KR102182168B1 - 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102182168B1
KR102182168B1 KR1020157031917A KR20157031917A KR102182168B1 KR 102182168 B1 KR102182168 B1 KR 102182168B1 KR 1020157031917 A KR1020157031917 A KR 1020157031917A KR 20157031917 A KR20157031917 A KR 20157031917A KR 102182168 B1 KR102182168 B1 KR 102182168B1
Authority
KR
South Korea
Prior art keywords
channel
information
antenna
base station
precoder
Prior art date
Application number
KR1020157031917A
Other languages
English (en)
Other versions
KR20160012129A (ko
Inventor
강지원
이길봄
고현수
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20160012129A publication Critical patent/KR20160012129A/ko
Application granted granted Critical
Publication of KR102182168B1 publication Critical patent/KR102182168B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Abstract

본 출원에서는 무선 통신 시스템에서 다중 안테나 기반 빔포밍을 위하여 단말이 기지국으로 채널 상태 정보를 보고하는 방법이 개시된다. 구체적으로, 상기 방법은, 복수의 참조 신호 자원들에 관한 정보를 상기 기지국으로부터 수신하는 단계; 상기 복수의 참조 신호 자원들에 공통적으로 적용하기 위한 하나의 선호 프리코더에 관한 정보와 상기 복수의 참조 신호 자원들을 연결하기 위한 하나의 링킹 프리코더에 관한 정보를 포함하는 채널 상태 정보를 생성하는 단계; 및 상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고, 상기 다중 안테나는 행 또는 열 단위의 구획들로 구획화되고, 상기 복수의 참조 신호 자원들은 상기 구획들에 대응하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치{METHOD FOR REPORTING CHANNEL STATE INFORMATION FOR THREE DIMENSIONAL BEAMFORMING IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS FOR SAME}
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 다중 안테나 기반 빔포밍을 위하여 단말이 기지국으로 채널 상태 정보를 보고하는 방법은, 복수의 참조 신호 자원들에 관한 정보를 상기 기지국으로부터 수신하는 단계; 상기 복수의 참조 신호 자원들에 공통적으로 적용하기 위한 하나의 선호 프리코더에 관한 정보와 상기 복수의 참조 신호 자원들을 연결하기 위한 하나의 링킹 프리코더에 관한 정보를 포함하는 채널 상태 정보를 생성하는 단계; 및 상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고, 상기 다중 안테나는 행 또는 열 단위의 구획들로 구획화되고, 상기 복수의 참조 신호 자원들은 상기 구획들에 대응하는 것을 특징으로 한다.
여기서, 상기 채널 상태 정보는 하나의 랭크 지시자를 포함하고, 상기 하나의 랭크 지시자는 상기 하나의 선호 프리코더 및 상기 하나의 링킹 프리코더를 적용한 경우의 최적 랭크를 지시하는 것을 특징으로 한다. 추가적으로, 상기 채널 상태 정보는 하나의 채널 품질 지시자를 더 포함하고, 상기 하나의 채널 품질 지시자는 상기 하나의 선호 프리코더, 상기 하나의 링킹 프리코더 및 상기 최적 랭크를 적용한 경우의 채널 품질을 지시하는 것을 특징으로 한다.
바람직하게는, 상기 복수의 참조 신호 자원들이 QCL (quasi co-located)하다는 가정이 가능한 것을 특징으로 한다. 혹은, 상기 방법이 상기 기지국으로부터 상기 복수의 참조 신호 자원들이 QCL 하다는 가정이 가능한지 여부에 관한 정보를 수신하는 단계를 더 포함할 수도 있다. 구체적으로, 상기 QCL하다는 가정이 가능한 복수의 참조 신호 자원들은 광범위 특성(Large scale property)이 동일하다고 간주하는 것을 특징으로 한다. 이 경우, 상기 광범위 특성은 도플러 확산 (Doppler spread), 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 및 지연 확산 (delay spread) 중 적어도 하나를 포함하는 것을 특징으로 한다.
보다 바람직하게는, 상기 구획들은 완전 정합 (perfectly aligned) 상태인 것을 특징으로 한다.
한편, 본 발명의 다른 양상인, 무선 통신 시스템에서 기지국이 다중 안테나 기반 빔포밍을 위한 채널 상태 정보를 단말로부터 수신하는 방법은, 복수의 참조 신호 자원들에 관한 정보를 상기 단말로 송신하는 단계; 및 상기 복수의 참조 신호 자원들에 공통적으로 적용하기 위한 하나의 선호 프리코더에 관한 정보와 상기 복수의 참조 신호 자원들을 연결하기 위한 하나의 링킹 프리코더에 관한 정보를 포함하는 채널 상태 정보를 수신하는 단계를 포함하고, 상기 다중 안테나는 행 또는 열 단위의 구획들로 구획화되고, 상기 복수의 참조 신호 자원들은 상기 구획들에 대응하는 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보를 효율적으로 보고할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 일반적인 다중 안테나(MIMO) 통신 시스템의 구성도.
도 8 및 도 9는 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 하향링크 참조 신호의 구조를 도시하는 도면이다.
도 10은 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 11은 현재 3GPP 표준문서에서 정의된 하향링크 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
도 12는 안테나 틸팅 방식을 설명하기 위한 도면이다.
도 13은 기존 안테나 시스템과 능동 안테나 시스템을 비교하는 도면이다.
도 14는 능동 안테나 시스템에 기반하여, 단말 특정 빔을 형성한 예를 도시한다.
도 15는 능동 안테나 시스템 기반의 2 차원 빔 전송 시나리오를 도시한다.
도 16은 균일 선형 어레이에서 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 17은 평판 어레이(square array)에서 열(column) 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 18은 평판 어레이(square array)에서 행(row) 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 19는 평판 어레이(square array)에서 행(row) 그룹 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 20 내지 도 22는 파일럿 패턴 할당 방법들을 예시한다.
도 23은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송 형식 정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하 MIMO 시스템에 대하여 설명한다. MIMO(Multiple-Input Multiple-Output)는 복수개의 송신안테나와 복수개의 수신안테나를 사용하는 방법으로서, 이 방법에 의해 데이터의 송수신 효율을 향상시킬 수 있다. 즉, 무선 통신 시스템의 송신단 혹은 수신단에서 복수개의 안테나를 사용함으로써 용량을 증대시키고 성능을 향상 시킬 수 있다. 이하 본 문헌에서 MIMO를 '다중 안테나'라 지칭할 수 있다.
다중 안테나 기술에서는, 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않는다. 그 대신 다중 안테나 기술에서는 여러 안테나에서 수신된 데이터 조각(fragment)을 한데 모아 병합함으로써 데이터를 완성한다. 다중 안테나 기술을 사용하면, 특정된 크기의 셀 영역 내에서 데이터 전송 속도를 향상시키거나, 또는 특정 데이터 전송 속도를 보장하면서, 시스템 커버리지(coverage)를 증가시킬 수 있다. 또한, 이 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있다. 다중 안테나 기술에 의하면, 단일 안테나를 사용하던 종래 기술에 의한 이동 통신에서의 전송량 한계를 극복할 수 있다.
일반적인 다중 안테나(MIMO) 통신 시스템의 구성도가 도 7에 도시되어 있다
송신단에는 송신 안테나가 NT개 설치되어 있고, 수신단에서는 수신 안테나가 NR개가 설치되어 있다. 이렇게 송신단 및 수신단에서 모두 복수개의 안테나를 사용하는 경우에는, 송신단 또는 수신단 중 어느 하나에만 복수개의 안테나를 사용하는 경우보다 이론적인 채널 전송 용량이 증가한다. 채널 전송 용량의 증가는 안테나의 수에 비례한다. 따라서, 전송 레이트가 향상되고, 주파수 효율이 향상된다 하나의 안테나를 이용하는 경우의 최대 전송 레이트를 Ro라고 한다면, 다중 안테나를 사용할 때의 전송 레이트는, 이론적으로, 아래 수학식 1과 같이 최대 전송 레이트 Ro에 레이트 증가율 Ri를 곱한 만큼 증가할 수 있다. 여기서 Ri는 NT와 NR 중 작은 값이다.
Figure 112015108188736-pct00001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는, 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 이와 같은 다중 안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후, 실질적으로 데이터 전송률을 향상시키기 위한 다양한 기술들이 현재까지 활발히 연구되고 있으며, 이들 중 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 그리고 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발한 연구가 진행되고 있다.
다중 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링 하는 경우 다음과 같이 나타낼 수 있다. 도 7에 도시된 바와 같이 NT개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다. 먼저, 송신 신호에 대해 살펴보면, NT개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 NT개이므로, 전송 정보를 하기의 수학식 2와 같은 벡터로 나타낼 수 있다.
Figure 112015108188736-pct00002
한편, 각각의 전송 정보
Figure 112015108188736-pct00003
에 있어 전송 전력을 다르게 할 수 있으며, 이때 각각의 전송 전력을
Figure 112015108188736-pct00004
라 하면, 전송 전력이 조정된 전송 정보를 벡터로 나타내면 하기의 수학식 3과 같다.
Figure 112015108188736-pct00005
또한,
Figure 112015108188736-pct00006
를 전송 전력의 대각행렬 P 를 이용하여 나타내면 하기의 수학식 4와 같다.
Figure 112015108188736-pct00007
한편, 전송전력이 조정된 정보 벡터
Figure 112015108188736-pct00008
에 가중치 행렬 W 가 적용되어 실제 전송되는 NT 개의 송신신호(transmitted signal)
Figure 112015108188736-pct00009
가 구성되는 경우를 고려해 보자. 여기서, 가중치 행렬은 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송신호
Figure 112015108188736-pct00010
는 벡터 X 를 이용하여 하기의 수학식 5와 같이 나타낼 수 있다. 여기서 W iji 번째 송신안테나와 j 번째 정보 간의 가중치를 의미한다. W 는 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)이라고 불린다.
Figure 112015108188736-pct00011
일반적으로, 채널 행렬의 랭크의 물리적인 의미는, 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다. 따라서 채널 행렬의 랭크(rank)는 서로 독립인(independent) 행(row) 또는 열(column)의 개수 중에서 최소 개수로 정의되므로, 행렬의 랭크는 행(row) 또는 열(column)의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 수학식 6과 같이 제한된다.
Figure 112015108188736-pct00012
또한, 다중 안테나 기술을 사용해서 보내는 서로 다른 정보 각각을 '전송 스트림(Stream)' 또는 간단하게 '스트림' 으로 정의하기로 하자. 이와 같은 '스트림' 은 '레이어 (Layer)' 로 지칭될 수 있다. 그러면 전송 스트림의 개수는 당연히 서로 다른 정보를 보낼 수 있는 최대 수인 채널의 랭크 보다는 클 수 없게 된다. 따라서, 채널 행렬이 H는 아래 수학식 7과 같이 나타낼 수 있다.
Figure 112015108188736-pct00013
여기서 "# of streams"는 스트림의 수를 나타낸다. 한편, 여기서 한 개의 스트림은 한 개 이상의 안테나를 통해서 전송될 수 있음에 주의해야 한다.
한 개 이상의 스트림을 여러 개의 안테나에 대응시키는 여러 가지 방법이 존재할 수 있다. 이 방법을 다중 안테나 기술의 종류에 따라 다음과 같이 설명할 수 있다. 한 개의 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 다이버시티 방식으로 볼 수 있고, 여러 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 멀티플렉싱 방식으로 볼 수 있다. 물론 그 중간인 공간 다이버시티와 공간 멀티플렉싱의 혼합(Hybrid)된 형태도 가능하다.
한편, 차세대 이동통신 시스템의 표준인 LTE-A 시스템에서는 데이터 전송률 향상을 위해 기존 표준에서는 지원되지 않았던 CoMP(Coordinated Multi Point) 전송 방식을 지원할 것으로 예상된다. 여기서, CoMP 전송 방식은 음영 지역에 있는 단말 및 기지국(셀 또는 섹터) 간의 통신성능을 향상시키기 위해 2개 이상의 기지국 혹은 셀이 서로 협력하여 단말과 통신하기 위한 전송 방식을 말한다.
CoMP 전송 방식은 데이터 공유를 통한 협력적 MIMO 형태의 조인트 프로세싱(CoMP-Joint Processing, CoMP-JP) 및 협력 스케줄링/빔포밍(CoMP-Coordinated Scheduling/beamforming, CoMP-CS/CB) 방식으로 구분할 수 있다.
하향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 단말은 CoMP전송 방식을 수행하는 각 기지국으로부터 데이터를 순간적으로 동시에 수신할 수 있으며, 각 기지국으로부터의 수신한 신호를 결합하여 수신 성능을 향상시킬 수 있다 (Joint Transmission; JT). 또한, CoMP전송 방식을 수행하는 기지국들 중 하나가 특정 시점에 상기 단말로 데이터를 전송하는 방법도 고려할 수 있다 (DPS; Dynamic Point Selection).
