JP2017145962A - 高圧タンク及び高圧タンクの製造方法 - Google Patents

高圧タンク及び高圧タンクの製造方法 Download PDF

Info

Publication number
JP2017145962A
JP2017145962A JP2016218459A JP2016218459A JP2017145962A JP 2017145962 A JP2017145962 A JP 2017145962A JP 2016218459 A JP2016218459 A JP 2016218459A JP 2016218459 A JP2016218459 A JP 2016218459A JP 2017145962 A JP2017145962 A JP 2017145962A
Authority
JP
Japan
Prior art keywords
liner
cylindrical portion
pressure tank
cylindrical
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016218459A
Other languages
English (en)
Inventor
志朗 西部
Shiro Nishibe
志朗 西部
元輝 前川
Motoki Maekawa
元輝 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to DE102017101627.9A priority Critical patent/DE102017101627A1/de
Priority to US15/434,392 priority patent/US20170241591A1/en
Publication of JP2017145962A publication Critical patent/JP2017145962A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

【課題】円筒部とドーム部との連結部の強度を向上させることができる高圧タンクを提供する。
【解決手段】本発明に係る高圧タンク10は、円筒状の円筒部20aと、円筒部20aの端部と連続する半球状のドーム部20bとを有するライナー20と、ライナー20の円筒部20a上にフープ巻で巻回された繊維束と、ドーム20b部上にヘリカル巻で巻回された繊維束とを有する補強層30とを備え、円筒部20aの端部の外径は、円筒部20aのうち端部を除いた部分の外径よりも小さい。
【選択図】図2

