WO2018079818A1 - 圧力容器及び容器本体 - Google Patents

圧力容器及び容器本体 Download PDF

Info

Publication number
WO2018079818A1
WO2018079818A1 PCT/JP2017/039291 JP2017039291W WO2018079818A1 WO 2018079818 A1 WO2018079818 A1 WO 2018079818A1 JP 2017039291 W JP2017039291 W JP 2017039291W WO 2018079818 A1 WO2018079818 A1 WO 2018079818A1
Authority
WO
WIPO (PCT)
Prior art keywords
container body
straight
ellipse
container
dome
Prior art date
Application number
PCT/JP2017/039291
Other languages
English (en)
French (fr)
Inventor
一行 寺田
圭吾 吉田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2017562389A priority Critical patent/JPWO2018079818A1/ja
Publication of WO2018079818A1 publication Critical patent/WO2018079818A1/ja
Priority to US16/392,670 priority patent/US10920931B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/005Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a pressure vessel and a vessel body.
  • This application claims priority based on Japanese Patent Application No. 2016-213774 filed in Japan on October 31, 2016, the contents of which are incorporated herein by reference.
  • the resin container body As a fuel tank mounted on vehicles such as automobiles, and as a tank used for storage and transportation of natural gas and hydrogen gas, the resin container body (liner) is fiber reinforced because of its excellent weight and strength.
  • a pressure vessel reinforced with an outer shell made of a resin layer is used.
  • reinforcing fibers used for the outer shell include glass fibers and carbon fibers.
  • carbon fiber is suitably used for a natural gas storage tank because it has a high specific strength and is easy to reduce the weight of the pressure vessel.
  • a pressure vessel for example, a resin-made container body having a cylindrical straight body part and a hemispherical dome part (mirror part) provided at both ends of the straight body part, and on the outside of the container body
  • a pressure vessel having a formed fiber reinforced resin layer is known (Patent Document 1).
  • the container body is generally formed by a direct blow molding method.
  • the outer shell is made of a fiber reinforced resin material in which a long reinforced fiber bundle is impregnated with a matrix resin is wound around the outside of the container body by the filament winding method (hereinafter referred to as FW method) and cured. Formed with.
  • the pressure vessel is required to have as large a capacity as possible while suppressing an increase in occupied space.
  • a method for increasing the capacity while suppressing an increase in occupied space in the pressure vessel there is a method in which the length of the straight body portion is made as long as possible and the height of the dome portion is lowered.
  • the fiber reinforced resin material slips in the dome portion when the fiber reinforced resin material is wound around the outside of the container body by the FW method or the like, so that the fiber reinforced resin material is stably wound. It becomes difficult. For this reason, the thickness of the outer shell in the dome portion is locally non-uniform and the pressure resistance is lowered.
  • An object of the present invention is to provide a pressure vessel and a container main body capable of securing a large capacity while suppressing deterioration in quality due to an increase in occupied space and instability of winding of a fiber reinforced resin material.
  • the present invention has the following configuration.
  • the straight body part and the dome part are a pressure vessel formed by an outer shell made of a fiber reinforced resin material containing a reinforced fiber and a matrix resin provided on the outside of the container body and the container body,
  • the shape of the outer surface of at least one dome portion of the container body has a diameter on the outside of the straight body portion of the container body as a major axis diameter.
  • Ellipse A A straight line connecting the boundary points with the straight body portion on the outer surface of the dome portion of the container body is a major axis, a major axis diameter is 2a, a minor axis diameter is 2b, and b / a is 0.
  • Ellipse B A straight line connecting the boundary points with the straight body portion on the outer surface of the dome portion of the container body is a major axis, the major axis diameter is 2a, the minor axis diameter is 2b, and b / a is 0.
  • a container body provided with a cylindrical straight body portion and hemispherical dome portions provided at both ends of the straight body portion and narrowing as the distance from the straight body portion increases.
  • the shape of the outer surface of at least one dome part of the container body is the following ellipse drawn with the diameter on the outside of the straight body part of the container body as the major axis diameter
  • a container main body having an outwardly convex curved shape that fits between A and the following ellipse B drawn with the diameter on the outside of the straight body of the container main body as the major axis diameter.
  • Ellipse A A straight line connecting the boundary points with the straight body portion on the outer surface of the dome portion of the container body is a major axis, a major axis diameter is 2a, a minor axis diameter is 2b, and b / a is 0. An ellipse that is .55.
  • Ellipse B A straight line connecting the boundary points with the straight body portion on the outer surface of the dome portion of the container body is a major axis, the major axis diameter is 2a, the minor axis diameter is 2b, and b / a is 0. An ellipse that is .70.
  • the pressure vessel and the container main body of the present invention can ensure a large capacity while suppressing a decrease in quality due to an increase in occupied space and an unstable winding of the fiber reinforced resin material.
  • FIG. 6 is a view showing the shape of the outer surface of the dome part in the container main body of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the pressure vessel of the present invention includes a cylindrical straight body portion and hemispherical dome portions that are provided at both ends of the straight body portion and are narrowed away from the straight body portion.
  • the straight body portion and the dome portion are formed by a container main body and an outer shell made of a fiber reinforced resin material containing a reinforcing fiber and a matrix resin, which is provided outside the container main body. That is, in the pressure vessel of the present invention, the vessel body is reinforced by the outer shell formed of a fiber reinforced resin material.
  • the pressure vessel 1 is provided with a cylindrical straight body portion 10 and hemispherical portions that are provided at both ends of the straight body portion 10 and are narrowed away from the straight body portion 10. Dome portion 12.
  • the straight body portion 10 and the dome portion 12 are made of a resin container main body (liner) 2 and an outer shell 3 made of a fiber reinforced resin material containing a reinforcing fiber and a matrix resin provided outside the container main body 2. Is formed by.
  • the pressure vessel 1 is provided with a metal base 4 at the tip of one dome portion 12. The base 4 is firmly fixed at the tip of the dome portion 12 so as to be sandwiched between the container body 2 and the outer shell 3.
  • the container body 2 is preferably a resin container made of a direct blow-molded product from the viewpoint of ease of manufacturing and manufacturing cost.
  • the container body may be formed by joining the dome part and the straight body part, which are separately manufactured, to each other.
  • the center axis is shifted between the dome portion and the straight body portion, or the center axis is shifted between the pair of dome portions, so that eccentricity is likely to occur.
  • winding deviation or the like is likely to occur when the fiber reinforced resin material is wound by the FW method or the like, and the quality is likely to be deteriorated.
  • the container body 2 is a resin container made of a direct blow molded product, that is, a container in which the dome portion and the straight body portion are integrally formed, the occurrence of eccentricity is suppressed. A quality pressure vessel is obtained.
  • the container main body 2 When the container main body 2 is a direct blow molded product, the container main body has irregularities extending in a streak shape from the center of the inner surface of the dome portion toward the straight body portion.
  • the center of the inner surface of the dome portion is a position corresponding to the tip portion of the dome portion on the inner surface of the dome portion.
  • the unevenness is formed by sandwiching a parison for forming a container body between a pair of molds, and is a so-called pinch-off portion. In the pinch-off portion, a concave line (pinch line) is formed between the two convex lines.
  • Direct blow molding can form a container regardless of the inner volume, but is particularly effective for molding a large container of 450 to 1500 liters, and more preferably 700 liter to 1300 liters.