이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 단말은 빔포밍을 통해 데이터를 순간적으로 하나의 기지국, 즉 서빙 기지국을 통해서 수신할 수 있다.
상향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 각 기지국은 단말로부터 PUSCH 신호를 동시에 수신할 수 있다 (Joint Reception; JR). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 하나의 기지국만이 PUSCH를 수신하는데 이때 협력 스케줄링/빔포밍 방식을 사용하기로 하는 결정은 협력 셀(혹은 기지국)들에 의해 결정된다.
이하에서는, 채널 상태 정보 (channel state information; CSI) 보고에 관하여 설명한다. 현재 LTE 표준에서는 채널 정보 없이 운용되는 개루프(open-loop) MIMO와 채널 정보에 기반하여 운용되는 폐루프(closed-loop) MIMO 두 가지 송신 방식이 존재한다. 특히, 폐루프 MIMO 에서는 MIMO 안테나의 다중화 이득(multiplexing gain)을 얻기 위해 기지국 및 단말 각각은 채널 상태 정보를 바탕으로 빔포밍을 수행할 수 있다. 기지국은 채널 상태 정보를 단말로부터 얻기 위해, 단말에게 참조 신호를 전송하고, 이에 기반하여 측정한 채널 상태 정보를 PUCCH(Physical Uplink Control CHannel) 또는 PUSCH(Physical Uplink Shared CHannel)를 통하여 피드백 하도록 명령한다.
CSI는 RI(Rank Indicator), PMI(Precoding Matrix Index), CQI(Channel Quality Indication) 세가지 정보로 크게 분류된다. 우선, RI는 상술한 바와 같이 채널의 랭크 정보를 나타내며, 단말이 동일 주파수-시간 자원을 통해 수신할 수 있는 스트림의 개수를 의미한다. 또한, RI는 채널의 롱텀 페이딩(long term fading)에 의해 결정되므로 PMI, CQI 값 보다 통상 더 긴 주기로 기지국으로 피드백 된다.
두 번째로, PMI는 채널의 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 단말이 선호하는 기지국의 프리코딩 행렬 인덱스를 나타낸다. 마지막으로, CQI는 채널의 세기를 나타내는 값으로 통상 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
LTE-A 표준과 같은 보다 진보된 통신 시스템에서는 MU-MIMO (multi-user MIMO)를 이용한 추가적인 다중 사용자 다이버시티(multi-user diversity)를 얻는 것이 추가되었다. MU-MIMO에서는 안테나 도메인에서 다중화되는 단말들 간의 간섭이 존재하기 때문에, CSI의 정확성 여부는 CSI를 보고한 단말뿐만 아니라, 다중화되는 다른 단말의 간섭에도 큰 영향을 미칠 수 있다. 따라서, MU-MIMO에서는 SU-MIMO에 비하여 보다 정확한 CSI 보고가 요구된다.
이에, LTE-A표준에서는 최종 PMI를 롱텀(long term) 및/또는 광대역(wideband) PMI인 W1와 숏텀(short term) 및/또는 서브밴드(sub-band) PMI인 W2 둘로 나누어 설계하는 것으로 결정되었다.
상기 W1 및 W2 정보로부터 하나의 최종 PMI를 구성하는 구조적 코드북 변환(hierarchical codebook transformation) 방식의 예시로 아래 수학식 8과 같이 채널의 롱텀 공분산 행렬(long-term covariance matrix)를 이용할 수 있다.
Figure 112015108188736-pct00014
위 수학식 1에서 W2는 숏텀 PMI로서, 숏텀 채널 정보를 반영하기 위해 구성된 코드북의 코드워드이고, W은 최종 코드북의 코드워드이며, norm(A) 은 행렬 A 의 각 열의 노름(norm)이 1로 정규화(normalization)된 행렬을 의미한다.
기존 W1과 W2의 구체적인 구조는 다음 수학식 9와 같다.
Figure 112015108188736-pct00015
수학식 9에서 코드워드의 구조는 교차 편파 안테나(cross polarized antenna)를 사용하고 안테나 간 간격이 조밀한 경우, 예를 들어, 통상 인접 안테나 간 거리가 신호 파장의 반 이하인 경우, 발생하는 채널의 상관관계(correlation) 특성을 반영하여 설계한 구조이다. 교차 편파 안테나의 경우 안테나를 수평 안테나 그룹(horizontal antenna group)과 수직 안테나 그룹(vertical antenna group)으로 구분 할 수 있는데, 각 안테나 그룹은 ULA(uniform linear array) 안테나의 특성을 가지며, 두 안테나 그룹은 공존(co-located)한다.
따라서 각 그룹의 안테나 간 상관관계 은 동일한 선형 위상 증가(linear phase increment) 특성을 가지며, 안테나 그룹 간 상관관계는 위상 회전(phase rotation)된 특성을 갖는다. 결국, 코드북은 채널을 양자화(quantization)한 값이기 때문에 채널의 특성을 그대로 반영하여 코드북을 설계하는 것이 필요하다. 설명의 편의를 위해 상기 상술한 구조로 만든 랭크 1 코드워드를 아래 수학식 10과 같이 예시할 수 있다.
Figure 112015108188736-pct00016
위 수학식 10에서 코드워드는 송신 안테나의 개수 N T×1 의 벡터로 표현되고, 상위 벡터 Xi(k) 와 하위 벡터 α jXi(k) 로 구조화 되어있으며, 각각은 수평 안테나 그룹과 수직 안테나 그룹의 상관관계 특성을 보여준다. Xi(k) 는 각 안테나 그룹의 안테나 간 상관관계 특성을 반영하여 선형 위상 증가 특성을 갖는 벡터로 표현하는 것이 유리하며, 대표적인 예로 DFT 행렬을 이용할 수 있다.
LTE-A 표준과 같은 보다 진보된 통신 시스템에서는 MU-MIMO (multi-user MIMO)를 이용한 추가적인 다중 사용자 다이버시티(multi-user diversity)를 얻는 것이 추가되었다. MU-MIMO에서는 안테나 도메인에서 다중화되는 단말들 간의 간섭이 존재하기 때문에, CSI의 정확성 여부는 CSI를 보고한 단말뿐만 아니라, 다중화되는 다른 단말의 간섭에도 큰 영향을 미칠 수 있다. 따라서, MU-MIMO에서는 SU-MIMO에 비하여 보다 정확한 CSI 보고가 요구된다.
또한, CoMP JT의 경우 여러 기지국이 특정 단말에게 동일한 데이터를 협력 전송하므로 이론적으로 안테나가 지리적으로 분산되어 있는 MIMO 시스템으로 간주할 수 있다. 즉, JT에서 MU-MIMO를 하는 경우도 단일 셀-MU-MIMO와 마찬가지로 협력 스케줄링되는 단말들 간 간섭을 피하기 위해 높은 정확성의 채널 상태 정보가 요구 된다. CoMP CB의 경우에도 역시 인접 셀이 서빙 셀에게 주는 간섭을 회피하기 위해서 정교한 채널 상태 정보가 요구된다. 일반적으로 채널 상태 정보 피드백의 정확도를 높이기 위해서는 단말의 추가적인 채널 상태 정보 피드백 보고가 필요하고 이는 PUCCH 또는 PUSCH를 통해 기지국으로 전송된다.
이하에서는, 참조 신호에 관하여 보다 상세히 설명한다.
일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS 또는 Cell specific RS; CRS)로 구분된다. 또한, 셀 특정 참조 신호는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
도 8 및 도 9는 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 참조 신호의 구조를 도시하는 도면이다. 특히 도 8은 일반(normal) 순환 전치(Cyclic Prefix)인 경우를 도시하며, 도 9는 확장(extended) 순환 전치인 경우를 도시한다.
도 8 및 도 9를 참조하면, 격자에 기재된 0 내지 3은 안테나 포트 0 내지 3 각각에 대응하여 채널 측정과 데이터 복조를 위하여 송신되는 셀 특정 참조 신호인 CRS(Common Reference Signal)를 의미하며, 상기 셀 특정 참조 신호인 CRS는 데이터 정보 영역뿐만 아니라 제어 정보 영역 전반에 걸쳐 단말로 전송될 수 있다.
또한, 격자에 기재된 'D' 는 단말 특정 RS인 하향링크 DM-RS(Demodulation-RS)를 의미하고, DM-RS는 데이터 영역 즉, PDSCH를 통하여 단일 안테나 포트 전송을 지원한다. 단말은 상위 계층을 통하여 상기 단말 특정 RS인 DM-RS의 존재 여부를 시그널링 받는다. 도 8 및 도 9는 안테나 포트 5에 대응하는 DM-RS를 예시하며, 3GPP 표준문서 36.211에서는 안테나 포트 7 내지 14, 즉 총 8개의 안테나 포트에 대한 DM-RS 역시 정의하고 있다.
도 10은 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 10을 참조하면, DM-RS 그룹 1에는 안테나 포트 {7, 8, 11, 13}에 해당하는 DM-RS가 안테나 포트 별 시퀀스를 이용하여 맵핑되며, DM-RS 그룹 2에는 안테나 포트 {9, 10, 12, 14}에 해당하는 DM-RS가 마찬가지로 안테나 포트 별 시퀀스를 이용하여 맵핑된다.
한편, 상술한 CSI-RS 는 CRS와 별도로 PDSCH에 대한 채널 측정을 목적으로 제안되었으며, CRS와 달리 CSI-RS는 다중 셀 환경에서 셀 간 간섭(inter-cell interference; ICI)를 줄이기 위하여 최대 32가지의 서로 다른 자원 설정(configuration)으로 정의될 수 있다.
CSI-RS (자원) 설정은 안테나 포트 개수에 따라 서로 다르며, 인접 셀 간에는 최대한 다른 (자원) 설정으로 정의되는 CSI-RS가 송신되도록 구성된다. CSI-RS는 CRS와 달리 최대 8개의 안테나 포트까지 지원하며, 3GPP 표준문서에서는 안테나 포트 15 내지 22까지 총 8개의 안테나 포트를 CSI-RS를 위한 안테나 포트로 할당한다. 아래 표 1 및 표 2는 3GPP 표준문서에서 정의하고 있는 CSI-RS 설정을 나타내며, 특히, 표 1은 일반(Normal CP)인 경우를, 표 2는 일반(Extended CP)인 경우를 나타낸다.
Figure 112015108188736-pct00017
Figure 112015108188736-pct00018
표 1 및 표 2에서, (k',l') 는 RE 인덱스를 나타내며, k' 는 부반송파 인덱스를, l' 는 OFDM 심볼 인덱스를 나타낸다. 도 11은 현재 3GPP 표준문서에서 정의된 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
또한, CSI-RS 서브프레임 설정이 정의될 수 있으며, 이는 서브프레임 단위로 표현되는 주기( T CSI-RS )와 서브프레임 오프셋( ΔCSI-RS )으로 구성된다. 아래 표 3은, 3GPP 표준문서에서 정의하고 있는 CSI-RS 서브프레임 설정을 나타낸다.
Figure 112015108188736-pct00019
현재 ZP(zero-power) CSI-RS에 관한 정보는 아래 표 4와 같은 형태로 RRC 계층 신호를 통하여 CSI-RS-Config-r10 메시지에 포함되어 전송된다. 특히, ZP CSI-RS 자원 설정은 zeroTxPowerSubframeConfig-r10와 16 비트 사이즈의 비트맵인 zeroTxPowerResourceConfigList-r10로 구성된다. 이 중, zeroTxPowerSubframeConfig-r10는 표 3에 해당하는 I CSI-RS 값을 통해 해당 ZP CSI-RS가 전송되는 주기 및 서브프레임 오프셋을 알려준다. 또한, zeroTxPowerResourceConfigList-r10은 ZP CSI-RS 설정을 알려주는 정보로서, 상기 비트맵의 각각의 요소는 상기 표 1 또는 상기 표 2에서 CSI-RS를 위한 안테나 포트가 4개인 열(Column)에 포함된 설정들을 지시한다. 즉, 현재 3GPP 표준문서에 따르면 ZP CSI-RS는 CSI-RS를 위한 안테나 포트가 4개인 경우만으로 정의된다.
Figure 112015108188736-pct00020
참고로, 현재 3GPP 표준문서에 따르면 CQI 인덱스와 이에 대응하는 변조 차수, 코딩 레이트 등은 아래 표 5와 같다.
Figure 112015108188736-pct00021
한편, 간섭 측정을 통한 CQI 계산을 위한 동작은 아래와 같다.
단말은 CQI 계산 시 필요한 인자로서 SINR을 산출할 필요가 있고, 이 경우 Desired 신호의 수신 전력 측정(S-measure)을 NZP CSI-RS 등의 RS를 이용하여 수행할 수 있으며, 간섭 전력 측정(I-measure 혹은 IM(Interference measurement))을 위해 상기 수신한 신호에서 Desired 신호를 제거한 간섭 신호의 전력을 측정한다.