Description

本発明は、高圧タンク及び高圧タンクの製造方法に関する。
近年、反応ガスである燃料ガスと酸化ガスの供給を受け、この反応ガスの電気化学反応によって発電する燃料電池を搭載した車両が開発されている。この車両には、燃料ガス(天然ガスや水素等)が貯蔵された高圧タンクが搭載されることが多い。この車両に搭載される高圧タンクとして、樹脂製のライナーの外表面に繊維強化樹脂(FRP)製の補強層(以下、繊維強化樹脂層)で覆った高圧タンクが用いられる。
上記繊維強化樹脂層は、熱硬化性樹脂を含浸した繊維をフィラメントワインディング法によりライナー外周に巻回させて形成される。一般に、樹脂製ライナーの円筒状の胴部(円筒部)では主にフープ巻きで繊維巻回がなされ、胴部両端に設けられる球面形状の半球状部(ドーム部)では主にヘリカル巻きで繊維巻回がなされる(例えば下記特許文献1参照)。
特許5621631号公報
ところで、円筒部とドーム部との連結部では段差が発生しないようにするために円筒部に比べてフープ巻の層数が少なくなる場合がある。この場合には、連結部の強度が不十分となるおそれがあった。また、連結部の強度を確保しながら円筒部の強度を確保することも必要であった。
本発明はこのような課題に鑑みてなされたものであり、その目的の1つは、円筒部とドーム部との連結部の強度を向上させることができる高圧タンクを提供することにある。また本発明の目的のもう1つは、円筒部の強度を向上させることができる高圧タンクの製造方法を提供することにある。
上記課題を解決するために本発明に係る高圧タンクは、ライナーと、該ライナー上に繊維束を巻回した補強層とを備える高圧タンクであって、前記ライナーは、円筒状の円筒部と、前記円筒部の端部と連続する半球状のドーム部と、を備え、前記補強層は、前記ライナーの前記円筒部上にフープ巻で巻回された繊維束と、前記ドーム部上にヘリカル巻で巻回された繊維束と、を有し、前記円筒部における前記端部の外径は、前記円筒部のうち前記端部を除いた部分の外径よりも小さい。
かかる構成によれば、円筒部の端部の外径が、円筒部のうち端部を除いた部分の外径よりも小さくなっているので、端部に巻回される補強層の層数(フープ巻の層数)を増やすことができる。これにより、端部における補強層の厚みを、従来の構成(ライナーの円筒部の外径が均一の構成)と比較して厚くすることができるので、端部の強度、言い換えれば、円筒部とドーム部との連結部の強度を向上させることができる。
また本発明に係る高圧タンクでは、前記端部は、前記円筒部の軸方向中心側から前記ドーム部側へ向かって外径が減少するテーパー部を有していてもよい。
また本発明に係る高圧タンクでは、前記テーパー部は、前記円筒部の軸方向の中心線に対する傾斜角度が5〜10°としてもよい。
また本発明に係る高圧タンクの製造方法は、円筒状の円筒部と、前記円筒部の端部と連続する半球状のドーム部とを有するライナーを内殻とする高圧タンクの製造方法であって、前記端部の外径が前記円筒部のうち前記端部を除いた部分の外径より小さい、前記ライナー又は繊維束が巻回されたライナーに対して、前記繊維束が前記ドーム部上で測地線軌道を通るように前記繊維束をヘリカル巻で巻回する。
測地線軌道で繊維束を巻回した場合、ライナーにおける円筒部の端部での半径の大きさが小さいほど、繊維束の円筒部での配列角度は大きくなる。円筒部での配列角度が大きいヘリカル層は、該配列角度が小さいヘリカル層に比して、フープ層への換算値(フープ層分)が大きいことが前提としてあるため、ヘリカル巻の円筒部での配列角度が大きければ、円筒部におけるフープ層分が増加する。このように円筒部におけるフープ層分を増加させることで、円筒部の強度を向上させることができる。
本発明によれば、ライナーの円筒部とドーム部との連結部の強度を向上させることができる高圧タンクを提供することができる。また本発明によれば、円筒部の強度を向上させることができる高圧タンクの製造方法を提供することができる。
本発明の一実施形態としての高圧タンクの概略構成を示す断面図である。 円筒部とドーム部との連結部周辺を拡大した要部断面図である。 (A)高圧タンクの製造方法を説明するための図である。(B)図3(A)のA方向から見た図である。 円筒部での配列角度とフープ層への換算との関係を示すグラフである。
以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
まず、高圧タンクの構成について説明する。図1は、本発明の一実施形態としての高圧タンク10の概略構成を示す説明図である。
図1に示すように、高圧タンク10は、胴部10aと、胴部10aの両端に設けられた半球状部10bとを備えた構成とされている。これら胴部10aと半球状部10bは、燃料ガス(水素等)の貯蔵空間25を画成し該貯蔵空間25からの水素ガスの流出を抑制するライナー(バリア層)20と、ライナー20の外側に配される補強層30と、を備えてなる。
胴部10aは、高圧タンク10の軸線AX方向、すなわち長手方向に所定の長さ延在する略円筒状の部分である。これに対し、半球状部10bは、胴部10aの長手方向の両端部にそれぞれ連続した半球状の曲壁部である。半球状部10bは、胴部10aから遠ざかるにつれて縮径しており、最も縮径した部分の中心に開口部14aが形成され、この開口部14aに口金14が設けられている。
ライナー20は、高圧タンク10の内殻又は内容器とも換言される部分であり、内部に燃料ガス(水素ガス)を貯蔵する。ライナー20は、胴部10a及び半球状部10bの内壁を構成するものであり、円筒状の胴部(以下、円筒部20a)と、円筒部20aの両端部と連続して設けられた半球状部(以下、ドーム部20b)とを備える。本実施形態では、円筒部20aとドーム部20bとの境目周辺を連結部C1(図2参照)と称する。ライナー20の材質は、軽量化を図る観点からは、ポリエチレン樹脂やポリプロピレン樹脂その他の硬質樹脂であることが好ましい。
なお、ライナー20を製造する方法としては、両端が開口した円筒状の円筒部20aを例えば押出成型で成形し、半球形状を有するドーム部20bを例えば射出成型で成形し、得られた円筒部20a及びドーム部20bを熱溶着により接合する方法が挙げられる。
補強層30は、高圧タンク10の外殻又は外容器とも換言される部分であり、胴部10a及び半球状部10bの外壁を構成する。補強層30は、ライナー20の外表面を被覆するように、ライナー20に巻きつけられることで形成されており、ライナー20の円筒部20a上に主にフープ巻で巻回された繊維束と、ライナー20のドーム部20b上に主にヘリカル巻で巻回された繊維束とを備える。補強層30の材質としては、例えばエポキシ樹脂等が挙げられ、熱硬化性樹脂を用いることが好ましい
なお、フープ巻及びヘリカル巻のいずれも、例えば、フィラメントワインディング法(FW法)が用いられる。
続いて、胴部10aと半球状部10bとの間に設けられる連結部C1(ドーム入口部)周辺の構成について説明する。図2は、高圧タンク10の連結部C1周辺を拡大した要部断面図である。
本実施形態における高圧タンク10では、ライナー20における連結部C1の外径(連結部C1におけるライナー外周面21の径)を、ドーム部20bに入る前の段階で、円筒部20aのうち連結部C1を除いた部分の外径よりも小さくしている。具体的には、図2に示すように、連結部C1に入る前の段階(段付き部C2)でテーパーがつけられ、連結部C1の外径を、円筒部20aにおける連結部C1以外の外径よりも小さくしている。つまり、円筒部20aの端部は、円筒部20aの軸方向中心側からドーム部20b側へ向かって外径が減少するテーパー部を有している。言い換えれば、ライナーの胴部(円筒部)の外径を均一にした場合のライナー外周面90(図2の破線)の径よりも、連結部C1周辺の外径を小さくしている。
このように、円筒部20aの端部の外径を、円筒部20aのうち端部を除いた部分の外径よりも小さくすることで、円筒部20aの端部に巻回される補強層30の層数(フープ巻の層数)を増やすことができる。これにより、円筒部20aの端部、言い換えれば、連結部C1周辺における補強層30の厚みtを、従来の構成(ライナーの円筒部の外径を均一にした構成)と比較して厚くすることができる。その結果、連結部C1周辺の強度を向上させることができる。また、円筒部20aの端部について、例えば段差形状にした場合ではライナーの周囲に巻回される繊維束に歪みが大きく発生してしまうが、上述したように、円筒部20aの端部は、円筒部20aの軸方向中心側からドーム部20b側へ向かって外径が減少するテーパー部を有することで、繊維束に歪みが発生することを抑制することができる。
なお、連結部C1における補強層30の厚みtは、連結部C1の必要強度以上になるようにすなわち、(厚みt)≧(ドーム入口部必要強度)の関係を満たすように、例えば、20〜30mmの範囲に設定することが好ましい。
また、段付き部C2におけるテーパーの角度θは、ライナー20の外表面を覆う補強層30の滑りが発生しにくくなるように、例えば5〜10°の範囲に設定することが好ましい。言い換えれば、ライナー20の外表面を覆う補強層30の滑りが発生しにくくなるように、円筒部20aの軸方向中心側からドーム部20b側へ向かって外径が減少するテーパー部は、円筒部20aの軸方向の中心線(図1に示す中心軸AX)に対する傾斜角度が5〜10°であることが好ましい。テーパーの長さは、内部に貯蔵する水素搭載量の減少を抑えるという観点から、また、ライナー20及び補強層30に応力集中を発生させないようにする観点から、例えば、30〜60mmの範囲に設定することが好ましい。
以上説明した、本実施形態に係る高圧タンク10では、ライナー20は、円筒状の円筒部20aと、円筒部20aの端部に連続する半球状のドーム部20bと、を備え、補強層30は、ライナー20の円筒部20a上にフープ巻で巻回された繊維束と、ドーム20b部上にヘリカル巻で巻回された繊維束と、を有し、円筒部20aにおける端部の外径は、円筒部20aのうち端部を除いた部分の外径よりも小さい。このように、円筒部20aにおける端部の外径を小さくすることで、連結部C1周辺に巻回するフープ巻の層数を増やすことができ、連結部C1周辺における強度を向上させることができる。
続いて、本実施形態における高圧タンクの製造方法について説明する。図3(A)は、高圧タンクの製造方法を説明するための図である。図3(B)は、図3(A)のA方向から見た図であって、高圧タンクの中心軸から所定長離間した位置に巻回される繊維束を示す説明図である。図4は、配列角度とフープ層への換算値との関係を示すグラフである。
FW法において、ドーム部にて口金から離れた位置を通るように繊維を配列させようとすると、肩部(ドーム部と円筒部との境界付近の湾曲部)での横滑りを抑制するために、測地線軌道を通るような配列角度にする必要がある。その場合、円筒部において繊維方向が主応力方向から大きく外れてしまうため円筒部の強度確保のために必要な繊維量が増加する。これを軽減するため、ドーム部で測地線の近くを通った繊維を円筒部から次第に角度を大きくし円筒部ではフープ巻に連続するように巻く方法がある。
しかしながら、この方法では次のような問題がある。すなわち、ドーム部に巻回されるヘリカル巻は数十往復する必要があるため、その全ての往復サイクルにおいて円筒部でフープ巻に連続するように巻くと、円筒部の肉厚が必要以上に増加する。一方で、一部のサイクルのみフープ巻に連続するように巻くと、周方向で巻量にばらつきが発生してしまうため、応力集中箇所が発生してしまう。
そこで本実施形態では、円筒部20aの端部の外径が、円筒部20aのうち端部を除いた部分の外径よりも小さいライナー20(図2及び図3参照)に対して、ドーム部20b上で測地線軌道を通るように、繊維束をヘリカル巻で巻回する。測地線を通すように巻くと、上記したように、(円筒部の外径全てが均一のライナーでは)円筒部で繊維方向が主応力方向から大きく外れてしまうものであるが、本実施形態では、主応力方向に近づくようにライナー20外径を変化させて、円筒部20aでの配列角度を大きくしている。以下、本実施形態における円筒部20aでの配列角度について、従来の円筒部での配列角度と比較して説明する。なお、測地線とは、曲面上の2点を結ぶ最短曲線を意味し、この測地線を通すように繊維束を巻回することで、ドーム部10b上に繊維束を巻く際に、繊維のすべりを抑制することができる。
高圧タンクの中心軸AXから所定長離間した位置R0(図3(B)参照)を通り、測地線軌道を通る場合、円筒部での配列角度θは下記式(1)で定められる。なお、下記式(1)のRは、図3(A)に示すように、円筒部の端部(肩部)の半径を示す。
θ=sin-1(R0/R)・・・(1)
比較例として、円筒部の外径が均一のライナー(図3(A)に破線で示す従来のライナー90)を用いて、高圧タンクの中心軸AXから所定長離間した位置R0で測地線軌道を通るようにヘリカル巻(図3(A)に示す符号F2)で巻回した場合には、円筒部の配列角度θは、R0=50、R=90のとき、式(1)よりθ=33.7°(以下、θ2と称する)となる。このθ2=33.7°でのヘリカル1層は、図4に示す相関グラフ(配列角度とフープ層への換算(層分)の相関関係を示すグラフ)に基づくと、フープ約0.1層分に相当する。
この比較例に対し、本実施形態のように、円筒部20aの端部の外径を小さくしたライナー20を用いた場合、すなわち、図3(A)に示す、円筒部20aの端部の外径R=80、円筒部20aのうち端部を除いた部分の外径R´=90としたライナー20を用いた場合には、円筒部20aの配列角度θが高くなる。具体的には、ドーム部20bをヘリカル巻で巻く際に、高圧タンクの中心軸AXから所定長離間した位置R0=50で測地線軌道を通るようにヘリカル巻(図3(A)に示す符号F1)で巻回した場合には、円筒部20aの配列角度θは、式(1)よりθ=38.7°(以下、θ1)となる。このθ1=38.7°におけるヘリカル1層は、図4に示すグラフ(配列角度とフープ層への換算(層分)の相関関係を示すグラフ)に基づくと、フープ約0.2層分に相当する。
上記θ2及びθ1の値に示されるように、本実施形態では、ドーム部20bをヘリカル巻で巻く際に、高圧タンクの中心軸AXから所定長離間した位置R0に巻回される繊維束のうち円筒部20aでのヘリカル巻角度θ1を、円筒部の外径が全て均一のライナー90を仮定したときの位置R0において巻回されるヘリカル巻角度θ2よりも大きくする。
このように、円筒部20aでのヘリカル巻角度を高角度化させることで、円筒部20aにおけるフープ層への換算値(フープ層分)が増加する。このフープ層分を増加させることで、ヘリカル巻の円筒部20aでの繊維方向が主応力方向に近づけられ、円筒部20aの強度を向上させることができる。
なお、本実施形態における主応力方向(図3(A)に示す破線S)とは、ライナーに負荷される種々の応力のうち主なものの方向を意味する。この主応力方向Sは、ライナー形状により変化するものであるが、一般的な略円筒のライナー形状の場合では、その主応力方向は軸方向に対し+45°〜+60°の範囲に存在する。
また、図3には、円筒部20aの端部(肩部)の外径が、円筒部20aのうち端部を除いた部分の外径より小さいライナー20を示している。しかし、この例に限定されず、「繊維束が巻回されたライナー」であっても良い。すなわち、本実施形態では、円筒部の端部の外径が円筒部のうち端部を除いた部分の外径より小さい繊維束が巻回されたライナーに対して、繊維束がドーム部上で測地線軌道を通るように繊維束をヘリカル巻で巻回しても良い。
以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。
10:高圧タンク
10a:胴部
10b:半球状部
14:口金
14a:開口部
20:ライナー
20a:円筒部
20b:ドーム部
21:外径
30:補強層
C1:連結部(ドーム入口部)
C2:段付き部

Claims (4)

  1. ライナーと、該ライナー上に繊維束を巻回した補強層とを備える高圧タンクであって、
    前記ライナーは、円筒状の円筒部と、前記円筒部の端部と連続する半球状のドーム部と、を備え、
    前記補強層は、前記ライナーの前記円筒部上にフープ巻で巻回された繊維束と、前記ドーム部上にヘリカル巻で巻回された繊維束と、を有し、
    前記端部の外径は、前記円筒部のうち前記端部を除いた部分の外径よりも小さい高圧タンク。
  2. 前記端部は、前記円筒部の軸方向中心側から前記ドーム部側へ向かって外径が減少するテーパー部を有する請求項1に記載の高圧タンク。
  3. 前記テーパー部は、前記円筒部の軸方向の中心線に対する傾斜角度が5〜10°である請求項2に記載の高圧タンク。
  4. 円筒状の円筒部と、前記円筒部の端部と連続する半球状のドーム部とを有するライナーを内殻とする高圧タンクの製造方法であって、
    前記端部の外径が前記円筒部のうち前記端部を除いた部分の外径より小さい、ライナー又は繊維束が巻回されたライナーに対して、前記繊維束が前記ドーム部上で測地線軌道を通るように前記繊維束をヘリカル巻で巻回する高圧タンクの製造方法。
JP2016218459A 2016-02-18 2016-11-08 高圧タンク及び高圧タンクの製造方法 Withdrawn JP2017145962A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017101627.9A DE102017101627A1 (de) 2016-02-18 2017-01-27 Hochdrucktank und Verfahren zum Herstellen eines Hochdrucktanks
US15/434,392 US20170241591A1 (en) 2016-02-18 2017-02-16 High-pressure tank and method of manufacturing high-pressure tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029136 2016-02-18
JP2016029136 2016-02-18

Publications (1)

Publication Number Publication Date
JP2017145962A true JP2017145962A (ja) 2017-08-24

Family

ID=59681457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218459A Withdrawn JP2017145962A (ja) 2016-02-18 2016-11-08 高圧タンク及び高圧タンクの製造方法

Country Status (1)

Country Link
JP (1) JP2017145962A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219025A (ja) * 2018-06-21 2019-12-26 トヨタ自動車株式会社 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法
WO2020085054A1 (ja) * 2018-10-23 2020-04-30 八千代工業株式会社 圧力容器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219025A (ja) * 2018-06-21 2019-12-26 トヨタ自動車株式会社 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法
JP7014060B2 (ja) 2018-06-21 2022-02-01 トヨタ自動車株式会社 高圧タンク、高圧タンク搭載装置、および高圧タンクの製造方法
WO2020085054A1 (ja) * 2018-10-23 2020-04-30 八千代工業株式会社 圧力容器
CN112930457A (zh) * 2018-10-23 2021-06-08 八千代工业株式会社 压力容器
JPWO2020085054A1 (ja) * 2018-10-23 2021-09-02 八千代工業株式会社 圧力容器
CN112930457B (zh) * 2018-10-23 2022-11-15 八千代工业株式会社 压力容器
US11543077B2 (en) 2018-10-23 2023-01-03 Yachiyo Industry Co., Ltd. Pressure vessel

Similar Documents

Publication Publication Date Title
JP5408351B2 (ja) 高圧タンクおよび高圧タンクの製造方法
KR102322373B1 (ko) 후프층 및 헬리컬층이 와인딩된 고압용기
JP6281525B2 (ja) 高圧タンク、高圧タンクの製造方法、ライナー形状の設計方法
US9840048B2 (en) Manufacturing method for high-pressure tank, and high-pressure tank
US11421824B2 (en) Pressure vessel and manufacturing method thereof
JP5741006B2 (ja) 高圧タンクの製造方法、および、高圧タンク
WO2016020972A1 (ja) 高圧タンク及び高圧タンク製造方法
US20170241591A1 (en) High-pressure tank and method of manufacturing high-pressure tank
CN111140766A (zh) 高压容器
KR101846733B1 (ko) 섬유강화 복합재 압력 용기 및 그 제조 방법
JP2017145962A (ja) 高圧タンク及び高圧タンクの製造方法
US20220196206A1 (en) High-pressure tank and method for producing the same
KR102322371B1 (ko) 실린더부가 보강된 압력 용기
JP2010116980A (ja) 高圧タンクの設計方法
US11204132B2 (en) Tank production method and tank
JP2013002492A (ja) 圧力容器
JP2005113971A (ja) 耐圧容器用ライナ
JP2021076194A (ja) 圧力容器及びその製造方法
US11828415B2 (en) Composite gas storage tank
WO2018079818A1 (ja) 圧力容器及び容器本体
KR102429178B1 (ko) 곡면 형상 라이너를 포함하는 고압용기
US20220074549A1 (en) High-pressure vessel
JP2006519961A (ja) 圧力容器
JP7318781B2 (ja) 圧力容器及びその製造方法
JP2006519961A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20181119