on the second resource
  • the second signal is an SRS or a CSI-RS
  • the resource indication of the second signal is an SRI or CRI or their identifier.
  • the foregoing second resource may be included in the second resource group, and the indication method may be the indication method in the foregoing manners one to eight.
  • the time zone interval between the second resource and the third resource or the first resource is predefined or configured by the base station as follows:
  • the second resource may be a resource of the second signal transmitted by the last a2th time before the third resource a1 time slot.
  • the second resource is the resource of the second signal transmitted by the last a second time before the n-a1 time slot, as shown in FIG. 5-1.
  • the second resource may be a resource of the last a2th different beam or the second signal of the non-QCL before the third resource a1 time slot.
  • the third resource is the time slot n or the time slot in which the time slot is n
  • the second resource is the resource of the second signal of the a2th different beam or the second signal of the non-QCL before the n-a1 time slot, as shown in the figure.
  • Different Beams can also be understood as different spatial filters or have non-QCL relationships.
  • Embodiment 2 Relative to Embodiment 1, the implementation of multiple A2 values in Method 1 may Corresponding to the same beam, so the overhead indicated by a2 can be reduced;
  • the second resource may be a resource of the second signal transmitted by the last a2th time before the first resource a1 time slot.
  • the time slot in which the first resource is located is slot n
  • the second resource is the resource of the second signal transmitted from the last a2 times before the n-a1 time slot, as shown in FIG. 5-3.
  • the second resource may be a resource of a second signal of the last a2 different beams before the first resource a1 time slot.
  • the second resource is the resource of the second signal of the a2th different beam or the second signal of the non-QCL before the n-a1 time slot, as shown in Figure 5-4.
  • Different beams can also be understood as different spatial filters or have non-QCL relationships.
  • the multiple a2 values in the implementation method 3 may correspond to the same beam, so the overhead indicated by a2 may be reduced.
  • the time domain interval between the first resource and the third resource or the second resource is predefined or configured by a base station.
  • the third resource is part or all resources for transmitting the first indication information.
  • the first indication information is carried in the RRC signaling or the MAC CE signaling, or the identifier of the second resource in the first indication information, or the identifier of the second resource group is carried in the RRC signaling or the MAC CE signaling, and then the third
  • the resource may be a time slot or a subframe or a symbol or a mini-slot in which the PDSCH where the RRC signaling or the MAC CE signaling is located.
  • a time slot is taken as an example.
  • the first indication information is carried in the DCI, or the identifier of the second resource in the first indication information, or the identifier of the second resource group is carried in the DCI
  • the third resource may be the time slot in which the PDCCH where the DCI is located or A sub-frame or a symbol or a mini-slot, in this embodiment, takes a time slot as an example.
  • the predefined first resource is to send the aperiodic target channel and/or
  • the resource of the signal, the time interval of the first resource and the third resource or the second resource is the interval between the time slot of the aperiodic target channel and/or the signal and the time slot of the third resource or the second resource.
  • the first resource carries a periodic signal or a semi-persistent target channel and/or signal, such as a periodic or semi-persistent SRS or CSI-RS, considering that the first indication information has a certain effective delay or fuzzy Time, therefore, it is necessary to specify the time when the first indication information is actually effective.
  • a periodic signal or a semi-persistent target channel and/or signal such as a periodic or semi-persistent SRS or CSI-RS
  • the first indication information is used to indicate a second resource corresponding to the first resource or a correspondence between the first resource and the second resource, for example, the target channel and/or the signal is an SRS.
  • the foregoing first resource may be included in the first resource group or the first resource subgroup, and the indication method may be the indication method in the foregoing manners one to eight.
  • the time domain interval between the first resource and the third resource or the second resource is predefined or configured by the base station as follows:
  • the first resource may be a target channel of the b2th transmission after the third resource b1 time slots and/or
  • the resource of the signal, or the first indication information is effective for the target channel and/or signal of the b2th transmission after the third resource b1 time slot.
  • the third resource is the time slot n or the time slot in which the time slot is n
  • the first resource is the resource of the target channel and/or signal transmitted by the b2th time after the n+b1 time slot, or the first indication.
  • the information takes effect on the target channel and/or signal transmitted by the b2th time after the n+b1 time slot, as shown in Figure 5-5.
  • the resource, or the first indication information takes effect on the target channel and/or signal of the b2th transmission after the third resource;
  • the first resource may be the resource of the target channel and/or signal of the b2th transmission after the second resource b1 time slot, or the first indication information is the b2th time after the second resource a1 time slot
  • the transmitted target channel and/or signal will take effect.
  • the second resource is the time slot n or the time slot in which the time slot is n
  • the first resource is the resource of the target channel and/or signal transmitted by the b2th time after the n+b1 time slot, or the first indication.
  • the information takes effect when the target channel and/or signal transmitted by the b2th time after the n+b1 time slot, as shown in Figure 5-6.
  • the resource, or the first indication information, takes effect on the target channel and/or signal of the b2th transmission after the second resource.
  • the information used to indicate the second resource or the second resource group in the first indication information may be carried in the first DCI.
  • the first DCI may be used to trigger transmission of a target channel and/or a signal on more than one frequency domain resource portion, and the frequency domain resource portion may be a carrier or a bandwidth part (BWP).
  • the BWP may be a piece of bandwidth configured by the base station for the UE, has a unique subcarrier spacing and a CP type, and may be used for data transmission.
  • the target channel and/or the signal is taken as an SRS.
  • the first resource or the first resource subgroup or the first resource group includes multiple frequency domain resource parts, which may be understood as each first resource is located in one frequency domain resource part, or each first resource subgroup is located in one frequency.
  • the domain resource part, or the first resource is located in multiple frequency domain resources.
  • Some of the frequency domain resource parts in the frequency domain resource part are frequency domain resource parts that do not perform PUSCH transmission or transmit PUSCH and PUCCH.
  • the first indication information is used to indicate a beam on a plurality of frequency domain resource parts or a corresponding second resource or a second resource group.
  • the first DCI includes one or more parts.
  • the first DCI may include block 1, block 2, . . . , block C, and C is a positive integer.
  • One or more of the C parts in the first DCI may be used to carry information in the first indication information for indicating the second resource or the second resource group.
  • the C parts are partial bits in the first DCI
  • the other one or more parts in the first DCI may be used to carry the first indication information of other UEs, where the first DCI is used to indicate SRS transmission of different user equipments.
  • one of the C parts in the first DCI is used to indicate b1 second resources and b2 Transmission Power Control (TPC) parameters, b1>1, b2>1.
  • TPC Transmission Power Control
  • one of the C portions of the first DCI includes an identification of b1 second resources, or an identifier of one or more second resource groups including b1 second resources.
  • the number of bits of one of the C parts in the first DCI (for example, may be one block in the first DCI) and the specific meaning are as follows:
  • each block corresponds to a user device for which the following bits are included:
  • the power control command which may be a TPC.
  • the correspondence between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined.
  • the corresponding relationship between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined, for example, according to the order of the TPC and the indicated order of the second resources.
  • RRC signaling or MAC CE signaling or predefined, for example, according to the order of the TPC and the indicated order of the second resources.
  • each beam has a certain TPC and performs closed-loop power control adjustment.
  • each block corresponds to one BWP on one carrier, and one BWP on that carrier contains the following bits:
  • the correspondence between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined.
  • one user device may correspond to one or more blocks. That is, the base station may indicate, by one or more blocks in the first DCI, a second resource target used by one user equipment or an identifier of one or more second resource groups of the second resource.
  • each block corresponds to a user device for which the following bits are included:
  • the power control command which may be a TPC.
  • the correspondence between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined.
  • the corresponding relationship between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined, for example, according to the order of the TPC and the indicated order of the second resources.
  • RRC signaling or MAC CE signaling or predefined, for example, according to the order of the TPC and the indicated order of the second resources.
  • each beam has a certain TPC and performs closed-loop power control adjustment.
  • each block corresponds to one carrier or one BWP, and the following bits are included for the carrier or a BWP:
  • the correspondence between the b1 second resources and the b2 TPCs may be configured by higher layer signaling, such as RRC signaling or MAC CE signaling, or predefined.
  • one user device may correspond to one or more blocks. That is, the base station may indicate, by one or more blocks in the first DCI, a second resource target used by one user equipment or an identifier of one or more second resource groups of the second resource.
  • the user equipment determines whether to adopt the implementation method 1 or the implementation method 2 according to the b1, the number of carriers, and the number of BWPs in each carrier. For example, when the number of b1* carriers * the number of BWPs in each carrier is greater than or equal to L, the implementation method 1 is adopted, otherwise the implementation method 2 is adopted.
  • L is preset or protocol-defined or configured by the base station, for example, the base station can configure the value of L through RRC signaling.
  • the user equipment determines the implementation method 3 or the implementation method 4 according to the b1 and the number of carriers, or the user equipment determines the implementation method 3 or the implementation method 4 according to the number of b1 and the BWP.
  • the implementation method 3 is adopted, otherwise the implementation method 4 is adopted.
  • the implementation method 3 is adopted, otherwise the implementation method 4 is adopted.
  • L is preset or protocol-defined or configured by the base station, for example, the base station can configure the value of L through RRC signaling.
  • the second resource or the second resource group corresponding to the different BWPs in the same carrier indicated by the predefined or the base station is not limited.
  • the carrier is a component carrier (CC).
  • CC component carrier
  • the C parts in the first DCI may further include information used to trigger SRS transmission.
  • one part of the C parts in the first DCI includes SRS trigger signaling, which can be used to trigger SRS transmission of a certain base station by using high layer signaling such as RRC signaling or MAC CE configured SRS configuration.
  • the foregoing information transmission method may also be extended to the downlink, where the target channel and/or signal is sent by the base station to the UE, and the first resource is a downlink transmission resource, and the target channel and/or signal at this time. It can be at least one of the following: a primary synchronization signal, a secondary synchronization signal, a synchronization signal block, a physical broadcast channel, a CSI-RS, a tracking reference signal (TRS), a phase tracking reference signal (PT-) RS), Demodulation Reference Signal (DMRS), Physical Downlink Control Channel, Physical Downlink Shared Channel, Control Resource Set CORESET.
  • a primary synchronization signal a secondary synchronization signal
  • a synchronization signal block a physical broadcast channel
  • CSI-RS a tracking reference signal (TRS), a phase tracking reference signal (PT-) RS
  • DMRS Demodulation Reference Signal
  • Physical Downlink Control Channel Physical Downlink Shared Channel
  • Control Resource Set CORESET Control Resource Set CORESET.
  • the base station When the configuration method of the first indication information is used to indicate the target channel and/or the signal of the downlink transmission, the base station sends the first indication information to the UE, where the first indication information is used to indicate the correspondence between the first resource and the second resource.
  • the UE before the base station sends the target channel and/or the signal to the UE, the UE sends the other information to the base station by using the second resource and the corresponding beam; or the base station adopts the second resource before the base station sends the target channel and/or the signal to the UE.
  • the corresponding beam sends other information to the UE, and the UE receives the signal transmitted on the second resource by using the corresponding receiving beam, that is, the UE knows the correspondence between the second resource and the receiving beam, and on this basis, the base station
  • the first indication information used to indicate the correspondence between the first resource and the second resource may be sent to the UE, so that the UE determines, according to the first indication information, a beam required for the UE to receive the target channel and/or the signal on the first resource, Or determining a beam used by the base station to transmit the target channel and/or signal on the first resource.
  • the UE determines, according to the first indication information, that a beam required for the UE to receive the target channel and/or the signal on the first resource is a receiving beam that the UE receives the signal transmitted on the second resource, or the UE feels that the first indication information is determined,
  • the antenna port used for the target channel and/or signal transmission has a QCL relationship with the antenna port used for the signal transmitted on the second resource.
  • the transmission method of the specific first indication information may be any one of the above manners or a combination thereof.
  • the first indication information may be further used to indicate that the target channel and/or the signal uses the kth receive beam used before or the first resource corresponding to the first resource indicated by the kth time
  • the domain used in the MAC CE or DCI in Table 1 in Mode 5 to indicate the correspondence between the first resource and the second resource may also be used.
  • the kth receive beam or the second resource used before indicating that the target channel and/or signal is used is the second resource indicated by the previous kth time.
  • the first indication information is further used to indicate that the target channel and/or the receive beam used by the signal is determined by the UE or does not have a QCL relationship with the antenna port used by the target channel and/or the signal.
  • Antenna port For example, the domain used to indicate the correspondence between the first resource and the second resource in the MAC CE or DCI in Table 1 in the fifth mode may also be used to indicate that the receiving beam adopted by the target channel and/or the signal is determined by the UE or
  • the antenna port that has a QCL relationship with the antenna port used for the target channel and/or signal is not limited.
  • the UE receives, by the base station, first indication information.
  • the UE determines the second resource according to the first resource and the first indication information, and determines an uplink transmit beam or a downlink receive beam according to the beam corresponding to the second resource.
  • determining the uplink transmit beam according to the beam corresponding to the second resource may also be determining the uplink receive beam.
  • the uplink receive beam used by the transport channel and/or the signal on the second resource may be determined as the target channel and/or An uplink receive beam of the signal, or a QCL relationship between the antenna port used to transmit the channel and/or signal on the second resource and the antenna port used by the target channel and/or signal to determine a transport channel and/or signal on the second resource
  • the uplink receive beam used is determined as the uplink receive beam of the target channel and/or signal.
  • the second resource can be The spatial filter used for downlink transmission of the transmission channel and/or signal is determined to be a spatial filter used for uplink reception of the target channel and/or signal, or may be used for downlink transmission of the transmission channel and/or signal on the second resource.
  • the uplink receiving beam corresponding to the downlink transmitting beam is determined as an uplink receiving beam of the target channel and/or signal, or an antenna port used according to the antenna port and the target channel and/or signal used for transmitting the channel and/or the signal on the second resource.
  • a spatial filter used by the QCL relationship to determine the spatial filter used for downlink transmission of the transmission channel and/or signal on the second resource is used for uplink reception of the target channel and/or signal, or the transmission channel and/or signal on the second resource
  • the uplink receiving beam corresponding to the downlink transmitting beam used for downlink transmission is an uplink receiving beam of the target channel and/or the signal.
  • the UE may first determine the first corresponding to the first resource according to the correspondence included in the first indication information and the first resource included in the configured resource group.
  • the second resource determines an uplink transmit beam or an uplink receive beam of the target channel and/or the signal according to the corresponding beam of the second resource according to the known correspondence between the second resource and the beam.
  • the beam corresponding to the second resource may be directly determined. Is an uplink transmit beam for the target channel and/or signal, or directly determines a receive beam corresponding to the second resource as an uplink receive beam of the target channel and/or signal, when the base station transmits on the second resource and the corresponding beam.
  • the correspondence between the second resource and the downlink receiving beam is known.
  • the uplink of the target channel and/or the signal may be determined by using the corresponding relationship between the uplink and downlink beams according to the beam corresponding to the second resource. Transmit beam.
  • the beam may also be a spatial filter, or the antenna port of the signal transmitted on the second resource has a QCL relationship with the antenna port of the target channel and/or the signal.
  • the predefined, the first resource and the first The target channel before the resource and/or the resource occupied by the signal transmission have a corresponding relationship, for example, the current target channel and/or signal is transmitted by using a beam or spatial filter of the last transmission target channel and/or signal, or for example, the target channel and/or The antenna port of the signal or signal has a QCL relationship with the antenna port of the last transmission channel and/or signal.
  • the user equipment determines the transmit beam used by the target channel and/or the signal, or the target channel and/or Or a signal with a QCL relationship.
  • the user equipment determines the target channel and/or Or a transmit beam employed by the signal, or a signal having a QCL relationship with the target channel and/or signal, or a signal having a QCL relationship with the target channel and/or signal.
  • the first indication information is used to indicate that the target channel and/or the signal uses the kth transmit beam used before or the first resource corresponds to the second resource indicated by the kth time
  • the antenna port used to determine the target channel and/or signal has a QCL relationship with the antenna port used for the signal transmitted on the second resource. Specifically, the transmit beam or the receive beam or the QCL relationship determining method described in the embodiment of the present invention may be used.
  • the UE determines the transmit beam of the target channel and/or signal or the antenna end used for the target channel and/or signal.
  • the antenna port has a QCL relationship.
  • the UE if the UE transmits a third signal and/or channel on part or all of the symbols occupied by the target channel and/or signal, the UE needs to determine the third signal. And/or whether the channel is the same as the transmit beam or the receive beam of the target channel and/or signal, or the UE needs to determine the antenna port of the third signal and/or channel and the antenna port of the target channel and/or signal Whether it has a QCL relationship.
  • the third signal and/or channel may be indicated by using a method for indicating a target channel and/or a signal in the present invention, for example, indicating a correspondence between the third signal and/or the channel and the fourth resource, indicating the third signal.
  • the UE may determine whether the third signal and/or the channel is the same as the transmit beam or the receive beam of the target channel and/or the signal, according to whether the second resource is the same as the fourth resource, where the beam may be a spatial filter. Or the UE needs to determine whether the antenna port of the third signal and/or channel has a QCL relationship with the antenna port of the target channel and/or signal.
  • the third signal and/or channel may be at least one of: a sounding reference signal SRS, a physical layer random access channel PRACH, a physical layer uplink shared channel PUSCH, a physical layer uplink control channel PUCCH, and an uplink tracking signal.
  • a sounding reference signal SRS a physical layer random access channel PRACH
  • a physical layer uplink shared channel PUSCH a physical layer uplink control channel PUCCH
  • an uplink tracking signal may be at least one of: a sounding reference signal SRS, a physical layer random access channel PRACH, a physical layer uplink shared channel PUSCH, a physical layer uplink control channel PUCCH, and an uplink tracking signal.
  • the UE determines that the third signal and/or channel is the same as the transmit beam or the receive beam of the target channel and/or the signal, or the UE needs to determine the antenna port of the third signal and/or channel
  • the antenna channel of the target channel and/or signal has a QCL relationship, and the UE transmits a target channel and/or signal, and a third signal and/or channel. If the UE determines that the third signal and/or channel is different from the transmit beam of the target channel and/or signal, or the receive beam is not the same, or the UE determines the antenna port of the third signal and/or channel and the If the antenna port of the target channel and/or signal does not have a QCL relationship, the following implementation methods are available:
  • Implementation method 1 The UE determines to transmit one of the target channel and/or the signal and the third signal and/or channel on the symbol according to a predefined priority.
  • the predefined priority may be that the PUSCH has a lower priority than the SRS, and the PUCCH has a higher priority than the SRS.
  • the target channel and/or signal is SRS
  • the third signal and/or channel is PUSCH
  • the PUSCH is not mapped on the symbol of the SRS, and rate matching is performed.
  • the target channel and/or signal is PUCCH and the third signal and/or channel is SRS
  • the SRS is not mapped on the symbol of the PUCCH.
  • the priority of the bearer carrying the uplink control information or the bearer DMRS in the PUSCH is higher than the SRS, or the priority of the pre-loaded DMRS (front-loaded DMRS) in the PUSCH is higher than the SRS, and the additional DMRS in the PUSCH ( Additional DMRS) has a lower or higher priority than SRS.
  • the PUCCH carrying the CSI may be defined to have a lower priority than the SRS, for example, the target channel and/or the signal is a PUCCH, and the third signal and/or the channel is an SRS, and the PUCCH is not mapped on the symbol of the SRS.
  • the number of symbols, the format, the number of occupied frequency domain resources, or the number of RBs occupied by the PUCCH may be adjusted in a predefined manner, so that the PUCCH is not mapped on the symbol of the SRS, and the UE may send the PUCCH.
  • Embodiment 2 The base station configures the priority information.
  • the priority of the implementation method may be configured by the base station, such as by using RRC signaling or MAC CE signaling.
  • the UE determines mapping and/or rate matching of the target channel and/or the signal with the third signal and/or channel according to the priority information configured by the base station according to a method of the implementation method.
  • the target channel and/or the signal and the third signal and/or channel may occupy different frequencies. Domain resources, or some or all of the frequency domain resources overlap.
  • the following processing methods are:
  • Processing method 1 According to the priority in the foregoing implementation method, the high priority signal and/or channel are determined, and the UE maps the high priority signal and/or channel according to the high priority signal and/or channel configuration, and the UE does not Send low priority signals and/or channels.
  • Processing method 2 determining high-priority signals and/or channels according to priorities in the foregoing implementation method, and the UE mapping high-priority signals and/or channels according to high-priority signals and/or channel configurations, where the UE is Low priority signals and/or channels are transmitted on time-frequency resources other than time-frequency resources of high priority signals and/or channels.
  • the PUSCH maps the time frequency configured or scheduled by the base station other than the time-frequency resource of the high priority signal or the channel for transmitting the PUSCH. Resources.
  • the SRS mapping is high in the configured SRS bandwidth on the same symbol of the target channel and/or signal as the third signal and/or part or all of the time-frequency resources of the channel.
  • the priority signal and/or some or all of the resources in the frequency domain resource with different frequency domain resources for example, the bandwidth required to ensure the SRS mapping is an integer multiple of 4 RBs, and the frequency domain resources of the mapped SRS are continuous.
  • Further UEs may determine the sequence of SRSs based on the frequency domain resources of the SRS mapping.
  • the PUCCH mapping is performed on time-frequency resources other than the time-frequency resources of the high-priority signal and/or the channel, and the UE determines the number of symbols of the PUCCH according to the PUCCH-mapped resource. At least one of a format, a bandwidth, and uplink control information contained therein, and transmitting a PUCCH.
  • processing method 1 and processing method 2 may also be used in the case of no first indication information or in the case of no transmission beam.
  • the information transmission method may be extended to the downlink.
  • the UE determines the second resource according to the first resource and the first indication information, and determines the downlink receiving beam according to the beam corresponding to the second resource.
  • the method for determining the transmit beam in the uplink in the embodiment of the present invention may be used to determine the receive beam in the downlink.
  • the UE may first determine the first corresponding to the first resource according to the correspondence included in the first indication information and the first resource included in the configured resource group.
  • the second resource determines the downlink receive beam of the target channel and/or the signal according to the corresponding beam of the second resource according to the known correspondence between the second resource and the beam.
  • the UE when the UE receives other information on the second resource and the corresponding beam, the corresponding relationship between the second resource and the downlink receiving beam is known.
  • the downlink receiving corresponding to the second resource may be directly received.
  • the beam is determined as the downlink receiving beam of the target channel and/or the signal.
  • the UE sends other information on the second resource and the corresponding beam the corresponding relationship between the second resource and the uplink transmitting beam is known.
  • the downlink receive beam of the target channel and/or the signal may be determined by using the corresponding relationship between the uplink and downlink beams according to the uplink transmit beam corresponding to the second resource.
  • the beam may also be a spatial filter, or the antenna port of the signal transmitted on the second resource has a QCL relationship with the antenna port of the target channel and/or the signal.
  • the predefined first resource and the target channel before the first resource and/or Or the resources occupied by the signal transmission have a corresponding relationship, for example, the current target channel and/or signal is transmitted by using a beam or spatial filter that receives the target channel and/or the signal last time, or an antenna port and a signal such as a target channel and/or signal.
  • Antenna that transmits channels and/or signals at a time The port has a QCL relationship.
  • the user equipment determines the receiving beam used by the target channel and/or the signal, or the target channel and/or Or a signal with a QCL relationship.
  • the user equipment determines the target channel and/or Or a receive beam used by the signal, or a signal having a QCL relationship with the target channel and/or signal.
  • the UE if the UE receives or the base station sends a third signal and/or channel on part or all of the symbols occupied by the target channel and/or the signal, the UE needs to determine the Whether the third signal and/or channel is the same as the transmit and receive beams of the target channel and/or signal, the beam may be a spatial filter, or the UE needs to determine the antenna port and the channel of the third signal and/or channel Whether the antenna port of the target channel and/or signal has a QCL relationship.
  • the third signal and/or channel may be indicated by using a method for indicating a target channel and/or a signal in the present invention, for example, indicating a correspondence between the third signal and/or the channel and the fourth resource, indicating the third signal. And/or the correspondence between the channel and the beam or spatial filter or whether the port of the third signal and/or channel has a QCL relationship with the port of the signal transmitted on the fourth resource.
  • the UE may determine whether the third signal and/or the channel is the same as the receive beam of the target channel and/or the signal according to whether the second resource is the same as the fourth resource, where the beam may be a spatial filter, or a UE. It is necessary to determine whether the antenna port of the third signal and/or channel has a QCL relationship with the antenna port of the target channel and/or signal.
  • the third signal and/or channel is a downlink signal and/or a channel, and may be at least one of the following: a primary synchronization signal, a secondary synchronization signal, a synchronization signal block, a physical broadcast channel, a CSI-RS, and a tracking reference signal (Tracking reference) Signal, TRS), phase tracking reference signal (PT-RS), demodulation reference signal (DMRS), physical downlink control channel, physical downlink shared channel, control resource set CORESET.
  • a primary synchronization signal a secondary synchronization signal
  • a synchronization signal block a physical broadcast channel
  • CSI-RS CSI-RS
  • DMRS demodulation reference signal
  • the UE determines that the third signal and/or channel is the same as the receive beam of the target channel and/or the signal, or the UE needs to determine the antenna port of the third signal and/or channel and the target
  • the antenna port of the channel and/or signal has a QCL relationship, and the UE receives the target channel and/or signal, as well as the third signal and/or channel. If the UE determines that the third signal and/or channel is different from the receive beam of the target channel and/or signal, or the UE determines the antenna port of the third signal and/or channel and the target channel and/or If the antenna port of the signal does not have a QCL relationship, the following implementation methods are available:
  • Implementation method 1 The UE determines, according to a predefined priority, that one of the target channel and/or the signal and the third signal and/or channel is received or mapped on the symbol.
  • the predefined priority may be that the priority of the PDSCH is lower than the CSI-RS, and the priority of the PDCCH is higher than the CSI-RS.
  • the target channel and/or signal is CSI-RS
  • the third signal and/or channel is PDSCH
  • the PDSCH is not mapped on the symbol of the CSI-RS, and rate matching is performed.
  • the target channel and/or signal is a PDCCH and the third signal and/or channel is a CSI-RS
  • the CSI-RS is not mapped on the symbol of the PSCCH.
  • a pre-loaded DMRS (front-loaded DMRS) in the PDSCH has a higher priority than a CSI-RS
  • an additional DMRS (additional DMRS) in the PDSCH has a lower priority or higher than the SRS.
  • the target channel and/or signal is a CSI-RS
  • the third signal and/or channel is a synchronization signal or a synchronization signal block
  • the CSI-RS is not mapped on the symbol.
  • Embodiment 2 The base station configures the priority information.
  • the priority of the implementation method may be configured by the base station, such as by using RRC signaling or MAC CE signaling.
  • the UE determines mapping and/or rate matching of the target channel and/or the signal with the third signal and/or channel according to the priority information configured by the base station according to a method of the implementation method.
  • the UE determines that the third signal and/or channel is the same as the receive beam of the first part of the antenna port of the target channel and/or the signal, or the UE needs to determine the antenna of the third signal and/or channel
  • the port has a QCL relationship with the first portion of the antenna channel of the target channel and/or signal, and the UE receives the first portion of the antenna port of the target channel and/or signal, and the third signal and/or channel.
  • the target channel and/or signal is a DMRS of a PDSCH or a PDSCH
  • the third channel and/or the signal is a CSI-RS
  • the first antenna port of the target channel and/or signal may be within a DMRS group.
  • Antenna port is a DMRS group.
  • the UE determines that the third signal and/or channel is different from the receive beam of the second part of the antenna port of the target channel and/or the signal, or the UE determines the antenna port and the channel of the third signal and/or channel
  • the second part of the antenna channel of the target channel and/or signal does not have a QCL relationship, and the following implementation methods are available:
  • Embodiment 1 The UE determines, according to a predefined priority, a second part of the antenna port and the third signal and/or channel that receive or map the target channel and/or signal on the symbol.
  • the predefined priority may be that the priority of the PDSCH is lower than the CSI-RS.
  • the target channel and/or the signal is a DMRS of the PDSCH or the PDSCH
  • the third signal and/or channel is a CSI-RS
  • the second part of the antenna port of the PDSCH is not mapped on the symbol of the CSI-RS, and is performed. Rate matching.
  • Embodiment 2 The base station configures the priority information.
  • the priority of the implementation method may be configured by the base station, such as by using RRC signaling or MAC CE signaling.
  • the UE determines mapping and/or rate matching of the second part of the antenna port of the target channel and/or the signal with the third signal and/or channel according to the priority information configured by the base station according to the method of the implementation method.
  • the base station configures an association relationship between the antenna port of the third signal and/or the channel and the antenna port of the target channel and/or the signal, and the antenna of the third signal and/or channel between the ports having the associated relationship.
  • the port and the antenna port of the target channel and/or signal can be transmitted simultaneously.
  • the third signal and/or channel is associated with the antenna port b of the target channel and/or signal, then the third signal and/or the channel port a and the target channel and/or Whether the receiving beam of the antenna port b of the signal is the same, or whether the antenna port a of the third signal and/or channel and the antenna port b of the target channel and/or signal have a QCL relationship, both of which can be simultaneously at the antenna port
  • the third signal and/or channel is transmitted on a and the target channel and/or signal is transmitted on antenna port b.
  • the association between the antenna port of the third signal and/or the channel and the antenna port of the target channel and/or the signal may also be reported by the user equipment.
  • the first indication information is used to indicate that the target channel and/or the signal uses the kth receive beam used before or the first resource corresponds to the second resource indicated by the kth time