CSI 측정을 위한 서브프레임 세트들 C CSI,0C CSI,1 가 상위 계층 시그널링으로 설정될 수 있으며, 각각의 서브프레임 세트들에 대응하는 서브프레임은 서로 중첩되지 않고 하나의 세트에만 포함된다. 이와 같은 경우, UE는 S-measure의 경우 특별한 서브프레임 제약 없이 CSI-RS 등의 RS를 통해 수행할 수 있으나, I-measure의 경우 C CSI,0C CSI,1 별로 I-measure를 개별적으로 수행하여 C CSI,0C CSI,1 각각에 대한 두 가지 상이한 CQI계산을 수행하여야 한다.
이하, 하향링크 데이터 채널의 전송 모드에 관하여 예시한다.
현재 3GPP LTE 표준문서, 구체적으로 3GPP TS 36.213 문서에서는 아래 표 6 및 표 7와 같이 하향링크 데이터 채널 전송 모드에 관하여 정의하고 있다. 또한, 아래 전송 모드는 상위 계층 시그널링, 즉 RRC 시그널링을 통하여 단말에게 설정된다.
Figure 112015108188736-pct00022
Figure 112015108188736-pct00023
표 6 및 표 7를 참조하면, 현재 3GPP LTE 표준문서에서는, PDCCH에 마스킹된 RNTI의 종류에 따른 하향링크 제어 정보(Downlink Control Information; DCI) 포맷이 정의되어 있으며, 특히 C-RNTI와 SPS C-RNTI의 경우, 전송 모드와 이에 대응하는 DCI 포맷, 즉 전송 모드 기반 DCI 포맷을 도시하고 있다. 또한, 각각의 전송 모드에 무관하게 적용될 수 있는, 즉 폴백(Fall-back) 모드를 위한 DCI 포맷 1A가 정의되어 있다. 상기 표 6은 PDCCH에 마스킹된 RNTI의 종류가 C-RNTI인 경우를 예시한 것이며, 상기 표 7는 PDCCH에 마스킹된 RNTI의 종류가 SPS C-RNTI인 경우를 예시한 것이다.
전송 모드에 관한 동작 예로서, 단말이 표 6에서 C-RNTI로 마스킹된 PDCCH를 블라인드 디코딩한 결과 DCI포맷 1B가 검출된다면, 단일 레이어를 이용한 폐루프 공간 다중화 기법으로 PDSCH가 전송되었다고 가정하여 PDSCH를 디코딩한다.
또한, 상기 표 6 및 표 7 에서 전송 모드 10은 상술한 CoMP 전송 방식의 하향링크 데이터 채널 송신 모드를 의미한다. 표 6을 예를 들어 설명하면, 단말이 C-RNTI로 마스킹된 PDCCH를 블라인드 디코딩한 결과 DCI포맷 2D가 검출된다면 안테나 포트 7 내지 14, 즉 DM-RS에 기반하여 다중 레이어 전송 기법으로 PDSCH가 전송된다는 가정하에 PDSCH를 디코딩한다. 또는 DM-RS 안테나 포트 7 또는 8에 기반하여 단일 안테나 전송 기법으로 PDSCH가 전송된다는 가정하에 PDSCH를 디코딩한다.
반면에, C-RNTI로 마스킹된 PDCCH를 블라인드 디코딩한 결과 DCI포맷 1A가 검출된다면, 해당 서브프레임이 MBSFN 서브프레임인지 여부에 따라 전송 모드가 달라진다. 예를 들어 해당 서브프레임이 비(非)-MBSFN 서브프레임인 경우 PDSCH는 안테나 포트 0의 CRS에 기반한 단일 안테나 전송 또는 CRS 기반 전송 다이버시티 기법으로 전송되었다는 가정하에 디코딩한다. 또한, 해당 서브프레임이 MBSFN 서브프레임인 경우 PDSCH는 안테나 포트 7의 DM-RS에 기반한 단일 안테나 전송이 이루어졌다는 가정하게 디코딩할 수 있다.
이하, 안테나 포트 간 QCL (Quasi Co-Location)에 관하여 설명한다.
안테나 포트 간 QCL되어 있다는 것은, 단말이 하나의 안테나 포트로부터 수신하는 신호(혹은 해당 안테나 포트에 대응하는 무선 채널)의 광범위 특성들(large-scale properties)이 다른 하나의 안테나 포트로부터 수신하는 신호(혹은 해당 안테나 포트에 대응하는 무선 채널)의 광범위 특성들과 모두 또는 일부가 동일하다고 가정할 수 있다는 것을 의미한다. 여기서, 상기 광범위 특성들은 주파수 오프셋과 관련된 도플러 확산 (Doppler spread), 도플러 시프트 (Doppler shift), 타이밍 오프셋과 관련된 평균 지연 (average delay), 지연 확산 (delay spread) 등을 포함하고, 나아가 평균 이득(average gain) 또한 포함할 수 있다.
위 정의에 의하면, 단말은 QCL되지 않은 안테나 포트, 즉 NQCL(Non Quasi co-Located)된 안테나 포트들 간에는 광범위 특성들이 동일하다고 가정할 수 없다. 이 경우 단말은 안테나 포트 별로 주파수 오프셋 및 타이밍 오프셋 등을 획득하기 위한 트랙킹(tracking) 절차를 독립적으로 수행하여야 한다.
반면에, QCL되어 있는 안테나 포트들 간에는 단말이 아래와 같은 동작을 수행할 수 있다는 장점이 있다.
1) 단말이 특정 안테나 포트에 대응하는 무선 채널에 대한 전력-지연 프로파일(power-delay profile), 지연 확산 및 도플러 스펙트럼 (Doppler spectrum)와 도플러 확산 추정 결과를, 다른 안테나 포트에 대응하는 무선 채널에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 파라미터 등에 동일하게 적용할 수 있다.
2) 또한, 단말은 상기 특정 안테나 포트에 대한 시간 동기 및 주파수 동기를 획득한 후, 동일한 동기를 다른 안테나 포트에 대하여도 적용할 수 있다.
3) 마지막으로, 평균 이득에 관하여도 단말은 QCL되어 있는 안테나 포트들 각각에 대한 RSRP (Reference Signal Received Power) 측정값을 평균치로 계산할 수 있다.
예를 들어, 단말이 PDCCH (혹은 E-PDCCH)를 통해 DM-RS 기반 하향링크 데이터 채널 스케줄링 정보, 예를 들어, DCI 포맷 2C을 수신하면, 단말은 상기 스케줄링 정보에서 지시하는 DM-RS 시퀀스를 통하여 PDSCH에 대한 채널 추정을 수행한 후, 데이터 복조를 수행하는 경우로 가정한다.
이와 같은 경우, 단말이 하향링크 데이터 채널 복조를 위한 DM-RS 안테나 포트가 서빙 셀의 CRS 안테나 포트와 QCL되어 있다면, 단말은 해당 DM-RS 안테나 포트를 통한 채널 추정 시 자신의 CRS 안테나 포트로부터 추정했던 무선 채널의 광범위 특성들(large-scale properties)을 그대로 적용하여 DM-RS 기반 하향링크 데이터 채널 수신 성능을 향상시킬 수가 있다.
마찬가지로, 단말이 하향링크 데이터 채널 복조를 위한 DM-RS 안테나 포트가 서빙 셀의 CSI-RS 안테나 포트와 QCL되어 있다면, 단말은 해당 DM-RS 안테나 포트를 통한 채널 추정 시 서빙 셀의 CSI-RS 안테나 포트로부터 추정했던 무선 채널의 광범위 특성들(large-scale properties)을 그대로 적용하여 DM-RS 기반 하향링크 데이터 채널 수신 성능을 향상시킬 수가 있다.
한편, LTE 시스템에서는 CoMP 모드인 전송 모드 10으로 하향링크 신호를 송신할 시, 기지국이 상위 계층 신호를 통하여 QCL 타입 A와 QCL 타입 B 중 하나를 단말에게 설정하도록 정의하고 있다.
여기서, QCL 타입 A는 CRS, DM-RS 및 CSI-RS의 안테나 포트가 평균 이득을 제외한 나머지 광범위 특성들이 QCL되어 있다고 가정하는 것으로, 동일 노드(point)에서 물리 채널 및 신호들이 전송되고 있음을 의미한다. 반면에, QCL 타입 B는 DPS, JT등의 CoMP전송이 가능하도록 단말당 최대 4개까지의 QCL 모드를 상위 계층 메시지를 통해 설정하고, 이 중 이떤 QCL 모드로 하향링크 신호를 수신해야하는지 동적으로 DCI (downlink control information)를 통해 설정하도록 정의되어 있다.
QCL 타입 B가 설정된 경우의 DPS 전송에 관하여, 보다 구체적으로 설명한다.
우선, N1개의 안테나 포트들로 구성된 노드 #1는 CSI-RS 자원(resource) #1를 전송하고, N2개의 안테나 포트들로 구성된 노드 #2는 CSI-RS 자원(resource) #2를 전송하는 것으로 가정한다. 이 경우, CSI-RS 자원 #1을 QCL 모드 파라미터 세트 #1에 포함시키고, CSI-RS 자원 #2를 QCL 모드 파라미터 세트 #2에 포함시킨다. 나아가, 기지국은 노드 #1과 노드 #2의 공통 커버리지 내에 존재하는 단말에게 상위 계층 신호로 파라미터 세트 #1과 파라미터 세트 #2를 설정한다.
이후, 기지국이 해당 단말에게 노드 #1을 통해 데이터(즉, PDSCH) 전송 시 DCI를 이용하여 파라미터 세트 #1을 설정하고, 노드 #2를 통해 데이터 전송시 파라미터 세트 #2를 설정하는 방식으로 DPS를 수행할 수 있다. 단말 입장에서는 DCI를 통해 파라미터 세트 #1을 설정 받으면 CSI-RS 자원 #1과 DM-RS가 QCL되어 있다고 가정하고, 파라미터 세트 #2를 설정 받으면 CSI-RS 자원 #2과 DM-RS가 QCL되어 있다고 가정할 수 있다.
이하, 능동 안테나 시스템 (Active Antenna System; AAS) 및 3 차원 빔포밍에 관하여 설명한다.
기존 셀룰러 시스템에서 기지국은 기계적 틸팅(mechanical tilting) 혹은 전기적 틸팅(electrical tilting)을 이용하여 셀 간 간섭을 줄이고, 셀 내 단말들의 쓰루풋, 예를 들어 SINR (Signal to Interference plus Noise ratio)의 향상시키는 방안을 사용해 왔다. 도면을 참조하여 보다 상세히 설명한다.
도 12는 안테나 틸팅 방식을 설명하기 위한 도면이다. 특히, 도 12의 (a)는 안테나 틸팅이 적용되지 않은 안테나 구조를 도시하고, 도 12의 (b)는 기계적 틸팅이 적용된 안테나 구조를 도시하며, 도 12의 (c)는 기계적 틸팅과 전기적 틸팅 모두 적용된 안테나 구조를 도시한다.
도 12의 (a)와 도 12의 (b)를 비교하면, 기계적 틸팅의 경우 도 12의 (b)와 같이 초기 설치 시 빔 방향이 고정되어 버리는 단점이 있다. 나아가, 전기적 틸팅의 경우 도 12의 (c)와 같이 내부 위상 천이(phase shift) 모듈을 이용하여 틸팅 각(tilting angle)을 변경할 수 있지만, 사실상 셀 고정적 틸팅으로 인하여 매우 제약적인 수직 빔포밍(수직 빔포밍)만 가능한 단점이 있다.
도 13은 기존 안테나 시스템과 능동 안테나 시스템(Active Antenna System; AAS)을 비교하는 도면이다. 특히, 도 13의 (a)는 기존 안테나 시스템을 도시하고, 도 13의 (b)는 능동 안테나 시스템을 도시한다.
도 13을 참조하면, 능동 안테나 시스템은 기존 안테나 시스템과 달리 복수의 안테나 모듈 각각이 전력 증폭기를 비롯한 RF모듈, 즉 능동(active) 소자를 포함하고 있어, 안테나 모듈 각각에 대한 전력 및 위상 조절이 가능한 특징이 있는 시스템이다.
일반적으로 고려하던 MIMO 안테나 구조는 ULA(uniform linear array)와 같이 선형적인, 즉 1 차원 어레이의 안테나를 고려하였다. 이러한 1 차원 어레이 구조에서는 빔포밍으로 생성 가능한 빔이 2 차원 평면 내에 존재하게 된다. 이는 기존 기지국의 수동 안테나 시스템(Passive Antenna System; PAS) 기반 MIMO구조에도 적용된다. PAS 기반 기지국에도 수직 안테나들 및 수평 안테나들이 존재하지만, 수직 안테나들은 하나의 RF모듈에 묶여있어 수직방향으로 빔포밍이 불가능하며, 상술한 기계적 틸팅 만이 적용 가능하다.