  • the shape of the outer surface 21 of the dome portion 12 of the container body 2 on the cut surface obtained by cutting the container body 2 along the central axis of the straight body portion 10 is The following virtual ellipse A drawn with the diameter on the outside of the straight body 10 as the major axis diameter, and the following ellipse B drawn similarly with the diameter on the outside of the straight body 10 of the container body 2 as the major axis diameter. It has a convex curved shape on the outside.
  • the major axis is a straight line k connecting the boundary points p of the outer surface 21 of the dome part 12 of the container body 2 with the straight body part 10, the major axis diameter is 2a, the minor axis diameter is 2b, b An ellipse with / a of 0.55.
  • Ellipse B The major axis is a straight line k connecting the boundary points p with the straight body 10 on the outer surface 21 of the dome part 12 of the container body 2, the major axis diameter is 2a, the minor axis diameter is 2b, b An ellipse with / a of 0.70.
  • the boundary point p is a point that is a boundary between a curve that forms the dome portion 12 and a straight line that forms the straight body portion 10 on a cut surface obtained by cutting the container body 2 along the central axis of the straight body portion 10.
  • the dome portion 12 is lowered, and the straight body portion 10 is lengthened accordingly, thereby increasing the space occupied by the pressure vessel 1. Without increasing the capacity.
  • the shape of the outer surface 21 of the dome portion 12 of the container body 2 is a curved shape that falls within the range of the ellipse A and the ellipse B on the cut surface, the FW method can be used even if the dome portion 12 is lowered.
  • the fiber reinforced resin material is wound by, for example, the fiber reinforced resin material hardly slips and slips in the dome portion 12, and the fiber reinforced resin material can be wound stably. Therefore, in the pressure vessel 1, a large capacity can be ensured while suppressing a decrease in quality due to an increase in occupied space and instability of winding of the fiber reinforced resin material.
  • the shape of the outer surface 21 of the dome part 12 of the container body 2 is lower than the ellipse A where b / a is 0.55, that is, when the b / a is less than 0.55, the fiber reinforced resin material is wound. It becomes difficult.
  • the shape of the outer surface 21 of the dome portion 12 of the container body 2 is higher than the ellipse B having a b / a of 0.70, that is, an ellipse having a b / a of more than 0.7, it is difficult to secure a sufficient capacity. .
  • the shape of the outer surface 21 of the dome part 12 of the container body 2 on the cut surface is a curved shape that falls within the range of the ellipse A and the ellipse B, it does not necessarily match the elliptical curved shape. Good.
  • the outer surface shape of the dome portion of the container body is a curved shape that falls within the range of ellipse A and ellipse B in both the pair of dome portions.
  • only one dome portion of the pair of dome portions may have a curved shape in which the outer surface shape of the dome portion of the container body is within the range of ellipse A and ellipse B.
  • the tip of the dome portion 12 of the container body 2 there is an opening for taking gas in and out, and a base 4 is attached to that portion.
  • the tip portions of the pair of dome portions are usually supported by a method such as attaching a jig to the base 4.
  • the container body tends to be deformed by its own weight when the fiber reinforced resin material is wound. Therefore, in order to suppress deformation due to its own weight at the time of winding the fiber reinforced resin material or the like, in the container body 2, it is preferable that the thickness of the dome portion 12 is thicker than the thickness of the straight body portion 10.
  • the average thickness of the container body 2 in the dome part 12 is preferably 1.2 times or more and 4 times or less, and 1.3 times or more and 3 times the average thickness of the container body 2 in the straight body part 10. The following is more preferable. If the ratio of the average thickness is within the above range, the container body is not easily deformed by its own weight even when the container body is supported by the tip portions of the pair of dome parts when the fiber reinforced resin material is wound.
  • the average thickness of the container main body in a dome part means the value which measured the thickness of the container main body in arbitrary 8 places in a dome part, and averaged them.
  • the thickness is measured at each of four locations at the portion along the pinch line (PL) and at the 90 ° direction around the axis from the pinch line, and the average value thereof To do.
  • the average thickness of the container main body in the straight body portion means a value obtained by measuring the thickness of the container main body at eight arbitrary positions in the straight body portion and averaging them.
  • the average thickness of the container body 2 in the dome portion 12 is preferably 3 to 30 mm, and more preferably 4 to 20 mm.
  • the average thickness of the container body 2 in the straight body portion 10 is preferably 2 to 20 mm, and more preferably 3 to 8 mm.
  • the material of the container body As the material of the container body (liner), a material having a gas barrier property that does not leak the high-pressure gas filled in the pressure vessel is used, and a known material can be appropriately used in the pressure vessel.
  • polyolefin resins such as high-density polyethylene resin, crosslinked polyethylene, polypropylene resin, and cyclic olefin resin; polyamide resins such as nylon 6, nylon 6,6, nylon 11, and nylon 12; polyester such as polyethylene terephthalate and polybutylene terephthalate
  • polyester such as polyethylene terephthalate and polybutylene terephthalate
  • resins include acrylonitrile-butadiene-styrene copolymer (ABS) resin, polyacetal resin, polycarbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, and polyimide resin.
  • resin which forms a container main body 1 type may be used independently and 2 or more types may be
  • Examples of the fiber reinforced composite material forming the outer shell include a fiber reinforced composite material containing a reinforced fiber base material in which reinforcing fibers are arranged and a matrix resin.
  • Examples of the reinforcing fiber include carbon fiber, glass fiber, organic high elastic modulus fiber (aramid fiber, ultra high strength polyester fiber, etc.), metal fiber, ceramic fiber, and the like.
  • Examples of the carbon fiber include pitch type, polyacrylonitrile (PAN type), rayon type and the like. Among these, pitch-based carbon fibers are preferable from the viewpoint that a particularly high elastic modulus is easily obtained, and PAN-based carbon fibers are preferable from the viewpoint that high strength is easily obtained.
  • As the reinforcing fiber one kind may be used alone, or two or more kinds may be used in combination.
  • thermosetting resin or a photocurable resin may be used, or a thermoplastic resin may be used.
  • thermosetting resin or photocurable resin include epoxy resins, unsaturated polyester resins, urea resins, phenol resins, melamine resins, polyurethane resins, polyimide resins, and vinyl ester resins.
  • thermoplastic resin include polyester resins such as polyamide resin, polyethylene terephthalate and polybutylene terephthalate, engineering plastics such as ABS resin, polyetherketone and polyphenylene sulfide, and polyolefin resins such as polypropylene and poly-4-methyl-1-pentene. Etc.
  • the matrix resin one kind may be used alone, or two or more kinds may be used in combination.
  • the form of the base can be a known form used for pressure vessels.
  • the base 4 in the pressure vessel 1 has a substantially cylindrical shape having a through hole.
  • the shape of the inner surface of the base is designed according to the shape of a valve or the like attached in the base.
  • a female screw can be formed on the inner peripheral surface near the upper end of the through hole of the base, and a gas supply or extraction valve or the like can be attached by screwing.
  • the metal constituting the base is not particularly limited, and a known metal can be used.
  • a known metal can be used.
  • aluminum alloy, stainless steel (SUS), carbon steel, alloy steel, brass, etc. are mentioned.
  • Manufacturing method of pressure vessel As a manufacturing method of the container main body in the pressure vessel of the present invention, a known method can be used, and when the container main body is made of resin, it is preferable to employ a direct blow molding method. By adjusting the shape of the pair of molds that pinch the parison in the direct blow molding method, the shape of the outer surface 21 of the dome portion 12 of the container body 2 at the cut surface can be adjusted.
  • Examples of the method for forming the outer shell include a method in which a long fiber reinforced resin material is entirely wound around the outer side of the container body, and then the fiber reinforced resin material is cured.
  • a method for winding the fiber reinforced resin material an FW method, a tape winding method, or the like can be adopted, and it is preferable to form the outer shell using the FW method.
