WO2018079907A1 - 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈 - Google Patents

플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈 Download PDF

Info

Publication number
WO2018079907A1
WO2018079907A1 PCT/KR2016/013207 KR2016013207W WO2018079907A1 WO 2018079907 A1 WO2018079907 A1 WO 2018079907A1 KR 2016013207 W KR2016013207 W KR 2016013207W WO 2018079907 A1 WO2018079907 A1 WO 2018079907A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
laser
film
present
Prior art date
Application number
PCT/KR2016/013207
Other languages
English (en)
French (fr)
Inventor
조근영
Original Assignee
주식회사 엘에스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘에스텍 filed Critical 주식회사 엘에스텍
Publication of WO2018079907A1 publication Critical patent/WO2018079907A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module, and more particularly, even when a plate to which a solar cell is attached is round or a plate is a cloth, the solar cell is well attached to form a solar cell module. It can be easily attached to the uneven or wrinkled surface, and the attached solar module itself has flexibility, so it can be used in the form of attaching the module to bags, backpacks, clothes, etc.
  • the present invention relates to a method for manufacturing a flexible solar cell module having economical efficiency, and a solar cell module thereof.
  • a solar cell is a device that converts solar light into electrical energy by using a semiconductor property, and recently, a small, thin, and light that can be used as an auxiliary power source for a portable information device such as a mobile phone or a PDA (Personal Digital Assistance).
  • a portable information device such as a mobile phone or a PDA (Personal Digital Assistance).
  • a cell In a typical solar cell, a cell is composed of a semiconductor that absorbs sunlight and generates charges, an upper electrode positioned on the side of the light receiving surface where light is incident, and a lower electrode positioned on the opposite side of the upper electrode. Each cell is connected by a metal ribbon (metal connector).
  • the entire connected solar cell is then filled with transparent resin and protected from the external environment by the lower sheet and the transparent upper sheet.
  • each metal ribbon is arranged to connect the upper electrode of one cell and the lower electrode of a neighboring cell.
  • Various cutting means such as a method of applying an external force, a method of chemically cutting, or a method of using a laser, may be used according to the physical characteristics such as the type or strength or hardness of the material to be cut.
  • small cell cutting performs diamond scribing or laser scribing, which results in large cutting widths, defects at the tip of the material, and micro cracks that affect the performance of the solar cell device.
  • Laser scribing is efficient because of its disadvantages
  • U.S. Patent No. 4,019,924 describes a laminate in which a plurality of conductive layers are patterned between a pair of insulating sheets, and a tab that can be bent by cutting a portion of the laminate and making it bendable.
  • the structure of connecting the upper electrode of the cell with the exposed portion of the conductive layer in the tab is disclosed.
  • U.S. Patent Nos. 4,131,755 and 4,227,298 also describe laminates consisting of a conductive layer and a dielectric layer, and acutely formed tabs through a portion of the laminate, and extending the tabs over the top electrode of the cell to connect the conductive and top electrodes.
  • the structure is disclosed.
  • Korean Patent No. 10-1290106 (a solar cell processing method using a laser) describes a solar cell substrate using a laser for forming a bus bar line and a plurality of finger lines arranged in a direction crossing the bus bar line.
  • a battery processing method comprising: a first vector forming step of forming a first mark vector along a line on which a bus bar line is to be formed, a first beam irradiating a laser beam along the first mark vector to form the bus bar line.
  • an inactive section for deactivating the laser on signal and a portion not overlapping with the busbar line in the second mark vector.
  • the conventional solar cell module has a problem that the cost itself of manufacturing the solar cell module is very high because the manufacturing process is several steps and complicated.
  • the present invention provides a method for manufacturing a flexible solar cell module and a flexible solar cell module that can be easily attached to an attaching surface.
  • the solar cell module itself has flexibility (flexibility) to provide a flexible solar cell module manufacturing method and a flexible solar cell module that can be used in the form of a module attached to a bag, backpack, clothes.
  • the present invention is to provide a method for manufacturing a flexible solar cell module and a solar cell module having a low economic cost by significantly simplifying the manufacturing method of the solar cell module.
  • the present invention to solve the above problems and needs,
  • a process of deriving a circuit by performing a development process after the exposure irradiation process (step 4),
  • step 7 Forming a small solar cell module by mounting the small solar cell 10 by SMT on the PCB circuit board 20-1 formed above (step 7);
  • It provides a method of manufacturing a flexible solar cell module comprising a.
  • the present invention is the PI (polyimide) film 20 formed by laminating the copper foil is composed of a polyimide layer 21, a copper foil layer 22,
  • the present invention provides a method of manufacturing a flexible solar cell module, comprising a polyimide layer 21, a copper foil layer 22, and a nickel layer 23.
  • a process (8 process) of covering the small solar cell 10 mounted on the substrate (PCB plate) 20-1 with a hat-shaped finishing material 40 is performed.
  • step 8-1 Process of forming the finishing material 40 in the form of a hat by hat-shaped EVA, PI, PET, EPOXY or silicone (step 8-1),
  • the present invention provides a flexible solar cell module manufactured by the method of manufacturing the flexible solar cell module.
  • the manufacturing method of the flexible solar cell module and the flexible solar cell module manufactured according to the present invention are also attached to the solar cell is well attached to form a solar cell module even when the plate surface is round or the plate surface is a cloth. Even when wrinkled, the solar cell module itself has the flexibility to be wrinkled, so that the solar cell module may not be damaged or the performance may not be deteriorated.
  • the manufacturing method of the flexible solar cell module and the flexible solar cell module manufactured according to the present invention has the effect that the solar cell module itself has flexibility (flexibility) can be used in the form of attaching the module to bags, backpacks, clothes, etc. appear.
  • the manufacturing method of the flexible solar cell module and the flexible solar cell module manufactured according to the present invention have the advantage of significantly lowering the manufacturing cost by greatly simplifying the manufacturing method.
  • FIG. 1 is a cross-sectional structural view of a PI (polyimide) film formed by laminating copper foil.
  • 1B is a cross-sectional structural view of a PI (polyimide) film formed by laminating copper foil having a nickel layer formed thereon.
  • PI polyimide
  • Figure 1c is a PCB circuit board formed by etching (1) copper foil laminated PI film with a chemical material.
  • FIG. 2 is a structural diagram of a PI (polyimide) film laminated with a DFR film.
  • FIG 3 is a process diagram of exposing the DFR film 30.
  • etching 5 is a process of etching (etching).
  • Figures 6 to 6e are small solar cells of various shapes made according to the present invention.
  • FIG. 7 is a conceptual view of the scanning unit of the laser cutting machine according to the present invention.
  • Figure 7b is a schematic conceptual view of the scanning unit of the laser cutting machine according to the present invention.
  • FIG. 8 is a diagram showing half-cutting of a small solar cell of a desired shape by adjusting the irradiation direction of a laser to a solar cell disc according to the present invention.
  • Figure 9 is a process of covering with a capsule-shaped finish in accordance with the present invention.
  • Figure 9b is an embodiment of a capsule-shaped finish in accordance with the present invention.
  • FIG. 10 is a cross-sectional view of a flexible solar cell module according to the present invention.
  • FIG. 10B illustrates the flexibility of a flexible solar cell module in accordance with the present invention.
  • 10c is a view of a flexible solar cell module attached to a bag according to the present invention.
  • the present invention provides a method for manufacturing a flexible solar cell module and a flexible solar cell module manufactured accordingly.