그러나, 기지국의 안테나 구조가 능동 안테나 시스템으로 진화하면서 수직 방향의 안테나들에도 독립적인 RF모듈이 구현되었으며, 이에 따라 수평 방향뿐만 아니라 수직 방향으로도 빔포밍이 가능하게 되었다. 이를 엘리베이션 빔포밍(elevation beamforming)이라고 지칭한다.
엘리베이션 빔포밍에 따르면, 생성 가능한 빔들은 수직 및 수평방향으로 3차원 공간에 표현될 수 있으므로, 이를 3 차원 빔포밍이라 지칭할 수도 있다. 즉, 3 차원 빔포밍은 1 차원 어레이의 안테나 구조에서 평면형태의 2 차원 어레이의 안테나 구조로 진화하며 가능해 진 것이다. 여기서, 3 차원 빔포밍은 안테나 어레이가 꼭 평면(planar) 형상인 경우에만 가능한 것은 아니고, 링(ring) 형태의 3차원 형태의 어레이 구조에서도 3 차원 빔포밍이 가능하다. 3 차원 빔포밍의 특징은 기존 1 차원 어레이의 안테나 구조가 아닌 다양한 형태의 안테나 배치로 인해 MIMO 프로세스가 3 차원 공간 상에서 이루어 진다는 것이다.
도 14는 능동 안테나 시스템에 기반하여, 단말 특정 빔을 형성한 예를 도시한다. 도 14를 참조하면, 3 차원 빔포밍으로 인하여 단말이 기지국 좌우로 움직일 경우뿐만 아니라 전후로 움직이는 경우까지 빔포밍이 가능하므로, 단말 특정 빔 형성에 보다 높은 자유도가 제공됨을 알 수 있다.
나아가, 능동 안테나 기반의 2 차원 어레이의 안테나 구조를 이용한 전송 환경으로는 실외 기지국에서 실외 단말에게 전송하는 환경뿐만 아니라, 실외 기지국이 실내 단말에 대하여 전송하는 환경 (O2I, Outdoor to Indoor) 및 실내 기지국이 실내 단말에 전송하는 환경 (Indoor hotspot) 등을 고려할 수 있다.
도 15는 능동 안테나 시스템 기반의 2 차원 빔 전송 시나리오를 도시한다.
도 15를 참조하면, 셀 내 다양한 다수의 건물들이 존재하는 실제 셀 환경을 가정하게 될 경우, 기지국은 단말 특정 수평 빔 조향 뿐만 아니라 건물 높이에 따른 다양한 단말 높이를 고려한 수직 빔 조향 능력까지 고려해야 할 필요가 있다. 이와 같은 셀 환경을 고려할 경우, 기존 무선 채널 환경과는 많이 다른 채널 특성, 예를 들어 높이 차이에 따른 음영/경로 손실 변화, 페이딩 특성 변화 등을 반영할 필요가 있다.
다시 말해, 3 차원 빔포밍은, 기존에 선형적인 1 차원 어레이의 안테나 구조에 기반하여 수평 방향으로만 이루어지던 수평 빔포밍이 진화된 것으로, 평면 배열(planar array) 등의 다차원 어레이의 안테나 구조를 기반으로 엘리베이션 빔포밍 혹은 수직 빔포밍까지 확장 및 결합된 형태로 이루어 지는 MIMO 프로세싱 기법을 지칭한다.
이하 선형 프리코딩(linear precoding)을 이용한 MIMO 시스템에 관하여 설명한다. 협대역 시스템(Narrow band system) 혹은 광대역 시스템(Wideband system)에서 주파수 측으로 평면 페이딩(flat fading)을 겪는다고 가정할 수 있는 주파수 단위 (예를 들어, 부반송파 단위)에서 하향링크 MIMO 시스템은 다음 수학식 11과 같이 모델링 가능하다.
Figure 112015108188736-pct00024
단말의 수신 안테나 포트의 개수가 N r 이고, 기지국의 송신 안테나 포트의 개수가 N t 이라고 가정하면, 상기 수학식 11에서 y 는 단말의 N r 개의 수신안테나에서 받는 N r×1 의 수신 신호 벡터, H 는 N r×N t 사이즈의 MIMO 채널 행렬, x 는 N t×1 사이즈의 송신 신호, z 는 N r×1 사이즈의 수신 잡음 및 간섭 벡터이다.
위 시스템 모델은 단일 단말 전송 시나리오(single user MIMO) 뿐만 아니라 다중 단말 전송 시나리오 (multi-user MIMO)에도 적용 가능하다. 전자의 경우 N r 은 단일 단말의 수신 안테나 수이나, 후자의 경우 N r 은 다중 단말의 총 수신 안테나로 확장하여 해석할 수 있다.
위 시스템 모델은 하향링크 전송 시나리오뿐만 아니라 상향링크 전송 시나리오에도 적용 가능하다. 이 때, N t 는 단말의 송신 안테나 수를 나타낼 수 있고, N r 은 기지국의 수신 안테나 수를 나타낼 수 있다.
선형적 MIMO 프리코더를 고려하면 MIMO 프리코더는 일반적으로 N t×N s 사이즈의 행렬 U 로 표현 가능하다. 여기서 N s 는 송신 랭크 혹은 송신 레이어 수에 해당한다. 따라서 송신 신호 벡터 x 는 다음 수학식 12와 같이 모델링 될 수 있다.
Figure 112015108188736-pct00025
상기 수학식 12에서 P T 는 송신 신호 에너지, s 는 N s 개의 전송 레이어에서 전송되는 신호들을 표현하는 N s×1 사이즈의 전송 신호 벡터이다. 즉, E {sHUHUs} = N s 이다. N s 개의 각 전송 레이어에 해당하는 N t×1 사이즈의 프리코딩 벡터를 각각
Figure 112015108188736-pct00026
라 하면,
Figure 112015108188736-pct00027
와 같이 표현할 수 있다. 이 경우, 상기 수학식 12는 아래 수학식 13과 같이 표현할 수도 있다.
Figure 112015108188736-pct00028
상기 수학식 13에서 s i 는 벡터 s 의 i 번째 엘리먼트(element)이다. 일반적으로 서로 다른 레이어에서 전송되는 신호 간에는 비-상관(uncorrelated)되어 있고 (
Figure 112015108188736-pct00029
), 각 신호의 평균적인 크기는 동일하다고 가정할 수 있다. 편의상 각 신호의 평균적 에너지를 1이라 하면(
Figure 112015108188736-pct00030
), 각 레이어 프리코딩 벡터(layer precoding vector)의 에너지의 합은 아래 수학식 14와 같이 N s 이다.
Figure 112015108188736-pct00031
상기 수학식 14에서 각 레이어를 통하여 신호를 동일한 전력으로 전송하고자 한다면
Figure 112015108188736-pct00032
이 성립함을 알 수 있다.
한편, 상술한 메시브 MIMO (Massive MIMO)와 같이 향후 다중 안테나 시스템은 진화를 거듭하며 안테나 수가 점점 증가할 가능성이 있으며, 실제 LTE 표준에서는 3D MIMO 환경을 고려하여 최대 64개의 기지국 송신 안테나를 고려하고 있다.
그러나, 안테나 수가 많아질수록 파일럿 및 피드백 오버해드가 커지고 디코딩 복잡도가 증가하는 등의 문제점이 발생할 수 있다. 기지국의 안테나 수가 많아질수록 MIMO 채널 H 의 크기가 커지므로 단말이 MIMO 채널을 추정할 수 있도록 기지국이 전송하는 측정 용도의 파일럿의 개수 역시 증가해야 한다. 또한, 단말이 측정한 MIMO 채널에 관련된 명시적인 혹은 암시적인 정보를 기지국이 알 수 있도록 피드백을 보낸다고 할 때, 채널 행렬이 커짐에 따라 피드백 양도 많아질 수 밖에 없다. 특히 LTE시스템처럼 코드북 기반 PMI 피드백 전송을 수행하는 경우 PMI 코드북의 크기 역시 안테나 수 증가에 따라 기하 급수적으로 증가하여 기지국과 단말의 계산 복잡도를 증가시킨다.
이러한 환경에서 전체 송신 안테나를 구획화(partitioning)하여 서브-어레이(sub-array) 단위로 파일럿 전송을 하거나, 서브-어레이(sub-array) 단위로 피드백을 수행하도록 한다면, 시스템 복잡도 및 오버헤드를 경감시킬 수 있다. 특히 LTE기술표준관점에서 기존에 8개의 송신안테나까지 지원하는 파일럿, MIMO 프리코딩 방식 및/또는 피드백 체계를 상당부분 재사용하여 메시브 MIMO 시스템을 지원할 수 있는 장점이 있다.
이러한 관점에서 상기 MIMO 시스템 모델에서의 각 레이어 프리코딩 벡터를 임의의 개수 M개의 서브-프리코딩 벡터(sub-precoding vector)로 구획화(partitioning)하고, i 번째 레이어에 대한 프리코딩 벡터에 해당하는 서브-프리코딩 벡터를 ui,1,…,ui,M라 표현하면, i 번째 레이어에 대한 프리코딩 벡터는
Figure 112015108188736-pct00033
와 같이 나타낼 수 있다.
여기서 각 서브-프리코딩 벡터는 N r×N t 사이즈의 MIMO 채널 H 를 행 방향으로 각 구획의 송신 안테나 수만큼 분리한 각 서브-채널 행렬(sub-channel matrix)를 유효 채널로 겪는다. 여기서 서브-채널 행렬로 표현한 MIMO 채널 H 은 아래 수학식 15와 같다.
Figure 112015108188736-pct00034
만일 단말이 선호하는 각 서브-프리코딩 벡터를 PMI 코드북 기반으로 결정한다면, 각 서브-프리코딩 벡터를 정규화하는 과정이 필요하다. 여기서 정규화 과정은 동일한 크기의 서브-프리코딩 벡터는 동일한 송신안테나 수에 대한 PMI 코드북에서 프리코더를 선택할 수 있도록 프리코딩 벡터 또는 벡터의 특정 원소의 값, 크기 및/또는 위상을 해당 PMI 코드북에서 선택하기 적합하도록 수행하는 모든 과정을 통칭한다.
예를 들어, PMI 코드북의 첫 번째 원소가 0 또는 1로 이루어져 있다면 각 서브-프리코딩 벡터의 위상 및 크기를 거기에 맞도록 정규화 할 수 있다. 이하에서 m 번째 구획에 해당하는 서브-프리코딩 벡터 ui,mα i,m 값으로 정규화하였다고 가정하고, 정규화된 서브-프리코딩 벡터 (normalized partitioned precoder; NPP)를 vi,m = ui,m /α i,m 라 가정한다. 따라서 코드북 기반 프리코딩을 고려할 때의 구획화 프리코딩은 다음 수학식 16과 같이 모델링 된다.
Figure 112015108188736-pct00035
위 수학식 16에서 볼 수 있듯이 전체 프리코더 관점에서 각 α i,m 은 각각의 NPP를 연결하는 값으로 해석할 수 있다. 이하에서 이 값을 연결 계수라 지칭한다. 결국, 각 구획화된 안테나 포트들에 대한 정규화된 프리코딩 방식과 각각의 정규화된 프리코더를 연결할 수 있는 연결 계수들을 규정하면 전체 송신 안테나(포트)에 대한 프리코딩 방법을 규정할 수 있다.
i 번째 레이어에 대한 M 개의 연결 계수들을 모아서 벡터 형태로 ai = [α i,1 α i,2α i,M]T 와 같이 정의할 수 있다. 이하에서 ai 를 '연결 벡터' 라 한다.
연결 벡터는 M 개의 값으로 구성된다고 표현할 수도 있으나, 연결 벡터의 첫 원소로 정규화한 후 나머지 M - 1 개의 값으로 표현되는 bi 을 연결 벡터로 볼 수 있다. 즉, 첫 번째 NPP기준으로 나머지 M - 1 개의 NPP들의 상대적인 차이값을 연결 벡터로 아래 수학식 17과 같이 정의할 수도 있다. 이는 전체 프리코딩 벡터 ui 관점에서 첫 번째 원소는 이미 정규화되어 있다고 가정하는 경우가 많기 때문이다.
Figure 112015108188736-pct00036
만일 각 전송 레이어가 동일한 수의 구획화를 수행한다면 다음 수학식 18의 연결 행렬 역시 정의할 수 있다. 또한 각 구획에 대한 행렬형태의 NPP 역시 다음 수학식 19와 같이 정의할 수 있다.
Figure 112015108188736-pct00037
Figure 112015108188736-pct00038
사이즈가 M×1 인 연결 벡터의 각 엘리먼트를 각 구획의 크기만큼 반복한 벡터를 확장된 연결 벡터
Figure 112015108188736-pct00039
이라 하자. 예를 들어, i 번째 레이어에 대하여 M = 2 이고 첫 번째 구획의 크기는 3, 두 번째 구획의 크기는 4일 때,
Figure 112015108188736-pct00040
이다. 상기 확장된 연결 벡터들을 적층하여
Figure 112015108188736-pct00041
와 같이 확장된 연결 행렬을 정의할 수 있다.