  • the winding method in the FW method, the tape winding method or the like is not particularly limited, and examples thereof include helical winding, hoop winding, label winding, and the like, and these may be combined.
  • the outer shell it is preferable to wrap a fiber reinforced resin material around the outside of the container body in a state where the inside of the container body is pressurized.
  • a fiber reinforced resin material around the outside of the container body in a state where the inside of the container body is pressurized.
  • the container body When pressurizing the inside of the container body when winding the fiber reinforced resin material, pressurize the inside of the container body and then start winding the fiber reinforced resin material. During the winding, the outside of the container body is uniformly made of fiber reinforced resin material. It is preferable to further increase the pressure in the container body from the covered stage.
  • the outer side of the container body is uniformly covered with the fiber reinforced resin material, the resistance against the internal pressure of the container body is increased by the fiber reinforced resin material that uniformly covers the container body. Therefore, when the outer side of the container body is uniformly covered with the fiber reinforced resin material, the container body by the compressive force of the fiber reinforced resin material is increased by further increasing the pressure in the container body and continuing the subsequent winding. It becomes easier to suppress the deformation.
  • the pressure in the container body may be changed stepwise, and it is changed smoothly so that it gradually increases. May be.
  • the pressure in the container body from the beginning of winding at the time of winding the fiber reinforced resin material until the outside of the container body is uniformly covered with the fiber reinforced resin material is preferably 0.01 to 0.15 MPa, 0.05 More preferably, it is -0.10 MPa.
  • the pressure in the container body from the outside of the container body is uniformly covered with the fiber reinforced resin material to the end of winding is preferably 0.01 to 0.30 MPa. 05 to 0.20 MPa is more preferable, and the pressure in the container body is gradually increased in accordance with the winding thickness of the fiber reinforced resin material.
  • the inside of the container body When the inside of the container body is pressurized when the fiber reinforced resin material is wound, it is preferable to perform a curing reaction of the fiber reinforced resin material while the inside of the container body is pressurized from the viewpoint of easy manufacture.
  • the shape of the outer surface of the dome portion of the container body is within the range of ellipse A and ellipse B in the cut surface obtained by cutting the dome portion along the central axis of the straight body portion.
  • Curve shape that fits in While maintaining the length of the pressure vessel 1 in the axial direction the dome portion 12 is lowered so that the outer surface of the dome portion of the vessel body has such a curved shape, and the straight body portion 10 is lengthened accordingly.
  • the pressure vessel of the present invention is not limited to the pressure vessel 1 described above.
  • the pressure vessel of the present invention may be a pressure vessel in which a base is provided in both dome parts.
  • Example 1 In the cut surface obtained by cutting the dome portion along the central axis of the straight body portion by the direct blow molding method, the shape of the outer surface from the straight body portion side to the tip portion of the dome portion of the container body is the curve shown in FIG. A container body having a capacity of 710 L was molded so as to have a shape.
  • FIG. 3 the values of a and b are standardized so that the value of “a” is “1”, and are shown in a plot for convenience in order to easily distinguish the curve shape of each example.
  • polyethylene (trade name “LUPOLEN 4261AG UV 600005”, manufactured by LYONDELBASEL) was used as a material for molding the container body.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • the thicknesses of the first dome part, the straight body part, and the second dome part were measured at four locations at equal intervals in the axial direction.
  • the thickness was measured at a portion along the pinch line (PL) and at a portion 90 ° around the axis from the pinch line.
  • PL pinch line
  • a 38DL PLUS ultrasonic thickness meter made by OLYMPUS was used for measuring the thickness.
  • Table 1 shows the thickness measurement results.
  • the average thickness of the first dome part and the second dome part was 1.83 times the average thickness of the straight body part.
  • Example 2 Polyethylene (trade name “HB111R”, manufactured by Nippon Polyethylene Co., Ltd.) is used as a material for molding the container body, and the shape of the outer surface from the straight body part to the tip part in the dome part of the container body is shown in FIG.
  • the main body container was molded by the direct blow molding method in the same manner as in Example 1 except that the capacity was changed to 9L.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • the thicknesses of the first dome portion, the straight body portion, and the second dome portion along the PL and the portion in the 90 ° direction around the axis from the PL are set. Measured at four locations at equal intervals in the axial direction. Table 2 shows the measurement results of the thickness. The average thickness of the first dome part and the second dome part was 1.57 times the average thickness of the straight body part. Further, a long fiber reinforced resin material was wound around the outer side of the obtained container main body by the FW method in the same manner as in Example 1, and the fiber reinforced resin material was cured to obtain a pressure vessel. When the fiber reinforced resin material was wound, the winding could be stably performed without any troubles such as displacement of the fiber reinforced resin material and deformation of the container body.
  • Example 3 Direct blow molding is performed in the same manner as in Example 1 except that the shape of the outer surface from the straight body portion side to the tip portion of the dome portion of the container body is changed to the curved shape shown in FIG.
  • the body container was molded by the method.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • the thicknesses of the first dome portion, the straight body portion, and the second dome portion along the PL and the portion in the 90 ° direction around the axis from the PL are set. Measured at four locations at equal intervals in the axial direction. Table 3 shows the thickness measurement results. The average thickness of the first dome part and the second dome part was 1.36 times the average thickness of the straight body part. Further, a long fiber reinforced resin material was wound around the outer side of the obtained container main body by the FW method in the same manner as in Example 1, and the fiber reinforced resin material was cured to obtain a pressure vessel. When the fiber reinforced resin material was wound, the winding could be stably performed without any troubles such as displacement of the fiber reinforced resin material and deformation of the container body.
  • Example 4 Direct blow molding as in Example 1 except that the shape of the outer surface from the straight body side to the tip of the dome portion of the container body is changed to the curved shape shown in FIG.
  • the body container was molded by the method.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • the thicknesses of the first dome portion, the straight body portion, and the second dome portion along the PL and the portion in the 90 ° direction around the axis from the PL are set. Measured at four locations at equal intervals in the axial direction. Table 4 shows the measurement results of the thickness. The average thickness of the first dome part and the second dome part was 1.69 times the average thickness of the straight body part. Further, a long fiber reinforced resin material was wound around the outer side of the obtained container main body by the FW method in the same manner as in Example 1, and the fiber reinforced resin material was cured to obtain a pressure vessel. When the fiber reinforced resin material was wound, the winding could be stably performed without any troubles such as displacement of the fiber reinforced resin material and deformation of the container body.
  • Example 1 A container main body was molded in the same manner as in Example 1 except that the shape of the outer surface from the straight body portion side to the tip end portion of the dome portion of the container main body was changed to the curved shape shown in FIG. Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • Example 2 A container main body was molded in the same manner as in Example 1 except that the shape of the outer surface from the straight body portion side to the tip end portion of the dome portion of the container main body was changed to the curved shape shown in FIG. Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.
  • Table 5 shows the values of the major axis diameter, minor axis diameter, and b / a in the obtained container main body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

占有スペースの増大や、繊維強化樹脂材料の巻き付けの不安定化に起因する品質低下を抑制しつつ、大容量を確保することができる。容器本体(2)と、繊維強化樹脂材料からなる外殻(3)によって形成された、円筒状の直胴部(10)と半球状のドーム部(12)とを備え、ドーム部(12)を直胴部(10)の中心軸に沿って切断した切断面において、容器本体(2)の直胴部(10)の外径を2aとしたとき、容器本体(2)のドーム部(12)の外面(21)の形状が、下記楕円Aと下記楕円Bの範囲内に収まる曲線形状である、圧力容器(1)。楕円A:容器本体(2)のドーム部(12)の外面(21)における直胴部(10)との境界点p同士を結ぶ直線kを長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。楕円B:直線kを長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。

Description

圧力容器及び容器本体
 本発明は、圧力容器及び容器本体に関する。
 本願は、2016年10月31日に、日本に出願された特願2016-213774号に基づき優先権を主張し、その内容をここに援用する。
 例えば、自動車等の車輌に搭載される燃料タンクや、天然ガスや水素ガスの貯蔵や輸送に利用されるタンクとして、軽量性及び強度に優れる点から、樹脂製の容器本体(ライナー)が繊維強化樹脂層からなる外殻で補強された圧力容器が利用されている。外殻に使用される強化繊維としては、ガラス繊維、炭素繊維等が挙げられる。なかでも、炭素繊維は、比強度が高く圧力容器を軽量化しやすいために天然ガスの貯蔵タンクに好適に使用されている。
 圧力容器としては、例えば、円筒状の直胴部、及び前記直胴部の両端に設けられた半球状のドーム部(鏡部)とを有する樹脂製の容器本体と、前記容器本体の外側に形成された繊維強化樹脂層とを備える圧力容器が知られている(特許文献1)。前記容器本体は、一般にダイレクトブロー成形法によって形成される。また、外殻は、長尺の強化繊維束にマトリクス樹脂が含浸された繊維強化樹脂材料がフィラメントワインディング法(以下、FW法という。)等により容器本体の外側に巻き回され、硬化されることで形成される。
特開平3-89098号公報
 圧力容器には、占有スペースが増大することを抑制しつつ、容量をできるだけ大きくすることが求められる。圧力容器において、占有スペースの増大を抑制しつつ容量を大きくする方法としては、直胴部の長さをできるだけ長くとり、ドーム部の高さを低くする方法が挙げられる。しかし、ドーム部の高さを低く設定すると、容器本体の外側に繊維強化樹脂材料をFW法等で巻き付ける際に、ドーム部において繊維強化樹脂材料が滑るため、繊維強化樹脂材料を安定して巻き付けることが困難になる。そのため、ドーム部における外殻の厚みが局所的に不均一となって耐圧性が低下したりするなど、圧力容器の品質が低下する。
 本発明は、占有スペースの増大や、繊維強化樹脂材料の巻き付けの不安定化に起因する品質低下を抑制しつつ、大容量を確保できる圧力容器及び容器本体を提供することを目的とする。
 本発明は、以下の構成を有する。
[1]円筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄んだ半球状のドーム部とを備え、
 前記直胴部及び前記ドーム部が、容器本体と、前記容器本体の外側に設けられた、強化繊維とマトリクス樹脂を含有する繊維強化樹脂材料からなる外殻によって形成された圧力容器であって、
 前記容器本体を前記直胴部の中心軸に沿って切断した切断面において、前記容器本体の少なくとも一方のドーム部の外面の形状が、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Aと、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Bの範囲内に収まる外側に凸の曲線形状である、圧力容器。
 楕円A:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。
 楕円B:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。
[2]前記ドーム部における前記容器本体の平均厚みが、前記直胴部における前記容器本体の平均厚みに対して1.2倍以上4倍以下である、[1]に記載の圧力容器。
[3]前記容器本体の内側に、前記ドーム部の内面の中心から前記直胴部に向かって筋状に延びる凹凸を有する、[1]又は[2]に記載の圧力容器。
[4]円筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄んだ半球状のドーム部とを備える容器本体であって、
 前記直胴部の中心軸に沿って切断した切断面において、前記容器本体の少なくとも一方のドーム部の外面の形状が、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Aと、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Bとの間に収まる外側に凸の曲線形状である、容器本体。
 楕円A:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。
 楕円B:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。
[5]前記ドーム部における前記容器本体の平均厚みが、前記直胴部における前記容器本体の平均厚みに対して1.2倍以上4倍以下である、[4]に記載の容器本体。
[6]前記容器本体の内側に、前記ドーム部の内面の中心から前記直胴部に向かって筋状に延びる凹凸を有する、[4]又は[5]に記載の容器本体。
 本発明の圧力容器及び容器本体は、占有スペースの増大や、繊維強化樹脂材料の巻き付けの不安定化に起因する品質低下を抑制しつつ、大容量を確保することができる。
本発明の圧力容器の一例を示した図であり、直胴部の軸方向に沿って切断した断面図である。 図1の圧力容器のドーム部を拡大した断面図である。 実施例1~4及び比較例1、2の容器本体におけるドーム部の外面の形状を示した図である。
 本発明の圧力容器は、円筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄んだ半球状のドーム部とを備えている。直胴部及びドーム部は、容器本体と、前記容器本体の外側に設けられた、強化繊維とマトリクス樹脂を含有する繊維強化樹脂材料からなる外殻によって形成されている。すなわち、本発明の圧力容器においては、容器本体が、繊維強化樹脂材料で形成された外殻によって補強されている。