  • the present invention performs a process of forming a PI (polyimide) film 20 formed by laminating copper foil.
  • the PI (polyimide) film 20 formed by laminating the copper foil may include a polyimide layer 21 and a copper foil layer 22.
  • the PI (polyimide) film 20 formed by laminating copper foil is more preferably configured by further adding a nickel layer 23 on the polyimide layer 21 and the copper foil layer 22. .
  • the present invention performs a process of laminating a dry film photoresist (DFR) film 30 on the PI (polyimide) film formed by laminating the copper foil.
  • DFR dry film photoresist
  • the process of laminating with the DFR film is to form a circuit for manufacturing a PCB board.
  • the present invention performs a process of irradiating the exposure to the laminated DFR film 30. (3 process)
  • the exposure irradiation process is a process of forming a circuit of a PCB board for manufacturing a flexible solar cell module by exposing the light rays (mainly ultraviolet rays) emitted from the light source 200 to the DFR film.
  • the light rays mainly ultraviolet rays
  • the shape of the circuit to be used for the PCB board is cured into a DFR film by an exposure irradiation process.
  • the present invention performs a process of deriving a circuit by performing a development process after the exposure irradiation process.
  • the developing process means a process in which an uncured DFR film portion other than the cured DFR film portion (later a circuit portion of a PCB board) is dissolved.
  • the developing process is performed by injecting a dissolving solution into the DFR film portion from the dissolving solution injecting unit 210.
  • a dissolving solution a dissolving agent for dissolving a conventional DFR film may be used, and sodium carbonate may be used.
  • a circuit is formed on a copper foil layer 22 of a PI (polyimide) film 20 formed by laminating copper foil by performing etching and stripping. 20-1) is carried out (step 5).
  • PI polyimide
  • the etching process is performed by injecting the dissolving solution from the dissolution solution injecting unit 220 into the copper foil layer 22 or / and the nickel layer 23.
  • a copper chloride solution or an iron chloride solution is mainly used. .
  • the stripping process described above refers to a process of stripping a DFR film that was temporarily used to form a circuit.
  • the process of stripping the DFR film is carried out by spraying and removing the DFR film solubilizer from the solvent injection unit, and the DFR film solubilizer generally uses a sodium hydroxide solution.
  • the present invention performs a process for preparing and preparing a small solar cell (6 steps).
  • the small solar cell refers to a small solar cell cut from a solar cell disc used in a conventional solar cell module.
  • the process of preparing and preparing the small solar cell is a technical feature of the present invention can be performed as a process of preparing and preparing small solar cells of various shapes.
  • the process of manufacturing and preparing the small solar cells of the above-described various shapes of the present invention may be performed simultaneously with the above-described process of forming the PCB circuit board 20-1 or at any other time regardless of the order.
  • the present invention is a process of inputting the solar cell of the desired shape to the laser cutting machine (step 6-1),
  • the half-cut solar cell is completely cut to form a small solar cell (step 6-3), thereby manufacturing and preparing small solar cells having various shapes.
  • step 1) of inputting the solar cell of the desired shape of the present invention to the laser cutting machine 100 is performed as follows.
  • the prior art and the prior art manufacture only the solar cell 10 of the rectangular or rectangular shape according to the laser scribing or physical cutting only to the x-axis and / and y-axis direction to manufacture the solar cell module There was a problem that can only be done.
  • the present invention is to make it possible to manufacture a solar cell of various shapes such as circular, heart-shaped, polygonal, etc.
  • the technical features of the present invention is characterized in that it can be produced by cutting into a small solar cell 11 of various shapes such as heart-shaped, pentagonal, hexagonal, trivalent, circular, and the like.
  • the present invention inputs a solar cell shape of a shape desired by a user (for example, a heart shape) into a laser cutting machine.
  • the method of inputting the solar cell shape having the desired shape to the laser cutting machine may be input to the controller 140 added to the laser cutting machine by a conventional input method using a conventional controller or a computer.
  • the laser cutting machine 100 of the present invention includes a laser generating unit 110, a scanning unit 120, and a laser irradiation unit 230.
  • the laser cutting machine 100 of the present invention includes a general control unit 140, and is provided with a central processing unit for inputting, analyzing, and interpreting command information by a user.
  • the CPU is equipped with a normal CPU, MCU, etc., is equipped with a memory unit, hardware, and is operated by mounting a laser scribing application program,
  • control unit 140 performs a function of controlling each configuration of the laser generating unit 110, the scanning unit 120, the laser irradiation unit 130, etc. of the laser cutting machine 100 by command control.
  • Laser generator 110 of the laser cutting machine 110 of the present invention means a device or means for generating a laser.
  • the scanning unit 120 of the present invention refers to an apparatus or means for performing a function of changing the irradiation direction of the laser in a circular, elliptical, heart-shaped, polygonal form of the laser generated from the laser generator.
  • the laser irradiation unit 130 of the present invention means a device or means for performing a function of irradiating a laser to the solar cell plate.
  • the technical feature of the present invention is to perform a half cutting process (6-2) by scribing and irradiating a laser to a solar cell plate according to the shape input to the laser cutting machine.
  • a process of adjusting the irradiation direction of the laser generated from the laser generator in accordance with the shape input to the laser cutting machine is performed.
  • the laser generating unit of the present invention generates a high-temperature laser, and adjusts the irradiation direction of the laser according to the shape input to the laser cutting machine by the central processing unit of the control unit.
  • the process of adjusting the irradiation direction of the laser according to the shape input to the laser cutting machine is performed by the scanning unit 120 of the laser cutting machine.
  • the scanning unit 120 of the present invention includes a first reflecting unit 121, a second reflecting unit 122, and an operating motor unit 123.
  • the first reflecting unit 121 of the present invention performs a function of reflecting the laser generated from the laser generating unit 110, but irradiated in the shape input to the laser cutting machine by irradiating a laser to the solar cell plate 200 It performs a function to move the laser irradiation in one of the x coordinate or y coordinate.
  • FIG. 8 is a diagram illustrating half-cutting of a heart-shaped small solar cell by adjusting the irradiation direction of a laser to the solar cell disc 200 according to the present invention.
  • the irradiation direction of the laser is irradiated while moving from the irradiation point coordinates (x, y) 201 to the irradiation point coordinates (x1, y1) 201 so that the solar cell 11 is formed in the shape of a heart.
  • the first reflecting unit 121 performs a function of setting in one of the x coordinate and the y coordinate of the laser irradiation direction.
  • the first reflecting unit 121 moves in conjunction with the operating motor unit 123, and the operating motor unit 123 moves in the x coordinate or y coordinate direction of the irradiation point coordinates (x, y) in the laser irradiation direction.
  • the first reflector is moved to reflect in one direction.
  • the operation motor unit 123 of the present invention performs a function of operating the first reflector by operating the coordinates of the solar cell for the desired shape inputted by the laser cutting machine as input.
  • the coordinates of the solar cell with respect to the desired shape is formed by the control unit 140, the control unit 123 commands the solar cell coordinates for the desired shape to the operating motor unit to operate.
  • the operating motor unit 123 of the present invention means an apparatus or means for operating the first reflecting unit according to the numerically input control command.
  • the operation motor unit 123 of the present invention may use a variety of numerical control motor and may use a galvano motor.
  • the second reflector 122 of the present invention has a direction different from the laser irradiation direction of the first reflector 122, that is, when the first reflector is set in the x-coordinate direction, the second reflector is in the y-coordinate direction. Performs a function that allows you to investigate.