이 경우, 전체 프리코딩 행렬은 확장된 연결 행렬과 합쳐진 NPP 행렬( Vt )의 Hadamard product (or Element-wise product)로 다음 수학식 20과 같이 나타낼 수 있다.
Figure 112015108188736-pct00042
상기 수학식 20에서
Figure 112015108188736-pct00043
이고 행렬 연산자 ˚는 Hadamard product 를 나타낸다.
(확장된) 연결 벡터와 (확장된) 연결 행렬을 통칭하여 링킹(linking) 프리코더라 한다. 여기서 프리코더라 명명하는 것은 전체 송신 안테나 프리코더를 결정하는 하나의 구성요소 이기 때문이다. 링킹 프리코더는 상기 수학식 20과 같이 하나로 구성될 수 있으나, 이에 제한되지는 않는다. 예를 들어, 연결 벡터 ai 에 대해 임의의 구획화을 추가로 수행하여 여러 개의 서브-링킹 벡터(sub-linking vector)들을 구성할 수 있고 그에 따라 서브-링킹 프리코더가 정의될 수 있다. 이하에서는 설명 편의상 단일 링킹 프리코더를 가정하나 링킹 프리코더의 구획화 시나리오에 대해서도 배제하지 않는다.
상기 연결 계수 표현 시 동일한 구획의 서로 다른 전송 레이어에 서로 다른 연결 계수가 적용될 수 있도록 표현하였으나, 레이어 별 동일한 구획화를 적용한 경우 연결 계수는 전송 레이어에 독립적으로 설정될 수도 있다. 즉, 모든 레이어에 대해 동일한 연결 계수를 설정할 수 있다. 이 경우 연결 벡터간에는
Figure 112015108188736-pct00044
와 같은 관계가 성립한다. 이 경우, 링킹 프리코더는 M 개 혹은 M - 1 개의 연결 계수들만으로 표현 가능하다.
한편, MIMO 프리코딩 방식은 크게 폐루프(closed loop) 프리코딩 방식과 개루프(open loop) 프리코딩 방식으로 구분할 수 있다. 일반적으로 폐루프 프리코딩 방식은 MIMO 프리코더 구성 시 송수신기 간의 채널을 고려하므로 송신기에서 MIMO 채널을 추정하기 위해 단말의 피드백 신호 전송, 파일럿 신호 전송과 같은 추가적인 오버헤드가 필요한 반면 채널이 정확히 추정되었을 때 개루프 프리코딩 방식에 비해 성능이 우수하다. 따라서, 폐루프 프리코딩 방식은 채널에 대한 추정 정확도가 요구되므로 송신기와 수신기 사이의 채널 변화가 크지 않은 정적인 환경(예를 들어, low Doppler spread, low delay spread가 존재하는 환경)에서 주로 사용된다. 반면, 개루프 프리코딩 방식은 송수신기간의 채널변화와 MIMO 프리코딩 방식간의 상관관계가 없으므로 송신기와 수신기 사이의 채널 변화가 큰 환경에서 폐루프 방식보다 우수한 성능을 나타낸다.
안테나 수가 매우 많은 메시브 MIMO 환경에서 폐루프 프리코딩 방식을 적용하기 위해서는, 각각의 서브 프리코더 및 링킹 프리코더의 정보가 필요하다. 여기서, 코드북 기반의 피드백이 적용되지 않는다면 링킹 프리코더 정보는 필요하지 않을 수도 있다. 구획화 방식에 따라, 각 서브 프리코더가 겪는 유효 채널 및 링킹 프리코더가 겪는 유효 채널의 특성은 서로 다를 수 있다.
예를 들어, 어떠한 서브 프리코더가 겪는 MIMO 채널은 상대적으로 low Doppler spread 특성을 갖지만, 다른 서브 프리코더가 겪는 채널은 high Doppler spread 특성을 가질 수 있다. 다른 예로, 모든 서브 프리코더가 겪는 유효 채널은 유사한 Doppler 특성을 갖지만 링킹 프리코더가 겪는 유효 채널은 다른 Doppler 특성을 가질 수 있다. 이하에서는, 상기 분할 프리코딩 환경에서 각 구획화된 채널 및 링킹 채널(linking channel)의 특성에 적응적으로 MIMO 전송 기법을 최적화하는 분할 빔포밍(Fractional beamforming) 기법을 설명한다.
<분할 빔포밍>
기지국은 각 안테나 포트 구획에 대한 프리코더와 각 안테나 포트 구획들을 연결하는 링킹 프리코더 중 일부에만 폐루프 프리코딩을 수행하고, 나머지에는 다음 중 하나의 프리코딩 방식을 적용할 수 있다.
1. 시스템에서 규정한 프리코딩 방식 (이하, 디폴트(Default) 프리코딩)
2. 기지국 혹은 네트워크에서 미리 지정한 프리코딩 방식 (이하, 참조(Reference) 프리코딩)
3. 기지국이 무작위로 정한 프리코딩 방식 (이하, 랜덤(Random) 프리코딩)
이하에서는, 폐루프 프리코딩이 적용되는 구획 및/또는 연결 계수들의 집합을 제어 공간, 폐루프 프리코딩이 적용되지 않는 구획 및/또는 연결 계수들의 집합을 비제어 공간이라고 지칭한다.
상기 시스템에서 규정한 프리코딩 방식인 디폴트 프리코딩 방식은 비제어 공간에 대해 전송하는 빔을 시스템에서 규정하여 사용하는 방법을 의미한다. 디폴트 프리코딩은 임의의 개루프 프리코딩 방식을 따르도록 규정될 수 있다. 디폴트 프리코딩은 시스템 대역폭, 기지국 송신 안테나 수, 전송 레이어 수 (또는 전송 랭크), 기지국 송신 안테나 구성( N t_v , N t_h ), 또는 비제어 방향의 송신 안테나 수에 따라 다르게 설정될 수 있다. 또는, 상기 시스템 파라미터들에 무관하게 특정 빔으로 설정될 수 있다. 또한 디폴트 프리코딩은 전 주파수 대역과 시간에 걸쳐 고정될 수도 있고, 특정 시간 자원 단위 및/또는 주파수 자원 단위로 변화할 수도 있다.
또한, 기지국 혹은 네트워크에서 미리 지정한 프리코딩 방식인 상기 참조 프리코딩 방식은 기지국 혹은 네트워크에서 비제어 공간에 대해 적용할 프리코딩 방식을 단말에게 지정하는 방법을 의미한다. 따라서, 비제어 공간에 대한 참조 프리코딩 정보가 물리계층 혹은 상위계층 메시지로 단말에게 전달되는 특징을 갖는다. 상기 참조 프리코딩 정보는 비제어 공간에서 적용될 MIMO 프리코더를 명시적, 암시적으로 알려줄 수 있는 모든 정보를 의미한다. 예를 들어, 비제어 공간 송신안테나 수에 해당하는 PMI 코드북의 특정 인덱스 (PMI), 비제어 공간의 MIMO 프리코딩 행렬 의 각 원소의 양자화된 값, 다수의 MIMO 프리코딩 방식을 인덱싱한 후 전송에 사용될 인덱스 등이 참조 프리코딩 정보로 시그널링될 수 있다.
또한, 참조 프리코딩 역시 특정 시간 자원 단위 혹은 주파수 자원 단위로 바뀔 수도 있다. 이 경우, 참조 프리코딩의 시간/주파수 자원 별 변화 패턴을 복수개 규정한 후, 해당 기지국 혹은 네트워크에서 사용하는 참조 프리코딩 패턴 인덱스를 참조 프리코딩 정보로 시그널링할 수 있다. 혹은 시간/주파수 자원 별 변화 패턴을 유도할 수 있는 랜덤 변수 생성기의 시드(seed) 값도 참조 프리코딩 정보로 활용될 수 있다. 혹은 다양한 프리코딩 방식(예를 들어. STBC, delay diversity 등) 중 어떤 방식을 사용할 지가 참조 프리코딩 정보로 사용될 수 있다.
나아가, 기지국이 무작위로 정한 프리코딩 방식인 랜덤 프리코딩 방식은 비제어 공간에 대해 적용될 프리코딩 방식을 기지국이 임의로 결정하여 적용하는 방식을 의미한다. 따라서 디폴트 프리코딩 방식이나 참조 프리코딩 방식과는 달리 비제어 공간에 대해 적용될 프리코더를 단말이 알지 못하는 특징이 있다. 일례로, 기지국은 비제어 공간에 대해 특정 시간 자원 단위(예를 들어, OFDM 심볼) 및/또는 주파수 자원 단위(예를 들어, 부반송파)로 무작위로 변화하는 빔을 전송할 수 있다.
분할 빔포밍 방식에서 전송 레이어 별로 독립적인 구획화(partitioning) 및 분할 빔포밍 방식이 적용될 수 있다. 또는, 모든 전송 레이어에 대해 동일한 구획화 및 분할 빔포밍 방식을 적용할 수도 있다.
또한, 분할 빔포밍 방식은 송신 안테나들 중 일부 안테나들에 대한 피드백 정보 혹은 연결 계수에 대한 피드백 정보의 신뢰성이 떨어지거나 해당 피드백이 불필요한 채널 환경인 경우에 매우 유용하다. 특히, 일부 안테나들에 대한 피드백 정보 혹은 연결 계수에 대한 피드백 정보의 신뢰성이 떨어지는 경우, 피드백 정보 오류에 의해 불필요한 패킷 수신 오류 및 재전송을 막을 수 있는 장점이 있고, 해당 피드백이 불필요한 경우 피드백 오버해드를 최소화 할 수 있는 장점이 있다.
<정합(Aligned) 분할 프리코딩>
만일 일부 혹은 전부의 안테나 포트 구획이 동일한 크기를 가지고 해당 구획화된 안테나 어레이가 유사한 유효 채널 특성을 갖는 경우, 해당 NPP들에 동일한 프리코딩 방법, 즉 정합(Aligned) 분할 프리코딩을 적용할 수 있다.
도 16은 균일 선형 어레이에서 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 16을 참조하면, 8개의 안테나로 구성된 균일 선형 어레이(uniform linear array; ULA)에서 첫 번째 구획은 1, 3, 5, 7번째 안테나로 구성되고, 두 번째 구획은 2, 4, 6, 8번째 안테나로 구성된다고 하자. 만약 각 안테나 간 간격이 좁고 주변에 scatterer가 많지 않은 경우, 첫 번째 구획과 두 번째 구획은, 링킹 프리코더 성분에 해당하는 두 구획 간의 위상차를 제외하면, 유사한 MIMO 채널을 겪을 확률이 높다. 이러한 경우 두 구획에 동일한 프리코딩 방식을 적용하도록 설정한다.
도 17은 평판 어레이(square array)에서 열(column) 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 17을 참조하면, N t_v 개의 행과 N t_h 개의 열 형태의 N t ( = N t_v×N t_h )개의 안테나로 구성된 평판 어레이(square array)에서 각 열을 하나의 구획으로 설정한다. 만일 열 간의 거리가 가깝고 N t_h 가 크지 않은 환경에서는 모든 구획에 동일한 프리코딩 방식을 적용하도록 설정할 수 있다. 단, 링킹 벡터(linking vector)는 서브 프리코더와 독립적으로 설정된다.
도 18은 평판 어레이(square array)에서 행(row) 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 18을 참조하면, N t_v 개의 행과 N t_h 개의 열 형태의 N t ( = N t_v×N t_h )개의 안테나로 구성된 평판 어레이(square array)에서 각 행을 하나의 구획으로 설정한다. 만일 행 간의 거리가 가깝고 N t_v 가 크지 않은 환경에서는 모든 구획에 동일한 프리코딩 방식을 적용하도록 설정할 수 있다. 단, 링킹 벡터(linking vector)는 서브 프리코더와 독립적으로 설정된다.
도 19는 평판 어레이(square array)에서 행(row) 그룹 기반 정합(Aligned) 분할 프리코딩을 적용하는 예를 설명한다.
도 19를 참조하면, N t_v 개의 행과 N t_h 개의 열 형태의 N t ( = N t_v×N t_h )개의 안테나로 구성된 평판 어레이(square array)에서 N 개의 행으로 구성된 행 그룹을 하나의 구획으로 설정한다. 만일 행 그룹 간의 거리가 가깝고 N t_v 가 크지 않은 환경에서는 모든 구획에 동일한 프리코딩 방식을 적용하도록 설정할 수 있다. 단, 링킹 벡터(linking vector)는 서브 프리코더와 독립적으로 설정된다.
상기 도 16 내지 도 19의 예에서와 같이 모든 구획의 크기가 동일하고 모든 구획에서 동일한 프리코더를 적용한다면 (즉,
Figure 112015108188736-pct00045
), i 번째 레이어에 대한 프리코더는 다음 수학식 과 같이 링킹 프리코더와 서브 프리코더의 Kronecker product로 표현될 수 있다.