 以下、本発明の圧力容器の一例を示して説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 本実施形態の圧力容器1は、図1及び図2に示すように、円筒状の直胴部10と、直胴部10の両端に設けられ、直胴部10から離れるにつれて窄んだ半球状のドーム部12と、を備えている。直胴部10とドーム部12とは、樹脂製の容器本体(ライナー)2と、容器本体2の外側に設けられた、強化繊維とマトリクス樹脂を含有する繊維強化樹脂材料からなる外殻3とによって形成されている。また、圧力容器1には、一方のドーム部12の先端部に金属製の口金4が設けられている。口金4は、ドーム部12の先端部において、容器本体2と外殻3で挟まれるようにして密着固定されている。
 圧力容器及び容器本体を製造するためには、製造のしやすさや製造コストの観点から、容器本体2は、ダイレクトブロー成形品からなる樹脂製の容器であることが好ましい。例えば容器本体は、それぞれ別々に製造されたドーム部の部分と直胴部の部分が互いに接合されて形成されることがある。しかし、このような容器本体では、ドーム部と直胴部で中心軸がずれたり、一対のドーム部で中心軸がずれたりすることで、偏芯が生じやすい。容器本体に偏芯が生じると、FW法等によって繊維強化樹脂材料を巻き付ける際に巻きずれ等が生じやすく、品質が低下しやすい。これに対して、容器本体2をダイレクトブロー成形品からなる樹脂製の容器、すなわちドーム部と直胴部が一体に形成された容器とすれば、偏芯が生じることが抑制されるため、高品質な圧力容器が得られる。
 容器本体2がダイレクトブロー成形品である場合、容器本体はその内側に、ドーム部の内面の中心から直胴部に向かって筋状に延びる凹凸を有する。ドーム部の内面の中心とは、ドーム部の内面におけるドーム部の先端部に相当する位置である。当該凹凸は、ダイレクトブロー成形を行うにあたり、容器本体を形成するためのパリソンが一対の金型で挟み込まれることで形成されるものであり、いわゆるピンチオフ部である。ピンチオフ部では、2つの凸条の間に凹条(ピンチライン)が形成されている。
 また、ダイレクトブロー成形は、内容量を問わず、容器を成形することができるが、特に450~1500リットルの大型容器の成形に対し有効であり、より好ましくは、700リットル~1300リットルである。
 圧力容器1では、図2に示すように、容器本体2を直胴部10の中心軸に沿って切断した切断面において、容器本体2のドーム部12の外面21の形状が、容器本体2の直胴部10外側の直径を長軸直径として描いた下記の仮想の楕円Aと、同様に容器本体2の直胴部10外側の直径を長軸直径として描いた下記楕円Bの範囲内に収まる外側に凸の曲線形状になっている。
 楕円A:容器本体2のドーム部12の外面21における直胴部10との境界点p同士を結ぶ直線kを長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。
 楕円B:容器本体2のドーム部12の外面21における直胴部10との境界点p同士を結ぶ直線kを長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。
 境界点pは、容器本体2を直胴部10の中心軸に沿って切断した切断面における、ドーム部12を形成する曲線と直胴部10を形成する直線との境界となる点である。
 圧力容器1においては、圧力容器1の軸方向の長さを維持しつつ、ドーム部12を低くして、その分だけ直胴部10を長くすることで、圧力容器1の占有スペースを増大させずに、容量を大きくすることができる。このとき、前記切断面において、容器本体2のドーム部12の外面21の形状が楕円Aと楕円Bの範囲内に収まる曲線形状となっていれば、ドーム部12を低くしたとしても、FW法等によって繊維強化樹脂材料を巻き付ける際にドーム部12において繊維強化樹脂材料が滑ってずれにくく、安定して繊維強化樹脂材料を巻き付けることができる。そのため、圧力容器1では、占有スペースの増大や、繊維強化樹脂材料の巻き付けの不安定化に起因する品質低下を抑制しつつ、大容量を確保することができる。
 容器本体2のドーム部12の外面21の形状がb/aが0.55である楕円Aよりも低い、すなわちb/aが0.55未満の楕円形状となると、繊維強化樹脂材料の巻き付けが困難になる。容器本体2のドーム部12の外面21の形状がb/aが0.70である楕円Bよりも高い、すなわちb/aが0.7超の楕円形状となると、充分な容量を確保しにくい。
 なお、前記切断面における容器本体2のドーム部12の外面21の形状は、楕円Aと楕円Bの範囲内に収まる曲線形状となっていれば、必ずしも楕円の曲線形状と一致していなくてもよい。
 本発明では、一対のドーム部の両方において、容器本体のドーム部の外面形状が楕円Aと楕円Bの範囲内に収まる曲線形状になっていることが好ましい。なお、本発明では、一対のドーム部のうち一方のドーム部のみで、容器本体のドーム部の外面形状が楕円Aと楕円Bの範囲内に収まる曲線形状になっていてもよい。
 容器本体2のドーム部12の先端部には、ガスを出し入れするための開口部があり、その部分に口金4が装着されている。FW法等による繊維強化樹脂材料の巻き付け時には、通常、口金4に治具を取り付ける等の方法で、一対のドーム部の先端部分がそれぞれ支持される状態となる。700Lを超えるような大容量で重い圧力容器の場合は特に、繊維強化樹脂材料の巻き付け時に容器本体が自重で変形しやすくなるため、繊維強化樹脂材料の巻きずれ等の不具合が起きることがある。そのため、繊維強化樹脂材料の巻き付け時等における自重による変形を抑制するために、容器本体2では、ドーム部12の厚みが直胴部10の厚みよりも厚くなっていることが好ましい。
 具体的には、ドーム部12における容器本体2の平均厚みは、直胴部10における容器本体2の平均厚みに対して、1.2倍以上4倍以下が好ましく、1.3倍以上3倍以下がより好ましい。前記平均厚みの比率が前記範囲内であれば、繊維強化樹脂材料の巻き付け時等において、容器本体を一対のドーム部の先端部分で支持したときでも、容器本体が自重によって変形しにくい。
 なお、ドーム部における容器本体の平均厚みとは、ドーム部において、任意の8箇所で容器本体の厚みを測定し、それらを平均した値を意味する。容器本体がダイレクトブロー成形品の場合は、ピンチライン(PL)に沿った部分と、ピンチラインから軸周りに90°方向の部分とでそれぞれ4箇所ずつ厚みを測定し、それらを平均した値とする。直胴部における容器本体の平均厚みとは、直胴部において、任意の8箇所で容器本体の厚みを測定し、それらを平均した値を意味する。
 ドーム部12における容器本体2の平均厚みは、3~30mmが好ましく、4~20mmがより好ましい。
 直胴部10における容器本体2の平均厚みは、2~20mmが好ましく、3~8mmがより好ましい。
 容器本体(ライナー)の材料としては、圧力容器に充填された高圧ガスを漏洩させないガスバリア性を有する材料が用いられ、圧力容器において公知の材料を適宜用いることができる。例えば高密度ポリエチレン系樹脂、架橋ポリエチレン、ポリプロピレン樹脂、環状オレフィン系樹脂等のポリオレフィン樹脂;ナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;アクリロニトリル-ブタジエン-スチレン共重合(ABS)樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリスルホン樹脂、又はポリイミド樹脂等のエンジニアリングプラスチック;等が挙げられる。
 容器本体を形成する樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 なお、容器本体は、鉄、アルミニウム合金等の金属製としてもよい。
 外殻を形成する繊維強化複合材料としては、例えば、強化繊維を配列させた強化繊維基材とマトリクス樹脂を含有する繊維強化複合材料が挙げられる。
 強化繊維としては、例えば、炭素繊維、ガラス繊維、有機高弾性率繊維(アラミド繊維、超高強力ポリエステル繊維等)、金属繊維、セラミック繊維等が挙げられる。炭素繊維としては、ピッチ系、ポリアクリロニトリル(PAN系)、レーヨン系等が挙げられる。なかでも、特に高い弾性率が得られやすい点ではピッチ系炭素繊維が好ましく、高い強度が得られやすい点ではPAN系炭素繊維が好ましい。強化繊維としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 マトリクス樹脂としては、熱硬化性樹脂又は光硬化性樹脂を用いてもよく、熱可塑性樹脂を用いてもよい。熱硬化性樹脂又は光硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、ポリイミド樹脂、ビニルエステル樹脂等が挙げられる。熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ABS樹脂、ポリエーテルケトン、ポリフェニレンサルファイド等のエンジニアリングプラスチック、ポリプロピレン、ポリ4-メチル-1-ペンテン等のポリオレフィン樹脂等が挙げられる。マトリクス樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 口金の形態は、圧力容器に用いられる公知の形態とすることができる。圧力容器1における口金4は、貫通孔を有する略円筒状になっている。口金の内面の形状は、口金内に取り付けられるバルブ等の形状に応じて設計される。例えば、口金の貫通孔における上端寄りの内周面に雌螺子を形成し、ガス供給又は取出用のバルブ等をねじ込みにより取り付け可能にすることができる。
 口金を構成する金属としては、特に限定されず、公知の金属を用いることができる。例えば、アルミニウム合金、ステンレス鋼(SUS)、炭素鋼、合金鋼、黄銅等が挙げられる。
(圧力容器の製造方法)
 本発明の圧力容器における容器本体の製造方法としては、公知の方法を利用でき、容器本体が樹脂製の場合、ダイレクトブロー成形法の採用が好ましい。ダイレクトブロー成形法においてパリソンをピンチする一対の金型の形状を調節することで、前記切断面における容器本体2のドーム部12の外面21の形状を調節することができる。
 外殻を形成する方法としては、例えば、容器本体の外側に長尺の繊維強化樹脂材料を全体的に巻き付けた後に、前記繊維強化樹脂材料を硬化させる方法が挙げられる。繊維強化樹脂材料を巻き付ける方法としては、FW法、テープワインディング法等を採用することができ、FW法を用いて外殻を形成することが好ましい。FW法、テープワインディング法等における捲回方法は、特に限定されず、ヘリカル巻、フープ巻、レーベル巻等が挙げられ、これらを組み合わせてもよい。
 外殻の形成において、容器本体内を加圧した状態で、前記容器本体の外側に繊維強化樹脂材料を巻き付けることが好ましい。これにより、例えば700Lを超えるような特に大容量の圧力容器を得るために容器本体の厚みが薄くなった場合であっても、繊維強化樹脂材料の巻き付け時にその締め付けによる圧縮力によって容器本体が変形することを抑制することができる。
 繊維強化樹脂材料を巻き付ける際に容器本体内を加圧する場合は、容器本体内を加圧してから繊維強化樹脂材料を巻き始め、巻き付け途中において、容器本体の外側が繊維強化樹脂材料で一様に覆われた段階から、容器本体内の圧力をさらに高くすることが好ましい。容器本体の外側が繊維強化樹脂材料で一様に覆われると、容器本体を一様に覆った繊維強化樹脂材料によって、容器本体の内圧に対する耐性が高まる。そのため、容器本体の外側が繊維強化樹脂材料で一様に覆われた段階で、容器本体内の圧力をさらに高めてそれ以降の巻き付けを続行することで、繊維強化樹脂材料の圧縮力による容器本体の変形を抑制することがより容易になる。
 容器本体の外側が繊維強化樹脂材料で一様に覆われた後に容器本体の圧力を高める場合、容器本体内の圧力は段階的に変化させてもよく、徐々に高くなるように滑らかに変化させてもよい。
 繊維強化樹脂材料の巻き付け時における、巻き始めから、容器本体の外側が繊維強化樹脂材料で一様に覆われるまでの容器本体内の圧力は、0.01~0.15MPaが好ましく、0.05~0.10MPaがより好ましい。
 繊維強化樹脂材料の巻き付け時における、容器本体の外側が繊維強化樹脂材料で一様に覆われてから、巻き終わりまでの容器本体内の圧力は、0.01~0.30MPaが好ましく、0.05~0.20MPaがより好ましく、繊維強化樹脂材料の巻き厚みに応じて、段階的に容器本体内の圧力を上げていく。
 繊維強化樹脂材料を巻き付ける際に容器本体内を加圧した場合は、製造が容易になる点から、容器本体内が加圧された状態のまま繊維強化樹脂材料の硬化反応を行うことが好ましい。
 以上説明したように、本発明の圧力容器においては、ドーム部を直胴部の中心軸に沿って切断した切断面において、容器本体のドーム部の外面の形状が楕円Aと楕円Bの範囲内に収まる曲線形状である。圧力容器1の軸方向の長さを維持しつつ、容器本体のドーム部の外面の形状をこのような曲線形状となるようにドーム部12を低くして、その分だけ直胴部10を長くすることで、占有スペースの増大や品質低下を抑制しつつ、大容量を確保することができる。
 なお、本発明の圧力容器は、前記した圧力容器1には限定されない。例えば、本発明の圧力容器は、両方のドーム部に口金が備えられた圧力容器であってもよい。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
[実施例1]
 ダイレクトブロー成形法により、ドーム部を直胴部の中心軸に沿って切断した切断面において、容器本体のドーム部における直胴部側から先端部までの外面の形状が、図3に示した曲線形状となるように、容量が710Lの容器本体を成形した。なお、図3においては、aの値が「1」となるようにaとbの値を標準化し、各例の曲線形状を見分けやすくするために便宜上プロットで示した。ダイレクトブロー成形の材料としては、容器本体を成形する材料としてポリエチレン(商品名「LUPOLEN 4261AG UV 600005」、LYONDELLBASELL社製)を用いた。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。
 得られた容器本体において、第1のドーム部、直胴部及び第2のドーム部における厚みを、軸方向において等間隔に各4箇所ずつ測定した。厚みの測定は、ピンチライン(PL)に沿った部分と、ピンチラインから軸周りに90°方向の部分とでそれぞれ行った。厚みの測定には、OLYMPUS製38DL PLUS超音波厚さ計を使用した。厚みの測定結果を表1に示す。第1のドーム部及び第2のドーム部の平均厚みは、直胴部の平均厚みに対して1.83倍であった。
Figure JPOXMLDOC01-appb-T000001
 また、得られた容器本体の外側に、炭素繊維(商品名「Grafil 37-800WD」、Mitsubishi Rayon Carbon Fiber and Composites社製)とエポキシ樹脂(商品名「Araldite LY 564/1564」「Aradur 917」「Accelerator 960-1」、Huntsman社製)を含有する長尺の繊維強化樹脂材料をFW法により巻き付け、繊維強化樹脂材料を硬化させて圧力容器を得た。繊維強化樹脂材料を巻き付ける際には、繊維強化樹脂材料の巻きずれや容器本体の変形等の不具合もなく安定して巻き付けが行えた。
[実施例2]
 容器本体を成形する材料としてポリエチレン(商品名「HB111R」、日本ポリエチレン社製)を用い、容器本体のドーム部における直胴部側から先端部までの外面の形状を図3に示した曲線形状となるように変更し、容量を9Lとした以外は、実施例1と同様にダイレクトブロー成形法により本体容器を成形した。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。
 得られた容器本体において、実施例1と同様に、第1のドーム部、直胴部及び第2のドーム部における、PLに沿った部分とPLから軸周りに90°方向の部分の厚みを、軸方向において等間隔に各4箇所ずつ測定した。厚みの測定結果を表2に示す。第1のドーム部及び第2のドーム部の平均厚みは、直胴部の平均厚みに対して1.57倍であった。
 また、得られた容器本体の外側に、実施例1と同様に長尺の繊維強化樹脂材料をFW法により巻き付け、繊維強化樹脂材料を硬化させて圧力容器を得た。繊維強化樹脂材料を巻き付ける際には、繊維強化樹脂材料の巻きずれや容器本体の変形等の不具合もなく安定して巻き付けが行えた。
Figure JPOXMLDOC01-appb-T000002
[実施例3]
 容器本体のドーム部における直胴部側から先端部までの外面の形状を図3に示した曲線形状となるように変更し、容量を1000Lとした以外は、実施例1と同様にダイレクトブロー成形法により本体容器を成形した。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。
 得られた容器本体において、実施例1と同様に、第1のドーム部、直胴部及び第2のドーム部における、PLに沿った部分とPLから軸周りに90°方向の部分の厚みを、軸方向において等間隔に各4箇所ずつ測定した。厚みの測定結果を表3に示す。第1のドーム部及び第2のドーム部の平均厚みは、直胴部の平均厚みに対して1.36倍であった。
 また、得られた容器本体の外側に、実施例1と同様に長尺の繊維強化樹脂材料をFW法により巻き付け、繊維強化樹脂材料を硬化させて圧力容器を得た。繊維強化樹脂材料を巻き付ける際には、繊維強化樹脂材料の巻きずれや容器本体の変形等の不具合もなく安定して巻き付けが行えた。
Figure JPOXMLDOC01-appb-T000003
[実施例4]
 容器本体のドーム部における直胴部側から先端部までの外面の形状を図3に示した曲線形状となるように変更し、容量を80Lとした以外は、実施例1と同様にダイレクトブロー成形法により本体容器を成形した。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。
 得られた容器本体において、実施例1と同様に、第1のドーム部、直胴部及び第2のドーム部における、PLに沿った部分とPLから軸周りに90°方向の部分の厚みを、軸方向において等間隔に各4箇所ずつ測定した。厚みの測定結果を表4に示す。第1のドーム部及び第2のドーム部の平均厚みは、直胴部の平均厚みに対して1.69倍であった。
 また、得られた容器本体の外側に、実施例1と同様に長尺の繊維強化樹脂材料をFW法により巻き付け、繊維強化樹脂材料を硬化させて圧力容器を得た。繊維強化樹脂材料を巻き付ける際には、繊維強化樹脂材料の巻きずれや容器本体の変形等の不具合もなく安定して巻き付けが行えた。
Figure JPOXMLDOC01-appb-T000004
[比較例1]
 容器本体のドーム部における直胴部側から先端部までの外面の形状を、図3に示した曲線形状となるように変更した以外は、実施例1と同様にして容器本体を成形した。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。得られた容器本体の外側に、実施例1と同様にして長尺の繊維強化樹脂材料を巻き付けたところ、ドーム部において繊維強化樹脂材料が滑って巻きずれが生じ、安定して繊維強化樹脂材料を巻き付けられなかった。
[比較例2]
 容器本体のドーム部における直胴部側から先端部までの外面の形状を、図3に示した曲線形状となるように変更した以外は、実施例1と同様にして容器本体を成形した。得られた容器本体における長軸直径、短軸直径、及びb/aの値を表5に示す。得られた容器本体の外側に、実施例1と同様にして長尺の繊維強化樹脂材料を巻き付けたところ、ドーム部において繊維強化樹脂材料が滑って巻きずれが生じ、安定して繊維強化樹脂材料を巻き付けられなかった。
Figure JPOXMLDOC01-appb-T000005
 1 圧力容器
 2 容器本体
 21 容器本体のドーム部の外面
 3 外殻
 10 直胴部
 12 ドーム部

Claims (6)

  1.  円筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄んだ半球状のドーム部とを備え、
     前記直胴部及び前記ドーム部が、容器本体と、前記容器本体の外側に設けられた、強化繊維とマトリクス樹脂を含有する繊維強化樹脂材料からなる外殻によって形成された圧力容器であって、
     前記容器本体を前記直胴部の中心軸に沿って切断した切断面において、前記容器本体の少なくとも一方のドーム部の外面の形状が、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Aと、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Bの範囲内に収まる外側に凸の曲線形状である、圧力容器。
     楕円A:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。
     楕円B:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。
  2.  前記ドーム部における前記容器本体の平均厚みが、前記直胴部における前記容器本体の平均厚みに対して1.2倍以上4倍以下である、請求項1に記載の圧力容器。
  3.  前記容器本体の内側に、前記ドーム部の内面の中心から前記直胴部に向かって筋状に延びる凹凸を有する、請求項1又は2に記載の圧力容器。
  4.  円筒状の直胴部と、前記直胴部の両端に設けられ、前記直胴部から離れるにつれて窄んだ半球状のドーム部とを備える容器本体であって、
     前記直胴部の中心軸に沿って切断した切断面において、前記容器本体の少なくとも一方のドーム部の外面の形状が、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Aと、前記容器本体の直胴部外側の直径を長軸直径として描いた下記楕円Bとの間に収まる外側に凸の曲線形状である、容器本体。
     楕円A:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.55である楕円。
     楕円B:前記容器本体のドーム部の外面における前記直胴部との境界点同士を結ぶ直線を長軸とし、長軸直径が2aであり、短軸直径が2bであり、b/aが0.70である楕円。
  5.  前記ドーム部における前記容器本体の平均厚みが、前記直胴部における前記容器本体の平均厚みに対して1.2倍以上4倍以下である、請求項4に記載の容器本体。
  6.  前記容器本体の内側に、前記ドーム部の内面の中心から前記直胴部に向かって筋状に延びる凹凸を有する、請求項4又は5に記載の容器本体。
PCT/JP2017/039291 2016-10-31 2017-10-31 圧力容器及び容器本体 WO2018079818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017562389A JPWO2018079818A1 (ja) 2016-10-31 2017-10-31 圧力容器及び容器本体
US16/392,670 US10920931B2 (en) 2016-10-31 2019-04-24 Pressure container and container body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213774 2016-10-31
JP2016213774 2016-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/392,670 Continuation US10920931B2 (en) 2016-10-31 2019-04-24 Pressure container and container body

Publications (1)

Publication Number Publication Date
WO2018079818A1 true WO2018079818A1 (ja) 2018-05-03

Family

ID=62025062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039291 WO2018079818A1 (ja) 2016-10-31 2017-10-31 圧力容器及び容器本体

Country Status (3)

Country Link
US (1) US10920931B2 (ja)
JP (1) JPWO2018079818A1 (ja)
WO (1) WO2018079818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042834A (ja) * 2019-09-13 2021-03-18 トヨタ自動車株式会社 タンクの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180017377A (ko) * 2016-08-09 2018-02-21 현대자동차주식회사 고압 용기

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162537A (ja) * 1987-12-16 1989-06-27 Sumitomo Metal Ind Ltd ボンベの製造方法
JP2016102546A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器および圧力容器の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321157Y1 (ja) 1964-04-18 1968-09-05
JPH0389098A (ja) 1989-08-31 1991-04-15 Sumitomo Metal Ind Ltd Frp製ガス容器
JP2862414B2 (ja) * 1991-09-09 1999-03-03 三菱重工業株式会社 圧力容器の鏡板構造
JPH10338038A (ja) * 1997-06-10 1998-12-22 Mitsubishi Chem Corp 異形軽量圧力容器
EP2929231A1 (en) * 2012-12-05 2015-10-14 Blue Wave Co S.A. Pressure vessel having composite boss with weldable metal fitting
US9057483B2 (en) * 2013-03-15 2015-06-16 Lawrence Livermore National Security, Llc Threaded insert for compact cryogenic-capable pressure vessels
US9874311B2 (en) * 2014-06-13 2018-01-23 GM Global Technology Operations LLC Composite pressure vessel having a third generation advanced high strength steel (AHSS) filament reinforcement
BR112017009641A2 (pt) * 2014-11-28 2017-12-19 Mitsubishi Gas Chemical Co recipiente sob pressão, revestimento, e, método para fabricar um recipiente sob pressão.
JP6642716B2 (ja) * 2017-05-11 2020-02-12 三菱ケミカル株式会社 圧力容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162537A (ja) * 1987-12-16 1989-06-27 Sumitomo Metal Ind Ltd ボンベの製造方法
JP2016102546A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器および圧力容器の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042834A (ja) * 2019-09-13 2021-03-18 トヨタ自動車株式会社 タンクの製造方法
JP7226204B2 (ja) 2019-09-13 2023-02-21 トヨタ自動車株式会社 タンクの製造方法

Also Published As

Publication number Publication date
US20190249827A1 (en) 2019-08-15
US10920931B2 (en) 2021-02-16
JPWO2018079818A1 (ja) 2018-10-25

Similar Documents

Publication Publication Date Title
US9523466B2 (en) Pressure vessel
WO2011154994A1 (ja) 高圧タンクおよび高圧タンクの製造方法
CN105705856A (zh) 高压复合容器和制造高压复合容器的方法
US11472135B2 (en) Method for manufacturing high-pressure tank
JP2008032088A (ja) タンク
US11105465B2 (en) Pressure vessel
WO2018079818A1 (ja) 圧力容器及び容器本体
JP7439687B2 (ja) 高圧タンク
KR102322371B1 (ko) 실린더부가 보강된 압력 용기
US20220196206A1 (en) High-pressure tank and method for producing the same
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
JP2005113971A (ja) 耐圧容器用ライナ
US11654607B2 (en) Method for manufacturing high pressure tank
US11828415B2 (en) Composite gas storage tank
JP6726408B2 (ja) 高圧タンクの製造方法及び高圧タンク
US20220299162A1 (en) High-pressure tank and method for manufacturing high-pressure tank
US20220010928A1 (en) High pressure tank
JP2023060475A (ja) 高圧タンク及びその製造方法
JP2009121652A (ja) 圧力容器
JP6733228B2 (ja) 圧力容器
JP6565189B2 (ja) 圧力容器
JP2017145962A (ja) 高圧タンク及び高圧タンクの製造方法
JP2024019920A (ja) 高圧タンクの製造方法
US20240093834A1 (en) Tank
KR20230095660A (ko) 소직경 장축 압력용기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017562389

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865558

Country of ref document: EP

Kind code of ref document: A1