  • the second reflecting unit 122 also moves in conjunction with the operating motor unit 123, the operating motor unit 123 is the x coordinate or y coordinate direction of the irradiation point coordinates (x, y) of the laser irradiation direction
  • the second reflecting portion is moved in one direction (direction different from the first reflecting portion).
  • the operation motor unit 123 of the present invention performs a function of operating the second reflector by operating the coordinates of the solar cell with respect to the desired shape inputted by the laser cutter as input.
  • the coordinates of the solar cell with respect to the desired shape is formed by the control unit 140, the control unit 123 commands the solar cell coordinates for the desired shape to the operating motor unit to operate.
  • the present invention performs a function of irradiating a laser to the solar cell plate 200 according to the coordinates of the solar cell with respect to the desired shape by the scanner unit 120, so that the solar cell of various shapes can be manufactured. will be.
  • While the laser beam generated from the laser generator of the present invention adjusts the irradiation direction according to the shape input to the laser cutting machine, a process of half cutting the solar cell is performed.
  • the present invention performs a process of completely cutting the half-cut solar cell to form a small solar cell (step 6-3).
  • the complete cutting process of the half-cut solar cell generally means a process of completely cutting by a break process.
  • the brake process means that the solar cell is completely cut by applying stress to the half-cut solar cell as described above.
  • the brake process is generally a process of placing a brake bar on a solar cell on which a minute crack-shaped cutting line is formed and applying a momentary force to the solar cell.
  • the half cutting scribing / breaking process can dramatically increase the performance of a small solar cell.
  • the present invention performs the process of forming a small solar cell module by mounting the small solar cell 10 by SMT on the PCB circuit board 20-1 formed above.
  • the SMT process process refers to a process of connecting the solar cell and the substrate to the connection element by mounting the solar cell 10 on the conventional substrate (PCB plate) 20-1 and performing the conventional soldering process.
  • the small solar cell 10 mounted on the PCB circuit board 20-1 by SMT may be mounted as the small solar cell 11 having various shapes.
  • the present invention performs a process of covering (COVERING) the small solar cell 10 mounted on the substrate (PCB plate) 20-1 with a hat-shaped finish (40).
  • the technical feature of the present invention is to perform a process of covering (COVERING) the small solar cell 10 mounted on the substrate with a cap 40 finish.
  • the cap 40 is covered with a hat-shaped finishing material 40 so that the solar cell is well attached even when the plate to which the solar module is attached is round or the plate is formed to form a solar cell module.
  • the solar cell module formed as described above may be easily attached to an attachment surface having a non-flat or wrinkled surface.
  • the process of covering the small solar cell 10 mounted on the PCB plate with the cap 40 is performed in the following detailed process.
  • EVA, PI, PET, EPOXY or silicone is formed into a hat shape to form a finishing material in the shape of a hat (step 8-1).
  • the process of forming the finishing material in the form of a cap may be performed by covering a plurality of solar cell modules 10 attached on a PCB board with a laminating material such as EVA, PI, PET, EPOXY or silicon. It means to form.
  • a laminating material such as EVA, PI, PET, EPOXY or silicon. It means to form.
  • a small solar cell is mounted on a substrate, and then a laminating process is performed to bend the substrate so that the laminated material is not bent, and if the bending is too much, the solar cell is attached. Even when the substrate is round or the substrate is a cloth, a problem arises in that the solar cell cannot be attached.
  • the finishing material 40 of the present invention is formed by including a cap portion 40 and the valleys 42 and the cap portion 40 includes a solar cell and a portion of the valley 42 includes a solar cell. If not, the bone 42 has a good elasticity to bend the bar bar has a merit that can be attached to the solar cell even if the substrate to which the solar cell is attached or the substrate is like a cloth.
  • the present invention performs a process of capping small solar cells mounted by SMT on a substrate (PCB plate) with the cap 40 in the cap shape. (Step 8-2)
  • the capping process is performed by covering small solar cells mounted with SMT on a substrate (PCB plate) with a finisher 40.
  • the present invention manufactures the small solar cell module 20-2 by the above-described method.
  • the small solar cell module 20-2 is attached to a flexible plate 50 such as fabric, leather, rubber, etc. to manufacture the flexible solar cell module 1000.
  • the present invention provides a flexible solar cell module 1000 manufactured by the above method.
  • the flexible solar cell module 1000 manufactured according to the present invention has no problem of degrading or breaking the solar cell module even when the flexible solar cell module is not bent or bent.
  • the flexible solar cell module 1000 according to the present invention may be attached to the surface of the bag A having a large number of curved surfaces.
  • Method for manufacturing a flexible solar cell module and the flexible solar cell module 100 according to the present invention is characterized in that the solar cell is attached well even when the plate to which the solar cell is attached or the plate is like a cloth to form a solar cell module
  • the solar module thus formed is characterized in that the attachment surface is easily attached to the attachment surface of the form is not flat or wrinkled.
  • the flexible solar cell module formed as described above has flexibility and can be used in the form of attaching the module to bags, backpacks, clothes, etc., and thus the utilization of the solar cell module is significantly increased, and the manufacturing cost is also significantly low, resulting in economical efficiency. .
  • the present invention is very useful in the industry of manufacturing, processing, distributing, selling and researching small solar cells.
  • the present invention is very useful in the industry of manufacturing, processing, distributing, selling, and researching a flexible solar cell module that can form a solar cell module by attaching the solar cell well even when the plate to which the solar cell is attached is round or a plate is like a cloth. useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 솔라셀 모듈에 관한 것으로, 더욱 구체적으로는 솔라셀이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있고, 또한 이렇게 형성된 솔라셀 모듈이 평평하지 않거나 구겨지는 형태의 부착면에도 용이하게 부착하고, 또한 이렇게 부착된 솔라셀 모듈 자체가 유연성(Flexibility)이 있어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용할 수 있으며 제조단가도 현저히 낮아 경제성이 있는 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈에 관한 것이다.

Description

플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈
본 발명은 솔라셀 모듈에 관한 것으로, 더욱 구체적으로는 솔라셀이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있고, 또한 이렇게 형성된 솔라셀 모듈이 평평하지 않거나 구겨지는 형태의 부착면에도 용이하게 부착하고, 또한 이렇게 부착된 솔라셀 모듈 자체가 유연성(Flexibility)이 있어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용할 수 있으며 제조단가도 현저히 낮아 경제성이 있는 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈에 관한 것이다.
일반적으로 태양 전지는 반도체 성질을 이용하여 태양 빛을 전기 에너지로 변환하는 소자이며, 최근들어 휴대 전화기나 PDA(Personal Digital Assistance)와 같은 휴대용 정보기기의 보조 전원으로 사용할 수 있는 작고, 얇고, 가벼운
고출력 태양 전지 모듈이 연구되고 있다.
일반적인 솔라셀에서 셀은 태양 빛을 흡수하여 전하를 생성하는 반도체와, 빛이 입사하는 수광면 측에 위치하는 상부 전극과, 상부 전극의 반대쪽 면에 위치하는 하부 전극으로 구성되며, 솔라셀 모듈에서 각각의 셀은 금속 리본(금속 연결체)에 의해 연결된다.
그리고 연결된 전체 솔라셀은 투명 수지로 채워지게 되어 하부 시트와 투명한 상부 시트에 의해 외부 환경으로부터 보호된다.