Figure 112015108188736-pct00046
또한, 모든 전송 레이어에 동일한 구획화를 수행한다면, 전체 레이어에 대한 MIMO 프리코더는 다음 수학식 22와 같이 크기 M×N s 인 연결 행렬 A 와 크기
Figure 112015108188736-pct00047
의 서브 프리코딩 행렬
Figure 112015108188736-pct00048
의 Khatri-Rao product (column-wise Kronecker product)로 표현될 수 있다.
Figure 112015108188736-pct00049
또한, 상기 도 17과 같이, 2차원 안테나 포트 어레이 환경에서 각 열을 구획으로 구성한 경우, 상기 서브 프리코더 vi 또는 V 는 수직 빔포밍 (또는 elevation beamforming)을 수행하고, 상기 링킹 프리코더 ai 또는 A 는 수평 빔포밍 (또는 Azimuth beamforming)을 수행한다. 마찬가지로, 상기 도 18과 같이 2차원 안테나 포트 어레이 환경에서 각 행을 구획으로 구성한 경우, 상기 서브 프리코더 vi 또는 V 는 수평 빔포밍을 수행하고, 상기 링킹 프리코더 ai 또는 A 는 수직 빔포밍을 수행한다.
결국 도 17의 예시나 도 18의 예시와 같이, 2차원 안테나(포트) 어레이 환경에서 행 또는 열 방향으로 완전 정합 (perfectly aligned) 분할 프리코딩을 수행하는 경우, 3 차원 빔포밍을 수행하는 프리코더는 하나의 서브 프리코더와 하나의 링킹 프리코더로 표현될 수 있고, 둘 중 하나의 프리코더는 수직 빔포밍을 수행하며 나머지 하나는 수평 빔포밍을 수행하게 된다.
이와 같이 완전 정합 분할 프리코딩이 수행되는 환경에서 제안하는 분할 빔포밍을 적용하는 경우, 모든 구획에 대한 프리코딩이 일치된 환경에서 기지국은 서브 프리코더와 링킹 프리코더 중 어느 하나에 폐루프 프리코딩을 수행하고, 나머지에는 디폴트 프리코딩, 참조 프리코딩 및 랜덤 프리코딩 중 하나를 적용한다.
상기 도 17 및 도 18과 같이 2차원 안테나 어레이로 구성된 환경에서 3D 빔포밍을 수행하는데 유용하다. 3D 빔포밍, 특히 단말 특정 (UE-specific) 3D 빔포밍은 단말의 수평적, 수직적 위치와 3차원 공간상의 페이딩(fading) 환경에 의해 전송 성능을 최적화할 수 있는 장점이 있다. 그러나 단말 특정 3D 빔포밍은 폐루프 프리코딩 방식으로 이를 원활히 수행하기 위해서는 기지국과 단말간의 정확한 채널 정보(CSI)를 요구한다.
따라서, 기지국 안테나 수의 증가와 빔포밍 차수 증가에 의하여 MIMO 전송 방식에 따른 성능 최저치와 최대치간의 차이가 더 심해지므로, 채널 추정 오류, 피드백 오류 및 채널 애이징(aging) 등의 기지국 CSI추정 오류 요인에 의한 성능 민감도가 더 높아진다. 기지국의 CSI추정 오류가 심하지 않은 경우에는 채널 코딩 등의 효과로 정상적인 전송이 될 수도 있지만, 그 오류가 심한 경우 패킷 수신 오류가 발생하여 패킷 재전송이 일어나는 등 극심한 성능 저하가 발생할 수 있다.
예를 들어, 기지국과 수평방향으로 빠르게 이동중인 단말에게 3D 빔포밍을 수행하는 것은 패킷 재전송 확률이 높다. 기존에는 이러한 단말에게 개루프 프리코딩 방식을 사용하였으나 이 단말은 수직 방향으로는 정적인(static) 채널을 겪으므로 수직 빔포밍을 수행하는 것이 유리하다. 반대로 수직방향으로 빠르게 이동중인 단말 혹은 수직 방향으로 scattering이 심한 환경에 있는 단말에게는 수평 빔포밍을 수행하는 것이 유리하다. 또한, 좁고 높은 빌딩 내에 위치한 단말에게는 3D 빔포밍을 수행하되 기지국이 수평 빔포밍 방향을 특정 방향으로 고정할 수 있다. 즉, 해당 단말에게는 수직 빔포밍만을 위해 피드백 정보를 구성하도록 유도하여 피드백 오버해드를 줄일 수 있다.
따라서, 분할 빔포밍을 3D 빔포밍 환경에 적용하면 사용자 환경에 맞춰 2D 빔포밍(수직 빔포밍 또는 수평 빔포밍)을 수행할 수 있다. 이러한 측면에서 상기 기법은 partial dimensional beamforming이라고 지칭할 수도 있다. 예를 들어, 2차원 송신 안테나 포트를 가진 기지국은 수직 프리코더와 수평 프리코더 중 어느 하나에 폐루프 프리코딩을 수행하고, 나머지에는 디폴트 프리코딩, 참조 프리코딩 및 랜덤 프리코딩 중 하나의 프리코딩 방식을 적용할 수 있다.
상술한 바와 같이, 분할 프리코딩 방식에서 각 서브 프리코더 및 링킹 프리코더는 기지국의 데이터 전송 관점에서 정의되었다. 단말 관점에서는 폐루프 방식이 적용되는 서브 프리코더 및 링킹 프리코더에 관련하여, 선호하는 프리코더에 관련된 정보(PPI; preferred precoding index)를 기지국에 전송할 수 있다. 대표적인 PPI로 행렬 프리코더들을 인덱스화한 후 선호하는 인덱스를 피드백하는 PMI 피드백 방식을 들 수 있다.
일부 피드백 정보가 구획 및/또는 구획들을 연결하는 값들로 구성된 단위로 분리된다면, 기지국이 단말에게 전송하는 파일럿 신호들도 특정 안테나 포트들의 집합과 연계할 수 있다. 이러한 파일럿 신호들의 집합을 파일럿 패턴이라 한다. 대표적인 파일럿 패턴으로 LTE시스템에서 사용하는 측정 파일럿(measurement pilot)인 NZP(non-zero-power) CSI-RS 자원 (또는 프로세스)이다. 예를 들어, 다음과 같은 구획, CSI-RS, 및 PMI 피드백 사이의 맵핑 관계를 정의할 수 있다.
A. Aligned unit of Partition & Pilot pattern & PMI feedback
1. (Partition) 16개의 안테나 포트로 구성된 시스템에서 기지국은 8개의 안테나 포트씩 두 개의 구획으로 구성하여 분할 프리코딩을 수행
2. (Pilot pattern) 분할 프리코딩을 지원하기 위해 기지국은 각 구획마다 8tx NZP CSI-RS 자원을 할당하여 전송 즉, 단말에게 두 개의 co-located NZP CSI-RS 자원을 설정
3. (PMI feedback) 단말은 두 안테나 포트 구획들에 대한 PMI1, PMI2 및 PMI1과 PMI2를 연결하는 연결 계수값들 (예를 들어, 링킹 프리코더에 대한 PMI3)를 피드백
즉, 각 안테나 포트 구획에 대해 별도의 NZP CSI-RS 자원을 할당하는 경우, 하나의 기지국(또는 전송 포인트(transmission point))에 속한 다수의 co-located(또는 동기화된) 안테나 포트 구획들에 대해 기지국은 단말에게 다수의 NZP CSI-RS자원들을 설정할 수 있다. 이 때, CoMP 전송 등에 활용되는 non-co-located 안테나 포트 패턴과 상기 co-located 안테나 포트 패턴들을 구별하기 위해 기지국은 NZP CSI-RS 자원 간의 co-location 여부를 추가로 알려줄 수 있다. 예를 들어, 다수의 NZP CSI-RS 자원 간의 QCL(quasi-co-location) 조건을 단말에게 알려줄 수 있다.
파일럿 전송 단위와 안테나 포트 구획 단위는 상기 예처럼 일치해야 하는 것은 아니다. 예를 들어, 8tx CSI-RS 자원을 하나 설정한 상태에서 단말은 두 개의 4tx 구획에 대한 피드백 정보를 구성할 수도 있다. 또한 안테나 포트 구획 단위와 피드백 단위도 일치해야 하는 것은 아니다. 특히, 정합(aligned) 분할 프리코딩의 경우, 동일한 프리코딩을 적용하는 구획들에 대해서는 공통된 PPI 피드백 정보가 피드백 될 수 있으므로 다수의 구획에 대해 하나의 피드백 단위가 구성될 수 있다.
B. Not aligned unit of Partition & Pilot pattern & PMI feedback
1. (Partition) 안테나 포트 구획화는 상기 도 18과 동일하게 구성된다고 가정.
2. (PMI feedback) 피드백 정보는 완전 정합 분할 프리코딩인 경우를 고려하여 모든 구획에 대해 공통적으로 적용될 수 있는 PPI(이하, 공통 PPI)와 연결 계수값들로 구성. 이 경우, 구획 단위와 피드백 단위는 상이하다고 볼 수 있다.
3. (Pilot pattern) 파일럿 패턴 할당 방법은 다양할 수 있다. 도 20 내지 도 22는 파일럿 패턴 할당 방법들을 예시한다. 구체적으로, 도 20와 같이 각 구획 별로 별개의 파일럿 자원을 설정할 수도 있고, 도 21과 같이 단말이 공통 PPI를 계산할 수 있도록 첫 번째 구획에 하나의 파일럿 패턴을 전송하고 단말이 연결 계수 값들을 계산할 수 있도록 링킹 프리코더가 적용되는 안테나 포트들에게 하나의 파일럿 패턴을 전송할 수도 있다. 또는 단말이 공통 PPI와 연결계수들을 한꺼번에 계산할 수 있도록 도 22과 같이 하나의 파일럿 패턴만 설정할 수도 있다.
한편, 상술한 바와 같이 폐루프 MIMO 프리코딩을 지원하기 위해서는 단말이 파일럿을 전송하거나 피드백 정보를 전송해야 한다. 일반적으로 FDD(frequency division duplexing) 시스템에서는 상향링크와 하향링크의 주파수 대역이 다르기 때문에 단말이 파일럿을 전송하여 상향링크와 하향링크간의 채널 대칭성을 이용하여 기지국이 하향링크 채널을 추정하는 방법은 적합하지 않기 때문에, 피드백 정보를 구성하여 전송하는 것이 바람직하다.
피드백 정보는 명시적(explicit) 정보와 암시적(implicit) 정보로 구분할 수 있으며, 피드백 오버해드를 고려하여 PPI(preferred precoder index)형태의 암시적 정보가 주로 사용된다. 암시적 피드백으로 폐루프 구획 프리코딩(Closed loop Partitioned precoding)을 지원하기 위해서는 각 구획 프리코더에 대한 PPI 정보와 링킹 프리코더에 대한 PPI 정보가 피드백 정보로 구성될 수 있다.
본 발명에서는 모든 구획의 프리코더가 동일하게 설정되는 완전 정합 프리코딩(perfectly aligned precoding)에서의 피드백 방식을 제안한다. 상술한 바와 같이, 완전 정합 프리코딩을 수행하기 위해서는 송신기는 모든 안테나 포트 구획에 공통적으로 적용되는 공통 구획 프리코더(common partitioned precoder)와 안테나 포트 구획들을 연결할 링킹 프리코더(linking precoder)를 결정해야 한다. 따라서, 수신기인 단말은 송신기인 기지국이 구획 프리코더와 링킹 프리코더를 효율적으로 선택할 수 있도록 피드백 정보를 구성해야 한다. 단말이 피드백 정보를 구성하는 방법은 기지국의 파일럿 신호 전송 방법과도 밀접한 연관성이 있다.
도 20과 같이 안테나 포트 구획마다 별개의 파일럿 패턴이 전송되는 경우를 고려하자. 이 때, 단말은 다음과 같이 피드백 정보를 구성한다.
1) QCL 가정이 가능한 파일럿 패턴에 공통적으로 적용될 PPI
2) QCL 가정이 가능한 파일럿 패턴에 대한 PPI를 연결하기 위한 연결계수 정보 (예를 들어, 링킹 프리코더에 대한 PPI)
3) RI (Rank Indicator)
4) 상기 1) 내지 3)을 적용한 경우의 CQI
상술한 바와 같이 파일럿 패턴은 LTE시스템에서 NZP CSI-RS 자원 혹은 CSI 프로세스로 해석 가능하다. 즉, LTE 시스템에서 하나의 파일럿 패턴이라 함은 (1) 하나의 NZP CSI-RS 자원, (2) 하나의 CSI 프로세스, 또는 (3) 하나의 CSI 프로세스 내에 포함된 하나의 NZP CSI-RS 자원을 의미할 수 있다. 특히, (3)의 경우, LTE 시스템과 같이 CSI 프로세스 내에는 하나의 NZP CSI-RS 자원만 포함되는 경우 뿐만 아니라, 하나의 CSI 프로세스 내에 다수의 NZP CSI-RS 자원이 포함되도록 확장되는 경우도 고려한 것이다. 상기 PPI는 프리코더가 행렬형태로 이루어진 경우 PMI로 표현될 수 있다.