  • the antenna port used to determine the target channel and/or signal has a QCL relationship with the antenna port used for the signal transmitted on the second resource.
  • the receiving beam or the receiving beam or the QCL relationship determining method described in the embodiment of the present invention may be specifically used.
  • the UE determines the receiving beam of the target channel and/or signal or the antenna port that has a QCL relationship with the antenna port used by the target channel and/or the signal.
  • first resource is associated with the target channel before the first resource and/or the resource occupied by the signal
  • the target channel and/or the signal is used.
  • the beam or spatial filter transmission of the target channel and/or signal is transmitted at a time, or the antenna port of the target channel and/or signal, for example, has a QCL relationship with the antenna port of the last transmission channel and/or signal.
  • the user equipment determines the receiving beam used by the target channel and/or the signal, or the target channel and/or Or a signal with a QCL relationship.
  • the user equipment determines the target channel and/or Or a receive beam employed by the signal, or a signal having a QCL relationship with the target channel and/or signal, or a signal having a QCL relationship with the target channel and/or signal.
  • the UE sends a target channel and/or a signal on the first resource and the uplink transmit beam.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends, by using the UE, a corresponding relationship between the first resource and the second resource.
  • An indication information so that the UE can determine a beam required to transmit the target channel and/or the signal according to the first resource and the first indication information.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • FIG. 6 is a flowchart of another information transmission method according to an embodiment of the present invention. As shown in FIG. 6, the method may include:
  • the UE sends capability indication information to the base station.
  • the UE may report its own beam capability to the base station. Specifically, the UE may report its own beam capability by sending the capability indication information to the base station.
  • the UE may send capability indication information to the base station through message 3 (Message 3) and/or uplink high layer signaling.
  • message 3 Message 3
  • uplink high layer signaling Message 3
  • the capability indication information includes the maximum number of beams supported by the UE in the capability type, or the capability indication information includes the quantized value of the maximum number of beams supported by the UE in the capability type.
  • the capability type may include a beam management phase and/or an optional range of beams.
  • the capability type may be predefined or may be configured by a base station.
  • the beam management phase may include: a U-1 phase, a U-2 phase, and a U-3 phase.
  • the base station may measure different transmit beams of the UE to support beam selection of the UE transmit beam or the base station receive beam.
  • the base station may measure different receive beams of the UE.
  • the UE may correspondingly transmit signals to the base station on the same transmit beam to support possible receive beam handover within the base station or between the base stations.
  • the base station may measure the same receive beam of its own (at this time) The UE can correspondingly transmit signals to the base station on different transmit beams, so that the UE can change its own transmit beam in the case of beamforming.
  • the optional range of the beam (referred to as the transmit beam) may be included Including: 0 degrees - 360 degrees, 45 degrees - 135 degrees and so on.
  • the capability type includes the beam management phase and the maximum beam number reported by the UE in the capability type is used to report the capability indication information
  • the maximum number of beams supported by the UE in the U-1 phase is 4, and the UE The maximum number of beams supported by the UE in the U-3 phase is 5.
  • the capability indication information sent by the UE to the base station may include: the maximum number of beams supported in the U-1 phase is 4, and the maximum number of beams supported in the U-3 phase is 5. .
  • the capability indication information is reported by using the quantized value of the maximum number of beams supported by the UE in the capability type
  • the maximum number of beams supported by the UE at 0 degrees-360 degrees is 16
  • the maximum number of beams supported by the UE at 45 degrees to 135 degrees is 4, and the number of beams is greater than or equal to 8 and less than 16
  • the corresponding quantization value is 2
  • the capability indication information sent by the UE to the base station may include: a quantized value of 2 for the maximum number of beams supported at 0 degrees to 360 degrees, and a quantized value of 1 for the maximum number of beams supported at 45 degrees to 135 degrees.
  • the base station receives capability indication information sent by the UE.
  • the base station configures a resource group for the UE according to the capability indication information.
  • the resource group may include at least one resource subgroup, and the resource subgroup includes at least one first resource, where the first resource is used by the UE to send the target channel and/or the signal.
  • the first resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the target channel and/or signal includes at least one of the following: SRS, PRACH, PUSCH, PUCCH, uplink tracking signal, uplink discovery signal, uplink beam reference signal, uplink motion reference signal, and uplink demodulation reference signal.
  • the base station may configure the resource group corresponding to the corresponding capability type for the UE according to the maximum number of beams supported by the UE in different capability types or the quantized value of the maximum number of supported beams.
  • the principle is that the number of resource subgroups that the resource group configured for the UE can be divided into is less than or equal to the maximum number of beams of the UE in the corresponding capability type.
  • step 603 is similar to the specific description of the step 401 in another embodiment of the present invention.
  • step 603 in the embodiment of the present invention reference may be made to the specific description of the step 401 in another embodiment of the present invention.
  • the embodiments of the present invention are not described in detail herein.
  • the base station sends second indication information to the UE.
  • the base station may further send, to the UE, second indication information that is used by the UE to divide the resource group into the at least one resource subgroup.
  • the UE acquires a resource group configured by the base station for the UE.
  • the UE receives the second indication information sent by the base station.
  • the UE divides the resource group into at least one resource subgroup according to the second indication information.
  • the UE may divide the acquired resource group into at least one resource subgroup according to the grouping manner indicated by the second indication information.
  • the base station sends first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the beam.
  • the beam may be an uplink transmit beam or a downlink receive beam.
  • the base station indicates to the UE that the UE is configured by the first indication information. The correspondence between each first resource and the beam in the set of resource groups.
  • the base station may indicate, to the UE, the correspondence between each first resource and the beam in the resource group configured for the UE in different manners.
  • the first indication information includes an identifier of each first resource in the resource subgroup, and a number of a beam corresponding to the identifier of each first resource.
  • the same identifier may be used to label the first resource in the different resource subgroups.
  • all the resource subgroups included in the resource group may use the corresponding relationship to determine the beam corresponding to the first resource. the same.
  • the first indication information includes an identifier of each resource subgroup, and a number of a beam corresponding to the identifier of each resource subgroup. That is to say, the beams corresponding to all the first resources included in each resource subgroup are the same. If the beam is a downlink transmit beam or an uplink receive beam, the user equipment uses the uplink transmit beam paired with the downlink transmit beam or the uplink receive beam to transmit a target channel and/or signal on each sub-resource.
  • the first indication information includes an identifier of each resource subgroup and a number of each beam in the beam group corresponding to the identifier of each resource subgroup, and the beam group includes at least one beam.
  • the beam group may be a transmit beam of the U-3 phase included in one transmit beam of the UE in the U-1 phase, or may be a beam split of the base station.
  • the first indication information includes an identifier of each resource subgroup, and a number of a beam group corresponding to the identifier of each resource subgroup.
  • each resource subgroup corresponds to a beam group.
  • the number of each beam or the number of the beam group in the beam group corresponding to the identifiers of the multiple resource subgroups may be the same, that is, multiple resource subgroups may correspond to one beam group.
  • the first indication information includes the number of each beam in the beam group.
  • the first indication information includes: a number of the beam group.
  • the signaling of the first indication information can be effectively reduced by dividing the resource group into at least one resource sub-group and indicating the correspondence between each first resource and the beam in the resource group in the manner of mode 2 to mode 6. Overhead.
  • the first indication information includes: an identifier of each resource subgroup, and an optional range of a beam corresponding to the identifier of each resource subgroup.
  • the base station can use the mode seven-way UE to indicate the correspondence between each first resource and the beam in the resource group configured for the UE, so that the UE can select the UE within a certain range.
  • the beam enables a finer beam search.
  • the first indication information includes an identifier of each first resource, and a number of a beam corresponding to the identifier of each first resource.
  • the first indication information includes an identifier of each first resource, and a number of each beam in the beam group corresponding to the identifier of each first resource, where the beam group includes at least one beam (where different first Resources can correspond to the same beam set).
  • the first indication information includes an identifier of each first resource, and a number of a beam group corresponding to the identifier of each first resource (where the identifiers of different first resources may correspond to the same beam group number) .
  • each first resource corresponds to a beam group.
  • the number of each beam or the number of the beam group in the beam group corresponding to the identifiers of the plurality of first resources may be the same, that is, more The first resources may correspond to a beam group.
  • the first indication information includes: an identifier of each first resource, and an optional range of a beam corresponding to the identifier of each first resource.
  • the base station may indicate the correspondence between each first resource and the beam in the resource group configured for the UE by using the mode eleven to the UE.
  • the base station Before the base station sends the first indication information to the UE, the base station further needs to send configuration information for indicating the correspondence between the number of the beam and the beam to the UE.
  • the number of the beam may be the order of the beams selected by the base station.
  • the UE receives, by the base station, the first indication information.
  • the UE determines an uplink transmit beam according to the first resource and the first indication information.
  • the UE When the base station indicates the correspondence between each first resource and the beam in the resource group configured by the UE in the manner of the step 608, the UE needs to be in the first resource after receiving the first indication information. If the target channel and/or the signal is sent, the identifier of each first resource in the resource subgroup included in the first indication information and the number of the beam corresponding to the identifier of each first resource may be directly determined. The number of the beam corresponding to the first resource, and then determining the uplink transmit beam according to the beam corresponding to the number of the beam.
  • the UE When the base station indicates the correspondence between each first resource and the beam in the resource group configured for the UE by using the mode 2 in step 608, the UE needs to be on a certain resource after receiving the first indication information.
  • the identifier of the resource subgroup to which the first resource belongs may be determined first, and then the identifier of the determined resource subgroup and the identifier of each resource subgroup included in the first indication information. And a number of a beam corresponding to the identifier of each resource subgroup, determining a number of a beam corresponding to the identifier of the resource subgroup, and determining an uplink transmit beam according to a beam corresponding to the number of the beam. If the beam is a downlink transmit beam or an uplink receive beam, the user equipment uses the uplink transmit beam paired with the downlink transmit beam or the uplink receive beam to transmit a target channel and/or signal on each sub-resource.
  • the UE When the base station indicates the correspondence between each first resource and the beam in the resource group configured for the UE by using the method in step 608, the UE needs to be on a certain resource after receiving the first indication information.
  • the identifier of the resource subgroup to which the first resource belongs may be determined first, and then the identifier of the determined resource subgroup and the identifier of each resource subgroup included in the first indication information. And a number of a beam corresponding to the identifier of each resource subgroup, determining a number of each beam in the beam group corresponding to the identifier of the resource subgroup, and determining an uplink transmit beam according to one beam in the beam group.
  • the UE determines the specific process of the uplink sending beam according to the first resource and the first indication information, and adopts the mode 3
  • the process of determining the uplink transmission beam by the UE is similar, and details are not described in detail herein.
  • the base station uses the mode five or the mode six-way UE to indicate the correspondence between each first resource and the beam in the resource group configured for the UE, after receiving the first indication information, the UE needs to send on a certain first resource.
  • the uplink transmit beam can be determined according to one beam in the beam set. All the first resources in the resource subgroup to which the first resource belongs correspond to an uplink transmit beam.
  • the base station uses the mode seven-way UE to indicate the correspondence between each first resource and the beam in the resource group configured for the UE
  • the UE needs to send the target channel on a certain first resource and And the signal
  • the UE may first determine the identifier of the resource subgroup to which the first resource belongs, and then according to the identifier of the determined resource subgroup, and the identifier of each resource subgroup included in the first indication information, and The identifier of each resource subgroup corresponds to The optional range of the beam determines an optional range of beams corresponding to the identity of the resource subgroup and determines an uplink transmit beam based on the selectable range of the beam.
  • the UE When the base station indicates the correspondence between each first resource and the beam in the resource group configured for the UE in the manner of the method in step 608, the UE needs to be on a certain resource after receiving the first indication information.
  • the beam corresponding to the first resource may be determined according to the identifier of the first resource included in the first indication information and the number of the beam corresponding to the identifier of each first resource. Number, and then determine the uplink transmit beam based on the beam corresponding to the number of the beam.
  • the UE When the base station indicates the correspondence between each first resource and the beam in the resource group configured for the UE by using the method in step 608, the UE needs to be on a certain resource after receiving the first indication information. And sending the target channel and/or the signal, and determining, according to the identifier of the first resource included in the first indication information and the number of each beam in the beam group corresponding to the identifier of each first resource, The identifier of the resource corresponds to the number of each beam in the beam group, and the uplink transmission beam is determined according to one beam in the beam group.
  • the UE determines the specific process of the uplink sending beam according to the first resource and the first indication information, and The process of determining the uplink transmission beam by the UE when the base station indicates the correspondence between the first resource and the beam is similar to that of the method.
  • the embodiments of the present invention are not described in detail herein.
  • step 610 is similar to the specific description of step 405 in another embodiment of the present invention.
  • step 610 in the embodiment of the present invention reference may be made to the specific description of step 405 in another embodiment.
  • the embodiments of the present invention are not described in detail herein.
  • the UE sends a target channel and/or a signal on the first resource and the uplink transmit beam.
  • the target channel and/or the signal may be sent on the first resource and the determined uplink transmit beam to implement beamforming on the target channel and/or the signal.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends a first indication for indicating the correspondence between the first resource and the beam by sending the UE to the UE.
  • the information is such that the UE can determine the beam required to transmit the target channel and/or the signal according to the first resource and the first indication information.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • FIG. 8 is a flowchart of another information transmission method according to an embodiment of the present invention. As shown in FIG. 8, the method may include:
  • the UE sends capability indication information to the base station.
  • the base station receives capability indication information sent by the UE.
  • the base station configures a resource group for the UE according to the capability indication information.
  • the base station sends the second indication information to the UE.
  • the UE acquires a resource group configured by the base station for the UE.
  • the UE receives the second indication information sent by the base station.
  • the UE divides the resource group into at least one resource subgroup according to the second indication information.
  • the base station sends the first indication information to the UE, where the first indication information is used to indicate a correspondence between the first resource and the second resource.
  • the base station passes The first indication information indicates to the UE the correspondence between each first resource and the second resource in the resource group configured by the UE.
  • the second resource includes at least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the UE to send information to the base station before transmitting the target channel and/or the signal; or the second resource includes the UE At least one of a time domain resource, a frequency domain resource, a code domain resource, and an antenna port used by the base station to transmit information to the UE before transmitting the target channel and/or the signal. That is to say, the base station can transmit the corresponding relationship between the second resource and the first resource, which are known to be in the beam, to the UE, so that the UE determines the beam required for beamforming.
  • the base station may indicate, to the UE, the correspondence between each first resource and the second resource in the resource group configured for the UE in different manners.
  • the first indication information includes a correspondence between each first resource and the second resource in the resource subgroup.
  • the mapping between the first resource and the second resource in the resource sub-group may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource in the resource sub-group, and each of the first resources The identifier of the corresponding second resource is identified; or the first indication information specifically includes information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the first indication information further includes a correspondence between each first resource and an optional range of the beam.
  • the first indication information includes a correspondence between each resource subgroup and the second resource.
  • the corresponding relationship between each resource subgroup and the second resource may be indicated in the following manner: the first indication information specifically includes an identifier of each resource subgroup, and an identifier of the second resource corresponding to the identifier of each resource subgroup; or The first indication information specifically includes information indicating that the antenna port of the signal of each resource subgroup has a QCL relationship with the antenna port of the signal of the second resource.
  • the first indication information includes a correspondence between each resource subgroup and the second resource group, and the second resource group includes at least one second resource.
  • each resource subgroup and the second resource group may be indicated in the following manner: the first indication information specifically includes an identifier of each resource subgroup, and each of the second resource groups corresponding to the identifier of each resource subgroup The identifier of the second resource; or the first indication information specifically includes an identifier of each resource subgroup, and an identifier of the second resource group corresponding to the identifier of each resource subgroup.
  • the first indication information includes an identifier of each second resource in the second resource group
  • the first indication information includes an identifier of the second resource group.
  • the first indication information further includes: a correspondence between each resource subgroup and an optional range of the beam.
  • the first indication information includes a correspondence between each first resource and the second resource.
  • the corresponding relationship between each first resource and the second resource may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource, and an identifier of the second resource corresponding to the identifier of each first resource; or The first indication information specifically includes information indicating that the antenna port of the signal of each first resource has a QCL relationship with the antenna port of the signal of the second resource.
  • the first indication information includes a correspondence between each first resource and a second resource group, and the second resource group includes at least one second resource.
  • the corresponding relationship between each first resource and the second resource group may be indicated in the following manner: the first indication information specifically includes an identifier of each first resource, and each of the second resource groups corresponding to the identifier of each first resource Second capital
  • the identifier of the source includes: the identifier of each first resource, and the identifier of the second resource group corresponding to the identifier of each first resource; or the first indication information specifically includes
  • the antenna port of the signal of the first resource has information of QCL relationship with the antenna port of the signal of the second resource group.
  • the first indication information includes a correspondence between each first resource and an optional range of the beam.
  • the UE receives, by the base station, the first indication information.
  • the UE determines the second resource according to the first resource and the first indication information, and determines an uplink sending beam according to the beam corresponding to the second resource.
  • the UE may first determine the first corresponding to the first resource according to the correspondence included in the first indication information and the first resource included in the configured resource group.
  • the second resource determines an uplink transmit beam according to the corresponding beam of the second resource according to the known correspondence between the second resource and the beam.
  • the process of determining the second resource according to the first indication information is similar to the process of determining the beam according to the first indication information in step 610 of another embodiment of the present invention.
  • the specific process of determining the second resource according to the first indication information is not described in detail.
  • the specific description of the beam according to the first indication information in step 610 of another embodiment of the present invention may be referred to.
  • the UE may The beam corresponding to the two resources is used as the reference beam, and then the uplink transmit beam is determined within an optional range of the beam according to the optional range of the reference beam and the beam.
  • the UE may also be the second after determining the second resource. The beam corresponding to the resource is used as a reference beam, and then the uplink transmit beam is determined within an optional range of the beam according to the optional range of the reference beam and the beam.
  • step 710 is similar to the specific description of step 505 in another embodiment of the present invention.
  • step 710 in the embodiment of the present invention reference may be made to the specific description of step 505 in another embodiment.
  • the embodiments of the present invention are not described in detail herein. 711.
  • the UE sends a target channel and/or a signal on the first resource and the uplink transmit beam.
  • the base station configures, for the UE, at least one first resource for transmitting the target channel and/or the signal, and sends, by using the UE, a corresponding relationship between the first resource and the second resource.
  • An indication information so that the UE can determine a beam required to transmit the target channel and/or the signal according to the first resource and the first indication information.
  • the UE may transmit the SRS using the determined beam required to transmit the target channel and/or signal to implement beamforming of the SRS.
  • FIG. 9 is a flowchart of a method for reporting capability according to an embodiment of the present invention. As shown in FIG. 9, the method may include:
  • the UE sends capability indication information to the base station according to the capability type.
  • the capability indication information includes a maximum number of beams supported by the UE in the capability type; or the capability indication information includes a quantized value of a maximum number of beams supported by the UE in the capability type.
  • step 801 in the embodiment of the present invention and the steps in another embodiment of the present invention
  • the detailed description of the 601 is similar.
  • step 801 reference may be made to the specific description of the step 601 in another embodiment of the present invention, and the embodiments of the present invention are not described in detail herein.
  • the base station receives capability indication information sent by the UE.
  • the capability reporting method provided by the embodiment of the present invention, the capability indication information that is sent by the UE to the base station according to the capability type, and includes the maximum number of beams or the maximum number of beams supported by the UE in the capability type, and the base station receives the capability indication sent by the UE.
  • the first resource may be allocated to the UE according to the capability indication information of the UE, and the resource waste caused by the excessive allocation of the first resource to the UE is avoided, or the beam search caused by the allocation of the first resource to the UE is incomplete. There was a problem.
  • FIG. 10 is a flowchart of a resource indication method according to an embodiment of the present invention. As shown in FIG. 10, the method may include:
  • the base station sends the indication information to the UE, where the indication information includes a number of the beam and an identifier of the resource corresponding to the number of the beam, or a number of the resource and an identifier of the resource corresponding to the number of the resource.
  • the beam can be a port or pre-coded.
  • the resource may include at least one of the following: a time domain resource, a frequency domain resource, a code domain resource, and an antenna port.
  • the beam may be a downlink receive beam, or a downlink transmit beam, or a downlink receive beam-downlink transmit beam (pair), or an uplink transmit beam, or an uplink receive beam, or an uplink transmit beam-uplink receive beam pair, or , downlink receive beam - uplink transmit beam pair.
  • the UE may determine that the beam 1 is the beam corresponding to the resource 1. If the base station indicates to the UE that the beam 1 corresponds to the resource 1 and then indicates to the UE that the beam 1 corresponds to the resource 2, after the UE receives the indication that the beam 1 and the resource 2 are transmitted by the base station, the UE may determine that the beam 1 is The beam corresponding to resource 2. And during the period between when the base station sends the indication twice, the UE always determines that the beam 1 is the beam corresponding to the resource 1, until the indication that the beam 1 corresponds to the resource 2 is received.
  • the UE receives the base station to send the indication information.
  • the base station sends the indication information including the number of the beam and the identifier of the resource corresponding to the number of the beam to the UE, or the base station sends the number including the resource and the resource corresponding to the number of the resource to the UE.
  • the indication information of the identifier so that the UE determines a candidate set of beams or beams required to transmit the information according to the indication information, and implements beamforming by using the determined beam transmission information.
  • the base station may only number part of the resource identifiers in order to reduce the signaling overhead when the base station indicates the number of the beam or the number of the resource.
  • each network element such as a base station and a UE, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • a network element such as a base station and a UE
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the base station and the UE according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division. There are other ways of dividing the actual implementation.
  • FIG. 12 is a schematic diagram showing a possible composition of the base station involved in the foregoing embodiment and the embodiment.
  • the base station may include: a configuration unit 1001, and a sending unit. Unit 1002 and receiving unit 1003.
  • the configuration unit 1001 is configured to support the base station to perform step 401 in the information transmission method shown in FIG. 4, step 501 in the information transmission method shown in FIG. 5, and step 603 in the information transmission method shown in FIG. Step 703 in the information transmission method shown in FIG.
  • the sending unit 1002 is configured to support the base station to perform step 403 in the information transmission method shown in FIG. 4, step 503 in the information transmission method shown in FIG. 5, and step 604 and step 608 in the information transmission method shown in FIG. Step 704 and step 708 in the information transmission method shown in FIG. 8, and step 901 in the resource indication method shown in FIG.
  • the receiving unit 1003 is configured to support the base station to perform step 602 in the information transmission method shown in FIG. 6, step 702 in the information transmission method shown in FIG. 8, and step 802 in the capability reporting method shown in FIG.
  • the base station provided by the embodiment of the present invention is configured to perform the foregoing information transmission method, so that the same effect as the above information transmission method can be achieved, or the foregoing resource indication method can be executed, so that the same effect as the resource indication method can be achieved.
  • it is used to perform the above capability reporting method, so that the same effect as the above capability reporting method can be achieved.
  • FIG. 13 shows another possible composition diagram of the base station involved in the above embodiment.
  • the base station includes a processing module 1101 and a communication module 1102.
  • the processing module 1101 is configured to perform control and management on the action of the base station.
  • the processing module 81 is configured to support the base station to perform step 401 in the information transmission method shown in FIG. 4, and step 501 in the information transmission method shown in FIG. Step 603 in the information transmission method shown in Fig. 6, step 703 in the information transmission method shown in Fig. 8, and/or other processes for the techniques described herein.
  • the communication module 1102 is for supporting communication between the base station and other network entities, such as communication with the functional modules or network entities shown in FIG. 1, FIG. 3, FIG. 14, or FIG.
  • the communication module 1102 is configured to support the base station to perform step 403 in the information transmission method shown in FIG. 4, step 503 in the information transmission method shown in FIG.
  • the base station may further include a storage module 1103 for storing program codes and data of the base station.
  • the processing module 1101 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1102 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1103 can be a memory.
  • the base station involved in the embodiment of the present invention may be the base station shown in FIG.
  • FIG. 14 is a schematic diagram showing a possible composition of the UE involved in the foregoing embodiment.
  • the UE may include: an obtaining unit 1201, and receiving The unit 1202, the transmitting unit 1203, and the determining unit 1204.
  • the obtaining unit 1201 is configured to support the UE to perform step 402 in the information transmission method shown in FIG. 4, step 502 in the information transmission method shown in FIG. 5, and step 605 in the information transmission method shown in FIG. Step 705 in the information transmission method shown in FIG.
  • the receiving unit 1202 is configured to support the UE to perform step 404 in the information transmission method shown in FIG. 4, step 504 in the information transmission method shown in FIG. 5, and step 606 and step 609 in the information transmission method shown in FIG. Step 706 and step 709 in the information transmission method shown in FIG. 8, and step 902 in the resource indication method shown in FIG.
  • the sending unit 1203 is configured to support the UE to perform step 406 in the information transmission method shown in FIG. 4, step 506 in the information transmission method shown in FIG. 5, and step 601 and step 611 in the information transmission method shown in FIG. Steps 701 and 711 in the information transmission method shown in FIG. 8, and step 801 in the capability reporting method shown in FIG.
  • the determining unit 1204 is configured to support the UE to perform step 405 in the information transmission method shown in FIG. 4, step 505 in the information transmission method shown in FIG. 5, and step 607 and step 610 in the information transmission method shown in FIG. Steps 707 and 710 in the information transmission method shown in FIG.
  • the UE provided by the embodiment of the present invention is configured to perform the foregoing information transmission method, so that the same effect as the above information transmission method can be achieved, or the foregoing resource indication method can be executed, so that the same effect as the foregoing resource indication method can be achieved.
  • it is used to perform the above capability reporting method, so that the same effect as the above capability reporting method can be achieved.
  • FIG. 15 shows another possible composition diagram of the UE involved in the above embodiment.
  • the UE includes: a processing module 1301 and a communication module 1302.
  • the processing module 1301 is configured to perform control and management on the action of the UE, for example, step 402 and step 405 in the information transmission method shown in FIG. 4, and step 502 and step 505 in the information transmission method shown in FIG. Step 605, step 607, step 610 in the information transmission method shown in FIG. 6, step 705, step 707, and step 710 in the information transmission method shown in FIG.
  • Communication module 1302 is for supporting communication between the UE and other network entities, such as with the functional modules or network entities shown in FIG. 1, FIG. 2, FIG. 12, or FIG.
  • the communication module 1302 supports the UE performing step 404, step 406 in the information transmission method shown in FIG. 4, step 504, step 506 in the information transmission method shown in FIG. 5, and the information transmission method shown in FIG.
  • the illustrated resource indicates step 902 in the method.
  • the UE may further include a storage module 1303 for storing program codes and data of the UE.
  • the processing module 1301 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1302 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1303 may be a memory.
  • the processing module 1301 is a processor
  • the communication module 1302 is a transceiver
  • the storage module 1303 is a memory
  • the UE involved in the embodiment of the present invention may be the UE shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信息传输方法及设备,涉及通信领域,实现了对SRS的波束赋形。具体方案为:基站为UE配置至少一个第一资源,该第一资源用于UE发送目标信道和/或信号,基站向UE发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系,或者第一指示信息用于指示第一资源与第二资源的对应关系。本发明实施例用于波束赋形的过程中。