이때, 대부분의 개별 셀은 출력 전압이 0.6 이하이므로, 실제 요구되는 높은 전압을 얻기 위해서는 여러개의 셀들을 직렬 연결해야 한다. 이로서 각각의 금속 리본이 한 셀의 상부 전극과 이웃한 셀의 하부 전극을 연결하는 형태로 배치된다.
특히 소형 솔라셀을 제조하는 과정에서 솔라셀 원판으로 물리적, 화학적인 수단을 통하여 수행할 수 있다. 절단되는 물질의 종류나 강도 또는 경도 등의 물리적 특성에 따라 외력의 힘을 가하는 방법, 화학적으로 절단하는 방법, 레이저를 이용하는 방법 등 다양한 절단수단을 활용할 수 있다.
더욱이 소형 솔라셀 커팅은 다이아몬드 스크라이빙 또는 레이저 스크라이빙을 수행하는데, 다이아몬드 스크라이빙은 절단 폭이 크고, 재료의 선단에 결함이 발생할 수 있고 미세한 균열이 발생하여 솔라셀 소자의 성능에 영향을 미치는 단점이 있기 때문에 레이저 스크라이빙이 효율적이다
반면에 레이저 스크라이빙은 솔라셀을 커팅하면 솔라셀 커팅 절단면이 레이저 열에 의해 반도체 소자들이 용융(melting)되고 다시 냉각 응고되어 솔라셀의 기능을 현저히 떨어뜨리는 문제점이 발생한다.
특히 레이저 스크라이빙을 통하여 소형 솔라셀을 완전히 절단하는 경우 절단면이 레이저의 열에 의해 녹게 되고 다시 냉각되면서 솔라셀의 기능을 현저히 떨어뜨리게 되어 IT 기기에 사용될 정도의 소형 솔라셀로서는 사용할 수 없기 때문이다.
상기한 솔라셀 모듈의 셀 연결 구조와 관련하여, 미국특허 제 4,019,924호는 한쌍의 절연 시트 사이에 다수개 도전층이 패턴화된 라미네이트와, 이 라미네이트의 일정 부분을 절개하여 구부릴 수 있는 탭을 만들고, 이 탭에서 도전층이 노출된 부분과 셀의 상부 전극을 연결하는 구조를 개시하고 있다.
또한 미국특허 제 4,131,755호 및 제 4,227,298호는 도전층과 유전층으로 구성된 라미네이트와, 이 라미네이트의 일정 부분을 뚫어 예각의 탭을 만들고, 이 탭을 셀의 상부 전극 위로 내밀어 도전층과 상부 전극을 연결하는 구조를 개시하고 있다.
또한 등록특허 10-1290106호(레이저를 이용한 태양전지 가공방법)는 "태양전지 기판에 버스바 라인과, 상기 버스바 라인과 교차하는 방향으로 배치되는 다수의 핑거 라인을 형성하기 위한 레이저를 이용한 태양전지 가공방법에 있어서, 상기 버스바 라인이 형성될 라인을 따라 제1마크 벡터를 형성하는 제1벡터형성단계; 상기 제1마크 벡터를 따라 레이저빔을 조사하며 상기 버스바 라인을 형성하는 제1라인형성단계; 상기 버스바 라인과 중첩되게 상기 핑거 라인이 형성될 라인을 따라 제2마크 벡터를 형성하는 제2벡터형성단계; 및 레이저빔을 온시키는 레이저 온 신호와, 상기 제2마크 벡터에서 상기 버스바 라인과 중첩되는 부분에서는 상기 레이저 온 신호를 비활성화시키는 비활성구간과 상기 제2마크 벡터에서 상기 버스바 라인과 중첩되지 않는 부분에서는 상기 레이저 온 신호를 활성화시키는 활성구간을 가지는 제2모듈레이션 신호를 중첩시켜 상기 제2마크벡터를 따라 레이저빔을 조사하며 상기 핑거 라인을 형성하는 제2라인형성단계;를 포함하는 것을 특징으로 하는 레이저를 이용한 태양전지 가공방법"를 제시한 바 있다.
상기한 종래기술 및 선행기술에 의한 종래의 솔라셀은 모듈 자체가 솔라셀이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우 솔라셀을 부착하는 것의 문제점이 있으며, 솔라셀이 판에 부착되어 완성된 솔라셀 모듈이 유연성(Flexibility)이 없어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용하기 어려운 문제점이 있다.
또한 종래의 솔라셀 모듈은 제조 공정이 여러 단계이고 복잡하여 솔라셀 모듈을 제조하는 비용 자체가 매우 높은 문제점이 있다.
따라서 본 발명은 솔라셀이 부착되는 판면이 둥글거나 또한 판면이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있고, 또한 이렇게 형성된 솔라셀 모듈은 평평하지 않거나 구겨지는 형태의 부착면에도 용이하게 부착할 수 있는 플렉서블 솔라셀 모듈의 제조방법 및 플렉서블 솔라셀 모듈을 제공하고자 한다.
또한 솔라셀 모듈 자체가 유연성(Flexibility)이 있어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용할 수 있는 플렉서블 솔라셀 모듈의 제조방법 및 플렉서블 솔라셀 모듈을 제공하고자 한다.
또한 본 발명은 솔라셀 모듈의 제조방법을 현저히 간소화하여 제조단가를 현저히 낮춘 경제성이 있는 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈을 제공하고자 한다.
본 발명은 상기한 문제점과 요구를 해결하기 위하여,
동박적층되어 형성된 PI(폴리이마이드) 필름(20)을 형성하는 과정(1과정),
상기 동박적층되어 형성된 PI(폴리이마이드) 필름 위에 DFR(Dry Film Photoresist, 감광성) 필름(30)으로 라미네이팅하는 과정(2과정),
상기의 라미네이팅된 DFR 필름(30)에 노광을 조사하는 과정(3과정),
상기한 노광 조사 과정 후에 현상(develop) 과정을 수행하여 회로를 도출시키는 과정(4과정),
식각과 박리(etching and stripping)하는 과정을 수행하여 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)의 동박층(22)에 회로가 형성되는 PCB 회로 기판(20-1)을 형성하는 과정(5과정),
소형 솔라셀을 제조하여 준비하는 과정(6과정),
상기에서 형성된 PCB 회로 기판(20-1) 위에 소형 솔라셀(10)을 SMT로 실장하여 소형 솔라셀 모듈을 형성하는 과정(7과정),
상기 기판(PCB 판)(20-1) 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정(8과정)
을 포함하는 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법을 제공한다.
본 발명은 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)은 폴리이마이드층(21), 동박층(22)으로 구성되거나,
또는 폴리이마이드층(21), 동박층(22), 니켈층(23)으로 구성된 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법을 제공한다.
본 발명은 상기 기판(PCB 판)(20-1) 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정(8과정)은,
EVA, PI, PET, EPOXY 또는 실리콘을 모자형상화하여 모자 형태로 마감재(40)를 형성하는 과정(8-1 과정),
상기 모자 형태로 된 마감재(40)로 기판(PCB판) 위에 SMT로 실장된 소형 솔라셀들을 캐핑(capping)하는 과정(8-2과정),
으로 수행하는 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법을 제공한다.
본 발명은 상기한 플렉서블 솔라셀 모듈의 제조방법으로 제조된 플렉서블 솔라셀 모듈을 제공한다.
본 발명에 따른 플렉서블 솔라셀 모듈의 제조방법 및 그에 따라 제조된 플렉서블 솔라셀 모듈은 부착되는 판면이 둥글거나 또한 판면이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성하고 또한 판면이 구겨지는 경우에도 솔라셀 모듈 자체도 구겨지는 유연성(flexibility)가 있어 솔라셀 모듈이 파손되거나 성능이 저하되는 문제점이 발생하지 않은 효과가 나타난다.