본 발명은 단말이 동일한 전송 포인트에서 전송되어 QCL 가정이 가능한 파일럿 패턴들에 대해서만 선별적으로 적용 가능하다. 단말이 다수의 파일럿 패턴간에 QCL 가정 가능 여부를 판단할 수 있는 방법의 예시는 다음과 같다.
1. 파일럿 패턴간 QCL 가정 가능 여부에 대해 기지국이 단말에게 명시적 혹은 암시적으로 알려줄 수 있다.
예를 들어, 복수의 NZP CSI-RS 자원들 또는 복수의 CSI 프로세스들에 QCL 가정 여부에 대한 지시자를 포함시킬 수 있고, 또는 RRC 시그널링으로 QCL 가정이 가능한 NZP CSI-RS 자원들에 대한 정보를 별도로 알려줄 수도 있다. 추가적으로, 단말은 단일 CSI 프로세스 내에 존재하는 다수의 NZP CSI-RS 자원들은 모두 QCL 가정이 가능하다고 간주할 수 있으며, 이 경우 기지국은 QCL 가정이 가능한 NZP CSI-RS 자원들을 단일 CSI 프로세스 내에서 설정하는 것이 바람직하다.
2. 또는, 단말이 자율적으로 파일럿 패턴 간 QCL 가정 가능 여부를 판단할 수 있다.
예를 들어, 각각의 파일럿 패턴에 대하여 수신 타이밍 오프셋(timing offset)의 차이를 산출하여 QCL 가정 가능 여부를 판단할 수 있다. 구체적으로, 수신 타이밍 오프셋의 차이가 임계값 이내인 경우에 QCL 가정이 가능한 파일럿 패턴으로 판단할 수 있다. 또는, 각 파일럿 패턴으로 추정한 채널의 특성으로 QCL 가정 가능 여부를 판단할 수 있다. 구체적으로, 추정한 채널의 특성이 유사한 경우 QCL 가정이 가능한 파일럿 패턴으로 판단할 수 있다.
한편, 단말은 상기 정보 1), 즉 QCL 가정이 가능한 파일럿 패턴에 공통적으로 적용될 PPI를 다음 중 하나의 방식을 사용할 수 있다.
A) 각 파일럿 패턴으로 추정한 채널들에 공통적으로 적용될 공통 PPI와 연결계수의 후보들을 모두 적용하고, 이에 기반하여 성능이 최대가 되는 공통 PPI와 연결 계수 집합을 동시에 선택한다. 즉, 상기 정보 1)과 상기 정보 2)를 동시에 산출하는 방식이다.
B) 다음으로, 파일럿 패턴 간 위상 차는 링킹 계수에서 먼저 적용한 후, 각 파일럿 패턴으로 추정한 채널들의 평균을 취해 평균 채널에 대한 PPI를 산출하는 방법도 고려할 수 있다.
C) 마지막으로, 각 파일럿 패턴에 대한 PPI를 우선 산출하고, 최종적인 공통 PPI를 추가 산출할 수도 있다. 여기서, 각 파일럿 패턴에 대한 PPI들로부터 공통 PPI를 구하는 방식은 다양할 수 있다. 예를 들어, PPI들의 평균값에 가장 가까운 PPI 또는 채널 추정값에 대한 신뢰도가 가장 높은 PPI를 공통 PPI로 산출할 수 있다.
한편, 단말은 상기 정보 2)를 산출함에 있어, 상기 A)와 같이 정보 2)와 동시에 산출할 수도 있고, 공통 PPI를 우선 산출한 후 공통 PPI의 성능을 최적화하는 연결 계수를 산출할 수도 있다. 혹은 상기 B)와 같이 각 파일럿 패턴의 첫 번째 파일럿으로 추정된 채널들에 기반하여 우선적으로 연결 계수를 산출한 후에 공통 PPI를 산출할 수도 있다. 또는, 공통 PPI와 연결 계수는 상호 연관 없이 독립적으로 산출될 수도 있다.
추가적으로, 상기 정보 3)인 RI를 산출함에 있어서는, 각 랭크에 따라 최적화된 정보 1) 및 2)를 산출한 후, 성능을 최적화할 수 있는 RI를 선택하는 것이 바람직하다. 물론 상기 정보 4)는 최종적으로 선택된 정보 1) 내지 정보 3)을 적용한 CQI 값을 의미한다.
2D 어레이 환경에서 행 또는 열 방향으로 각각 파일럿 패턴이 전송되는 경우 상기 정보 1)과 정보 2)는 각각 수평 빔포밍을 위한 PPI와 수직 빔포밍을 위한 PPI로 대체되어 적용될 수 있다. 물론, 상기 정보 1)과 정보 2)는 각각 수직 빔포밍을 위한 PPI와 수평 빔포밍을 위한 PPI로 적용될 수도 있다
이하에서는 보다 구체적인 실시예를 설명한다. 우선, 도 20과 같이 행 방향으로 파일럿 패턴이 전송된다고 가정한다. 이와 같은 경우, LTE 시스템에서 피드백 그래뉴얼리티(granularity)를 결정하는 다양한 방법의 예들은 다음과 같다.
공통 PPI (또는 수평 빔포밍을 위한 프리코더)
우선, 서브밴드 공통 PPI로 구성하는 경우를 고려한다. 하나의 파일럿 패턴이 4 안테나 포트 이하로 구성된 경우, 서브밴드로 적용되는 단일 PMI를 피드백한다. 그러나, 하나의 파일럿 패턴이 8 안테나 포트 이상으로 구성된 경우, 광대역으로 적용되는 제 1 PMI, 서브밴드로 적용되는 제 2 PMI를 피드백한다.
또한, 광대역(Wideband) 공통 PPI로 구성하는 경우를 고려한다. 하나의 파일럿 패턴이 4 안테나 포트 이하로 구성된 경우, 광대역으로 적용되는 단일 PMI를 피드백한다. 그러나, 하나의 파일럿 패턴이 8 안테나 포트 이상으로 구성된 경우, 광대역으로 적용되는 제 1 PMI 및 제 2 PMI를 피드백한다.
링킹 PPI (또는 수평 빔포밍을 위한 프리코더) 및 CQI
링킹 PPI 및 CQI에 관해서는, 상기 공통 PPI의 서브밴드 적용 또는 광대역 적용과 관련하여, 아래 모드 1 내지 모드 6까지의 피드백 모드를 고려할 수 있다.
- 모드 1: 공통 PPI →서브밴드, 링킹 PPI→서브밴드, CQI→서브밴드
- 모드 2: 공통 PPI→서브밴드, 링킹 PPI: 광대역, CQI→서브밴드
- 모드 3: 공통 PPI→광대역, 링킹 PPI→광대역, CQI→서브밴드
- 모드 4: 공통 PPI→서브밴드, 링킹 PPI→서브밴드, CQI→광대역
- 모드 5: 공통 PPI→서브밴드, 링킹 PPI→광대역, CQI→광대역
- 모드 6: 공통 PPI→광대역, 링킹 PPI→광대역, CQI→광대역
단, RI (Rank Indicator)는 광대역 피드백 정보로 적용하는 것이 바람직하다.
한편, 수직 빔포밍이 큰 이득을 얻는 환경은, 단말이 고층 빌딩에 위치한 경우와 같이, 기지국과 단말이 LoS (Line of Sight) 환경일 경우가 일반적이다. 따라서, 수평 빔포밍을 위한 PPI를 서브밴드 단위로 피드백 하더라도 굳이 수직 빔포밍을 위한 PPI를 서브밴드 단위로 피드백 할 필요가 없을 수 있으므로, 상기 모드 2나 상기 모드 5와 같은 피드백 모드가 피드백 오버헤드 대비 성능이 최적화 될 수 있다.
상기 피드백 모드들은 일 예일 뿐, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 서브밴드 단위의 RI를 피드백 하거나, 공통 PPI를 광대역에 적용하면서 링킹 PPI는 서브밴드 단위로 적용하는 경우를 배제하는 것이 아니다.
본 발명에서는, 전체 전송 레이어에 대하여 하나의 CQI가 피드백 됨을 가정하였으나, 이는 제한되는 것은 아니다. 예를 들어, LTE시스템과 같이, 다수의 레이어 전송 시 동일한 MCS 레벨을 적용되는 그룹인 코드워드 단위로 CQI가 피드백 될 수 있다. 이러한 경우, 본 발명의 실시예에서 기술하고 있는 CQI는 '코드워드 당 하나의 CQI로 적용할 수 있다.
나아가, PPI 혹은 PMI 는 하나의 인덱스로만 표현되어야 하는 것은 아니다. 예를 들어, LTE시스템에서는 기지국이 총 8개의 안테나 포트를 통하여 신호를 전송할 경우, 단말은 PMI두 개를 피드백 하도록 규정되어 있다. 따라서, 하나의 파일럿 패턴이 8개 혹은 그 이상의 안테나 포트들로 구성된 경우, 둘 이상의 PMI들이 해당 파일럿 패턴에 대한 선호 인덱스를 나타내는 데 사용될 수 있다.
또한, 본 발명에서 제안하는 피드백 정보를 광대역 시스템에서 적용한다면 특정 주파수 영역(예를 들어, 서브밴드, 부반송파, 자원 블록 등)으로 구분하여 각 주파수 영역에 대해 별개의 피드백 정보 집합을 피드백할 수 있다. 혹은 단말이 선택하거나 기지국이 지정한 특정 주파수 영역에 대해서만 피드백 정보가 전송될 수 있다. 상기 주파수 영역은 주파수 연속적인 하나 이상의 영역으로 구성되거나 주파수 불연속적인 영역으로 구성될 수 있다.
도 23은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 23을 참조하면, 통신 장치(2300)는 프로세서(2310), 메모리(2320), RF 모듈(2330), 디스플레이 모듈(2340) 및 사용자 인터페이스 모듈(2350)을 포함한다.
통신 장치(2300)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(2300)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(2300)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(2310)는 도면을 참조하여 예시한 본 발명의 실시 예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(2310)의 자세한 동작은 도 1 내지 도 22에 기재된 내용을 참조할 수 있다.
메모리(2320)는 프로세서(2310)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(2330)은 프로세서(2310)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(2330)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(2340)은 프로세서(2310)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(2340)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(2350)은 프로세서(2310)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (16)

  1. 무선 통신 시스템에서 다중 안테나 기반 빔포밍을 위하여 단말이 기지국으로 채널 상태 정보를 보고하는 방법에 있어서,
    복수의 참조 신호 자원들에 관한 정보를 상기 기지국으로부터 수신하는 단계;를 포함하되,
    상기 다중 안테나는 행 단위 또는 열 단위의 구획들로 구획화되고,
    QCL (quasi co-located)하다는 가정이 가능한 상기 복수의 참조 신호 자원들에 대응되는 안테나 구획들에 공통적으로 적용하기 위한 하나의 선호 프리코더에 관한 정보와 상기 안테나 구획들을 연결하기 위한 하나의 링킹 프리코더에 관한 정보를 포함하는 채널 상태 정보를 생성하는 단계; 및
    상기 채널 상태 정보를 상기 기지국으로 보고하는 단계를 포함하고,
    각각의 상기 복수의 참조 신호 자원들은 상기 구획들 각각에 대응하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  2. 제 1 항에 있어서,
    상기 채널 상태 정보는 하나의 랭크 지시자를 포함하고,
    상기 하나의 랭크 지시자는 상기 하나의 선호 프리코더 및 상기 하나의 링킹 프리코더를 적용한 경우의 최적 랭크를 지시하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  3. 제 2 항에 있어서,
    상기 채널 상태 정보는 하나의 채널 품질 지시자를 포함하고,
    상기 하나의 채널 품질 지시자는 상기 하나의 선호 프리코더, 상기 하나의 링킹 프리코더 및 상기 최적 랭크를 적용한 경우의 채널 품질을 지시하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  4. 삭제
  5. 삭제
  6. 제 1 항에 있어서,
    상기 QCL하다는 가정이 가능한 복수의 참조 신호 자원들은 광범위 특성(Large scale property)이 동일하다고 간주하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  7. 제 6 항에 있어서,
    상기 광범위 특성은,
    도플러 확산 (Doppler spread), 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 및 지연 확산 (delay spread) 중 적어도 하나를 포함하는 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  8. 제 1 항에 있어서,
    상기 안테나 구획들은,
    완전 정합 (perfectly aligned) 상태인 것을 특징으로 하는,
    채널 상태 정보 보고 방법.