Description

一种信息传输方法及设备 技术领域
本发明实施例涉及通信领域,尤其涉及一种信息传输方法及设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,用户设备(User Equipment,UE)可以通过向基站发送的探测参考信号(Sounding Reference Signals,SRS),以便基站根据接收到的SRS进行上行信道质量估计等操作。
另外,随着移动互联网的不断发展,低频的频谱资源已经愈发的紧张,为了满足日益增长的通信速率与容量的需求,第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)将频率资源丰富的高频纳入了下一代无线通信系统采用的频谱范围内。但是,与采用低频作为工作频率的无线通信系统相比,采用高频作为工作频率的无线通信系统的传输损耗较大,也就是说,在相同的发射功率下,采用高频作为工作频率的无线通信系统的覆盖范围远低于采用低频作为工作频率的无线通信系统。因此,为了提高采用高频作为工作频率的无线通信系统的覆盖范围,业界引入了波束赋形技术,
综上,在采用高频作为工作频率的无线通信系统中,若UE需要发送SRS,则需要对SRS进行波束赋形处理。但是,由于LTE系统是以低频作为工作频率的,因此在LTE系统中UE发送SRS时,是无需进行波束赋形处理的,也就是说,现有技术并没有对SRS进行波束赋形的方案。
发明内容
本发明实施例提供一种信息传输方法及设备,实现了对SRS的波束赋形。
为达到上述目的,本发明实施例采用如下技术方案:
本发明实施例的第一方面,提供一种信息传输方法,包括:
基站为UE配置至少一个第一资源,该第一资源用于UE发送目标信道和/或信号,基站向UE发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系,波束为上行发送波束或下行接收波束或下行发送波束或上行接收波束。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与波束的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
结合第一方面,在一种可能的实现方式中,至少一个第一资源可以包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或 信号可以包括以下至少一种:SRS、物理层随机接入信道(Physical Random Access Channel,PRACH)、物理层上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理层上行控制信道(Physical Uplink Control Channel,PUCCH)、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,波束可以用以下至少之一来标识:端口,预编码矩阵,空间特性参数;波束也可以是空间滤波器(spatial filtering)。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,可以通过以下不同的方式指示第一资源与波束的对应关系。
方式一:第一指示信息可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
方式二:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的编号。
方式三:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束(其中,不同资源子组可以对应相同的波束组)。
方式四:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组的编号(其中,不同资源子组的标识可以对应相同的波束组的编号)。
方式五:第一指示信息可以包括:波束组中每个波束的编号。
方式六:第一指示信息可以包括:波束组的编号。
方式七:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的可选范围。
方式八:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
方式九:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束(其中,不同的第一资源可以对应相同的波束组)。
方式十:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组的编号(其中,不同的第一资源的标识可以对应相同的波束组的编号)。
方式十一:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的可选范围。
针对方式一,基站通过第一指示信息指示对于同一个资源子组的第一资源,UE采用不同的发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的所有第一资源,基站均采用同一个接收波束接收目标信道和/或信号。
针对方式二至方式六,基站通过第一指示信息指示对于同一个资源子组的所有第一 资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
针对方式二,若所述波束为下行发送波束或上行接收波束,则用户设备在每个子资源上采用与所述下行发送波束或上行接收波束配对的上行发送波束发送目标信道和/或信号。
可选的,第一指示信息可以为配置信息。该配置信息可以承载在高层信令中。
或者,第一指示信息可以为配置信息和配置指示。其中,配置信息用于指示第一资源与波束的对应关系(配置信息中可以同时包括多个配置),配置信息可以承载在高层信令中;配置指示用于指示UE在进行目标信道和/或信号的发送时采用配置信息中的多个配置中的哪个配置,配置指示可以承载在下行控制指示(Downlink Control Indicator,DCI)中。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,在基站向UE发送第一指示信息之前,该信息传输方法还可以包括:基站向UE发送用于指示波束的编号与波束的对应关系的配置信息。
其中,波束的编号可以是基站选择的波束的顺序。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,在基站向UE发送第一指示信息之前,该信息传输还可以包括:基站向UE发送用于UE将资源组划分为至少一个资源子组的第二指示信息。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,在基站为UE配置至少一个第一资源之前,该信息传输方法还可以包括:基站接收UE发送的能力指示信息,该能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值;相应的,基站为UE配置至少一个第一资源具体的可以包括:基站根据能力指示信息为UE配置至少一个第一资源。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
结合第一方面和上述可能的实现方式,所述波束还可以为空间滤波器,预编码或空间加权。
本发明实施例的第二方面,提供一种信息传输方法,包括:
基站为UE配置至少一个第一资源,该第一资源用于UE发送目标信道和/或信号,基站向UE发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。所述第一资源与第二资源的对应关系可以包括以下至少之一:
目标信道和/或信号的天线端口与所述第二资源上传输的信道和/或信号的天线端口具有准共址QCL关系;
目标信道和/或信号采用与所述第二资源上传输的信道和/或信号相同的波束传输;
目标信道和/或信号采用与所述第二资源上传输的信道和/或信号相同的空间滤波器传输。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与第二资源的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息和第二资源确定发送目标信道和/或信号所需的波束;或以便于UE可以根据第一指示信息和第二资源确定发送目标信道和/或信号所需的波束;或便于UE根据第二资源和第一指示信息确定基站的接收目标信道和/或信号使用的波束,从而进一步根据基站的接收目标信道和/或信号使用的波束确定UE发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
结合第二方面,在一种可能的实现方式中,所述波束还可以为空间滤波器,预编码或空间加权。
结合第二方面,在一种可能的实现方式中,至少一个第一资源包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源可以包括:UE在发送目标信道和/或信号之前向基站发送信息用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源可以包括:UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。所述第二资源可以为用于以下信道和/或信号至少之一传输的资源:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、主同步信号、辅同步信号、同步信号块、物理广播信道的解调参考信号、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、物理下行控制信道的解调参考信号、物理下行共享信道的解调参考信号。可选的,所述物理下行控制信道可以为控制资源集合(CORESET,control resource set),也可以是承载随机接入响应或系统消息的控制信息的物理下行控制信道。可选的,所述物理下行共享信道可以是承载系统消息的物理下行共享信道。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:资源子组中每个第一资源与第二资源的对应关系。
其中,基站通过第一指示信息指示资源子组的每个第一资源对应不同的第二资源,也就是说,对于同一个资源子组的第一资源,UE采用不同的发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的所有第一资源,基站均采用同一个接收波束接收目标信道和/或信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有准共址(Quasi Co-Location,QCL)关系的信息;或者,第一指示信息具体包括:每个第一资源对应的第二资源的标识。可选的,当第一指示信息包含每个第一资源对应的第二资源的标识时,可以包含一个或多个第二资源的标识,第二资源的标识的数量与第一资源的数量相同,第一指示信息所指示的第二资源中每个第二资源与第一资源的对应关系可以是预定义的。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源的对应关系。
其中,基站通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息;或者,第一指示信息具体可以包括:每个资源子组对应的第二资源的标识。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源组的对应关系,第二资源组包括至少一个第二资源。其中,基站通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:第二资源组中每个第二资源的标识;或者,第一指示信息可以包括第二资源组的标识。可选的,当第一指示信息包括第二资源组的标识时,第二资源组中的第二资源数量与所述第一资源组中第一资源子组的数量相同,且第一指示信息指示的第二资源组中第二资源与第一资源组中的第一资源子组的对应关系是预定义的。其中,基站通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对 于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个资源子组与波束的可选范围的对应关系。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个第一资源与第二资源的对应关系。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,所述第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息;或者,所述第一指示信息具体可以包括:与每个第一资源对应的第二资源组中每个第二资源的标识:或者,所述第一指示信息具体可以包括:与每个第一资源对应的第二资源组的标识:。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源组包含一个或多个第二资源。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,具有QCL关系指的是具有相同的天线端口参数。
或者,具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户设备可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送天线空间相关性参数,发送波束,接收波束,资源标识,发送端功率角度谱(PAS,Power Azimuth Spectrum),接收端PAS,PAS中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号,空间滤波器。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域 资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或SRS资源标识,用于指示资源上的波束,或同步信号/同步信号块的资源标识,或PRACH上传输的前导序列的资源标识、或DMRS的资源标识,用于指示资源上的波束。例如对于下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的空间QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发送波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束对应性,根据下行接收波束确定上行发送波束,或根据上行发送波束确定下行接收波束。
具有QCL关系的端口上传输的信号还可以理解为具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发送波束、与接收波束对应的发送波束(对应于有互易的场景)、与发送波束对应的接收波束(对应于有互易的场景)。
具有QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为一下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(BPL,beam pair link),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
可选的,上述QCL关系可以有其他的名称,不改变技术本质,例如还可以称为空间QCL关系或互易的QCL关系。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以为配置信息。该配置信息可以承载在高层信令中。
或者,第一指示信息可以为配置信息和配置指示。其中,配置信息用于指示第一资源与波束或第二资源的对应关系(配置信息中可以同时包括多个配置),配置信息可以承载在高层信令中;配置指示用于指示UE在进行目标信道和/或信号的发送时采用配置信息中的多个配置中的哪个配置,配置指示可以承载在DCI中。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,承载第一指示信息的信道所在的时间单元与所述第二资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源与所述第二资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源和承载第一指示信息的信道所在的时间单元的时间偏移为预定义的或根据基站第四配置信息确定的。可选的,所述时间偏移可以为正值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源与所述第一资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,在基站向UE发送第一指示信息之前,该信息传输方法还可以包括:基站向UE发送用于UE将资源组划分为至少一个资源子组的第二指示信息。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,在基站为UE配置至少一个第一资源之前,该信息传输方法还可以包括:基站接收UE发送的能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值;相应的,基站为UE配置至少一个第一资源具体的可以包括:基站根据能力指示信息为UE配置至少一个第一资源。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第三方面,提供一种信息传输方法,包括:
UE获取基站为UE配置的至少一个第一资源,第一资源用于UE发送目标信道和/或信号,UE接收基站发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系,波束为上行发送波束或下行接收波束或下行发送波束或上行接收波束。
本发明实施例提供的信息传输方法,UE获取基站为UE配置的用于传输目标信道和/或信号的至少一个第一资源,并接收基站发送的用于指示第一资源与波束的对应关系的第一指示信息。这样,UE便可以根据第一资源和第一指示信息确定出发送目标信道和/或信号所需的波束,并可以在第一资源和发送目标信道和/或信号所需的波束上发送目标信道和/或信号。当目标信道和/或信号为SRS时,UE通过采用确定出的发送目标信道和/或信号所需的波束发送SRS,实现了对SRS的波束赋形。
结合第三方面,在一种可能的实现方式中,至少一个第一资源可以包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,在UE接收基站发送第一指示信息之后,该信息传输方法还可以包括:
UE根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束,即上行发送波束,并在第一资源和上行发送波束上发送目标信道和/或信号。
其中,当波束为上行发送波束时,UE可以直接根据第一资源和第一资源与波束的对应关系,确定出上行发送波束;当波束为下行接收波束时,UE可以先根据第一资源和第一资源与波束的对应关系确定出下行接收波束,然后根据下行接收波束,利用上下行波束的对应关系(上下行波束的对应关系可以由上下行信道互易性得到)确定出上行发送波束;当波束为下行发送波束时,UE可以先根据第一资源和第一资源与波束的对应关系 确定出下行发送波束,然后根据下行发送波束,利用上下行波束的对应关系确定下行接收波束,最后根据下行接收波束,并利用上下行波束的对应关系确定出上行发送波束。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,
第一指示信息可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE确定出与第一资源的标识对应的波束的编号,然后根据与波束的编号对应的波束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的编号。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束的编号,然后根据与波束的编号对应的波束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束组中每个波束的编号,然后根据波束组中的一个波束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组的编号。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束组的编号,然后根据波束组中的一个波束确定上行发送波束。
或者,第一指示信息可以包括:波束组中每个波束的编号,或者,第一指示信息可以包括:波束组的编号。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE根据波束组中的一个波束确定上行发送波束,该第一资源所属的资源子组对应一波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的可选范围。相应的,UE根据第一资源和第一指示信息确定上行发送波束具体的可以为,UE确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束的可选范围,然后根据波束的可选范围确定上行发送波束。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识 对应的波束组中每个波束的编号,波束组中包括至少一个波束。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组的编号。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的可选范围。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,在UE接收基站发送第一指示信息之前,该信息传输方法还可以包括:UE接收基站发送的用于指示波束的编号与波束的对应关系配置信息。相应的,当UE根据第一指示信息确定出的波束的编号时,可以根据配置信息确定出该编号对应的波束。其中,波束的编号可以是基站选择的波束的顺序。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,在UE接收基站发送第一指示信息之前,该信息传输方法还可以包括:UE接收基站发送的用于UE将资源组划分为至少一个资源子组的第二指示信息,并可以根据第二指示信息将资源组划分为至少一个资源子组。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,在UE获取基站为UE配置的至少一个第一资源之前,该信息传输方法还可以包括:UE向基站发送能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第四方面,提供一种信息传输方法,包括:
UE获取基站为UE配置的至少一个第一资源,第一资源用于UE发送目标信道和/或信号,UE接收基站发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
所述第一资源与第二资源的对应关系可以包括以下至少之一:
目标信道和/或信号的天线端口与所述第二资源上传输的信道和/或信号的天线端口具有准共址QCL关系;
目标信道和/或信号采用与所述第二资源上传输的信道和/或信号相同的波束传输
目标信道和/或信号采用与所述第二资源上传输的信道和/或信号相同的空间滤波器传输。
本发明实施例提供的信息传输方法,UE获取基站为UE配置的用于传输目标信道和/或信号的至少一个第一资源,并接收基站发送的用于指示第一资源与第二资源的对应关系的第一指示信息。这样,UE便可以根据第一资源和第一指示信息确定出发送目标信道和/或信号所需的波束,或根据第一指示信息和第二资源确定出发送目标信道和/或信号所需的波束并可以在第一资源和发送目标信道和/或信号所需的波束上发送目标信道和/或信号。当目标信道和/或信号为SRS时,UE通过采用确定出的发送目标信道和/或信号所需的波束发送SRS,实现了对SRS的波束赋形。
结合第四方面,在一种可能的实现方式中,所述波束还可以为空间滤波器,预编码或空间加权。
结合第四方面,在一种可能的实现方式中,至少一个第一资源包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,在UE接收基站发送第一指示信息之后,该信息传输方法还可以包括:UE根据第一资源和第一指示信息确定第二资源,并根据与第二资源对应的波束确定发送目标信道和/或信号所需的波束,即上行发送波束,UE在第一资源和上行发送波束上发送目标信道和/或信号。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源可以包括:UE在发送目标信道和/或信号之前向基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源可以包括:UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
所述第二资源可以为用于以下信道和/或信号至少之一传输的资源:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、主同步信号、辅同步信号、同步信号块、物理广播信道的解调参考信号、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、物理下行控制信道的解调参考信号、物理下行共享信道的解调参考信号。可选的,所述物理下行控制信道可以为控制资源集合(CORESET,control resource set),也可以是承载随机接入响应或系统消息的控制信息的物理下行控制信道。可选的,所述物理下行共享信道可以是承载系统消息的物理下行共享信道。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:资源子组中每个第一资源与第二资源的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息;或者,第一指示信息具体包括:每个第一资源对应的第二资源的标识。可选的,当第一指示信息包含每个第一资源对应的第二资源的标识时,可以包含一个或多个第二资源的标识,第二资源的标识的数量与第一资源的数量相同,第一指示信息所指示的第二资源中每个第二资源与第一资源的对应关系可以是预定义的。。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息;或者,第一指示信息具体可以包括:每个资源子组对应的第二资源的标识。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:第二资源组中每个第二资源的标识;或者,第一指示信息包括第二资源组的标识。可选的,当第一指示信息包括第二资源组的标识时,第二资源组中的第二资源数量与所述第一资源组中第一资源子组的数量相同,且第一指示信息指示的第二资源组中第二资源与第一资源组中的第一资源子组的对应关系是预定义的。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个资源子组与波束的可选范围的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个第一资源与第二资源的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,所述第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息;或者,所述第一指示信息具体可以包括:与每个第一资源对应的第二资源组中每个第二资源的标识:或者,所述第一指示信息具体可以包括:与每个第一资源对应的第二资源组的标识。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息 还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源组包含一个或多个第二资源。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,具有QCL关系指的是具有相同的天线端口参数。
或者,具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户设备可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送天线空间相关性参数,发送波束,接收波束,资源标识,发送端功率角度谱(PAS,Power Azimuth Spectrum),接收端PAS,PAS中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号,空间滤波器。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括CSI-RS资源标识,或SRS资源标识,用于指示资源上的波束。或同步信号/同步信号块的资源标识,或PRACH上传输的前导序列的资源标识、或DMRS的资源标识,用于指示资源上的波束。例如对于下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的空间QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发送波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束对应性,根据下行接收波束确定上行发送波束,或根据上行发送波束确定下行接收波束。
具有空间QCL关系的端口上传输的信号还可以理解为具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发送波束、与接收波束对应的发送波束(对应于有互易的场景)、与发送波束对应的接收波束(对应于有互易的场景)。
具有空间QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为一下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空间QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(BPL,beam pair link),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
可选的,上述QCL关系可以有其他的名称,不改变技术本质,例如还可以称为空间QCL关系或互易的QCL关系。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,在UE接收基站发送第一指示信息之前,该信息传输方法还可以包括:UE接收基站发送的用于UE将 资源组划分为至少一个资源子组的第二指示信息,并根据第二指示信息将资源组划分为至少一个资源子组。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,在UE获取基站为UE配置的至少一个第一资源之前,该信息传输方法还可以包括:UE向基站发送能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,承载第一指示信息的信道所在的时间单元与所述第二资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源与所述第二资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源和承载第一指示信息的信道所在的时间单元的时间偏移为预定义的或根据基站第四配置信息确定的。可选的,所述时间偏移可以为正值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源与所述第一资源的时间偏移为预定义的或根据基站第三配置信息确定的。可选的,所述时间偏移可以为正值,负值或0。所述时间单元可以为时隙,子帧,符号或迷你时隙。
本发明实施例的第五方面,提供一种基站,包括:
配置单元,用于为UE配置至少一个第一资源,该第一资源用于UE发送目标信道和/或信号;发送单元,用于向UE发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系,波束为上行发送波束或下行接收波束或下行发送波束或上行接收波束。
结合第五方面,在一种可能的实现方式中,至少一个第一资源可以包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以 包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,可以通过以下不同的方式指示第一资源与波束的对应关系。
方式一:第一指示信息可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
方式二:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的编号。
方式三:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束(其中,不同资源子组可以对应相同的波束组)。
方式四:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组的编号(其中,不同资源子组的标识可以对应相同的波束组的编号)。
方式五:第一指示信息可以包括:波束组中每个波束的编号。
方式六:第一指示信息可以包括:波束组的编号。
方式七:第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的可选范围。
方式八:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
方式九:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束(其中,不同的第一资源可以对应相同的波束组)。
方式十:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组的编号(其中,不同的第一资源的标识可以对应相同的波束组的编号)。
方式十一:第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的可选范围。
针对方式一,发送单元通过第一指示信息指示对于同一个资源子组的第一资源,UE采用不同的发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的所有第一资源,基站均采用同一个接收波束接收目标信道和/或信号。
针对方式二至方式六,发送单元通过第一指示信息指示对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
针对方式二,若所述波束为下行发送波束或上行接收波束,则用户设备在每个子资源上采用与所述下行发送波束或上行接收波束配对的上行发送波束发送目标信道和/或信号。
可选的,第一指示信息可以为配置信息。该配置信息可以承载在高层信令中。
或者,第一指示信息可以为配置信息和配置指示。其中,配置信息用于指示第一资源与波束的对应关系(配置信息中可以同时包括多个配置),配置信息可以承载在高层 信令中;配置指示用于指示UE在进行目标信道和/或信号的发送时采用配置信息中的多个配置中的哪个配置,配置指示可以承载在DCI中。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向UE发送用于指示波束的编号与波束的对应关系的配置信息。
其中,波束的编号可以是基站选择的波束的顺序。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向UE发送用于UE将资源组划分为至少一个资源子组的第二指示信息。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,该基站还可以包括:接收单元,用于接收UE发送的能力指示信息,该能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值;相应的,配置单元,具体用于根据接收单元接收到的能力指示信息为UE配置至少一个第一资源。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第六方面,提供一种基站,包括:
配置单元,用于为UE配置至少一个第一资源,该第一资源用于UE发送目标信道和/或信号,发送单元,用于向UE发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
结合第六方面,在一种可能的实现方式中,至少一个第一资源包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源可以包括:UE在发送目标信道和/或信号之前向基站发送信息用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源可以包括:UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:资源子组中每个第一资源与第二资源的对应关系。
其中,发送单元通过第一指示信息指示资源子组的每个第一资源对应不同的第二资源,也就是说,对于同一个资源子组的第一资源,UE采用不同的发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的所有第一资源,基站均采用同一个接收波束接收目标信道和/或信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息 具体可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源的对应关系。
其中,发送单元通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源组的对应关系,第二资源组包括至少一个第二资源。其中,发送单元通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:第二资源组中每个第二资源的标识;或者,第一指示信息可以包括第二资源组的标识。其中,发送单元通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个资源子组与波束的可选范围的对应关系。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个第一资源与第二资源的对应关系。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,所述第一指示 信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,具有QCL关系指的是具有相同的天线端口参数。
或者,具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户设备可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,AOA,平均AOA、AOA扩展,AOD,平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括CSI-RS资源标识,或SRS资源标识。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以为配置信息。该配置信息可以承载在高层信令中。
或者,第一指示信息可以为配置信息和配置指示。其中,配置信息用于指示第一资源与波束的对应关系(配置信息中可以同时包括多个配置),配置信息可以承载在高层信令中;配置指示用于指示UE在进行目标信道和/或信号的发送时采用配置信息中的多个配置中的哪个配置,配置指示可以承载在DCI中。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向UE发送用于UE将资源组划分为至少一个资源子组的第二指示信息。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,该基站还可以包括:接收单元,用于接收UE发送的能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值;相应的,配置单元,具体用 于根据接收单元接收到的能力指示信息为UE配置至少一个第一资源。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第七方面,提供一种UE,包括:
获取单元,用于获取基站为UE配置的至少一个第一资源,第一资源用于UE发送目标信道和/或信号,接收单元,用于接收基站发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系,波束为上行发送波束或下行接收波束或下行发送波束或上行接收波束。
结合第七方面,在一种可能的实现方式中,至少一个第一资源可以包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,该UE还可以包括:
确定单元,用于根据获取单元获取到的第一资源和接收单元接收到的第一指示信息确定发送目标信道和/或信号所需的波束,即上行发送波束。发送单元,用于在第一资源和确定单元确定出的上行发送波束上发送目标信道和/或信号。
其中,当波束为上行发送波束时,确定单元可以直接根据第一资源和第一资源与波束的对应关系,确定出上行发送波束;当波束为下行接收波束时,确定单元可以先根据第一资源和第一资源与波束的对应关系确定出下行接收波束,然后根据下行接收波束,利用上下行波束的对应关系(上下行波束的对应关系可以由上下行信道互易性得到)确定出上行发送波束;当波束为下行发送波束时,确定单元可以先根据第一资源和第一资源与波束的对应关系确定出下行发送波束,然后根据下行发送波束,利用上下行波束的对应关系确定下行接收波束,最后根据下行接收波束,并利用上下行波束的对应关系确定出上行发送波束。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,
第一指示信息可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。相应的,确定单元,具体用于确定出与第一资源的标识对应的波束的编号,然后根据与波束的编号对应的波束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的编号。相应的,确定单元,具体用于确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束的编号,然后根据与波束的编号对应的波 束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束。相应的,确定单元,具体用于确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束组中每个波束的编号,然后根据波束组中的一个波束确定上行发送波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束组的编号。相应的,确定单元,具体用于确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束组的编号,然后根据波束组中的一个波束确定上行发送波束。
或者,第一指示信息可以包括:波束组中每个波束的编号,或者,第一指示信息可以包括:波束组的编号。相应的,确定单元,具体用于根据波束组中的一个波束确定上行发送波束,该第一资源所属的资源子组对应一波束。
或者,第一指示信息可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的可选范围。相应的,确定单元,具体用于确定出第一资源所属的资源子组的标识,并确定出与该资源子组的标识对应的波束的可选范围,然后根据波束的可选范围确定上行发送波束。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束组的编号。
或者,第一指示信息可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的可选范围。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收基站发送的用于指示波束的编号与波束的对应关系配置信息。相应的,当确定单元根据第一指示信息确定出的波束的编号时,可以根据接收单元接收到的配置信息确定出该编号对应的波束。其中,波束的编号可以是基站选择的波束的顺序。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收基站发送的用于UE将资源组划分为至少一个资源子组的第二指示信息,并可以根据第二指示信息将资源组划分为至少一个资源子组。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,发送单元,还用于向基站发送能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第八方面,提供一种UE,包括:
获取单元,用于获取基站为UE配置的至少一个第一资源,第一资源用于UE发送目标信道和/或信号,接收单元,用于接收基站发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
结合第八方面,在一种可能的实现方式中,至少一个第一资源包含在一资源组中,该资源组可以包括至少一个资源子组。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,该UE还可以包括:确定单元,用于根据第一资源和第一指示信息确定第二资源,并根据与第二资源对应的波束确定发送目标信道和/或信号所需的波束,即上行发送波束,发送单元,用于在第一资源和上行发送波束上发送目标信道和/或信号。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第二资源可以包括:发送单元在发送目标信道和/或信号之前向基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源可以包括:发送单元在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:资源子组中每个第一资源与第二资源的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个资源子组与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个资源子组的标识,以及 与每个资源子组的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个资源子组的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:第二资源组中每个第二资源的标识;或者,第一指示信息包括第二资源组的标识。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个资源子组与波束的可选范围的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息可以包括:每个第一资源与第二资源的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,所述第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体可以包括:每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,所述第一指示信息具体可以包括:用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,第一指示信息还可以包括:每个第一资源与波束的可选范围的对应关系。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,具有QCL关系指的是具有相同的天线端口参数。
或者,具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户设备可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角AOA,平均AOA、AOA扩展,离开角AOD,平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括CSI-RS资源标识,或SRS资源标识。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还 用于接收基站发送的用于UE将资源组划分为至少一个资源子组的第二指示信息,并根据第二指示信息将资源组划分为至少一个资源子组。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,为了使基站能够根据UE的能力为UE配置资源,发送单元,还用于向基站发送能力指示信息,能力指示信息包括UE在能力类型中支持的最大波束数,或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,能力类型可以包括:波束管理阶段和/或波束的可选范围。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第九方面,提供一种能力上报方法,包括:
UE根据能力类型向基站发送能力指示信息;其中,能力指示信息包括:UE在能力类型中支持的最大波束数;或者,能力指示信息包括:UE在能力类型中支持的最大波束数的量化值。
本发明实施例提供的能力上报方法,UE根据能力类型向基站发送的包括UE在能力类型中支持的最大波束数或最大波束数的量化值的能力指示信息,以便于基站可以根据UE的能力指示信息为UE分配第一资源,避免了为UE分配过多的第一资源导致的资源浪费,或为UE分配过少的第一资源导致的波束搜索不完整的问题出现。
结合第九方面,在一种可能的实现方式中,能力类型包括,波束管理阶段和/或波束的可选范围,波束为端口或预编码。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第十方面,提供一种能力上报方法,包括:
基站接收UE发送的能力指示信息,其中,能力指示信息包括:UE在能力类型中支持的最大波束数;或者,能力指示信息包括:UE在能力类型中支持的最大波束数的量化值。
本发明实施例提供的能力上报方法,基站接收UE发送的包括UE在能力类型中支持的最大波束数或最大波束数的量化值的能力指示信息,以便于根据UE的能力指示信息为UE分配第一资源,避免了为UE分配过多的第一资源导致的资源浪费,或为UE分配过少的第一资源导致的波束搜索不完整的问题出现。
结合第十方面,在一种可能的实现方式中,能力类型包括,波束管理阶段和/或波束的可选范围,波束为端口或预编码。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第十一方面,提供一种UE,包括:
发送单元,用于根据能力类型向基站发送能力指示信息;其中,能力指示信息包括:UE在能力类型中支持的最大波束数;或者,能力指示信息包括:UE在能力类型中支持的最大波束数的量化值。
结合第十一方面,在一种可能的实现方式中,能力类型包括,波束管理阶段和/或波束的可选范围,波束为端口或预编码。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第十二方面,提供一种基站,包括:
接收单元,用于接收UE发送的能力指示信息,其中,能力指示信息包括:UE在能力类型中支持的最大波束数;或者,能力指示信息包括:UE在能力类型中支持的最大波束数的量化值。
结合第十二方面,在一种可能的实现方式中,能力类型包括,波束管理阶段和/或波束的可选范围,波束为端口或预编码。其中,能力类型可以是预定义的,也可以是基站配置的。
本发明实施例的第十三方面,提供一种资源指示方法,包括:
基站向UE发送指示信息;其中,指示信息包括:波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识。
本发明实施例提供的资源指示方法,基站向UE发送包括波束的编号以及与波束的编号对应的资源的标识的指示信息,或基站向UE发送包括资源的编号以及与资源的编号对应的资源的标识的指示信息,以便于UE根据指示信息确定发送信息所需的波束或波束的候选集合,并通过采用确定的波束发送信息,实现了波束赋形。基站可以仅对部分资源标识进行编号,以便于降低基站指示波束的编号或资源的编号时的信令开销。
结合第十三方面,在一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第十三方面和上述可能的实现方式,在另一种可能的实现方式中,资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
本发明实施例的第十四方面,提供一种资源指示方法,包括:
UE接收基站发送指示信息;其中,指示信息包括:波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识。
本发明实施例提供的资源指示方法,UE接收基站发送的包括波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识,使得UE可以根据指示信息确定发送信息所需的波束或波束的候选集合,并通过采用确定的波束发送信息,实现了波束赋形。基站可以仅对部分资源标识进行编号,以便于降低基站指示波束的编号或资源的编号时的信令开销。
结合第十四方面,在一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第十四方面和上述可能的实现方式,在另一种可能的实现方式中,资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
本发明实施例的第十五方面,提供一种基站,包括:
发送单元,用于向UE发送指示信息;其中,指示信息包括:波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识。
结合第十五方面,在一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第十五方面和上述可能的实现方式,在另一种可能的实现方式中,资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
本发明实施例的第十六方面,提供一种UE,包括:
接收单元,用于接收基站发送指示信息;其中,指示信息包括:波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识。
结合第十六方面,在一种可能的实现方式中,波束可以为端口,也可以为预编码。
结合第十六方面和上述可能的实现方式,在另一种可能的实现方式中,资源可以包 括以下至少一种:时域资源、频域资源、码域资源、天线端口。
本发明实施例的第十七方面,提供一种基站,包括:处理器、存储器和收发器;
存储器用于存储计算机执行指令,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行如第一方面或第一方面的可能的实现方式中任一所述的信息传输方法,或者,执行如第二方面或第二方面的可能的实现方式中任一所述的信息传输方法,或者,执行如第十方面或第十方面的可能的实现方式中任一项所述的能力上报传输方法,或者,执行如第十三方面或第十三方面的可能的实现方式中任一项所述的资源指示传输方法。
本发明实施例的第十八方面,提供一种UE,包括:处理器、存储器和收发器;
存储器用于存储计算机执行指令,当UE运行时,处理器执行存储器存储的计算机执行指令,以使UE执行如第三方面或第三方面的可能的实现方式中任一所述的信息传输方法,或者,执行如第四方面或第四方面的可能的实现方式中任一所述的信息传输方法,或者,执行如第九方面或第九方面的可能的实现方式中任一项所述的能力上报传输方法,或者,执行如第十四方面或第十四方面的可能的实现方式中任一项所述的资源指示传输方法。
本发明实施例的第十九方面,提供一种信息传输方法,包括:
基站为用户设备UE配置至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
所述基站向所述UE发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
所述基站在第二资源上接收所述UE在第二天线端口上发送的第二信道和/或信号;所述基站接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
所述基站在第二资源和第三天线端口上向所述UE发送第三信道和/或信号;所述基站接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
本发明实施例的第二十方面,提供一种信息传输方法,包括:
用户设备UE获取基站为所述UE配置的至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
所述UE接收所述基站发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
所述UE在第二资源和第二天线端口上向所述基站发送第二信道和/或信号;所述UE在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
所述UE接收所述基站在第二资源和第三天线端口上发送的第三信道和/或信号;所述UE在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线 端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
本发明实施例的第二十一方面,提供一种基站,包括:配置单元、发送单元和接收单元;
所述配置单元,用于为用户设备UE配置至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
所述发送单元,用于向所述UE发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
所述接收单元,用于在第二资源上接收所述UE在第二天线端口上发送的第二信道和/或信号;所述接收单元,还用于接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
所述发送单元,用于在第二资源和第三天线端口上向所述UE发送第三信道和/或信号;所述接收单元,还用于接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
本发明实施例的第二十二方面,提供一种用户设备UE,包括:获取单元、接收单元和发送单元;
所述获取单元,用于获取基站为所述UE配置的至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
所述接收单元,用于接收所述基站发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
所述发送单元,用于在第二资源和第二天线端口上向所述基站发送第二信道和/或信号;所述发送单元,还用于在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述发送单元发送所述第一信道和/或信号的波束与所述发送单元发送所述第二信道和/或信号的波束是相同的;或者,
所述接收单元,用于接收所述基站在第二资源和第三天线端口上发送的第三信道和/或信号;所述发送单元,用于在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述发送单元发送所述第一信道和/或信号的波束与所述接收单元接收所述第三信道和/或信号的波束是对应的。
本发明实施例的第二十三方面,提供一种计算机存储介质,用于存储上述基站所用的计算机软件指令,该计算机软件指令包含用于执行上述信息传输方法、能力上报方法或资源指示方法所设计的程序。
本发明实施例的第二十四方面,提供一种计算机存储介质,用于存储上述UE所用 的计算机软件指令,该计算机软件指令包含用于执行上述信息传输方法、能力上报方法或资源指示方法所设计的程序。
附图说明
图1为本发明实施例提供的一种可以应用本发明实施例的通信系统的简化示意图;
图2为本发明实施例提供的一种基站的组成示意图;
图3为本发明实施例提供的一种UE的组成示意图;
图4为本发明实施例提供的一种信息传输方法的流程图;
图5为本发明实施例提供的另一种信息传输方法的流程图;
图5-1为本发明实施例提供的一种资源时隙关系示意图;
图5-2为本发明实施例提供的另一种资源时隙关系示意图;
图5-3为本发明实施例提供的另一种资源时隙关系示意图;
图5-4为本发明实施例提供的另一种资源时隙关系示意图;
图5-5为本发明实施例提供的另一种资源时隙关系示意图;
图5-6为本发明实施例提供的另一种资源时隙关系示意图;
图6为本发明实施例提供的另一种信息传输方法的流程图;
图7为本发明实施例提供的一种UE的波束能力指示示意图;
图8为本发明实施例提供的另一种信息传输方法的流程图;
图9为本发明实施例提供的一种能力上报方法的流程图;
图10为本发明实施例提供的一种资源指示方法的流程图;
图11为本发明实施例提供的一种资源与波束的对应关系示意图;
图12为本发明实施例提供的另一种基站的组成示意图;
图13为本发明实施例提供的另一种基站的组成示意图;
图14为本发明实施例提供的另一种UE的组成示意图;
图15为本发明实施例提供的另一种UE的组成示意图。
具体实施方式
为了实现对SRS的波束赋形,本发明实施例提供一种信息传输方法,其基本原理是:基站为UE配置包括至少一个第一资源,该第一资源用于UE发送目标信道和/或信号,并通过向UE发送用于指示第一资源与波束的对应关系或用于指示第一资源与第二资源的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
波束可以用以下至少之一来标识:端口,预编码矩阵,空间特性参数;波束也可以是空间滤波器(spatial filtering)。
可选的,波束也可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,所述能量传输指向性可以指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信 号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信设备(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个或多个波束。波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置UE的资源标识(identity,ID),比如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
波束对可以包括发送端的发送波束和接收端的接收波束,或者,也称作上行波束或下行波束。比如,波束对可以包括基站的发送波束或UE接收波束,或者,UE发送波束或基站接收波束。
本发明实施例中涉及到的目标信道和/或信号可以包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。其中,探测参考信号用于获取信道质量信息和/或用于波束管理,PRACH用于上行接入,PUSCH至少用于上行数据传输,PUCCH至少用于上行控制信息传输,上行解调参考信号用于上行信道的解调,上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号用于波束管理和/或无线资源管理(Radio Resource Management,RRM)测量,上行相位跟踪参考信号用于相位跟踪。
本发明实施例中涉及的准共址(quasi co-located,QCL)关系可以是以下含义:
具有QCL关系指的是具有相同的天线端口参数;或者,具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户设备可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送天线空间相关性参数,发送波束,接收波束,资源标识,发送端功率角度谱(PAS,Power Azimuth Spectrum),接收端PAS,PAS中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号,空间滤波器。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference  Signal,CSI-RS)资源标识,或SRS资源标识,用于指示资源上的波束,或同步信号/同步信号块的资源标识,或PRACH上传输的前导序列的资源标识、或DMRS的资源标识,用于指示资源上的波束。例如对于下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的空间QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发送波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束对应性,根据下行接收波束确定上行发送波束,或根据上行发送波束确定下行接收波束。
具有QCL关系的端口上传输的信号还可以理解为具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发送波束、与接收波束对应的发送波束(对应于有互易的场景)、与发送波束对应的接收波束(对应于有互易的场景)。
具有QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为一下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(BPL,beam pair link),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
可选的,上述QCL关系可以有其他的名称,不改变技术本质,例如还可以称为空间QCL关系或互易的QCL关系。
本发明实施例中涉及到的第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
本发明实施例中涉及到的第二资源可以包括:UE在发送目标信道和/或信号之前向基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源可以包括:UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
可选的,本发明实施例中的第二资源可以为用于以下信道和/或信号至少之一传输的资源:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、主同步信号、辅同步信号、同步信号块、物理广播信道的解调参考信号、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、物理下行控制信道的解调参考信号、物理下行共享信道的解调参考信号。可选的,所述物理下行控制信道可以为控制资源集合(CORESET,control resource set),也可以是承载随机接入响应或系统消息的控制信息的物理下行控制信道。可选的,所述物理下行共享信道可以是承载系统消息的物理下行共享信道。
下面将结合附图对本发明实施例的实施方式进行详细描述。
图1示出的是可以应用本发明实施例的通信系统的简化示意图。如图1所示,该通信系统可以包括:基站11和UE12。
其中,该通信系统可以为LTE系统、LTE系统未来演进的系统、无线保真(wireless fidelity,Wi-Fi)系统、全球微波互联接入(Worldwide Interoperability for Microwave Access,wimax)系统,3GPP相关的蜂窝系统等。
基站11可以是无线通信的基站(Base Station,BS)或基站控制器或收发节点(Transmission Reception point,TRP)、gNB等。基站11是一种部署在无线接入网中用以为UE12提供无线通信功能的装置,其主要功能有:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户设备数据流的加密、UE12附着时进行移动管理实体(Mobile Management Entity,MME)的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。基站11可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第3代移动通信技术(The 3rd Generation Telecommunication,3G)系统中,称为节点B(Node B)等等。随着通信技术的演进,“基站”这一名称可能会变化。此外,在其它可能的情况下,基站11可以是其它为UE12提供无线通信功能的装置。为方便描述,本发明实施例中,为UE12提供无线通信功能的装置称为基站11。
UE12可以包括各种具有无线通信功能的手持设备(如手机、智能终端、多媒体设备或流媒体设备等)、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为UE12。
图2为本发明实施例提供的一种基站的组成示意图,如图2所示,该基站可以包括:处理器21、存储器22和收发器23。
下面结合图2对基站的各个构成部件进行具体的介绍:
处理器21可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21可以是一个通用中央处理器(Central Processing Unit,CPU),也可以是特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行终端的各种功能。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如,如图2所示,处理器21包括CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器。例如,如图2所示,包括处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器 (Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器22用于存储执行本发明方案的应用程序代码,并由处理器21来控制执行。处理器21用于执行存储器22中存储的应用程序代码。
收发器23,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。在本发明实施例中,收发器23可以包括基带处理器的全部或部分,以及还可选择性地包括射频(Radio Frequency,RF)处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
图3为本发明实施例提供的一种UE的组成示意图,如图3所示,该UE可以包括处理器31、存储器32和收发器33。
下面结合图3对UE的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行终端的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU,例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
收发器33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、GPS模块、显示屏等,在此不再赘述。
图4为本发明实施例提供的一种信息传输方法的流程图,如图4所示,该方法可以 包括:
401、基站为UE配置至少一个第一资源。
其中,第一资源用于UE发送目标信道和/或信号。为了实现对目标信道和/或信号(例如,SRS)的波束赋形,基站可以为UE配置至少一个用于发送目标信道和/或信号的第一资源(例如,时域资源、频域资源、码域资源、天线端口中的一种或多种)。
其中,至少一个第一资源组成了资源组,并且,该资源组可以包括至少一个资源子组。
可选的,同一个资源子组中所有第一资源可以采用相同的频域资源或相同的码域资源。
进一步可选的,基站还可以为UE配置资源组的具体使用方式。例如,为UE配置的资源组具体的使用方式可以为:周期性的采用配置的资源组传输目标信道和/或信号;或者,非周期性的采用配置的资源组传输目标信道和/或信号,而是在接收到基站发送的DCI后,采用配置的资源组传输目标信道和/或信号;或者,半持续(semi-persistent)的采用配置的资源组传输目标信道和/或信号,即可以通过DCI或者MAC CE触发激活(activate),并可以通过DCI或者MAC CE触发去激活(deactivate),或者,可以通过DCI或者MAC CE触发激活(activate),在一段时间后去激活,这段时间可以通过协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置,或者,可以在收到配置信息一段时间后激活,通过DCI或者MAC CE触发去激活,或是一段时间后去激活,收到配置信息到激活之间的这段时间可以为协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置,激活到去激活之间的这段时间也可以为协议规定(无需基站配置,本地预存储或预配置)或者可以通过基站配置。。
进一步可选的,基站还可以向UE指示配置的资源组的分组方式,即向UE指示将配置的资源组划分为至少一个资源子组的分组方式。
402、UE获取基站为UE配置的至少一个第一资源。
403、基站向UE发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系。
其中,波束为上行发送波束或下行接收波束或下行发送波束或上行接收波束。在基站为UE配置的资源组的基础上,基站可以向UE发送用于指示资源组中包括的第一资源与波束的对应的关系的第一指示信息。
404、UE接收基站发送第一指示信息。
405、UE根据第一资源和第一指示信息确定上行发送波束。
其中,在UE接收到基站发送的第一指示信息之后,UE可以根据第一指示信息中包含的对应关系,以及配置的资源组中包括的第一资源,确定出发送目标信道和/或信号所需的波束,即上行发送波束。
例如,当对应关系中的波束为上行发送波束时,UE可以直接将与第一资源对应的波束确定为上行发送波束;当对应关系中的波束为下行接收波束时,UE可以先获取到与第一资源对应的下行接收波束,然后根据下行接收波束,利用上下行波束的对应关系确定出上行发送波束;当波束为下行发送波束时,UE可以先根据第一资源和第一资源与波束的对应关系确定出下行发送波束,然后根据下行发送波束,利用上下行波束的对应关系 确定下行接收波束,最后根据下行接收波束,并利用上下行波束的对应关系确定出上行发送波束。
406、UE在第一资源和上行发送波束上发送目标信道和/或信号。
其中,在UE确定出上行发送波束之后,便可以在第一资源以及确定出的上行发送波束上发送目标信道和/或信号,以实现对目标信道和/或信号的波束赋形。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与波束的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
图5为本发明实施例提供的另一种信息传输方法的流程图,如图5所示,该方法可以包括:
501、基站为UE配置至少一个第一资源。
其中,第一资源用于UE发送目标信道和/或信号。或者,第一资源用于UE接收目标信道和/或信号。
为了实现对目标信道和/或信号(例如,SRS)的波束赋形,基站可以为UE配置至少一个用于发送目标信道和/或信号的第一资源(例如,时域资源、频域资源、码域资源、天线端口中的一种或多种)。
其中,至少一个第一资源组成了资源组,并且,该资源组可以包括至少一个资源子组。
可选的,同一个资源子组中所有第一资源可以采用相同的频域资源或相同的码域资源。
可选的,基站还可以为UE配置资源组的具体使用方式。例如,使用方式可以为:周期性的采用配置的资源组传输目标信道和/或信号;或者,非周期性的采用配置的资源组传输目标信道和/或信号,在接收到基站发送的DCI后,采用配置的资源组传输目标信道和/或信号;或者,半持续(semi-persistent)的采用配置的资源组传输目标信道和/或信号,即在接收到基站发送的DCI或MAC CE之后,周期性的采用配置的资源组传输目标信道和/或信号,并在接收到基站发送的新的DCI或MAC CE之后停止发送。
可选的,基站还可以向UE指示配置的资源组的分组方式,即向UE指示将配置的资源组划分为至少一个资源子组的分组方式。
502、UE获取基站为UE配置的至少一个第一资源。
基站可以通过信令通知UE上述第一资源。
503、基站向UE发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
其中,在UE向基站发送目标信道和/或信号之前,UE采用第二资源和相应的波束向基站发送了其他信息;或者在UE向基站发送目标信道和/或信号之前,基站采用第二资源和相应的波束向UE发送了其他信息,也就是说,已知第二资源和波束的对应关系,在此基础上,基站可以通过向UE发送用于指示第一资源与第二资源的对应关系的第一 指示信息,以便UE根据第一指示信息确定在第一资源上发送目标信道和/或信号所需的波束,或确定在第一资源上基站接收目标信道和/或信号所用的波束。
其中,为了能够使得UE可以在发送目标信道和/或信号时实现波束赋形,基站通过第一指示信息向UE指示为UE配置的资源组中第一资源与第二资源的对应关系。该第二资源包括UE在发送目标信道和/或信号之前向基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源包括UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。可选的,本发明实施例中涉及到的第二资源可以为用于以下信道和/或信号至少之一传输的资源:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、主同步信号、辅同步信号、同步信号块、物理广播信道的解调参考信号、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、物理下行控制信道的解调参考信号、物理下行共享信道的解调参考信号。可选的,所述物理下行控制信道可以为控制资源集合(CORESET,control resource set),也可以是承载随机接入响应或系统消息的控制信息的物理下行控制信道。可选的,所述物理下行共享信道可以是承载系统消息的物理下行共享信道。
也就是说,基站可以通过向UE发送已知与波束对应关系的第二资源与第一资源的对应关系,以便UE确定出所需的波束。
在具体实现中,基站可以通过以下不同的方式向UE指示为UE配置的资源组中每个第一资源与第二资源的对应关系。可选的,在以下实施方式中,所述第一资源与第二资源的对应关系包括以下至少之一:目标信道和/或信号的天线端口与所述第二资源上传输的信道和/或信号的天线端口具有准共址QCL关系;目标信道和/或信号采用的发送波束与所述第二资源上传输的信道和/或信号的发送波束相同;目标信道和/或信号采用的发送波束与所述第二资源上传输的信道和/或信号的接收波束对应;目标信道和/或信号采用的空间滤波器与所述第二资源上传输的信道和/或信号的空间滤波器相同
可选的,第二资源的标识和第二资源的关系可以是预定义或基站配置的。例如第二资源用于传输SRS时,第二资源的标识可以是SRI(SRS资源指示,SRS resource indicator)或基站配置或预定义第二资源标识与SRI或SRS资源的对应关系,可以使第二资源的标识对应一部分SRS资源或SRI,降低第二资源指示的开销。又例如第二资源为CSI-RS时,第二资源的标识可以是CRI(CSI-RS资源指示,CSI-RS resource indicator),也可以是基站配置或预定义的第二资源标识与CRI或CSI-RS资源或用户设备上报的CRI的对应关系。例如第二资源标识可以为低开销指示(LOI,low overhead indicator),可以使第二资源的标识对应一部分CSI-RS资源或CRI,降低第二资源指示的开销。
方式一:第一指示信息包括资源子组中每个第一资源与第二资源的对应关系。
其中,可以采用以下方式指示资源子组中每个第一资源与第二资源的对应关系:第一指示信息具体包括资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个第一资源上传输的目标信道和/或信号的天线端口与第二资源上传输的信号的天线端口具有QCL关系的信息;或 者,第一指示信息具体包括:每个第一资源对应的第二资源的标识。
可选的,当第一指示信息包含每个第一资源对应的第二资源的标识时,可以包含一个或多个第二资源的标识。可选的,第二资源的标识的数量与第一资源的数量相同;可选的,第一指示信息所指示的第二资源中每个第二资源与第一资源的对应关系可以是预定义的,例如第一指示信息所指示的第二资源中每个第二资源与第一资源依次对应。
并且,进一步的,在方式一的基础上,第一指示信息还包括每个第一资源与波束的可选范围的对应关系。
方式二:第一指示信息包括每个资源子组与第二资源的对应关系。
可以采用以下方式指示每个资源子组与第二资源的对应关系:第一指示信息具体包括每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息;或者,第一指示信息具体可以包括:每个资源子组对应的第二资源的标识。
其中,基站通过第一指示信息指示同一个资源子组的所有第一资源对应相同的第二资源,也就是说,对于同一个资源子组的所有第一资源,UE均采用同一个发送波束发送目标信道和/或信号,此时,相应的,可以通过预先定义或预先配置的方式,使得对于同一个资源子组的第一资源,基站采用不同的接收波束接收目标信道和/或信号。
方式三:第一指示信息包括每个资源子组与第二资源组的对应关系,第二资源组包括一个或多个第二资源。可以采用以下方式指示资源子组与第二资源组的对应关系:第一指示信息具体包括资源子组的标识,以及与资源子组的标识对应的第二资源组中第二资源的标识;或者,第一指示信息具体包括资源子组的标识,以及与资源子组的标识对应的第二资源组的标识。
方式四:第一指示信息包括与资源子组对应的第二资源组中第二资源的标识;
方式五:第一指示信息包括与资源组对应的第二资源组的标识。
可选的,在方式三至五中,第二资源组中的第二资源数量与资源组中的资源子组的数量相同。
可选的,在方式三至五中,第二资源组中的第二资源与资源组中的资源子组的对应关系可以是预定义的,例如依次对应。
可选的,例如第二资源为SRS资源,又例如第二资源为CSI-RS资源,又例如第一资源为SRS资源中的一个端口,第一资源子组为包含一个或多个SRS端口的SRS资源,第一资源组包含一个或多个SRS资源的SRS资源组。
可选的,第一指示信息的传输方法可以包括,基站可以通过高层信令,如RRC信令或MAC CE信令配置多个候选第二资源组,基站再通过MAC CE或DCI信令指示其中的一个候选第二资源组为所述第二资源组。
进一步可选的,一个或多个候选第二资源组组成一个候选第二资源组的集合,基站通过高层信令,如RRC信令或MAC CE信令,配置一个或多个候选第二资源组的集合, 基站再通过信令,如RRC信令或MAC CE信令指示其中的一个候选第二资源组的集合,基站再通过MAC CE或DCI信令指示所指示的候选第二资源组的集合中的一个候选第二资源组为所述第二资源组。
进一步可选的,同一个候选第二资源组的集合中包含的第二资源组中第二资源的数量相同,不同候选第二资源组的集合中包含的第二资源组中第二资源的数量可以不同。
进一步可选的,UE可以根据第一资源组中的第一资源子组的数量,确定一个候选第二资源组的集合。例如所确定的候选第二资源组的集合中第二资源组中的第二资源的数量等于所述第一资源组中的第一资源子组的数量。在表1中给出了一个可行的实施例,UE根据第一资源组中第一资源子组的数量,确定表中列,即确定候选第二资源组的集合,例如资源组中包含1个第一资源子组,则选择候选第二资源组的集合0,其中候选第二资源组的集合0中每个第二资源组中包含1个第二资源,由于此时第二资源组中仅一个第二资源,所以波束指示可以直接指示第二资源的标识;又例如,例如资源组中包含2个第一资源子组,则选择候选第二资源组的集合1,其中候选第二资源组的集合1中每个第二资源组中包含2个第二资源;又例如,例如资源组中包含4个第一资源子组,则选择候选第二资源组的集合2,其中候选第二资源组的集合2中每个第二资源组中包含4个第二资源,用这种预定义的对应关系可以保证第一资源子组有对应的第二资源。此外,基站通过MAC CE或DCI指示表中的波束指示项,从而确定表中的行,例如MAC CE或DCI中对应的域的比特为”00”,则选择资源组0.需要注意的是,下述表格中行与列仅为示例,可以互换,行和/或列的数量也可以增加或减少,也可以是其他表格中的一部分。下表中的域中的值为二进制的数,也可以用十进制、八进制或十六进制的数来表示。表中MAC CE或DCI中用于指示第一资源和第二资源对应关系的域与第二资源组的标识的对应关系,或MAC CE或DCI中用于指示第一资源和第二资源对应关系的域与第二资源的标识的对应关系可以通过列表(list),公式,一串字符,数组,或者为一段代码等形式体现。表中第一列中第一资源子组的个数也可以为其他数值,这里仅作为示例。
表1
Figure PCTCN2017108398-appb-000001
Figure PCTCN2017108398-appb-000002
进一步的,以第二资源为SRS资源或CSI-RS资源为例,第一资源子组为SRS资源为例,表格1可以变为以下表格2。其中SRS/CSI-RS资源的标识可以为SRI或CRI,也可以基站配置或预定义SRI或CRI与SRS/CSI-RS资源的标识的对应关系。
下表中的域中的值为二进制的数,也可以用十进制、八进制或十六进制的数来表示。表中MAC CE或DCI中用于指示SRS资源和SRS/CSI-RS资源对应关系的域与SRS/CSI-RS资源组的标识的对应关系,或MAC CE或DCI中用于指示SRS资源和SRS/CSI-RS资源对应关系的域与SRS/CSI-RS资源的标识的对应关系可以通过列表(list),公式,一串字符,数组,或者为一段代码等形式体现。表中第一列中SRS资源的个数也可以为其他数值,这里仅作为示例。
表2
Figure PCTCN2017108398-appb-000003
Figure PCTCN2017108398-appb-000004
并且,进一步的,在方式二至方式五的基础上,第一指示信息还包括:每个资源子组与波束的可选范围的对应关系。
方式六:第一指示信息包括每个第一资源与第二资源的对应关系。
可以采用以下方式指示每个第一资源与第二资源的对应关系:第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息;或者,第一指示信息包括与第一资源对应的第二资源的标识。
方式七:第一指示信息包括每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
可以采用以下方式指示每个第一资源与第二资源组的对应关系:第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,第一指示信息具体包括用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息;或者,第一指示信息具体包括与第一资源对应的第二资源组的标识。
方式八:第一指示信息包括每个第一资源与波束的可选范围的对应关系。
可选的,在上述实施方式一至八中,所述第一指示信息可以承载于相同的信令,也可以承载于不同的信令,例如当第一指示信息承载于不同的信令时,所述第一资源的标识或第一资源子组的标识可以承载于信令1,上述实施方式中第一指示信息中第一资源的标识和第一资源子组的标识以外的信息可以承载于信令2.又例如,当第一信令承载于DCI中,DCI中可以不包含第一资源或第一资源子组或第一资源组的标识;当第一信令承载于MAC CE中时,第一MAC CE中可以包含第一资源或第一资源子组或第一资源组的标识,以及对应的第二资源的标识或第二资源组的标识。可选的,在上述实施方式一至八中,第一指示信息还可用于指示所述用户设备自行选择目标信道和/或信号的发送波束,或与目标信道和/或信号具有QCL关系的信号。
可选的,在上述实施方式一至八中,第一指示信息还可用于指示目标信道和/或信号采用之前使用的第k个发送波束或第一资源对应之前第k次指示的第二资源,k可以为基站配置或预定义的,如k=1或k=2.例如,在方式五中的表1中的MAC CE或DCI中用于指示第一资源和第二资源对应关系的域还可以用于指示所述目标信道和/或信号采用之前使用的第k个发送波束或所述第二资源为之前第k次指示的第二资源,或方式五中的表2中的MAC CE或DCI中用于指示SRS资源和SRS/CSI-RS资源对应关系的域还可以用于指示所述目标信道和/或信号采用之前使用的第k个发送波束,或所述SRS/CSI-RS 资源为之前第k次指示的SRS/CSI-RS资源
可选的,在上述实施方式一至八中,第一指示信息还可用于指示目标信道和/或信号采用的发送波束由UE自行确定或不限定与目标信道和/或信号所使用的天线端口有QCL关系的天线端口。例如,在方式五中的表1中的MAC CE或DCI中用于指示第一资源和第二资源对应关系的域还可以用于指示目标信道和/或信号采用的发送波束由UE自行确定或不限定与目标信道和/或信号所使用的天线端口有QCL关系的天线端口,或方式五中的表2中的MAC CE或DCI中用于指示SRS资源和SRS/CSI-RS资源对应关系的域还可以用于指示目标信道和/或信号采用的发送波束由UE自行确定或或不限定与所述SRS所使用的天线端口有QCL关系的天线端口。
可选的,在上述实施方式一至八中,基站可以发送第三指示信息,用于指示是否有第一指示信息,或第一指示信息中是否包含第二资源的标识,或第二资源组的标识,从而在不需要指示波束时降低信令开销。
可选的,在上述实施方式一至八中,所述第二资源与第三资源或第一资源的时域间隔为预定义的或基站配置的。所述第三资源为传输所述第一指示信息的部分或全部资源。
例如第一指示信息承载于RRC信令或MAC CE信令,或第一指示信息中的第二资源的标识,或第二资源组的标识承载于RRC信令或MAC CE信令,则第三资源可以为该RRC信令或MAC CE信令所在的PDSCH所在的时隙或子帧或符号或迷你时隙,本实施例中以时隙为例。又例如第一指示信息承载于DCI,或第一指示信息中的第二资源的标识,或第二资源组的标识承载于DCI,则第三资源可以为该DCI所在的PDCCH所在的时隙或子帧或符号或迷你时隙,本实施例中以时隙为例。
可选的,若第二资源承载非周期的信号,如非周期的SRS或非周期的CSI-RS,则预定义的该第二资源为发送该非周期信号的资源,第二资源与第三资源或第一资源的时域间隔为该非周期的信号所在的时隙与第三资源或第一资源的时隙的间隔。
可选的,若第二资源承载周期信号或半持续的信号,如周期性或半持续的SRS或CSI-RS,则在所述信号周期性发送的过程中可能基站会通过信令配置不同的波束,因此需要定义第二资源为所对应的周期性发送的信号的某次发送所占用的资源。
具体的,第一指示信息用于指示第二资源上传输的第二信号的资源指示,例如第二信号为SRS或CSI-RS,第二信号的资源指示为SRI或CRI或他们的标识。上述第二资源可以包含于第二资源组,指示方法可以为上述方式一至八中的指示方法。第二资源与第三资源或第一资源的时域间隔为预定义的或基站配置的有以下实施方法:
实施方法1:第二资源可以为第三资源a1个时隙前的倒数第a2次传输的第二信号的资源。例如,所述第三资源为时隙n或所在的时隙为时隙n,则第二资源为n-a1时隙之前倒数第a2次传输的第二信号的资源,如图5-1所示。a1可以为基站配置或预定义的,例如a1=0或a1=1.a2也可以为基站配置或预定义的,例如a2=1.其中a1可以为正值、负值或0,其中a1=0也可以理解为不定义a1,即第二资源可以为第三资源前的倒数第a2次传输的第二信号的资源;
实施方法2:第二资源可以为第三资源a1个时隙前的倒数第a2个不同波束或非QCL的第二信号的资源。例如,所述第三资源为时隙n或所在的时隙为时隙n,则第二资源为n-a1时隙之前倒数第a2个不同波束或非QCL的第二信号的资源,如图5-2所示。不同 波束还可以理解为不同的空间滤波器,或具有非QCL关系。a1可以为基站配置或预定义的,例如a1=0或a1=1.a2也可以为基站配置或预定义的,例如a2=1.其中a1可以为正值、负值或0,其中a1=0也可以理解为不定义a1,即第二资源可以为第三资源前的倒数第a2个不同波束的第二信号的资源.实施方法2相对实施方法1,实施方法1中多个a2值可能对应同一个波束,因此可以降低a2指示的开销;
实施方法3:第二资源可以为第一资源a1个时隙前的倒数第a2次传输的第二信号的资源。例如,所述第一资源所在的时隙为时隙n,则第二资源为n-a1时隙之前倒数第a2次传输的第二信号的资源,如图5-3所示。a1可以为基站配置或预定义的,例如a1=0或a1=1.a2也可以为基站配置或预定义的,例如a2=1.其中a1可以为正值、负值或0,其中a1=0也可以理解为不定义a1,即第二资源可以为第一资源前的倒数第a2次传输的第二信号的资源;
实施方法4:第二资源可以为第一资源a1个时隙前的倒数第a2个不同波束的第二信号的资源。例如,所述第一资源所在的时隙为时隙n,则第二资源为n-a1时隙之前倒数第a2个不同波束或非QCL的第二信号的资源,如图5-4所示。不同波束还可以理解为不同的空间滤波器,或具有非QCL关系。a1可以为基站配置或预定义的,例如a1=0或a1=1.a2也可以为基站配置或预定义的,例如a2=1.其中a1可以为正值、负值或0,其中a1=0也可以理解为不定义a1,即第二资源可以为第一资源前的倒数第a2个不同波束的第二信号的资源。实施方法4相对实施方法3,实施方法3中多个a2值可能对应同一个波束,因此可以降低a2指示的开销。
可选的,在上述实施方式一至八中,所述第一资源与第三资源或第二资源的时域间隔为预定义的或基站配置的。所述第三资源为传输所述第一指示信息的部分或全部资源。例如第一指示信息承载于RRC信令或MAC CE信令,或第一指示信息中的第二资源的标识,或第二资源组的标识承载于RRC信令或MAC CE信令,则第三资源可以为该RRC信令或MAC CE信令所在的PDSCH所在的时隙或子帧或符号或迷你时隙,本实施例中以时隙为例。又例如第一指示信息承载于DCI,或第一指示信息中的第二资源的标识,或第二资源组的标识承载于DCI,则第三资源可以为该DCI所在的PDCCH所在的时隙或子帧或符号或迷你时隙,本实施例中以时隙为例。
可选的,若第一资源承载非周期的目标信道和/或信号,如非周期的SRS或非周期的CSI-RS,则预定义的该第一资源为发送该非周期目标信道和/或信号的资源,第一资源与第三资源或第二资源的时域间隔为该非周期的目标信道和/或信号所在的时隙与第三资源或第二资源的时隙的间隔。
可选的,若第一资源承载周期信号或半持续的目标信道和/或信号,如周期性或半持续的SRS或CSI-RS,则考虑到第一指示信息存在一定的生效时延或模糊时间,因此需要规定第一指示信息具体生效的时间。
具体的,第一指示信息用于指示与第一资源对应的第二资源或第一资源与第二资源的对应关系,例如目标信道和/或信号为SRS。上述第一资源可以包含于第一资源组或第一资源子组,指示方法可以为上述方式一至八中的指示方法。第一资源与第三资源或第二资源的时域间隔为预定义的或基站配置的有以下实施方法:
实施方法1:第一资源可以为第三资源b1个时隙后的第b2次传输的目标信道和/或 信号的资源,或第一指示信息在第三资源b1个时隙后的第b2次传输的目标信道和/或信号开始生效。例如,所述第三资源为时隙n或所在的时隙为时隙n,则第一资源为n+b1时隙之后第b2次传输的目标信道和/或信号的资源,或第一指示信息在n+b1时隙之后第b2次传输的目标信道和/或信号时生效,如图5-5所示。b1可以为基站配置或预定义的,例如b1=0或b1=1。b2也可以为基站配置或预定义的,例如b2=1.其中b1=0也可以理解为不定义b1,即第一资源可以为第三资源后的第b2次传输的目标信道和/或信号的资源,或第一指示信息在第三资源后的第b2次传输的目标信道和/或信号开始生效;
实施方法2:第一资源可以为第二资源b1个时隙后的第b2次传输的目标信道和/或信号的资源,或第一指示信息在第二资源a1个时隙后的第b2次传输的目标信道和/或信号开始生效。例如,所述第二资源为时隙n或所在的时隙为时隙n,则第一资源为n+b1时隙之后第b2次传输的目标信道和/或信号的资源,或第一指示信息在n+b1时隙之后第b2次传输的目标信道和/或信号时生效,如图5-6所示。b1可以为基站配置或预定义的,例如b1=0或b1=1。b2也可以为基站配置或预定义的,例如b2=1.其中b1=0也可以理解为不定义b1,即第一资源可以为第二资源后的第b2次传输的目标信道和/或信号的资源,或第一指示信息在第二资源后的第b2次传输的目标信道和/或信号开始生效。
作为本实施例的另一种实现方法,所述第一指示信息中的用于指示第二资源或第二资源组的信息可以承载于第一DCI。所述第一DCI可以用于触发多于一个频域资源部分上传输目标信道和/或信号,所述频域资源部分可以为载波或带宽部分(BWP,bandwidth part)。BWP可以是基站为UE配置的一段带宽,具有唯一的子载波间隔和CP类型,可以用于数据传输。本实施例中以目标信道和/或信号为SRS为例。此时第一资源或第一资源子组或第一资源组包含多个频域资源部分,可以理解为每个第一资源位于一个频域资源部分,或每个第一资源子组位于一个频域资源部分,或第一资源位于多个频域资源部分。所述频域资源部分中的一些频域资源部分为不进行PUSCH的传输或不进行PUSCH和PUCCH的传输的频域资源部分。此时所述第一指示信息用于指示多个频域资源部分上的波束或对应的第二资源或第二资源组。
具体的,第一DCI中包含一个或多个部分,例如,第一DCI可包括block 1,block 2,…,block C,C为正整数。第一DCI中C个部分中的一个或多个部分可以用于承载第一指示信息中的用于指示第二资源或第二资源组的信息。可选的,若C个部分为第一DCI中的部分比特,则第一DCI中的其他一个或多个部分可以用于承载其他UE的第一指示信息,此时将第一DCI用于指示不同用户设备的SRS传输。此时第一DCI中的C个部分中的一个部分用于指示b1个第二资源以及b2个传输功率控制(TPC,Transmission Power Control)参数,b1>1,b2>1。例如第一DCI中的C个部分中的一个部分包含b1个第二资源的标识,或包含b1个第二资源的一个或多个第二资源组的标识。具体第一DCI中的C个部分中的一个部分(例如可以是第一DCI中的一个block)的比特数以及具体含义有以下方式:
方式一:b2根据b1、载波数以及每个载波内的BWP数目确定,例如b2=b1*载波数*每个载波内的BWP的数目。此时b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的,例如按照TPC的排序分为b1组, 每组对应1个第二资源,如按顺序对应。从而实现每个资源每个波束都有确定的TPC,进行闭环功率控制调整。此时C=1.
针对这种方式,每个部分(block)对应于一个用户设备,针对该用户设备包含以下比特:
(1)┌log2(b1)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b1)┐个bit指示该用户设备在所述部分对应的载波内的BWP上使用的第二资源标或第二资源的一个或多个第二资源组的标识;
(2)┌log2(b2)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b2)┐个bit指示所述用户设备的功控命令,所述功控命令可以是TPC。其中,b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的。
方式二:b2根据b1确定,例如b2=b1。此时b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的,例如按照TPC的排序和所指示的第二资源的排序一一对应。从而实现每个波束都有确定的TPC,进行闭环功率控制调整。进一步地,此时C>1,所述第一DCI中的C个部分中每个部分对应一个载波上的BP,例如C可以根据载波数和每个载波内的BWP的数目确定,例如C=载波数*每个载波内的BWP的数目.
针对这种方式,每个部分(block)对应于一个载波上的一个BWP,针对该载波上的一个BWP包含以下比特:
(1)┌log2(b1)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b1)┐个bit指示载波上的一个BWP内用户设备使用的第二资源标或第二资源的一个或多个第二资源组的标识;
(2)┌log2(b2)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b2)┐个bit指示一个载波上的一个BWP内用户设备的功控命令,所述功控命令可以是TPC。其中,b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的。
此时,一个用户设备可以对应于一个或多个部分(block)。也就是说,基站可以通过第一DCI内的一个或多个部分(block)指示一个用户设备使用的第二资源标或第二资源的一个或多个第二资源组的标识。
方式三:b2根据b1和载波数确定,或根据b1和BWP数目确定,例如b2=b1*载波数,或b2=b1*BWP的数目。此时b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的,例如按照TPC的排序分为b1组,每组对应1个第二资源,如按顺序对应。从而实现每个资源每个波束都有确定的TPC,进行闭环功率控制调整。此时C=1.
针对这种方式,每个部分(block)对应于一个用户设备,针对该用户设备包含以下比特:
(1)┌log2(b1)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b1)┐个bit指示该用户设备在所述部分(block)对应的载波 内或BWP上使用的第二资源标或第二资源的一个或多个第二资源组的标识;
(2)┌log2(b2)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b2)┐个bit指示所述用户设备的功控命令,所述功控命令可以是TPC。其中,b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的。
方式四:b2根据b1确定,例如b2=b1。此时b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的,例如按照TPC的排序和所指示的第二资源的排序一一对应。从而实现每个波束都有确定的TPC,进行闭环功率控制调整。进一步地,此时C>1,所述第一DCI中的C个部分中每个部分对应一个载波上的BP,例如C可以根据载波数或BWP的数目确定,例如C=载波数,或C=BWP的数目.
针对这种方式,每个部分(block)对应于一个载波上或一个BWP,针对该载波或一个BWP包含以下比特:
(1)┌log2(b1)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b1)┐个bit指示该载波或者BWP内用户设备使用的第二资源标或第二资源的一个或多个第二资源组的标识;
(2)┌log2(b2)┐个bit,其中,┌.┐表示向上取整,基站通过第一DCI的一个部分(block)中的所述┌log2(b2)┐个bit指示所述载波或者BWP用户设备的功控命令,所述功控命令可以是TPC。其中,b1个第二资源与b2个TPC的对应关系可以是高层信令如RRC信令或MAC CE信令配置的,或预定义的。
此时,一个用户设备可以对应于一个或多个部分(block)。也就是说,基站可以通过第一DCI内的一个或多个部分(block)指示一个用户设备使用的第二资源标或第二资源的一个或多个第二资源组的标识。
可选的,用户设备根据b1、载波数以及每个载波中的BWP数目确定采用实施方法一或实施方法二。例如,当b1*载波数*每个载波内的BWP的数目大于或大于等于L时,采用实施方法一,否则采用实施方法二。其中L为预设或协议规定的或基站配置的,例如基站可通过RRC信令配置L的值。
可选的,用户设备根据b1和载波数确定采用实施方法三或实施方法四,或者用户设备根据b1和BWP数目确定采用实施方法三或实施方法四。例如,当b1*载波数大于或大于等于L时,采用实施方法三,否则采用实施方法四。或者例如当b1*BWP数大于或大于等于L时,采用实施方法三,否则采用实施方法四。其中L为预设或协议规定的或基站配置的,例如基站可通过RRC信令配置L的值。
可选的,上述实施方法中,预定义的或基站指示的,同一个载波内的不同BWP的对应相同的第二资源或第二资源组。
可选的,上述实施方法中,所述载波为成员载波(CC,component carrier)。
可选的,上述实施方法中,所述第一DCI中的C个部分还可以包括用于触发SRS传输的信息。例如所述第一DCI中的C个部分的一个部分中包含SRS触发信令,可以用于触发某个基站通过高层信令如RRC信令或MAC CE配置的SRS配置的SRS传输。
作为本发明的一种扩展,上述信息传输方法还可以扩展到下行,此时目标信道和/或信号为基站向UE发送的,第一资源为下行传输的资源,此时目标信道和/或信号可以为以下至少之一:主同步信号、辅同步信号、同步信号块、物理广播信道、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、解调参考信号(DMRS,Demodulation reference signal)、物理下行控制信道、物理下行共享信道、控制资源集合CORESET。
上述第一指示信息的配置方法用于指示下行传输的目标信道和/或信号时,基站向UE发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
其中,在基站向UE发送目标信道和/或信号之前,UE采用第二资源和相应的波束向基站发送了其他信息;或者在基站向UE发送目标信道和/或信号之前,基站采用第二资源和相应的波束向UE发送了其他信息,UE采用相应的接收波束接收了第二资源上传输的信号,也就是说,UE已知第二资源和接收波束的对应关系,在此基础上,基站可以通过向UE发送用于指示第一资源与第二资源的对应关系的第一指示信息,以便UE根据第一指示信息确定在第一资源上UE接收目标信道和/或信号所需的波束,或确定在第一资源上基站发送目标信道和/或信号所用的波束。例如UE根据第一指示信息确定在第一资源上UE接收目标信道和/或信号所需的波束为UE接收第二资源上传输的信号的接收波束,或所述UE感觉第一指示信息确定,目标信道和/或信号传输所使用的天线端口与所述第二资源上传输的信号所使用的天线端口具有QCL关系。具体第一指示信息的传输方法可以为上述任一方式或它们的组合。
可选的,在上述实施方式中,第一指示信息还可用于指示目标信道和/或信号采用之前使用的第k个接收波束或第一资源对应之前第k次指示的第二资源,k可以为基站配置或预定义的,如k=1或k=2.例如,在方式五中的表1中的MAC CE或DCI中用于指示第一资源和第二资源对应关系的域还可以用于指示所述目标信道和/或信号采用之前使用的第k个接收波束或所述第二资源为之前第k次指示的第二资源。
可选的,在上述实施方式中,第一指示信息还可用于指示目标信道和/或信号采用的接收波束由UE自行确定或不限定与目标信道和/或信号所使用的天线端口有QCL关系的天线端口。例如,在方式五中的表1中的MAC CE或DCI中用于指示第一资源和第二资源对应关系的域还可以用于指示目标信道和/或信号采用的接收波束由UE自行确定或不限定与目标信道和/或信号所使用的天线端口有QCL关系的天线端口。
504、UE接收基站发送第一指示信息。
505、UE根据第一资源和第一指示信息确定第二资源,并根据与第二资源对应的波束确定上行发送波束或下行接收波束。
可选的,根据与第二资源对应的波束确定上行发送波束还可以是确定上行接收波束,例如可以将第二资源上传输信道和/或信号所使用的上行接收波束确定为目标信道和/或信号的上行接收波束,或者根据第二资源上传输信道和/或信号所使用的天线端口与目标信道和/或信号所使用的天线端口具有QCL关系确定第二资源上传输信道和/或信号所使用的上行接收波束确定为目标信道和/或信号的上行接收波束。又例如可以将第二资源上 传输信道和/或信号下行发送所使用的空间滤波器确定为目标信道和/或信号的上行接收所使用的空间滤波器,或者可以将第二资源上传输信道和/或信号下行发送所使用的下行发送波束对应的上行接收波束确定为目标信道和/或信号的上行接收波束,或者根据第二资源上传输信道和/或信号所使用的天线端口与目标信道和/或信号所使用的天线端口具有QCL关系确定第二资源上传输信道和/或信号下行发送所使用的空间滤波器为目标信道和/或信号的上行接收所使用的空间滤波器,或者第二资源上传输信道和/或信号下行发送所使用的下行发送波束对应的上行接收波束为目标信道和/或信号的上行接收波束。
其中,在UE接收到基站发送的第一指示信息之后,UE可以根据第一指示信息中包含的对应关系,以及配置的资源组中包括的第一资源,先确定出与第一资源对应的第二资源,然后根据已知的第二资源和波束的对应关系,根据第二资源对应的波束确定目标信道和/或信号的上行发送波束或上行接收波束。
例如,当是UE在第二资源和对应的波束上发送了其他信息时,则已知的是第二资源和上行发送波束的对应关系,此时,可以直接将与第二资源对应的波束确定为目标信道和/或信号的上行发送波束,或直接将与第二资源对应的接收波束确定为目标信道和/或信号的上行接收波束,当是基站在第二资源和对应的波束上发送了其他信息时,则已知的是第二资源和下行接收波束的对应关系,此时,可以根据与第二资源对应的波束,利用上下行波束的对应关系确定出目标信道和/或信号的上行发送波束。可选的,上述波束还可以是空间滤波器,或第二资源上传输的信号的天线端口与目标信道和/或信号的天线端口具有QCL关系。
可选的,作为另一种实现方案,在上述步骤和实施例中,若无对应的第一信令指示第一资源与第二资源的对应关系,则预定义的,第一资源与第一资源之前的目标信道和/或信号发送占用的资源有对应关系,例如本次目标信道和/或信号采用上一次发送目标信道和/或信号的波束或空间滤波器发送,或例如目标信道和/或信号的天线端口与上一次发送信道和/或信号的天线端口具有QCL关系。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,则预定义的,用户设备自行确定目标信道和/或信号采用的发送波束,或与目标信道和/或信号具有QCL关系的信号。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,且目标信道和/或信号为第一次发送,则预定义的,用户设备自行确定目标信道和/或信号采用的发送波束,或与目标信道和/或信号具有QCL关系的信号,或不限定与目标信道和/或信号具有QCL关系的信号。
可选的,若第一指示信息用于指示目标信道和/或信号采用之前使用的第k个发送波束或第一资源对应之前第k次指示的第二资源,k可以为基站配置或预定义的,如k=1或k=2,则UE使用之前使用的第k个发送波束,或根据第一资源之前第k次指示的第二资源具有对应关系确定上行发送波束或接收波束,或根据第一资源之前第k次指示的第二资源具有对应关系确定目标信道和/或信号所使用的天线端口与第二资源上传输的信号所使用的天线端口具有QCL关系。具体可采用本发明实施例中所述的发送波束或接收波束或QCL关系确定方法。
可选的,若第一指示信息用于指示目标信道和/或信号采用的发送波束由UE自行确定或不限定与所述目标信道和/或信号所使用的天线端口有QCL关系的天线端口,则UE自行确定目标信道和/或信号的发送波束或不限定与目标信道和/或信号所使用的天线端 口有QCL关系的天线端口。
可选的,在上述步骤和实施例中,若所述目标信道和/或信号所占用的部分或全部符号上所述UE传输第三信号和/或信道,则UE需要判断所述第三信号和/或信道与所述目标信道和/或信号的发送波束或接收波束是否相同,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口是否具有QCL关系。可选的,所述第三信号和/或信道可以采用本发明中指示目标信道和/或信号的方法指示,例如指示第三信号和/或信道与第四资源的对应关系,指示第三信号和/或信道与波束或空间滤波器的对应关系或第三信号和/或信道的端口与第四资源上传输的信号的端口是否具有QCL关系。此时UE可以根据第二资源与第四资源是否相同判断所述第三信号和/或信道与所述目标信道和/或信号的发送波束或接收波束是否相同,所述波束可以是空间滤波器,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口是否具有QCL关系。
可选的,所述第三信号和/或信道可以为以下至少之一:探测参考信号SRS、物理层随机接入信道PRACH、物理层上行共享信道PUSCH、物理层上行控制信道PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
可选的,若UE判断所述第三信号和/或信道与所述目标信道和/或信号的发送波束或接收波束相同,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口具有QCL关系,则UE发送目标信道和/或信号,以及第三信号和/或信道。若UE判断所述第三信号和/或信道与所述目标信道和/或信号的发送波束不相同或接收波束不相同,或UE判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口不具有QCL关系,则有以下实施方法:
实施方法一:UE根据预定义的优先级,确定在所述符号上传输目标信道和/或信号与第三信号和/或信道之一。例如所述预定义的优先级可以为PUSCH的优先级低于SRS,PUCCH的优先级高于SRS。此时例如目标信道和/或信号为SRS,第三信号和/或信道为PUSCH,则PUSCH在SRS的符号上不映射,并进行速率匹配。又比如目标信道和/或信号为PUCCH,第三信号和/或信道为SRS,则SRS在PUCCH的符号上不映射。此外,例如还可以定义PUSCH中承载上行控制信息或承载DMRS的符号优先级高于SRS,或PUSCH中前置的DMRS(front-loaded DMRS)的符号优先级高于SRS,PUSCH中额外的DMRS(additional DMRS)的优先级低于或高于SRS。又例如,可以定义承载CSI的PUCCH的优先级低于SRS,例如目标信道和/或信号为PUCCH,第三信号和/或信道为SRS,则PUCCH不映射在SRS的符号上。可选的,可以通过预定义的方式调整PUCCH的符号数、格式、占用频域资源的数量或占用的RB数,使PUCCH不映射在SRS的符号上,且UE可以发送PUCCH。
实施方法二:基站配置优先级信息,例如实施方法一种的优先级可以是基站配置的,如通过RRC信令或MAC CE信令配置的。UE根据基站配置的优先级信息,按照实施方法一种的方法确定目标信道和/或信号与第三信号和/或信道的映射和/或速率匹配。
可选的,上述实施方法中目标信道和/或信号与第三信号和/或信道可以占用不同的频 域资源,或部分或全部频域资源重叠。
可选的,上述实施方法中若目标信道和/或信号与第三信号和/或信道部分或全部时频资源相同,则有以下处理方法:
处理方法一:根据上述实施方法中的优先级,确定高优先级的信号和/或信道,UE按照高优先级的信号和/或信道的配置映射高优先级的信号和/或信道,UE不发送低优先级的信号和/或信道。
处理方法二:根据上述实施方法中的优先级,确定高优先级的信号和/或信道,UE按照高优先级的信号和/或信道的配置映射高优先级的信号和/或信道,UE在高优先级的信号和/或信道的时频资源以外的时频资源上发送低优先级的信号和/或信道。具体的,当低优先级的信号和/或信道为PUSCH时,PUSCH映射在高优先级的信号和/或信道的时频资源以外的基站配置的或调度的用于传输所述PUSCH的时频资源上。当低优先级的信号和/或信道为SRS时,在目标信道和/或信号与第三信号和/或信道部分或全部时频资源相同的符号上,SRS映射在配置的SRS带宽中与高优先级的信号和/或信道频域资源不同的频域资源中的部分或全部资源,例如具体的需要保证SRS映射的带宽为4个RB的整数倍,且映射SRS的频域资源是连续的。进一步的UE可以根据SRS映射的频域资源确定SRS的序列。当低优先级的信号和/或信道为PUCCH时,PUCCH映射在于映射在高优先级的信号和/或信道的时频资源以外的时频资源上,UE根据PUCCH映射的资源确定PUCCH的符号数、格式、带宽和其中包含的上行控制信息中的至少之一,并发送PUCCH。
可选的,上述处理方法一和处理方法二还可以用于无第一指示信息的情况,或无发送波束的情况。
作为本发明的一种扩展,上述信息传输方法还可以扩展到下行,此时UE根据第一资源和第一指示信息确定第二资源,并根据与第二资源对应的波束确定下行接收波束。例如本发明实施例中用于上行确定发送波束的方法可以用于下行确定接收波束。
其中,在UE接收到基站发送的第一指示信息之后,UE可以根据第一指示信息中包含的对应关系,以及配置的资源组中包括的第一资源,先确定出与第一资源对应的第二资源,然后根据已知的第二资源和波束的对应关系,根据第二资源对应的波束确定目标信道和/或信号的下行接收波束。
例如,当是UE在第二资源和对应的波束上接收了其他信息时,则已知的是第二资源和下行接收波束的对应关系,此时,可以直接将与第二资源对应的下行接收波束确定为目标信道和/或信号的下行接收波束,当是UE在第二资源和对应的波束上发送了其他信息时,则已知的是第二资源和上行发送波束的对应关系,此时,可以根据与第二资源对应的上行发送波束,利用上下行波束的对应关系确定出目标信道和/或信号的下行接收波束。可选的,上述波束还可以是空间滤波器,或第二资源上传输的信号的天线端口与目标信道和/或信号的天线端口具有QCL关系。
可选的,在上述步骤和实施例中,若无对应的第一信令指示第一资源与第二资源的对应关系,则预定义的,第一资源与第一资源之前的目标信道和/或信号发送占用的资源有对应关系,例如本次目标信道和/或信号采用上一次接收目标信道和/或信号的波束或空间滤波器发送,或例如目标信道和/或信号的天线端口与上一次发送信道和/或信号的天线 端口具有QCL关系。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,则预定义的,用户设备自行确定目标信道和/或信号采用的接收波束,或与目标信道和/或信号具有QCL关系的信号。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,且目标信道和/或信号为第一次接收,则预定义的,用户设备自行确定目标信道和/或信号采用的接收波束,或与目标信道和/或信号具有QCL关系的信号。
可选的,在上述步骤和实施例中,若所述目标信道和/或信号所占用的部分或全部符号上所述UE接收或基站发送第三信号和/或信道,则UE需要判断所述第三信号和/或信道与所述目标信道和/或信号的发送接收波束是否相同,所述波束可以是空间滤波器,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口是否具有QCL关系。可选的,所述第三信号和/或信道可以采用本发明中指示目标信道和/或信号的方法指示,例如指示第三信号和/或信道与第四资源的对应关系,指示第三信号和/或信道与波束或空间滤波器的对应关系或第三信号和/或信道的端口与第四资源上传输的信号的端口是否具有QCL关系。此时UE可以根据第二资源与第四资源是否相同判断所述第三信号和/或信道与所述目标信道和/或信号的接收波束是否相同,所述波束可以是空间滤波器,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口是否具有QCL关系。
此时第三信号和/或信道为下行信号和/或信道,可以为以下至少之一:主同步信号、辅同步信号、同步信号块、物理广播信道、CSI-RS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、解调参考信号(DMRS,Demodulation reference signal)、物理下行控制信道、物理下行共享信道、控制资源集合CORESET。
可选的,若UE判断所述第三信号和/或信道与所述目标信道和/或信号的接收波束相同,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口具有QCL关系,则UE接收目标信道和/或信号,以及第三信号和/或信道。若UE判断所述第三信号和/或信道与所述目标信道和/或信号的接收波束不相同,或UE判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口不具有QCL关系,则有以下实施方法:
实施方法一:UE根据预定义的优先级,确定在所述符号上接收或映射了目标信道和/或信号与第三信号和/或信道之一。例如所述预定义的优先级可以为PDSCH的优先级低于CSI-RS,PDCCH的优先级高于CSI-RS。此时例如目标信道和/或信号为CSI-RS,第三信号和/或信道为PDSCH,则PDSCH在CSI-RS的符号上不映射,并进行速率匹配。又比如目标信道和/或信号为PDCCH,第三信号和/或信道为CSI-RS,则CSI-RS在PSCCH的符号上不映射。此外,例如还可以定义PDSCH中承载前置的DMRS(front-loaded DMRS)的符号优先级高于CSI-RS,PDSCH中额外的DMRS(additional DMRS)的优先级低于或高于SRS。又例如,目标信道和/或信号为CSI-RS,第三信号和/或信道为同步信号或同步信号块,则该符号上不映射CSI-RS。
实施方法二:基站配置优先级信息,例如实施方法一种的优先级可以是基站配置的,如通过RRC信令或MAC CE信令配置的。UE根据基站配置的优先级信息,按照实施方法一种的方法确定目标信道和/或信号与第三信号和/或信道的映射和/或速率匹配。
可选的,若UE判断所述第三信号和/或信道与所述目标信道和/或信号的第一部分天线端口的接收波束相同,或UE需要判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的第一部分天线端口具有QCL关系,则UE接收目标信道和/或信号的所述第一部分天线端口,以及第三信号和/或信道。例如,当目标信道和/或信号为PDSCH或PDSCH的DMRS,第三信道和/或信号为CSI-RS时,所述目标信道和/或信号的第一部天线端口可以为一个DMRS组内的天线端口。若UE判断所述第三信号和/或信道与所述目标信道和/或信号的第二部分天线端口的接收波束不相同,或UE判断所述第三信号和/或信道的天线端口与所述目标信道和/或信号的第二部分天线端口不具有QCL关系,则有以下实施方法:
实施方法一:UE根据预定义的优先级,确定在所述符号上接收或映射了目标信道和/或信号的第二部分天线端口与第三信号和/或信道之一。例如所述预定义的优先级可以为PDSCH的优先级低于CSI-RS。此时例如目标信道和/或信号为PDSCH或PDSCH的DMRS,第三信号和/或信道为CSI-RS,则PDSCH的所述第二部分天线端口在CSI-RS的符号上不映射,并进行速率匹配。
实施方法二:基站配置优先级信息,例如实施方法一种的优先级可以是基站配置的,如通过RRC信令或MAC CE信令配置的。UE根据基站配置的优先级信息,按照实施方法一种的方法确定目标信道和/或信号的第二部分天线端口与第三信号和/或信道的映射和/或速率匹配。
可选的,基站配置第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口的关联关系,具有所述关联关系的端口间的第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口可以同时发送。即若第三信号和/或信道的天线端口a与所述目标信道和/或信号的天线端口b具有关联关系,则无论第三信号和/或信天线道端口a与所述目标信道和/或信号的天线端口b的接收波束是否相同,或所述第三信号和/或信道的天线端口a与所述目标信道和/或信号的天线端口b是否具有QCL关系,都可以同时在天线端口a上传输第三信号和/或信道和在天线端口b上传输所述目标信道和/或信号。
可选的,所述第三信号和/或信道的天线端口与所述目标信道和/或信号的天线端口的关联关系还可以是用户设备上报的。
可选的,若第一指示信息用于指示目标信道和/或信号采用之前使用的第k个接收波束或第一资源对应之前第k次指示的第二资源,k可以为基站配置或预定义的,如k=1或k=2,则UE使用之前使用的第k个接收波束,或根据第一资源之前第k次指示的第二资源具有对应关系确定上行发送波束或接收波束,或根据第一资源之前第k次指示的第二资源具有对应关系确定目标信道和/或信号所使用的天线端口与第二资源上传输的信号所使用的天线端口具有QCL关系。具体可采用本发明实施例中所述的接收波束或接收波束或QCL关系确定方法。
可选的,若第一指示信息用于指示目标信道和/或信号采用的接收波束由UE自行确定或不限定与所述目标信道和/或信号所使用的天线端口有QCL关系的天线端口,则UE自行确定目标信道和/或信号的接收波束或不限定与目标信道和/或信号所使用的天线端口有QCL关系的天线端口。
可选的,作为另一种实现方案,在上述步骤和实施例中,若无对应的第一信令指示 第一资源与第二资源的对应关系,则预定义的,第一资源与第一资源之前的目标信道和/或信号发送占用的资源有对应关系,例如本次目标信道和/或信号采用上一次发送目标信道和/或信号的波束或空间滤波器发送,或例如目标信道和/或信号的天线端口与上一次发送信道和/或信号的天线端口具有QCL关系。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,则预定义的,用户设备自行确定目标信道和/或信号采用的接收波束,或与目标信道和/或信号具有QCL关系的信号。可选的,若无对应的第一信令指示第一资源与第二资源的对应关系,且目标信道和/或信号为第一次发送,则预定义的,用户设备自行确定目标信道和/或信号采用的接收波束,或与目标信道和/或信号具有QCL关系的信号,或不限定与目标信道和/或信号具有QCL关系的信号。
506、UE在第一资源和上行发送波束上发送目标信道和/或信号。
需要说明的是,本发明实施例中步骤501-步骤506的具体描述与本发明另一实施例中步骤401-步骤406中相应步骤的具体描述类似,对于本发明实施例中步骤501-步骤506的具体描述可以参考另一实施例中步骤401-步骤406中相应步骤的具体描述,本发明实施例在此不再一一赘述。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与第二资源的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
图6为本发明实施例提供的另一种信息传输方法的流程图,如图6所示,该方法可以包括:
601、UE向基站发送能力指示信息。
其中,为了使得基站能够根据UE的波束能力为UE配置资源,UE可以将自身的波束能力上报至基站,具体的,UE可以通过向基站发送能力指示信息,来上报自身的波束能力。
示例性的,UE可以通过消息3(Message 3)和/或上行高层信令将能力指示信息发送至基站。
能力指示信息中包括UE在能力类型中支持的最大波束数,或者,能力指示信息中包括UE在能力类型中支持的最大波束数的量化值。能力类型可以包括波束管理阶段和/或波束的可选范围,另外,能力类型可以是预定义的也可以是基站配置的。
示例性的,当能力类型包括波束管理阶段时,该波束管理阶段可以包括:U-1阶段、U-2阶段和U-3阶段。其中,在U-1阶段,基站可以对UE的不同发送波束进行测量,以支持UE发送波束或基站接收波束的波束选择,在U-2阶段,基站可以对自身不同的接收波束进行测量(此时UE相应的可以在同一个发送波束上向基站发送信号),以支持可能的基站内或基站间的接收波束切换,在U-3阶段,基站可以对自身相同的接收波束进行测量(此时UE相应的可以在不同的发送波束上向基站发送信号),以使得在波束赋形的场景下UE可以改变自身的发送波束。
当能力类型包括波束的可选范围时,该波束(指的是发送波束)的可选范围可以包 括:0度-360度,45度-135度等等。
例如,当能力类型包括波束管理阶段,且采用UE在能力类型中支持的最大波束数上报能力指示信息时,如图7所示,假设UE在U-1阶段支持的最大波束数为4,UE在U-3阶段支持的最大波束数为5,则UE向基站发送的能力指示信息可以包括:在U-1阶段支持的最大波束数为4,在U-3阶段支持的最大波束数为5。
再例如,当能力类型包括波束的可选范围,且采用UE在能力类型中支持的最大波束数的量化值上报能力指示信息时,假设UE在0度-360度支持的最大波束数为16,UE在45度-135度支持的最大波束数为4,且波束数大于等于8且小于16时,对应的量化值为2,波束数为大于等于1且小于8时,对应的量化值为1,则UE向基站发送的能力指示信息可以包括:在0度-360度支持的最大波束数的量化值为2,在45度-135度支持的最大波束数的量化值为1。
602、基站接收UE发送的能力指示信息。
603、基站根据能力指示信息为UE配置资源组。
其中,资源组可以包括至少一个资源子组,资源子组包括至少一个第一资源,第一资源用于UE发送目标信道和/或信号。
在本发明实施例中,第一资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。目标信道和/或信号包括以下至少一种:SRS、PRACH、PUSCH、PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号。
在基站接收到UE发送的能力指示信息之后,基站可以根据UE在不同能力类型中支持的最大波束数或支持的最大波束数的量化值,为UE配置在相应能力类型对应的资源组。其中,原则是:为UE配置的资源组可以划分为的资源子组的数量小于或等于UE在相应的能力类型中的最大波束数。
需要说明的是,步骤603具体描述与本发明另一实施例中步骤401的具体描述类似,对于本发明实施例中步骤603的具体描述,可以参考本发明另一实施例中步骤401的具体描述,本发明实施例在此不再详细赘述。
604、基站向UE发送第二指示信息。
其中,为了实现对资源组的划分,基站还可以向UE发送用于UE将资源组划分为至少一个资源子组的第二指示信息。
605、UE获取基站为UE配置的资源组。
606、UE接收基站发送的第二指示信息。
607、UE根据第二指示信息将资源组划分为至少一个资源子组。
其中,在UE获取到基站配置的资源组,并接收到基站发送的第二指示信息之后,UE可以根据第二指示信息指示的分组方式,将获取到的资源组划分为至少一个资源子组。
608、基站向UE发送第一指示信息,第一指示信息用于指示第一资源与波束的对应关系。
其中,波束可以为上行发送波束,也可以为下行接收波束。为了能够使得UE可以在发送目标信道和/或信号时实现波束赋形,基站通过第一指示信息向UE指示为UE配 置的资源组中每个第一资源与波束的对应关系。
在具体实现中,基站可以通过以下不同的方式向UE指示为UE配置的资源组中每个第一资源与波束的对应关系。
方式一:第一指示信息包括资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
其中,可以用相同的标识来对不同资源子组中第一资源进行标注,此时,针对资源组中的包括的所有资源子组,均可以用这一对应关系确定与第一资源对应的波束相同。
方式二:第一指示信息包括每个资源子组的标识,以及与每个资源子组的标识对应的波束的编号。也就是说,每个资源子组中包括的所有第一资源对应的波束相同。若所述波束为下行发送波束或上行接收波束,则用户设备在每个子资源上采用与所述下行发送波束或上行接收波束配对的上行发送波束发送目标信道和/或信号。
方式三:第一指示信息包括每个资源子组的标识以及与每个资源子组的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束。
示例性的,该波束组可以是UE在U-1阶段的一个发送波束中包含的在U-3阶段的发送波束,或者,也可以是基站划分的波束组。
方式四:第一指示信息包括每个资源子组的标识,以及与每个资源子组的标识对应的波束组的编号。
也就是说,在方式三和方式四中,每个资源子组对应一波束组。当然,多个资源子组的标识对应的波束组中每个波束的编号或波束组的编号可以相同,也就是说,可以多个资源子组可对应一的波束组。
方式五:第一指示信息包括波束组中每个波束的编号。
方式六:第一指示信息包括:波束组的编号。
也就是说,在方式五和方式六中,所有资源子组对应一波束组。
其中,通过将资源组划分为至少一个资源子组,并以方式二至方式六的方式来指示资源组中每个第一资源与波束的对应关系,可以有效的降低第一指示信息的信令开销。
方式七:第一指示信息包括:每个资源子组的标识,以及与每个资源子组的标识对应的波束的可选范围。
其中,在基站不知UE的波束能力的情况下,基站可以采用方式七向UE指示为UE配置的资源组中每个第一资源与波束的对应关系,这样,可以使得UE在一定范围内自行选择波束,可以实现更精细的波束搜索。
方式八:第一指示信息包括每个第一资源的标识,以及与每个第一资源的标识对应的波束的编号。
方式九:第一指示信息包括每个第一资源的标识,以及与每个第一资源的标识对应的波束组中每个波束的编号,波束组中包括至少一个波束(其中,不同的第一资源可以对应相同的波束组)。
方式十:第一指示信息包括每个第一资源的标识,以及与每个第一资源的标识对应的波束组的编号(其中,不同的第一资源的标识可以对应相同的波束组的编号)。
也就是说,在方式九和方式十中,每个第一资源对应一波束组。当然,多个第一资源的标识对应的波束组中每个波束的编号或波束组的编号可以相同,也就是说,可以多 个第一资源可对应一的波束组。
方式十一:第一指示信息包括:每个第一资源的标识,以及与每个第一资源的标识对应的波束的可选范围。其中,在基站不知UE的波束能力的情况下,基站可以采用方式十一向UE指示为UE配置的资源组中每个第一资源与波束的对应关系。
在基站向UE发送第一指示信息之前,基站还需要向UE发送用于指示波束的编号与波束的对应关系的配置信息。其中,波束的编号可以是基站选择的波束的顺序。
609、UE接收基站发送第一指示信息。
610、UE根据第一资源和第一指示信息确定上行发送波束。
其中,当基站采用步骤608中的方式一向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以直接根据第一指示信息中包括的资源子组中每个第一资源的标识以及与每个第一资源的标识对应的波束的编号,确定出与该第一资源对应的波束的编号,然后根据与波束的编号对应的波束确定上行发送波束。
当基站采用步骤608中的方式二向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以先确定该第一资源所属的资源子组的标识,然后根据确定出的资源子组的标识,以及第一指示信息中包括的每个资源子组的标识以及与每个资源子组的标识对应的波束的编号,确定出与该资源子组的标识对应的波束的编号,并根据与波束的编号对应的波束确定上行发送波束。若所述波束为下行发送波束或上行接收波束,则用户设备在每个子资源上采用与所述下行发送波束或上行接收波束配对的上行发送波束发送目标信道和/或信号。
当基站采用步骤608中的方式三向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以先确定该第一资源所属的资源子组的标识,然后根据确定出的资源子组的标识,以及第一指示信息中包括的每个资源子组的标识以及与每个资源子组的标识对应的波束的编号,确定出与该资源子组的标识对应的波束组中每个波束的编号,并根据波束组中的一个波束确定上行发送波束。
当基站采用方式四向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE根据第一资源和第一指示信息确定上行发送波束的具体过程,与基站采用方式三向UE指示第一资源与波束的对应关系时UE确定上行发送波束的过程类似,本发明实施例在此不再详细赘述。
当基站采用方式五或方式六向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以根据波束组中的一个波束确定上行发送波束。其中,该第一资源所属的资源子组中所有的第一资源对应一上行发送波束。
当基站采用方式七向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则UE可以先确定出该第一资源所属的资源子组的标识,然后根据确定出的资源子组的标识,以及第一指示信息中包括的每个资源子组的标识以及与每个资源子组的标识对应 的波束的可选范围,确定出与该资源子组的标识对应的波束的可选范围,并根据波束的可选范围确定上行发送波束。
当基站采用步骤608中的方式八向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以直接根据第一指示信息中包括的第一资源的标识以及与每个第一资源的标识对应的波束的编号,确定出与该第一资源对应的波束的编号,然后根据与波束的编号对应的波束确定上行发送波束。
当基站采用步骤608中的方式九向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE在接收到第一指示信息之后,若需要在某个第一资源上发送目标信道和/或信号,则可以直接根据第一指示信息中包括的第一资源的标识以及与每个第一资源的标识对应的波束组中每个波束的编号,确定出与该第一资源的标识对应的波束组中每个波束的编号,并根据波束组中的一个波束确定上行发送波束。
当基站采用方式十或方式十一向UE指示为UE配置的资源组中每个第一资源与波束的对应关系时,UE根据第一资源和第一指示信息确定上行发送波束的具体过程,与基站采用方式九向UE指示第一资源与波束的对应关系时UE确定上行发送波束的过程类似,本发明实施例在此不再详细赘述。
需要说明的是,步骤610的具体描述,与本发明另一实施例中步骤405的具体描述类似,对于本发明实施例中步骤610的具体描述,可以参考另一实施例中步骤405的具体描述,本发明实施例在此不详细赘述。
611、UE在第一资源和上行发送波束上发送目标信道和/或信号。
其中,在UE确定出上行发送波束之后,便可以在第一资源以及确定出的上行发送波束上发送目标信道和/或信号,以实现对目标信道和/或信号的波束赋形。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与波束的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
图8为本发明实施例提供的另一种信息传输方法的流程图,如图8所示,该方法可以包括:
701、UE向基站发送能力指示信息。
702、基站接收UE发送的能力指示信息。
703、基站根据能力指示信息为UE配置资源组。
704、基站向UE发送第二指示信息。
705、UE获取基站为UE配置的资源组。
706、UE接收基站发送的第二指示信息。
707、UE根据第二指示信息将资源组划分为至少一个资源子组。
708、基站向UE发送第一指示信息,第一指示信息用于指示第一资源与第二资源的对应关系。
其中,为了能够使得UE可以在发送目标信道和/或信号时实现波束赋形,基站通过 第一指示信息向UE指示为UE配置的资源组中每个第一资源与第二资源的对应关系。该第二资源包括UE在发送目标信道和/或信号之前向基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;或者,第二资源包括UE在发送目标信道和/或信号之前基站向UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。也就是说,基站可以通过向UE发送已知与波束对应关系的第二资源与第一资源的对应关系,以便UE确定出进行波束赋形所需的波束。
在具体实现中,基站可以通过以下不同的方式向UE指示为UE配置的资源组中每个第一资源与第二资源的对应关系。
方式一:第一指示信息包括资源子组中每个第一资源与第二资源的对应关系。
其中,可以采用以下方式指示资源子组中每个第一资源与第二资源的对应关系:第一指示信息具体包括资源子组中每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
并且,进一步的,在方式一的基础上,第一指示信息还包括每个第一资源与波束的可选范围的对应关系。
方式二:第一指示信息包括每个资源子组与第二资源的对应关系。
可以采用以下方式指示每个资源子组与第二资源的对应关系:第一指示信息具体包括每个资源子组的标识,以及与每个资源子组的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个资源子组的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
方式三:第一指示信息包括每个资源子组与第二资源组的对应关系,第二资源组包括至少一个第二资源。
可以采用以下方式指示每个资源子组与第二资源组的对应关系:第一指示信息具体包括每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组中每个第二资源的标识;或者,第一指示信息具体包括每个资源子组的标识,以及与每个资源子组的标识对应的第二资源组的标识。
方式四:第一指示信息包括第二资源组中每个第二资源的标识;
方式五:第一指示信息包括第二资源组的标识。
并且,进一步的,在方式二至方式五的基础上,第一指示信息还包括:每个资源子组与波束的可选范围的对应关系。
方式六:第一指示信息包括每个第一资源与第二资源的对应关系。
可以采用以下方式指示每个第一资源与第二资源的对应关系:第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源的标识;或者,第一指示信息具体包括用于指示每个第一资源的信号的天线端口与第二资源的信号的天线端口具有QCL关系的信息。
方式七:第一指示信息包括每个第一资源与第二资源组的对应关系,第二资源组包括至少一个第二资源。
可以采用以下方式指示每个第一资源与第二资源组的对应关系:第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组中每个第二资 源的标识;或者,第一指示信息具体包括每个第一资源的标识,以及与每个第一资源的标识对应的第二资源组的标识;或者,第一指示信息具体包括用于指示每个第一资源的信号的天线端口与第二资源组的信号的天线端口具有QCL关系的信息。
方式八:第一指示信息包括每个第一资源与波束的可选范围的对应关系。
可选的,附图5对应的实施例的方案也可以用于本实施例。
709、UE接收基站发送第一指示信息。
710、UE根据第一资源和第一指示信息确定第二资源,并根据与第二资源对应的波束确定上行发送波束。
其中,在UE接收到基站发送的第一指示信息之后,UE可以根据第一指示信息中包含的对应关系,以及配置的资源组中包括的第一资源,先确定出与第一资源对应的第二资源,然后根据已知的第二资源和波束的对应关系,根据第二资源对应的波束确定上行发送波束。
需要说明的是,在本发明实施例中,对于根据第一指示信息确定第二资源的描述,与本发明另一实施例步骤610中根据第一指示信息确定波束的过程类似,本发明实施例在此对根据第一指示信息确定第二资源的具体过程不再一一赘述,可以参考本发明另一实施例步骤610中根据第一指示信息确定波束的具体描述。
另外,进一步的,对应于步骤708中的方式一,当第一指示信息中还包括每个第一资源与波束的可选范围的对应关系时,UE在确定出第二资源之后,可以将第二资源对应的波束作为参考波束,然后根据参考波束和波束的可选范围,在波束的可选范围内确定出上行发送波束。当然,对应于步骤708中的方式二至方式五,当第一指示信息还包括每个资源子组与波束的可选范围的对应关系,UE在确定出第二资源之后,也可以将第二资源对应的波束作为参考波束,然后根据参考波束和波束的可选范围,在波束的可选范围内确定出上行发送波束。
需要说明的是,步骤710的具体描述,与本发明另一实施例中步骤505的具体描述类似,对于本发明实施例中步骤710的具体描述,可以参考另一实施例中步骤505的具体描述,本发明实施例在此不详细赘述。711、UE在第一资源和上行发送波束上发送目标信道和/或信号。
本发明实施例提供的信息传输方法,基站为UE配置用于传输目标信道和/或信号的至少一个第一资源,并通过向UE发送用于指示第一资源与第二资源的对应关系的第一指示信息,以便于UE可以根据第一资源和第一指示信息确定发送目标信道和/或信号所需的波束。这样,当目标信道和/或信号为SRS时,UE可以采用确定出的发送目标信道和/或信号所需的波束发送SRS,以实现对SRS的波束赋形。
需要说明的是,附图5对应的实施例的指示方法也可以应用到上述实施例中。
图9为本发明实施例提供的一种能力上报方法的流程图,如图9所示,该方法可以包括:
801、UE根据能力类型向基站发送能力指示信息。
其中,能力指示信息包括UE在能力类型中支持的最大波束数;或者,能力指示信息包括UE在能力类型中支持的最大波束数的量化值。
需要说明的是,本发明实施例中步骤801的具体描述,与本发明另一实施例中步骤 601的具体描述类似,对于步骤801的具体描述可以参考本发明另一实施例中步骤601的具体描述,本发明实施例在此不再详细赘述。
802、基站接收UE发送的能力指示信息。
本发明实施例提供的能力上报方法,UE根据能力类型向基站发送的包括UE在能力类型中支持的最大波束数或最大波束数的量化值的能力指示信息,基站在接收到UE发送的能力指示信息之后,可以根据UE的能力指示信息为UE分配第一资源,避免了为UE分配过多的第一资源导致的资源浪费,或为UE分配过少的第一资源导致的波束搜索不完整的问题出现。
图10为本发明实施例提供的一种资源指示方法的流程图,如图10所示,该方法可以包括:
901、基站向UE发送指示信息,指示信息包括波束的编号以及与波束的编号对应的资源的标识,或资源的编号以及与资源的编号对应的资源的标识。
其中,波束可以为端口,也可以为预编码。资源可以包括以下至少一种:时域资源、频域资源、码域资源、天线端口。波束可以为下行接收波束,或者,下行发送波束,或者,下行接收波束-下行发送波束(对),或者,上行发送波束,或者,上行接收波束,或者,上行发送波束-上行接收波束对,或者,下行接收波束-上行发送波束对。
其中,如图11所示,可以得到的是不同的资源可以对应相同的波束。其中,当基站向UE指示波束1(1为该波束的编号)与资源1对应时,UE可以确定波束1为资源1对应的波束。若基站在向UE指示波束1与资源1对应之后,又向UE指示了波束1与资源2对应,则在UE接收到基站发送的波束1与资源2对应的指示之后,UE可以确定波束1为资源2对应的波束。且在基站发送两次指示之间的这段时间,UE一直确定波束1为资源1对应的波束,直至接收到波束1与资源2对应的指示。
902、UE接收基站发送指示信息。
本发明实施例提供的资源指示方法,基站向UE发送包括波束的编号以及与波束的编号对应的资源的标识的指示信息,或基站向UE发送包括资源的编号以及与资源的编号对应的资源的标识的指示信息,以便于UE根据指示信息确定发送信息所需的波束或波束的候选集合,并通过采用确定的波束发送信息,实现了波束赋形。基站可以仅对部分资源标识进行编号,以便于降低基站指示波束的编号或资源的编号时的信令开销。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、UE为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述和实施例中涉及的基站的一种可能的组成示意图,如图12所示,该基站可以包括:配置单元1001、发送单元1002、接收单元1003。
其中,配置单元1001,用于支持基站执行图4所示的信息传输方法中的步骤401,图5所示的信息传输方法中的步骤501,图6所示的信息传输方法中的步骤603,图8所示的信息传输方法中的步骤703。
发送单元1002,用于支持基站执行图4所示的信息传输方法中的步骤403,图5所示的信息传输方法中的步骤503,图6所示的信息传输方法中的步骤604、步骤608,图8所示的信息传输方法中的步骤704、步骤708,图10所示的资源指示方法中的步骤901。
接收单元1003,用于支持基站执行图6所示的信息传输方法中的步骤602,图8所示的信息传输方法中的步骤702,图9所示的能力上报方法中的步骤802。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的基站,用于执行上述信息传输方法,因此可以达到与上述信息传输方法相同的效果,或者,用于执行上述资源指示方法,因此可以达到与上述资源指示方法相同的效果,或者,用于执行上述能力上报方法,因此可以达到与上述能力上报方法相同的效果。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的基站的另一种可能的组成示意图。如图13所示,该基站包括:处理模块1101和通信模块1102。
处理模块1101用于对基站的动作进行控制管理,例如,处理模块81用于支持基站执行图4所示的信息传输方法中的步骤401,图5所示的信息传输方法中的步骤501,图6所示的信息传输方法中的步骤603,图8所示的信息传输方法中的步骤703、和/或用于本文所描述的技术的其它过程。通信模块1102用于支持基站与其他网络实体的通信,例如与图1、图3、图14或图15中示出的功能模块或网络实体之间的通信。例如,通信模块1102用于支持基站执行图4所示的信息传输方法中的步骤403,图5所示的信息传输方法中的步骤503,图6所示的信息传输方法中的步骤602、步骤604、步骤608,图8所示的信息传输方法中的步骤704、步骤708,图9所示的能力上报方法中的步骤802,图10所示的资源指示方法中的步骤901。基站还可以包括存储模块1103,用于存储基站的程序代码和数据。
其中,处理模块1101可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1102可以是收发器、收发电路或通信接口等。存储模块1103可以是存储器。
当处理模块1101为处理器,通信模块1102为收发器,存储模块1103为存储器时,本发明实施例所涉及的基站可以为图2所示的基站。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述和实施例中涉及的UE的一种可能的组成示意图,如图14所示,该UE可以包括:获取单元1201、接收单元1202、发送单元1203、确定单元1204。
其中,获取单元1201,用于支持UE执行图4所示的信息传输方法中的步骤402,图5所示的信息传输方法中的步骤502,图6所示的信息传输方法中的步骤605,图8所示的信息传输方法中的步骤705。
接收单元1202,用于支持UE执行图4所示的信息传输方法中的步骤404,图5所示的信息传输方法中的步骤504,图6所示的信息传输方法中的步骤606、步骤609,图8所示的信息传输方法中的步骤706、步骤709,图10所示的资源指示方法中的步骤902。
发送单元1203,用于支持UE执行图4所示的信息传输方法中的步骤406,图5所示的信息传输方法中的步骤506,图6所示的信息传输方法中的步骤601、步骤611,图8所示的信息传输方法中的步骤701、步骤711,图9所示的能力上报方法中的步骤801。
确定单元1204,用于支持UE执行图4所示的信息传输方法中的步骤405,图5所示的信息传输方法中的步骤505,图6所示的信息传输方法中的步骤607、步骤610,图8所示的信息传输方法中的步骤707、步骤710。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的UE,用于执行上述信息传输方法,因此可以达到与上述信息传输方法相同的效果,或者,用于执行上述资源指示方法,因此可以达到与上述资源指示方法相同的效果,或者,用于执行上述能力上报方法,因此可以达到与上述能力上报方法相同的效果。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图15所示,该UE包括:处理模块1301和通信模块1302。
处理模块1301用于对UE的动作进行控制管理,例如,用于执行图4所示的信息传输方法中的步骤402、步骤405,图5所示的信息传输方法中的步骤502、步骤505,图6所示的信息传输方法中的步骤605、步骤607、步骤610,图8所示的信息传输方法中的步骤705、步骤707、步骤710。通信模块1302用于支持UE与其他网络实体的通信,例如与图1、图2、图12或图13中示出的功能模块或网络实体之间的通信。例如,通信模块1302支持UE执行图4所示的信息传输方法中的步骤404、步骤406,图5所示的信息传输方法中的步骤504、步骤506,图6所示的信息传输方法中的步骤601、步骤606、步骤609、步骤611,图8所示的信息传输方法中的步骤701、步骤706、步骤709、步骤711,图9所示的能力上报方法中的步骤801,图10所示的资源指示方法中的步骤902。UE还可以包括存储模块1303,用于存储UE的程序代码和数据。
其中,处理模块1301可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1302可以是收发器、收发电路或通信接口等。存储模块1303可以是存储器。
当处理模块1301为处理器,通信模块1302为收发器,存储模块1303为存储器时,本发明实施例所涉及的UE可以为图3所示的UE。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以 完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种信息传输方法,其特征在于,包括:
    基站为用户设备UE配置至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
    所述基站向所述UE发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
    所述基站在第二资源上接收所述UE在第二天线端口上发送的第二信道和/或信号;所述基站接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
    所述基站在第二资源和第三天线端口上向所述UE发送第三信道和/或信号;所述基站接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个第一资源包含在一资源组中,所述资源组包括至少一个资源子组。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信道和/或信号包括以下至少一种:探测参考信号SRS、物理层随机接入信道PRACH、物理层上行共享信道PUSCH、物理层上行控制信道PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一资源包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一指示信息包括:所述资源子组中每个所述第一资源与所述第二资源的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一指示信息具体包括:所述资源子组中每个所述第一资源的标识,以及与每个所述第一资源的标识对应的所述第二资源的标识;
    或者,所述第一指示信息具体包括:用于指示每个所述第一资源的信号的天线端口与所述第二资源的信号的天线端口具有准共址QCL关系的信息。
  7. 一种信息传输方法,其特征在于,包括:
    用户设备UE获取基站为所述UE配置的至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
    所述UE接收所述基站发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
    所述UE在第二资源和第二天线端口上向所述基站发送第二信道和/或信号;所述UE在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
    所述UE接收所述基站在第二资源和第三天线端口上发送的第三信道和/或信号;所 述UE在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
  8. 根据权利要求7所述的方法,其特征在于,所述至少一个第一资源包含在一资源组中,所述资源组包括至少一个资源子组。
  9. 根据权利要求7或8所述的方法,其特征在于,在所述UE接收所述基站发送的第一指示信息之后,所述方法还包括:
    所述UE根据所述第一资源和所述第一指示信息确定所述第二资源,并根据与所述第二资源对应的波束确定上行发送波束;
    所述UE在所述第一资源和所述上行发送波束上发送所述第一信道和/或信号。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述第一信道和/或信号包括以下至少一种:探测参考信号SRS、物理层随机接入信道PRACH、物理层上行共享信道PUSCH、物理层上行控制信道PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述第一资源包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述第一指示信息包括:所述资源子组中每个所述第一资源与所述第二资源的对应关系。
  13. 一种基站,其特征在于,包括:配置单元、发送单元和接收单元;
    所述配置单元,用于为用户设备UE配置至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
    所述发送单元,用于向所述UE发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
    所述接收单元,用于在第二资源上接收所述UE在第二天线端口上发送的第二信道和/或信号;所述接收单元,还用于接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述UE发送所述第一信道和/或信号的波束与所述UE发送所述第二信道和/或信号的波束是相同的;或者,
    所述发送单元,用于在第二资源和第三天线端口上向所述UE发送第三信道和/或信号;所述接收单元,还用于接收所述UE在第一天线端口上发送的所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述UE发送所述第一信道和/或信号的波束与所述UE接收所述第三信道和/或信号的波束是对应的。
  14. 根据权利要求13所述的基站,其特征在于,所述至少一个第一资源包含在一资源组中,所述资源组包括至少一个资源子组。
  15. 根据权利要求13或14所述的基站,其特征在于,所述第一信道和/或信号包括以下至少一种:探测参考信号SRS、物理层随机接入信道PRACH、物理层上行共享信道PUSCH、物理层上行控制信道PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
  16. 根据权利要求13-15中任一项所述的基站,其特征在于,所述第一资源包括以 下至少一种:时域资源、频域资源、码域资源、天线端口。
  17. 根据权利要求13-16中任一项所述的基站,其特征在于,
    所述第二资源包括:所述UE在发送所述第一信道和/或信号之前向所述基站发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;
    或者,所述第二资源包括:所述UE在发送所述第一信道和/或信号之前所述基站向所述UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
  18. 根据权利要求13-17中任一项所述的基站,其特征在于,所述第一指示信息包括:所述资源子组中每个所述第一资源与所述第二资源的对应关系。
  19. 根据权利要求13-17中任一项所述的基站,其特征在于,所述第一指示信息包括:每个所述资源子组与所述第二资源的对应关系。
  20. 一种用户设备UE,其特征在于,包括:获取单元、接收单元和发送单元;
    所述获取单元,用于获取基站为所述UE配置的至少一个第一资源,所述第一资源用于所述UE在第一天线端口上发送第一信道和/或信号;
    所述接收单元,用于接收所述基站发送第一指示信息,所述第一指示信息用于指示所述第一资源与第二资源的对应关系;
    所述发送单元,用于在第二资源和第二天线端口上向所述基站发送第二信道和/或信号;所述发送单元,还用于在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第二天线端口具有准共址QCL关系,或者,所述发送单元发送所述第一信道和/或信号的波束与所述发送单元发送所述第二信道和/或信号的波束是相同的;或者,
    所述接收单元,用于接收所述基站在第二资源和第三天线端口上发送的第三信道和/或信号;所述发送单元,用于在第一天线端口上向所述基站发送所述第一信道和/或信号;其中,所述第一天线端口与所述第三天线端口具有准共址QCL关系,或者所述发送单元发送所述第一信道和/或信号的波束与所述接收单元接收所述第三信道和/或信号的波束是对应的。
  21. 根据权利要求20所述的UE,其特征在于,所述至少一个第一资源包含在一资源组中,所述资源组包括至少一个资源子组。
  22. 根据权利要求20或21所述的UE,其特征在于,
    确定单元,用于根据所述第一资源和所述接收单元接收到的所述第一指示信息确定所述第二资源,并根据与所述第二资源对应的波束确定上行发送波束;
    发送单元,用于在所述获取单元获取到的所述第一资源和所述确定单元确定的所述上行发送波束上发送所述第一信道和/或信号。
  23. 根据权利要求20-22中任一项所述的UE,其特征在于,所述第一信道和/或信号包括以下至少一种:探测参考信号SRS、物理层随机接入信道PRACH、物理层上行共享信道PUSCH、物理层上行控制信道PUCCH、上行跟踪信号、上行发现信号、上行波束参考信号、上行移动参考信号、上行解调参考信号、上行相位跟踪参考信号。
  24. 根据权利要求20-23中任一项所述的UE,其特征在于,所述第一资源包括以下至少一种:时域资源、频域资源、码域资源、天线端口。
  25. 根据权利要求20-24中任一项所述的UE,其特征在于,
    所述第二资源包括:所述UE在发送所述第一信道和/或信号之前向所述基站发送信 息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种;
    或者,所述第二资源包括:所述UE在发送所述第一信道和/或信号之前所述基站向所述UE发送信息所采用的时域资源、频域资源、码域资源、天线端口中的至少一种。
  26. 根据权利要求20-25中任一项所述的UE,其特征在于,所述第一指示信息包括:所述资源子组中每个所述第一资源与所述第二资源的对应关系。
PCT/CN2017/108398 2016-11-03 2017-10-30 一种信息传输方法及设备 WO2018082528A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112019008986A BR112019008986A2 (pt) 2016-11-03 2017-10-30 método de transmissão de informações, dispositivo e sistema
EP21177308.0A EP3937389B1 (en) 2016-11-03 2017-10-30 Information transmission method and device
KR1020197014714A KR102221412B1 (ko) 2016-11-03 2017-10-30 정보 전송 방법 및 장치
CA3042828A CA3042828C (en) 2016-11-03 2017-10-30 Information transmission method and device
JP2019521764A JP6957835B2 (ja) 2016-11-03 2017-10-30 情報伝送方法およびデバイス
EP17867580.7A EP3534636B1 (en) 2016-11-03 2017-10-30 Information transmission method and device
US16/289,121 US10498511B2 (en) 2016-11-03 2019-02-28 Information transmission method and device
US16/696,595 US11329779B2 (en) 2016-11-03 2019-11-26 Information transmission method and device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610974102.2 2016-11-03
CN201610974102 2016-11-03
CN201710007820 2017-01-05
CN201710007820.7 2017-01-05
CN201710686460.8 2017-08-11
CN201710686460.8A CN108024365B (zh) 2016-11-03 2017-08-11 一种信息传输方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/289,121 Continuation US10498511B2 (en) 2016-11-03 2019-02-28 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2018082528A1 true WO2018082528A1 (zh) 2018-05-11

Family

ID=62075851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108398 WO2018082528A1 (zh) 2016-11-03 2017-10-30 一种信息传输方法及设备

Country Status (8)

Country Link
US (2) US10498511B2 (zh)
EP (2) EP3937389B1 (zh)
JP (1) JP6957835B2 (zh)
KR (1) KR102221412B1 (zh)
CN (3) CN108024365B (zh)
BR (1) BR112019008986A2 (zh)
CA (1) CA3042828C (zh)
WO (1) WO2018082528A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000142A1 (zh) * 2018-06-25 2020-01-02 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
JP2020507991A (ja) * 2017-02-03 2020-03-12 株式会社Nttドコモ ユーザ端末、及びsrs送信方法
CN110912625A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 传输信号的方法和通信装置
WO2020146647A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Synchronization signal block and physical downlink control channel search space monitoring based on user equipment beamforming capability
TWI717822B (zh) * 2018-09-06 2021-02-01 大陸商電信科學技術研究院有限公司 多傳輸點資料處理的方法、基地台、使用者終端及電腦可讀存儲介質
EP3796585A4 (en) * 2018-06-20 2021-08-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR ALLOCATING TIME FREQUENCY RESOURCES
JP2021532662A (ja) * 2018-07-25 2021-11-25 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
TWI753247B (zh) * 2017-06-16 2022-01-21 聯發科技股份有限公司 使用者設備之無線通訊方法及装置、電腦可讀介質

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024365B (zh) 2016-11-03 2024-03-15 华为技术有限公司 一种信息传输方法及设备
WO2018103051A1 (zh) 2016-12-08 2018-06-14 广东欧珀移动通信有限公司 无线通信的方法和装置
EP3567783B1 (en) * 2017-01-05 2022-04-27 LG Electronics Inc. Method for transmitting/receiving uplink channel in wireless communication system, and device therefor
MX2019009340A (es) * 2017-02-06 2019-11-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de comunicacion, dispositivo terminal y dispositivo de red.
CN108633006B (zh) * 2017-03-17 2021-03-19 电信科学技术研究院 一种上行发送波束确定方法和装置
CN109150484B (zh) 2017-05-04 2020-01-21 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN109104765A (zh) * 2017-06-20 2018-12-28 中国移动通信有限公司研究院 一种csi传输方法、装置、计算机可读存储介质
WO2019020050A1 (en) * 2017-07-27 2019-01-31 Intel IP Corporation TRANSFER OF SHARED PHYSICAL UPLINK (PUSCH) CHANNEL BASED ON A ROBUST CODES BOOK
CN109391435B (zh) * 2017-08-11 2021-05-25 电信科学技术研究院有限公司 Pucch传输方法、用户设备和装置
CN109495959A (zh) 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
KR102343136B1 (ko) * 2017-11-16 2021-12-27 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 대역폭 부분에서의 채널 상태 정보 리포트
WO2019140666A1 (zh) * 2018-01-19 2019-07-25 Oppo广东移动通信有限公司 探测参考信号传输方法、网络设备和终端设备
AR114217A1 (es) * 2018-01-22 2020-08-05 Ericsson Telefon Ab L M Prioridad de selección de haz
US20190253904A1 (en) * 2018-02-09 2019-08-15 Mediatek Inc. Downlink channel reception in wireless communication system
BR112020016627B1 (pt) * 2018-02-15 2022-09-06 Telefonaktiebolaget Lm Ericsson (Publ) Dispositivo sem fio e nó de rede para uma rede de comunicações celulares e métodos de operação relacionados
WO2019157761A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Techniques for activating semi-persistent configuration for channel state indicator resource sets
US10849131B2 (en) * 2018-02-16 2020-11-24 Qualcomm Incorporated Bursty interference mitigation techniques
US11051353B2 (en) * 2018-03-19 2021-06-29 Apple Inc. PUCCH and PUSCH default beam considering beam failure recovery
CN110505695A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 上行数据传输指示方法、终端和网络侧设备
CN110519028B (zh) * 2018-05-21 2022-01-28 维沃移动通信有限公司 处理方法和设备
CN110519843B (zh) * 2018-05-22 2023-08-08 华为技术有限公司 通信方法和通信装置
KR102712368B1 (ko) * 2018-05-24 2024-10-04 삼성전자 주식회사 상향링크 제어 신호를 송수신하는 방법 및 이를 구현한 장치
CN110536422B (zh) * 2018-05-25 2022-05-13 华为技术有限公司 一种通信方法、装置及系统
CN116456462A (zh) * 2018-05-28 2023-07-18 华为技术有限公司 一种资源配置的方法、装置及系统
CN112136357B (zh) * 2018-06-01 2023-12-01 富士通株式会社 带宽部分指示的配置方法、装置和通信系统
CN110611954B (zh) * 2018-06-14 2021-09-10 维沃移动通信有限公司 一种带宽部分的处理方法、终端及网络设备
US11172543B2 (en) 2018-06-15 2021-11-09 Acer Incorporated Device and method of handling physical downlink shared channels in bandwidth parts
CN111771417B (zh) * 2018-06-19 2022-02-08 Oppo广东移动通信有限公司 一种带宽部分的激活方法及相关设备
CN110649949B (zh) 2018-06-27 2021-07-09 华为技术有限公司 一种通信方法及装置
WO2020003475A1 (ja) * 2018-06-28 2020-01-02 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2020000304A1 (en) * 2018-06-28 2020-01-02 Zte Corporation Transmission link configuration using reference signal mapping
EP3818757A4 (en) 2018-07-06 2021-07-21 ZTE Corporation METHOD AND DEVICE FOR SIGNAL TRANSMISSION AND RECEPTION
CN115378479B (zh) * 2018-07-13 2024-07-30 联想(北京)有限公司 Srs配置和srs传输
JP7096334B2 (ja) * 2018-07-13 2022-07-05 株式会社Nttドコモ 端末、基地局、無線通信方法及びシステム
CN113507746B (zh) * 2018-07-18 2024-06-11 中兴通讯股份有限公司 一种信息元素的传输方法、装置及系统
JP7246874B2 (ja) * 2018-07-31 2023-03-28 シャープ株式会社 基地局装置、端末装置、および、通信方法
US11184077B2 (en) 2018-08-03 2021-11-23 Qualcomm Incorporated Facilitating uplink beam selection for a user equipment
CN110831173B (zh) * 2018-08-09 2023-07-14 中兴通讯股份有限公司 信息元素的传输方法及装置
CN110838861B (zh) * 2018-08-17 2023-03-17 大唐移动通信设备有限公司 信号传输方法、波束确定方法及其装置
US10862648B2 (en) 2018-08-17 2020-12-08 Qualcomm Incorporated Control elements to configure and trigger sounding reference signals
CN110839289B (zh) * 2018-08-17 2022-04-12 大唐移动通信设备有限公司 一种上行波束指示方法及设备
CN110876194B (zh) * 2018-08-29 2022-04-05 中国移动通信有限公司研究院 一种空间相关信息的指示方法和设备
JP2020047983A (ja) 2018-09-14 2020-03-26 シャープ株式会社 基地局装置、端末装置および通信方法
WO2020056697A1 (zh) * 2018-09-20 2020-03-26 北京小米移动软件有限公司 一种通信方法、装置、终端、基站和存储介质
CN110933764B (zh) * 2018-09-20 2022-03-11 维沃移动通信有限公司 传输指示信号的传输方法、网络设备及终端
US11025457B2 (en) * 2018-09-27 2021-06-01 Mediatek Inc. Enhancements on QCL frameworks for multiple TRP operation
US10917140B2 (en) * 2018-10-03 2021-02-09 Nokia Technologies Oy Dynamic signaling of coherence levels
US11115970B2 (en) 2018-10-11 2021-09-07 Qualcomm Incorporated Techniques for configuring transmission configuration states in wireless communications
US11291006B2 (en) * 2018-10-11 2022-03-29 Qualcomm Incorporated Techniques for configuring active spatial relations in wireless communications
CN112740788A (zh) * 2018-11-01 2021-04-30 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
US11115110B2 (en) * 2018-12-14 2021-09-07 Qualcomm Incorporated Default beam selection based on a subset of coresets
CN111405663A (zh) 2019-01-03 2020-07-10 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11909489B2 (en) 2019-01-04 2024-02-20 Huawei Technologies Co., Ltd. System and method for beam management with emissions limitations
JP7226563B2 (ja) * 2019-01-10 2023-02-21 富士通株式会社 ページング機会の構成決定方法、装置及びシステム
CN111436128A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 传输上行信息的方法和通信装置
CN110535545A (zh) 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种信息确定方法和装置、信息元素的处理方法和装置
JP7227343B2 (ja) * 2019-02-21 2023-02-21 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
JP7337201B2 (ja) * 2019-06-25 2023-09-01 北京小米移動軟件有限公司 データ伝送方法、装置、システム及び記憶媒体
CN114145063A (zh) * 2019-07-22 2022-03-04 Oppo广东移动通信有限公司 回退物理上行共享信道传输的用户设备及方法
US11356943B2 (en) 2019-08-27 2022-06-07 Qualcomm Incorporated Smart directional repeater initialization
CN114978459B (zh) * 2019-09-30 2023-08-01 中兴通讯股份有限公司 通信方法、第一通信节点、第二通信节点和存储介质
CN110855411B (zh) * 2019-11-07 2021-10-26 北京紫光展锐通信技术有限公司 用户设备发送srs资源的方法及相关装置
US11452089B2 (en) * 2019-12-23 2022-09-20 Qualcomm Incorporated Signaling to activate uplink trigger states
CN111277395B (zh) * 2020-01-20 2022-10-25 北京紫光展锐通信技术有限公司 一种路损参考信号的确定方法及装置
WO2021155497A1 (zh) * 2020-02-04 2021-08-12 Oppo广东移动通信有限公司 侧行传输资源配置方法与系统、设备及存储介质
WO2021159528A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种通信方法和装置
US20230199756A1 (en) * 2020-04-08 2023-06-22 Apple Inc. Transmitter Beam Selection for PUCCH and PUSCH
US11601925B2 (en) * 2020-04-17 2023-03-07 Qualcomm Incorporated Quasi co-location relationship reporting
WO2021217549A1 (en) * 2020-04-30 2021-11-04 Qualcomm Incorporated Multiplexing sidelink data for communication
US11758556B2 (en) * 2020-05-22 2023-09-12 Qualcomm Incorporated Uplink beam refinement based on sounding reference signal (SRS) with dynamic parameters
US11641565B2 (en) * 2020-07-31 2023-05-02 Qualcomm Incorporated Multicast sensing-tracking reference signal
CN114080035A (zh) * 2020-08-19 2022-02-22 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US20230353234A1 (en) * 2020-09-25 2023-11-02 Beijing Xiaomi Mobile Software Co., Ltd. Transmission latency compensation method, apparatus, communication device and storage medium
KR20230130631A (ko) * 2021-01-14 2023-09-12 엘지전자 주식회사 무선 통신 시스템에서 pusch를 송수신하는 방법 및이를 위한 장치
US12101147B2 (en) * 2021-11-15 2024-09-24 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture
CN116760516A (zh) * 2022-03-02 2023-09-15 华为技术有限公司 用于下行公共信号生成的方法以及相关联的通信装置
WO2023211322A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Solution for management of sounding reference signals.
CN118510006A (zh) * 2023-02-10 2024-08-16 中兴通讯股份有限公司 指示信息发送方法、指示信息接收方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331297B2 (en) * 2007-12-10 2012-12-11 Mitsubishi Electric Research Laboratories, Inc. Method and system for generating antenna selection signals in wireless networks
CN104937869A (zh) * 2013-01-25 2015-09-23 Lg电子株式会社 用于在支持载波聚合的无线接入系统中的无线电资源测量的方法及支持其的设备
CN104956606A (zh) * 2013-01-25 2015-09-30 交互数字专利控股公司 用于垂直波束成形的方法和设备
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441500B1 (ko) * 2008-06-20 2014-11-04 삼성전자주식회사 다중 안테나 및 사운딩 레퍼런스 신호 호핑을 사용하는상향링크 무선 통신 시스템에서의 사운딩 레퍼런스 신호전송 장치 및 방법
CN103138817B (zh) * 2011-12-05 2016-04-06 上海贝尔股份有限公司 一种用于选择上行链路传输天线的方法与设备
KR101655924B1 (ko) * 2012-03-07 2016-09-08 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
US9839009B2 (en) * 2012-08-03 2017-12-05 Qualcomm Incorporated Methods and apparatus for processing control and/or shared channels in long term evolution (LTE)
US9801171B2 (en) 2012-10-02 2017-10-24 Industry-University Cooperation Foundation Hanyang University Transmission method and reception method of downlink signal and channel, terminal thereof, and base station thereof
CN103036663B (zh) * 2012-12-06 2015-09-09 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
US9392639B2 (en) * 2013-02-27 2016-07-12 Samsung Electronics Co., Ltd. Methods and apparatus for channel sounding in beamformed massive MIMO systems
US9918869B2 (en) * 2013-03-14 2018-03-20 Hollister Incorporated Catheter assembly with deployable collection container
KR102182168B1 (ko) * 2013-05-07 2020-11-24 엘지전자 주식회사 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치
JP6466426B2 (ja) 2013-06-25 2019-02-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて適応的アンテナスケーリングのためのプリコーディング方法及びそのための装置
US9497047B2 (en) * 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
CN103907369B (zh) * 2013-12-09 2018-06-05 华为技术有限公司 信号处理方法及基站
US9930515B2 (en) * 2014-05-15 2018-03-27 Lg Electronics Inc. Method for detecting discovery signal in wireless communication system, and device for same
US9853707B2 (en) * 2014-09-16 2017-12-26 Mediatek Inc Channel state information collection for wireless communication system with beamforming
KR102371961B1 (ko) * 2014-11-07 2022-03-08 한국전자통신연구원 레퍼런스 신호를 전송하는 방법 및 장치, 채널 상태 정보를 측정 및 보고하는 방법 및 장치, 그리고 이를 위한 설정 방법
EP3317976B1 (en) * 2015-07-03 2019-03-20 Telefonaktiebolaget LM Ericsson (publ) Wireless device, radio network node, methods performed therein
CN105025579B (zh) 2015-07-23 2018-08-14 京信通信系统(中国)有限公司 一种srs调度方法及装置
CN105207708B (zh) 2015-09-06 2018-12-18 北京北方烽火科技有限公司 一种波束赋形权向量的生成方法及装置
CN108024365B (zh) 2016-11-03 2024-03-15 华为技术有限公司 一种信息传输方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331297B2 (en) * 2007-12-10 2012-12-11 Mitsubishi Electric Research Laboratories, Inc. Method and system for generating antenna selection signals in wireless networks
CN104937869A (zh) * 2013-01-25 2015-09-23 Lg电子株式会社 用于在支持载波聚合的无线接入系统中的无线电资源测量的方法及支持其的设备
CN104956606A (zh) * 2013-01-25 2015-09-30 交互数字专利控股公司 用于垂直波束成形的方法和设备
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534636A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507991A (ja) * 2017-02-03 2020-03-12 株式会社Nttドコモ ユーザ端末、及びsrs送信方法
TWI753247B (zh) * 2017-06-16 2022-01-21 聯發科技股份有限公司 使用者設備之無線通訊方法及装置、電腦可讀介質
US11876736B2 (en) 2018-06-20 2024-01-16 Huawei Technologies Co., Ltd. Allocating the same time-frequency resources to different UEs based on orthogonal beams assigned to the different UEs
EP3796585A4 (en) * 2018-06-20 2021-08-04 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR ALLOCATING TIME FREQUENCY RESOURCES
US11758489B2 (en) 2018-06-25 2023-09-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device and terminal device
WO2020000142A1 (zh) * 2018-06-25 2020-01-02 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备
JP7301122B2 (ja) 2018-07-25 2023-06-30 維沃移動通信有限公司 マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
JP2021532662A (ja) * 2018-07-25 2021-11-25 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
US11595179B2 (en) 2018-09-06 2023-02-28 Datang Mobile Communications Equipment Co., Ltd. Method for processing multi-transmission reception point (TRP) data, base station, terminal, and storage medium
TWI717822B (zh) * 2018-09-06 2021-02-01 大陸商電信科學技術研究院有限公司 多傳輸點資料處理的方法、基地台、使用者終端及電腦可讀存儲介質
CN110912625B (zh) * 2018-09-15 2022-05-31 华为技术有限公司 传输信号的方法和通信装置
CN110912625A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 传输信号的方法和通信装置
CN113261234A (zh) * 2019-01-11 2021-08-13 高通股份有限公司 基于用户设备波束成形能力的同步信号块和物理下行链路控制信道搜索空间监测
US11470489B2 (en) 2019-01-11 2022-10-11 Qualcomm Incorporated Synchronization signal block and physical downlink control channel search space monitoring based on user equipment beamforming capability
WO2020146647A1 (en) * 2019-01-11 2020-07-16 Qualcomm Incorporated Synchronization signal block and physical downlink control channel search space monitoring based on user equipment beamforming capability
CN113261234B (zh) * 2019-01-11 2024-06-11 高通股份有限公司 基于用户设备波束成形能力的同步信号块和物理下行链路控制信道搜索空间监测

Also Published As

Publication number Publication date
JP6957835B2 (ja) 2021-11-02
CN108024365B (zh) 2024-03-15
EP3534636B1 (en) 2021-06-23
KR102221412B1 (ko) 2021-02-26
US10498511B2 (en) 2019-12-03
CN109890080B (zh) 2020-03-20
CA3042828A1 (en) 2018-05-11
EP3937389B1 (en) 2024-09-18
CA3042828C (en) 2021-09-07
KR20190069543A (ko) 2019-06-19
US20190199496A1 (en) 2019-06-27
CN108391315B (zh) 2019-03-26
EP3937389A1 (en) 2022-01-12
CN108391315A (zh) 2018-08-10
US20200099491A1 (en) 2020-03-26
BR112019008986A2 (pt) 2019-07-09
EP3534636A4 (en) 2020-01-08
CN109890080A (zh) 2019-06-14
CN108024365A (zh) 2018-05-11
US11329779B2 (en) 2022-05-10
JP2019533950A (ja) 2019-11-21
EP3534636A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018082528A1 (zh) 一种信息传输方法及设备
CN108347778B (zh) 通信方法及装置
CN113853825A (zh) 用于支持bss边缘用户传输的方法
EP3446431A1 (en) A radio network node, a wireless device and methods therein for reference signal configuration
US11044701B2 (en) Communication method and communication apparatus
CN109792356B (zh) 配置或使用信道状态信息参考信号的方法和设备
JP7503656B2 (ja) リソース決定方法及び装置
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
EP3636019B1 (en) Communication device and method for indicating a preference based on the device power consumption or on performance of carriers
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
JP2019531002A (ja) 狭帯域のための不均等ページング負荷分散
JP2024514131A (ja) 処理能力が制約されたシナリオにおいてマルチrtt測位を改善するためにprsとsrsとの関連付けを定義すること
EP4415274A1 (en) System and methods for tci state activation for multiple trp transmission
WO2023155096A1 (en) Method and apparatus for reporting physical layer information
EP4346115A1 (en) System and methods for tci indication for multiple trp transmission
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
KR20240073800A (ko) 사이드링크 통신에서 클러스터 기반 빔 관리 방법 및 장치
WO2023208515A1 (en) User equipment and base station involved in spatial/frequency domain measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521764

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3042828

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197014714

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017867580

Country of ref document: EP

Effective date: 20190527

ENP Entry into the national phase

Ref document number: 112019008986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190502