또한 본 발명에 따른 플렉서블 솔라셀 모듈의 제조방법 및 그에 따라 제조된 플렉서블 솔라셀 모듈은 솔라셀 모듈 자체가 유연성(Flexibility)이 있어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용할 수 있는 효과가 나타난다.
또한 종래기술은 제조 절차가 복잡한 반면에 본 발명에 따른 플렉서블 솔라셀 모듈의 제조방법 및 그에 따라 제조된 플렉서블 솔라셀 모듈은 제조방법을 현저히 간소화하여 제조단가를 현저히 낮춘 장점이 있다.
도 1은 동박적층되어 형성된 PI(폴리이마이드) 필름의 단면 구조도.
도 1b는 니켈층이 형성된 동박적층되어 형성된 PI(폴리이마이드) 필름의 단면 구조도.
도 1c는 동박적층된 PI필름을 화학물질로 식각(Etching)(1)하여 형성한 PCB 회로 기판.
도 2는 DFR 필름이 라미네이션 된 PI(폴리이마이드) 필름의 구조도.
도 3은 DFR 필름(30)에 노광을 하는 과정 도면.
도 4는 노광 조사 과정 후에 현상 과정 도면.
도 5는 식각(etching)하는 과정 도면.
도 6 내지 도 6e는 본 발명에 따라 제조된 다양한 형상의 소형 솔라셀
도 7는 본 발명에 따른 레이저 커팅기의 스캐닝부 개념도.
도 7b는 본 발명에 따른 레이저 커팅기의 스캐닝부 세부 개념도.
도 8은 본 발명에 따라 솔라셀 원판에 레이저의 조사 방향을 조정하게 하여 원하는 모양의 소형 솔라셀을 하프 커팅하는 것을 보여 주는 도면.
도 9는 본 발명에 따른 캡슐 형태의 마감재로 커버링을 하는 과정 도면.
도 9b는 본 발명에 따른 캡슐 형태의 마감재의 일실시 도면.
도 10은 본 발명에 따른 플렉서블 솔라셀 모듈 단면 구조도.
도 10b는 본 발명에 따른 플렉서블 솔라셀 모듈의 유연성을 보여주는 도면.
도 10c는 본 발명에 따른 플렉서블 솔라셀 모듈이 가방에 부착된 도면.
이하 본 발명을 도면을 참고하여 상세히 설명하고자 한다.
본 발명은 플렉서블 솔라셀 모듈의 제조방법 및 그에 따라 제조된 플렉서블 솔라셀 모듈을 제공한다.
본 발명은 동박적층되어 형성된 PI(폴리이마이드) 필름(20)을 형성하는 과정을 수행한다.(1과정)
도 1에서 보는 바와 같이 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)은 폴리이마이드층(21), 동박층(22)으로 구성된 것이 좋다.
도 1b에서 보는 것처럼 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)은 더욱 바람직하게는 폴리이마이드층(21), 동박층(22)위에 니켈층(23)이 더 부가된 구성된 것이 좋다.
본 발명은 상기 동박적층되어 형성된 PI(폴리이마이드) 필름 위에 DFR(Dry Film Photoresist, 감광성) 필름(30)으로 라미네이팅하는 과정을 수행한다.(2과정)
도 2에서 보는 것처럼 상기한 DFR 필름으로 라미네이팅하는 과정은 PCB판 제조를 위한 회로를 형성하기 위한 것이다.
본 발명은 상기의 라미네이팅된 DFR 필름(30)에 노광을 조사하는 과정을 수행한다.(3과정)
도 3에서 보는 것처럼 상기한 노광 조사 과정은 광원(200)으로부터 조사되는 광선(주로 자외선)을 상기한 DFR 필름에 노출시켜서 플렉서블 솔라셀 모듈을 제조하기 위한 PCB판의 회로를 형성하는 공정이다.
상기한 PCB판에 사용될 회로의 형상이 노광 조사 과정에 의하여 DFR 필름으로 경화되는 과정이 수행 된다.
본 발명은 상기한 노광 조사 과정 후에 현상(develop) 과정을 수행하여 회로를 도출시키는 과정을 수행한다.(4과정)
도 4에서 보는 바와 같이 현상 과정은 경화된 DFR 필름 부분(추후 PCB판의 회로 부분)외의 경화되지 않은 DFR 필름 부분이 용해되는 과정을 의미한다.
현상과정은 용해액 주입부(210)로부터 용해액을 DFR 필름 부분에 분사하는 과정으로 수행하며, 상기한 용해액으로는 통상의 DFR 필름을 용해하는 용해제를 사용할 수 있으며 탄산나트륨 등을 사용할 수 있다.
본 발명은 상기한 과정 후에 식각과 박리(etching and stripping)하는 과정을 수행하여 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)의 동박층(22)에 회로가 형성되는 PCB 회로 기판(20-1)을 형성하는 과정을 수행한다.(5과정)
도 5에서 보는 것처럼 상기한 식각(etching)하는 과정은 동박층(22)만 있는 PI(폴리이마이드) 필름(20)인 경우는 동박층(22)만 식각되지만 니켈층(23)이 형성된 PI(폴리이마이드) 필름(20)인 경우 니켈층(23)도 함께 식각되게 된다.
식각과정은 용해액 주입부(220)로부터 용해액을 동박층(22) 또는/및 니켈층(23)에 분사하는 과정으로 수행하며, 상기한 식각액으로는 주로 염화동 용액이나 염화철 용액을 사용하게 된다.
상기한 박리(stripping)하는 과정은 회로를 형성하기 위하여 임시적으로 사용되었던 DFR 필름을 벗겨내는 공정을 의미한다.
상기한 DFR 필름을 벗겨내는 공정은 용해제 주입부에서 DFR 필름 용해제를 분사하여 제거하는 과정으로 수행하며 DFR 필름 용해제는 일반적으로 수산화나트륨 용액을 이용한다.
본 발명은 소형 솔라셀을 제조하여 준비하는 과정을 수행한다.(6과정)
상기한 소형 솔라셀은 통상의 솔라셀 모듈에 사용되는 솔라셀 원판에서 커팅된 소형 솔라셀을의미한다.
상기한 소형 솔라셀을 제조하여 준비하는 과정은 본 발명은 다양한 형상의 소형 솔라셀을 제조하여 준비하는 과정으로 수행할 수 있는 점이 기술적 특징이다.(6과정)
본 발명의 상기한 다양한 형상의 소형 솔라셀을 제조하여 준비하는 과정은 앞서 설명한 PCB 회로 기판(20-1)을 형성하는 과정과 동시에 또는 다른 시간에 순서에 관계없이 수행할 수 있다.
본 발명은 원하는 형상의 솔라셀을 레이저 커팅기에 입력하는 과정(6-1과정),
상기 레이저 커팅기에 입력된 솔라셀 형상에 따라 솔라셀 원판에 레이저를 조사하여 스크라이빙하여 하프 커팅하는 과정(6-2과정),
하프 커팅된 솔라셀을 완전히 커팅하여 소형 솔라셀을 형성하는 과정(6-3과정)을 수행하여 다양한 형상의 소형 솔라셀을 제조하여 준비하는 과정을 수행한다.
본 발명의 상기한 원하는 형상의 솔라셀을 레이저 커팅기(100)에 입력하는 과정(1과정)은 다음과 같이 수행된다.
종래기술 및 선행기술은 솔라셀 모듈을 제작하는데 솔라셀 원판을 x축 또는/및 y축 방향으로만 레이저 스크라이빙이나 물리적 커팅을 수행하게 됨에 따라 사각형 또는 직사각형 형태의 솔라셀(10) 만을 제조할 수 밖에 없는 문제점이 있었다.
따라서 본 발명은 상기한 종래기술의 문제점을 해결하기 위하여 특히 솔라셀 을 원형, 하트형, 다각형 등의 다양한 형상의 솔라셀로 제조할 수 있게 한 점이다
도 6 내지 도 6e는 것처럼, 본 발명의 기술적 특징은 하트형, 오각형, 육각형, 삼가형, 원형 등의 다양항 형상의 소형 솔라셀(11)로 커팅하여 제조할 수 있는 것을 특징으로 한다.
본 발명은 사용자가 원하는 형상(예를 들어 하트 형상)의 솔라셀 형상을 레이저 커팅기에 입력한다.
상기한 원하는 형상의 솔라셀 형상을 레이저 커팅기에 입력하는 방법은 통상의 제어기 또는 컴퓨터 등을 이용하여 통상적으로 입력하는 방법으로 레이저 커팅기에 부가된 제어부(140)에 입력할 수 있다.
도 7에서 보는 것처럼 본 발명의 레이저 커팅기(100)는 레이저발생부(110), 스캐닝부(120), 레이저조사부(230)를 포함하여 구성된 것이 기술적 특징이다.
본 발명의 레이저 커팅기(100)는 통상의 제어부(140)가 부가되어 있어, 사용자에 의한 명령 정보를 입력, 분석, 해석하는 중앙처리장치가 구비되어 있다.
또한 상기한 중앙처리장치는 통상의 CPU, MCU 등이 탑재되고, 메모리부, 하드웨어를 구비하며, 레이저 스크라이빙 응용 프로그램을 탑재하여 운영된다,
또한 상기한 제어부(140)는 레이저 커팅기(100)의 레이저발생부(110), 스캐닝부(120), 레이저조사부(130) 등의 각각의 구성을 명령 제어에 의하여 제어하는 기능을 수행하게 된다.
본 발명의 레이저 커팅기(110)의 레이저발생부(110)는 레이저를 발생하는 장치 또는 수단을 의미한다.
본 발명의 상기한 스캐닝부(120)는 상기 레이저발생부로부터 발생된 레이저를 원형, 타원형, 하트형, 다각형 형태로 레이저의 조사 방향을 변경하는 기능을 수행하는 장치 또는 수단을 의미한다.
본 발명의 상기한 레이저조사부(130)는 솔라셀 원판에 레이저를 조사하는 기능을 수행하는 장치 또는 수단을 의미한다.
본 발명의 기술적 특징은 상기 레이저 커팅기에 입력된 형상에 따라 솔라셀 원판에 레이저를 조사하여 스크라이빙하여 하프 커팅하는 과정(6-2과정)을 수행하는 점이다.
본 발명은 레이저발생부로부터 발생된 레이저를 레이저 커팅기에 입력된 형상대로 조사 방향을 조정하는 과정이 수행된다.(6-2과정-1)
즉, 본 발명의 레이저 발생부는 고온의 레이저를 발생하게 되고, 제어부의 중앙처리장치에 의하여 레이저 커팅기에 입력된 형상대로 레이저의 조사 방향을 조정하게 된다.
실시예로, 도 6과 같은 하트(heart) 모양의 솔라셀이 레이저 커팅기에 입력되는 경우, 하트 모양대로 솔라셀 원판에 레이저의 조사 방향을 조정하여 조사하게 할 수 있는 기능과 작용을 하는 점이 본 발명의 기술적 특징이다.
본 발명은 레이저 커팅기에 입력된 형상대로 레이저의 조사 방향을 조정하게하는 과정은 상기한 레이저 커팅기의 스캐닝부(120)에서 수행하게 된다.
도 7에서 보는 것처럼 본 발명의 스캐닝부(120)는 제1반사부(121), 제2반사부(122), 작동모터부(123)을 포함하여 구성되어 있다.
본 발명의 상기한 제1반사부(121)는 레이저 발생부(110)로부터 발생되는 레이저를 반사시키는 기능을 수행하되, 솔라셀 원판(200)에 레이저를 조사시켜 레이저 커팅기로 입력된 형상대로 조사하게 되는데 x좌표 또는 y좌표 중 한 방향으로 레이저 조사를 이동하게 하는 기능을 수행한다.
도 8은 본 발명에 따라 솔라셀 원판(200)에 레이저의 조사 방향을 조정하게 하여 하트 모양의 소형 솔라셀에 하프 커팅하는 것을 보여 주는 도면이다.
도 8에서 보는 것처럼, 상기한 실시예의 하트 모양으로 솔라셀을 커팅하는 경우 솔라셀 원판(200)에 형성된 조사점 좌표(x,y)에 레이저를 조사하여야 한다.
또한 레이저의 조사 방향은 조사점 좌표(x,y)(201)에서 조사점 좌표(x1, y1)(201)로 이동하면서 조사되어야 하트 모양으로 솔라셀(11)이 형성되게 된다.
따라서 상기한 제1반사부(121)는 상기한 레이저 조사방향의 x좌표 또는 y좌표 중 한 방향으로 설정하는 기능을 수행한다.
상기한 제1반사부(121)는 작동모터부(123)에 연동되어 움직이며, 작동모터부(123)는 상기한 레이저 조사방향의 조사점 좌표(x,y)의 x좌표 또는 y좌표 방향 중 한 방향으로 반사되도록 제1반사부를 가동하게 된다.
따라서 본 발명의 상기한 작동모터부(123)는 레이저 커팅기로 입력된 원하는 형상에 대한 솔라셀의 좌표를 입력받은대로 가동하여 제1반사부를 가동시켜서 조종하게 하는 기능을 수행한다.
상기한 원하는 형상에 대한 솔라셀의 좌표는 제어부(140)에 의하여 좌표가 형성되며, 제어부(123)는 원하는 형상에 대한 솔라셀 좌표를 작동모터부에 명령하여 가동하도록 하게 한다.
본 발명의 상기한 작동모터부(123)는 수치 입력된 제어 명령에 따라 제1반사부를 가동하게 하는 장치 또는 수단을 의미한다.
따라서 본 발명의 작동모터부(123)는 다양한 수치제어모터를 사용할 수 있으며 갈바노 모터(Galvano motor)를 사용할 수 있다.
본 발명의 상기한 제2반사부(122)는 상기한 제1반사부(122)의 레이저 조사방향과 다른 한 방향, 즉 제1반사부가 x좌표 방향으로 설정되는 경우 제2반사부는 y좌표 방향으로 조사하게 하는 기능을 수행한다.
상기한 제2반사부(122)도 작동모터부(123)에 연동되어 움직이며, 상기한 작동모터부(123)는 레이저 조사방향의 조사점 좌표(x,y)의 x좌표 또는 y좌표 방향 중 한 방향[제1반사부와 다른 방향]으로 제2반사부를 가동하게 한다.
앞서 설명한 바처럼 본 발명의 상기한 작동모터부(123)는 레이저 커팅기로 입력된 원하는 형상에 대한 솔라셀의 좌표를 입력받은대로 가동하여 제2반사부를 가동시켜서 조종하게 하는 기능을 수행한다.
상기한 원하는 형상에 대한 솔라셀의 좌표는 제어부(140)에 의하여 좌표가 형성되며, 제어부(123)는 원하는 형상에 대한 솔라셀 좌표를 작동모터부에 명령하여 가동하도록 하게 한다.
이와 같이 본 발명은 상기한 스캐너부(120)에 의하여 원하는 형상에 대한 솔라셀의 좌표대로 솔라셀 원판(200)에 레이저를 조사하게 하는 기능이 수행되어 다양한 형상의 솔라셀을 제조할 수 있게 되는 것이다.
본 발명의 상기한 레이저발생부로부터 발생된 레이저를 레이저 커팅기에 입력된 형상대로 조사 방향이 조정하는 과정이 수행되면서, 솔라셀을 하프 커팅하는 과정을 수행하게 된다.(6-2과정-2)
본 발명의 솔라셀을 하프 커팅하는 과정에 기술적 특징이 있다.
종래 기술로 소형 솔라셀을 레이저 스크라이빙을 통하여 소형 솔라셀을 완전히 절단하는 경우 절단되는 절단면이 레이저의 열에 의해 녹게 되고 다시 냉각되면서 솔라셀의 기능을 현저히 떨어뜨리게 되는 문제점이 있었는데 솔라셀을 하프 커팅하여 이러한 문제점을 해결하게 된다.
본 발명은 상기 하프 커팅된 솔라셀을 완전히 커팅하여 소형 솔라셀을 형성하는 과정을 수행한다.(6-3과정)
상기한 하프 커팅된 솔라셀의 완전한 커팅과정은 일반적으로 브레이크(break) 공정으로 완전히 절단하는 공정을 의미한다.
본 발명은 이와 같이 레이저 스크라이빙으로 하프 커팅한후 브레이크 공정은 상기한 바와 같이 하프 커팅된 솔라셀에 응력을 가하여 솔라셀을 완전히 절단하는 것을 의미한다.
브레이크 공정은 일반적으로 상기 스크라이빙 공정으로 미소한 크랙형태의 절단선이 형성된 솔라셀상에 브레이크 바를 위치하여 솔라셀에 순간적인 힘을 가하여 절단하는 공정이다.
통상적인 브레이크 공정에서는 크랙이 형성된 솔라셀에 순간적이면서 강한 힘을 전달하여 절단시 미소한 조각에 의해 절단면의 불량이 많아지고 또한 솔라셀의 성능을 저하시켰다. 특히 종래의 소형 솔라셀의 경우에는 매우 소형의 솔라셀을 제조한다는 특징으로 더욱 불량률이 높았고 솔라셀의 성능을 현저히 떨어뜨렸다.
그러나 본 발명에 상기한 바와 같이 스크라이빙 공정으로 하프 커팅을 한 후 브레이크 공정으로 완전히 절단하는 것을 수행함으로써 앞서 언급한 문제점인 불량률을 현저히 낮추고 성능을 높일 수 있게 되었다. 이와 같이 본 발명의 특징은 하프 커팅 스크라이빙/브레이크 공정으로 소형 솔라셀의 성능을 놀랄 만하게 높일 수 있게 되는 것이다.
본 발명은 상기에서 형성된 PCB 회로 기판(20-1) 위에 소형 솔라셀(10)을 SMT로 실장하여 소형 솔라셀 모듈을 형성하는 과정을 수행한다.(7과정)
SMT 공정 과정은 통상의 기판(PCB판)(20-1)에 솔라셀(10)을 실장하여 솔라셀과 기판을 연결소자로 연결하는 과정을 의미하며 통상의 솔더링(soldering) 공정으로 수행한다.
상기한 PCB 회로 기판(20-1) 위에 소형 솔라셀(10)을 SMT로 실장하는 것은 다양한 형상의 소형 솔라셀(11)로 실장할 수 있음은 물론이다.
본 발명은 상기 기판(PCB 판)(20-1) 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정을 수행한다.(8과정)
본 발명의 기술적 특징은 상기한 기판위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정을 수행한다는 점이다.
도 9에서 보는 바와 같이 이러한 모자 형태의 마감재(40)로 커버링을 하게 되어 솔라셀 모듈이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있는 특징이 있고, 또한 이렇게 형성된 솔라셀 모듈이 부착면이 평평하지 않거나 구겨지는 형태의 부착면에도 용이하게 부착하는 특징이 있게 된다.
상기한 PCB판 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정은 다음의 세부 과정으로 수행된다.
먼저 EVA, PI, PET, EPOXY 또는 실리콘을 모자형상화하여 모자 형태로 마감재를 형성하는 과정을 수행한다.(8-1 과정)
도 9b에서 보는 것처럼 상기한 마감재를 모자 형태로 형성하는 과정은 EVA, PI, PET, EPOXY 또는 실리콘 등의 라미네이팅 재료를 PCB판 위에 부착된 다수의 솔라셀 모듈(10)을 덮어서 씌울 수 있는 형태로 형성하는 것을 의미한다.
종래의 솔라셀 모듈의 경우 기판에 소형 솔라셀이 실장되고 그 후에 라미네이팅하는 과정을 수행하여 기판을 구부리는 경우 라미네이팅된 재료가 구부러지지 않는 특성 및 너무 구부리는 경우 파손되는 문제점이 있어서 솔라셀이 부착되는 기판이 둥글거나 기판이 헝겊과 같은 경우에도 솔라셀을 부착할 수 없는 문제점이 발생했다.
본 발명의 상기한 마감재(40)는 캡부분(40) 및 골(42)을 포함하여 형성되어 있으며 상기한 캡부분(40)은 솔라셀을 포함하여 있고 골(42) 부분에는 솔라셀이 포함되어 있지 않아 골(42) 부분이 잘 구부러지는 탄성을 갖게 되는바 솔라셀이 부착되는 기판이 둥글거나 기판이 헝겊과 같은 경우에도 솔라셀을 부착할 수 있게 되는 장점을 가지게 된다.
본 발명은 상기 모자 형태로 된 마감재(40)로 기판(PCB판) 위에 SMT로 실장된 소형 솔라셀들을 캐핑(capping)하는 과정을 수행한다.(8-2과정)
상기한 캐핑 과정은 기판(PCB판) 위에 SMT로 실장된 소형 솔라셀들을 마감재(40)로 덮어서 부착하는 과정으로 수행한다.
도 9에서 보는 것처럼 본 발명은 상기한 방법으로 소형 솔라셀 모듈(20-2)을 제조하게 된다.
본 발명은 상기한 소형 솔라셀 모듈(20-2)을 직물, 가죽, 고무 등과 같은 유연성 판(50)에 부착하여 플렉서블 솔라셀 모듈(1000)을 제조하게 된다.
도 10에서 보는 것처럼 본 발명은 상기한 방법으로 제조된 플렉서블 솔라셀 모듈(1000)을 제공한다.
도 10b에서 보는 것처럼 본 발명에 따라 제조된 플렉서블 솔라셀 모듈(1000)은 구부림과 휘어짐에도 솔라셀 모듈이 부서지거나 파손되는 것이 없어 솔라셀 모듈의 성능이 저하되는 문제점이 전혀 없다.
도 10c에서 보는 것처럼 표면에 굴곡이 많은 가방(A)의 표면에도 본 발명에 따른 플렉서블 솔라셀 모듈(1000)을 부착하여 사용할 수 있다.
본 발명에 따른 플렉서블 솔라셀 모듈의 제조방법 및 플렉서블 솔라셀 모듈(100)은 솔라셀이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있는 특징이 있고, 또한 이렇게 형성된 솔라셀 모듈이 부착면이 평평하지 않거나 구겨지는 형태의 부착면에도 용이하게 부착하는 특징이 있다.
따라서 이와 같이 형성된 플렉서블 솔라셀 모듈은 유연성(Flexibility)이 있어 가방, 책가방, 옷 등에 모듈을 부착한 형태로 사용할 수 있어 솔라셀 모듈의 활용도가 현저히 높아지는 장점이 있으며 제조단가도 현저히 낮아 경제성이 있게 된다.
본 발명은 소형 솔라셀을 제조, 가공, 유통, 판매, 연구하는 산업에 매우 유용하다.
특히 본 발명은 솔라셀이 부착되는 판이 둥글거나 판이 헝겊과 같은 경우에도 솔라셀이 잘 부착되어 솔라셀 모듈을 형성할 수 있는 플렉서블 솔라셀 모듈을 제조, 가공, 유통, 판매, 연구하는 산업에 매우 유용하다.

Claims (4)

  1. 동박적층되어 형성된 PI(폴리이마이드) 필름(20)을 형성하는 과정(1과정),
    상기 동박적층되어 형성된 PI(폴리이마이드) 필름 위에 DFR(Dry Film Photoresist, 감광성) 필름(30)으로 라미네이팅하는 과정(2과정),
    상기의 라미네이팅된 DFR 필름(30)에 노광을 조사하는 과정(3과정),
    상기한 노광 조사 과정 후에 현상(develop) 과정을 수행하여 회로를 도출시키는 과정(4과정),
    식각과 박리(etching and stripping)하는 과정을 수행하여 상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)의 동박층(22)에 회로가 형성되는 PCB 회로 기판(20-1)을 형성하는 과정(5과정),
    소형 솔라셀을 제조하여 준비하는 과정(6과정),
    상기에서 형성된 PCB 회로 기판(20-1) 위에 소형 솔라셀(10)을 SMT로 실장하여 소형 솔라셀 모듈을 형성하는 과정(7과정),
    상기 기판(PCB 판)(20-1) 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정(8과정)
    을 포함하는 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법.
  2. 제1항에 있어서,
    상기한 동박적층되어 형성된 PI(폴리이마이드) 필름(20)은 폴리이마이드층(21), 동박층(22)으로 구성되거나,
    또는 폴리이마이드층(21), 동박층(22), 니켈층(23)으로 구성된 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법.
  3. 제1항에 있어서,
    상기 기판(PCB 판)(20-1) 위에 실장된 소형 솔라셀(10)을 모자 형태의 마감재(40)로 커버링(COVERING)하는 과정(8과정)은,
    EVA, PI, PET, EPOXY 또는 실리콘을 모자형상화하여 모자 형태로 마감재(40)를 형성하는 과정(8-1 과정),
    상기 모자 형태로 된 마감재(40)로 기판(PCB판) 위에 SMT로 실장된 소형 솔라셀들을 캐핑(capping)하는 과정(8-2과정),
    으로 수행하는 것을 특징으로 하는 플렉서블 솔라셀 모듈의 제조방법.
  4. 제1항 내지 제3항의 플렉서블 솔라셀 모듈의 제조방법으로 제조된 플렉서블 솔라셀 모듈.
PCT/KR2016/013207 2016-10-27 2016-11-16 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈 WO2018079907A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0140662 2016-10-27
KR1020160140662 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079907A1 true WO2018079907A1 (ko) 2018-05-03

Family

ID=62023720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013207 WO2018079907A1 (ko) 2016-10-27 2016-11-16 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈

Country Status (1)

Country Link
WO (1) WO2018079907A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077588A (ko) * 2007-02-20 2008-08-25 스미토모 킨조쿠 고우잔 팩키지 메터리얼즈 가부시키가이샤 칩 온 필름용 배선기판과 그 제조방법, 및 반도체장치
KR20120114311A (ko) * 2009-12-18 2012-10-16 오스람 옵토 세미컨덕터스 게엠베하 광전자 소자 그리고 광전자 소자를 제조하기 위한 방법
KR101191865B1 (ko) * 2011-04-20 2012-10-16 한국기계연구원 금속 배선이 함몰된 유연 기판의 제조방법 및 이에 따라 제조되는 유연 기판
KR20160048733A (ko) * 2016-04-08 2016-05-04 주식회사 엘에스텍 소형 태양전지 모듈 및 이의 제조 방법
JP6014847B2 (ja) * 2012-09-27 2016-10-26 株式会社ピーアイ技術研究所 太陽電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077588A (ko) * 2007-02-20 2008-08-25 스미토모 킨조쿠 고우잔 팩키지 메터리얼즈 가부시키가이샤 칩 온 필름용 배선기판과 그 제조방법, 및 반도체장치
KR20120114311A (ko) * 2009-12-18 2012-10-16 오스람 옵토 세미컨덕터스 게엠베하 광전자 소자 그리고 광전자 소자를 제조하기 위한 방법
KR101191865B1 (ko) * 2011-04-20 2012-10-16 한국기계연구원 금속 배선이 함몰된 유연 기판의 제조방법 및 이에 따라 제조되는 유연 기판
JP6014847B2 (ja) * 2012-09-27 2016-10-26 株式会社ピーアイ技術研究所 太陽電池およびその製造方法
KR20160048733A (ko) * 2016-04-08 2016-05-04 주식회사 엘에스텍 소형 태양전지 모듈 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
WO2020166986A1 (en) Display module having glass substrate on which side wirings are formed and manufacturing method of the same
WO2015072775A1 (ko) 연성인쇄회로기판과 그 제조 방법
WO2018230940A1 (ko) 신축성 기판 구조체 및 그 제조방법, 신축성 디스플레이 및 그 제조방법 그리고 신축성 디스플레이 사용방법
WO2016080738A1 (ko) 필름 터치 센서 및 그의 제조 방법
WO2015147552A1 (ko) 국지적 탈색 영역을 포함하는 편광 부재의 제조 방법, 편광 부재 롤의 제조 방법 및 매엽형 편광 부재의 제조 방법
WO2021101149A1 (ko) 디스플레이용 기판
WO2014178639A1 (ko) 연성인쇄회로기판 및 그 제조 방법
WO2020153767A1 (en) Display module and repairing method of the same
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2021002622A1 (en) Micro led display module and method of manufacturing the same
WO2014054921A1 (en) The printed circuit board and the method for manufacturing the same
WO2018147678A1 (ko) 시드층을 이용한 회로형성방법 및 시드층의 선택적 에칭을 위한 에칭액 조성물
WO2021201376A1 (ko) 3차원 회로 프린팅이 가능한 연신성 전극회로, 그를 이용한 스트레인 센서 및 그의 제조방법
EP3847699A1 (en) Display module having glass substrate on which side wirings are formed and manufacturing method of the same
WO2021187724A1 (ko) 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
WO2019164106A1 (ko) 손 착용형 장치 및 이의 제조 방법
WO2012087060A2 (en) Printed circuit board and method for manufacturing the same
WO2022055185A1 (ko) 탄성 부재 및 이를 포함하는 디스플레이 장치
WO2019235700A1 (ko) 태양 전지 및 태양 전지의 제조 방법
EP2856502A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2013176520A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2018079907A1 (ko) 플렉서블 솔라셀 모듈의 제조방법 및 그 솔라셀 모듈
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법
WO2021182681A1 (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920118

Country of ref document: EP

Kind code of ref document: A1