  9. 무선 통신 시스템에서 기지국이 다중 안테나 기반 빔포밍을 위한 채널 상태 정보를 단말로부터 수신하는 방법에 있어서,
    복수의 참조 신호 자원들에 관한 정보를 상기 단말로 송신하는 단계;를 포함하되,
    상기 다중 안테나는 행 단위 또는 열 단위의 구획들로 구획화되고,
    QCL (quasi co-located)하다는 가정이 가능한 상기 복수의 참조 신호 자원들에 대응되는 안테나 구획들에 공통적으로 적용하기 위한 하나의 선호 프리코더에 관한 정보와 상기 안테나 구획들을 연결하기 위한 하나의 링킹 프리코더에 관한 정보를 포함하는 채널 상태 정보를 수신하는 단계를 포함하고,
    각각의 상기 복수의 참조 신호 자원들은 상기 구획들 각각에 대응하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  10. 제 9 항에 있어서,
    상기 채널 상태 정보는 하나의 랭크 지시자를 포함하고,
    상기 하나의 랭크 지시자는 상기 하나의 선호 프리코더 및 상기 하나의 링킹 프리코더를 적용한 경우의 최적 랭크를 지시하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  11. 제 10 항에 있어서,
    상기 채널 상태 정보는 하나의 채널 품질 지시자를 포함하고,
    상기 하나의 채널 품질 지시자는 상기 하나의 선호 프리코더, 상기 하나의 링킹 프리코더 및 상기 최적 랭크를 적용한 경우의 채널 품질을 지시하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  12. 삭제
  13. 삭제
  14. 제 9 항에 있어서,
    상기 QCL하다는 가정이 가능한 복수의 참조 신호 자원들은 광범위 특성(Large scale property)이 동일하다고 간주하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  15. 제 14 항에 있어서,
    상기 광범위 특성은,
    도플러 확산 (Doppler spread), 도플러 시프트 (Doppler shift), 평균 지연 (average delay) 및 지연 확산 (delay spread) 중 적어도 하나를 포함하는 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
  16. 제 9 항에 있어서,
    상기 안테나 구획들은,
    완전 정합 (perfectly aligned) 상태인 것을 특징으로 하는,
    채널 상태 정보 수신 방법.
KR1020157031917A 2013-05-07 2014-04-30 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치 KR102182168B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361820177P 2013-05-07 2013-05-07
US61/820,177 2013-05-07
PCT/KR2014/003855 WO2014182002A1 (ko) 2013-05-07 2014-04-30 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20160012129A KR20160012129A (ko) 2016-02-02
KR102182168B1 true KR102182168B1 (ko) 2020-11-24

Family

ID=51867439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157031917A KR102182168B1 (ko) 2013-05-07 2014-04-30 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US9853704B2 (ko)
EP (1) EP2996258B1 (ko)
JP (1) JP6294468B2 (ko)
KR (1) KR102182168B1 (ko)
WO (1) WO2014182002A1 (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103463B (zh) * 2013-04-10 2018-08-17 Lg电子株式会社 用于无线通信系统中的多层三维波束成形的层对齐方法和设备
CN105210402B (zh) * 2013-05-09 2018-11-16 富士通株式会社 移动台和报告方法
WO2014190903A1 (en) 2013-05-31 2014-12-04 Qualcomm Incorporated Linear precoding in full-dimensional mimo systems and dynamic vertical sectorization
US9866307B2 (en) * 2013-07-14 2018-01-09 Lg Electronics Inc. Method for transceiving data symbol using antenna correlation in wireless access system which supports massive antenna
WO2015053790A1 (en) * 2013-10-11 2015-04-16 Intel Corporation Transmit beamforming sounding with traveling pilots
US9774430B2 (en) * 2014-05-22 2017-09-26 Lg Electronics Inc. Method and apparatus for channel estimation in wireless communication system
WO2016086971A1 (en) * 2014-12-02 2016-06-09 Nokia Solutions And Networks Management International Gmbh Coded allocation of channel state information reference signals
CN106685501B (zh) * 2015-11-05 2020-09-25 电信科学技术研究院 一种波束赋形的方法及装置
CN107370556A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 信道质量反馈方法、用户终端、信道质量测量的控制方法及基站
US10979191B2 (en) * 2016-08-05 2021-04-13 Samsung Electronics Co., Ltd. Method and apparatus for reference signal signaling for advanced wireless communications
IL264602B (en) * 2016-08-10 2022-08-01 Idac Holdings Inc A method for reporting channel status information in a massive antenna system
KR102429734B1 (ko) * 2016-08-18 2022-08-05 삼성전자 주식회사 이동 통신 시스템에서 위상을 스위칭해 신호를 전송하는 방법 및 장치
US10057863B2 (en) * 2016-10-07 2018-08-21 Futurewei Technologies, Inc. Apparatus, computer program, and method for setting a power of a cell node based on cell node gradient information
CN108391315B (zh) * 2016-11-03 2019-03-26 华为技术有限公司 一种信息传输方法及设备
MX2019004848A (es) * 2016-11-03 2019-06-20 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento de transmisión de datos, equipo de usuario y dispositivo de red.
KR102561715B1 (ko) * 2016-11-24 2023-08-02 삼성전자주식회사 무선 셀룰라 통신 시스템에서 부분 재전송 방법 및 장치
EP4210269A1 (en) 2017-01-06 2023-07-12 LG Electronics Inc. Method for transmitting reference signal in wireless communication system and apparatus therefor
CN108400853B (zh) * 2017-02-06 2020-01-10 中兴通讯股份有限公司 参考信号的配置方法、配置装置及通信节点
CN108400855B (zh) * 2017-02-07 2022-09-13 中兴通讯股份有限公司 一种相位噪声导频的配置、确定、信息反馈方法及装置
CN109302220B (zh) * 2017-07-25 2021-12-28 华为技术有限公司 用于数据传输的方法、装置和系统
CN109495149B (zh) 2017-09-11 2021-10-15 华为技术有限公司 通信方法、网络设备、终端设备和系统
EP3576312A1 (en) * 2018-05-30 2019-12-04 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Doppler-delay codebook-based precoding and csi reporting for wireless communications systems
US11140711B2 (en) * 2018-08-08 2021-10-05 Acer Incorporated Method for downlink reception and user equipment using the same
EP3850761A1 (en) * 2018-09-11 2021-07-21 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Doppler codebook-based precoding and csi reporting for wireless communications systems
CN111182561A (zh) * 2018-11-12 2020-05-19 中兴通讯股份有限公司 一种天线阵列的控制方法及系统
EP3935743A1 (en) * 2019-03-08 2022-01-12 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting and codebook structure for doppler-delay codebook-based precoding in a wireless communications systems
SG11202110126YA (en) * 2019-04-04 2021-10-28 Nokia Technologies Oy Uplink control information
US10973062B2 (en) 2019-08-26 2021-04-06 International Business Machines Corporation Method for extracting environment information leveraging directional communication
US20230111205A1 (en) * 2021-10-08 2023-04-13 Mediatek Inc. Csi acquisition for distributed mimo
CN115052296B (zh) * 2022-05-25 2023-09-05 中电信数智科技有限公司 一种可用于6G的智能Rank下行速率优化的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076028A1 (en) * 2010-09-29 2012-03-29 Hyunsoo Ko Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US20120127869A1 (en) 2010-11-22 2012-05-24 Sharp Laboratories Of America, Inc. Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320284B2 (en) * 2007-05-07 2012-11-27 Nokia Corporation Apparatus and method for channel reciprocity in a wireless network
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US8634319B2 (en) 2009-09-27 2014-01-21 Lg Electronics Inc. Method whereby a channel quality indicator is fed back by a terminal in a multiple-antenna wireless communication system, and a device therefor
CN102484874B (zh) 2010-02-24 2015-12-02 中兴通讯(美国)公司 用于lte-advance系统中csi-rs资源分配的方法和系统
KR20120036698A (ko) * 2010-10-08 2012-04-18 주식회사 팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법
US9331757B2 (en) 2011-04-29 2016-05-03 Interdigital Patent Holdings, Inc. Open loop spatial processing
CN102938688B (zh) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
US8902921B2 (en) * 2011-08-16 2014-12-02 Mediatek Singapore Pte Ltd. Methods for inter-user interference indication feedback and usage in MU-MIMO wireless systems
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
US8885752B2 (en) * 2012-07-27 2014-11-11 Intel Corporation Method and apparatus for feedback in 3D MIMO wireless systems
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
WO2014107012A1 (en) * 2013-01-02 2014-07-10 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
US10193665B2 (en) * 2013-03-21 2019-01-29 Texas Instruments Incorporated Reference signal for 3D MIMO in wireless communication systems
WO2014168315A1 (en) * 2013-04-08 2014-10-16 Lg Electronics Inc. Method and apparatus for reporting channel state information for fractional beamforming in a wireless communication system
CN105103463B (zh) * 2013-04-10 2018-08-17 Lg电子株式会社 用于无线通信系统中的多层三维波束成形的层对齐方法和设备
KR102194928B1 (ko) * 2013-05-01 2020-12-24 엘지전자 주식회사 무선 통신 시스템에서 분할 빔포밍을 위하여 단말이 피드백 정보를 전송하는 방법 및 이를 위한 장치
US20160072562A1 (en) * 2014-09-10 2016-03-10 Samsung Electronics Co., Ltd. Channel state information reporting with basis expansion for advanced wireless communications systems
US9537552B2 (en) * 2014-09-12 2017-01-03 Samsung Electronics Co., Ltd. Method and apparatus for channel state information based on antenna mapping and subsampling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120076028A1 (en) * 2010-09-29 2012-03-29 Hyunsoo Ko Method and apparatus for performing effective feedback in wireless communication system supporting multiple antennas
US20120127869A1 (en) 2010-11-22 2012-05-24 Sharp Laboratories Of America, Inc. Multiple channel state information (csi) reporting on the physical uplink shared channel (pusch) with carrier aggregation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Alcatel-Lucent Shanghai Bell, et.al., Considerations on CSI feedback enhancements for high-priority antenna configurations, R1-112420, 3GPP TSG RAN WG1 #66 (2011.08.18.)*
Samsung, Further discussion on quasi co-location of CSI-RS and CRS, R1-124913, 3GPP TSG RAN WG1 #71 (2012.11.03.)*

Also Published As

Publication number Publication date
KR20160012129A (ko) 2016-02-02
US9853704B2 (en) 2017-12-26
JP2016526315A (ja) 2016-09-01
EP2996258A1 (en) 2016-03-16
EP2996258B1 (en) 2019-07-31
JP6294468B2 (ja) 2018-03-14
WO2014182002A1 (ko) 2014-11-13
EP2996258A4 (en) 2017-01-04
US20160087708A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
KR102182168B1 (ko) 무선 통신 시스템에서 3 차원 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치
KR102194928B1 (ko) 무선 통신 시스템에서 분할 빔포밍을 위하여 단말이 피드백 정보를 전송하는 방법 및 이를 위한 장치
KR102179823B1 (ko) 무선 통신 시스템에서 부분 안테나 어레이 기반 빔포밍를 위한 채널 상태 정보 보고 방법 및 이를 위한 장치
KR102201755B1 (ko) 무선 통신 시스템에서 적응적 안테나 스케일링을 위한 프리코딩 방법 및 이를 위한 장치
KR101893161B1 (ko) 무선 통신 시스템에서 3 차원 mimo를 위한 피드백 정보 산출 방법 및 이를 위한 장치
KR102179822B1 (ko) 무선 통신 시스템에서 부분 안테나 어레이 기반 빔포밍을 안테나 셔플링 수행 방법 및 이를 위한 장치
KR102179820B1 (ko) 무선 통신 시스템에서 부분 안테나 어레이에 기반한 빔포밍 수행 방법 및 이를 위한 장치
JP6141510B2 (ja) 無線通信システムにおいて分割ビームフォーミングのためのチャネル状態情報報告方法及びそのための装置
KR102208122B1 (ko) 무선 통신 시스템에서 대규모 안테나 어레이 기반 빔포밍를 위한 피드백 보고 방법 및 이를 위한 장치
JP6396422B2 (ja) 無線通信システムにおいて分割ビームフォーミングのための制御情報提供方法及びそのための装置
KR102204618B1 (ko) 무선 통신 시스템에서 적응적 안테나 스케일링 기반 참조 신호 송신 방법 및 이를 위한 장치
KR102165452B1 (ko) 무선 통신 시스템에서 다중 안테나 기반 빔포밍를 위하여 참조 신호를 구성하는 방법 및 이를 위한 장치
KR20150143421A (ko) 무선 통신 시스템에서 다중 레이어 3차원 빔포밍을 위한 레이어 정합 방법 및 이를 위한 장치
WO2016052824A1 (ko) 무선 통신 시스템에서 3 차원 mimo를 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2018026073A1 (ko) 무선 통신 시스템에서 빔포밍된 참조 신호에 기반하여 3 차원 mimo를 위한 피드백 정보를 송신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant