WO2018079641A1 - 水産生物成長促進剤 - Google Patents

水産生物成長促進剤 Download PDF

Info

Publication number
WO2018079641A1
WO2018079641A1 PCT/JP2017/038642 JP2017038642W WO2018079641A1 WO 2018079641 A1 WO2018079641 A1 WO 2018079641A1 JP 2017038642 W JP2017038642 W JP 2017038642W WO 2018079641 A1 WO2018079641 A1 WO 2018079641A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
molecular weight
feed
present
weight
Prior art date
Application number
PCT/JP2017/038642
Other languages
English (en)
French (fr)
Inventor
茂行 舩田
栗原 宏征
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/342,601 priority Critical patent/US20190261653A1/en
Priority to EP17864412.6A priority patent/EP3533340A4/en
Priority to CN201780064798.8A priority patent/CN109890216A/zh
Priority to JP2017559133A priority patent/JP6344534B1/ja
Publication of WO2018079641A1 publication Critical patent/WO2018079641A1/ja
Priority to PH12019500642A priority patent/PH12019500642A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/59Culture of aquatic animals of shellfish of crustaceans, e.g. lobsters or shrimps
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/111Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/10Shaping or working-up of animal feeding-stuffs by agglomeration; by granulation, e.g. making powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • A61K31/09Ethers or acetals having an ether linkage to aromatic ring nuclear carbon having two or more such linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to an agent for promoting the growth of aquatic products and a method for promoting the growth of aquatic products using the same.
  • Non-patent Document 1 Studies have been made to effectively use plant resources that have been conventionally discarded for livestock feed. For example, woody biomass is effectively used as livestock feed by removing lignin (Patent Document 1). ). In addition, studies have been made to improve the quality and growth of aquatic products by adding various plant resource-derived chemical substances to the feed. For example, when vitamin E or vitamin C is added to fish feed, fish browning It has been known for a long time that it has an effect on the suppression of lipid oxidation, but recently, the same effect is also obtained from the enokitake mushroom waste bed extract (Non-patent Document 1) and the coconut skin (Non-patent Document 2). It is clear that it can be obtained.
  • the objective is to provide a safe plant-derived feed aimed at promoting the growth of aquatic products.
  • the present inventors have conducted low molecular weight lignin and / or molecular weight of 10,000 to 10,000 having a molecular weight peak at a wavelength of 254 nm in a molecular weight range of 4,000 to 9,500 in GPC molecular weight analysis using a UV detector. It was discovered that high molecular weight lignin in the range of 40,000 promotes the growth of aquatic products, completing the present invention.
  • the present invention has the following configurations [1] to [3].
  • [1] In GPC molecular weight analysis using a UV detector, a low molecular weight lignin having a molecular weight peak at a wavelength of 254 nm in the range of 4,000 to 9,500 and / or a molecular weight of 10,000 to 40,000.
  • the aquatic product growth promoter which uses the polymeric lignin which has as an active ingredient.
  • the aquatic product growth promoter according to [1], wherein the low-molecular lignin and / or the high-molecular lignin is derived from an alkaline hot water extract of bagasse.
  • a feed for promoting aquatic product growth comprising the aquatic product growth promoter.
  • an alkaline extract of bagasse that has not been used as a feed for aquatic products until now is used as an active ingredient, and has an effect of promoting the growth of aquatic products.
  • GPC molecular weight analysis of bagasse alkaline hot water extract Specific examples of GPC molecular weight analysis results for low molecular weight lignin Specific examples of GPC molecular weight analysis results of polymer lignin Specific examples of GPC molecular weight analysis results of bagasse hydrothermal treatment liquid Specific example of GPC molecular weight analysis of lignosulfonic acid solution Specific example of GPC molecular weight analysis result of alkaline water heat treatment
  • Lignin is a plant-derived polymeric phenolic compound. Since lignin has a complex and diverse structure, the detailed structure is not clear. Although the molecular weight varies depending on the type of biomass, extraction method, and analysis method, the general number average molecular weight reported is 2400-9700 (Biofuels Bioproducts & Biorefining, Volume 8, Issue 6, 836-856 (2014) ).
  • the water product growth promoter of the present invention is a low molecular weight lignin having a molecular weight peak in the molecular weight range of 4,000 to 9,500 and / or a molecular weight range of 10,000 to 40,000 in GPC molecular weight analysis at a wavelength of 254 nm.
  • High molecular weight lignin having a molecular weight peak in the active ingredient is used as an active ingredient.
  • the preferred molecular weight range of the molecular weight peak of the low molecular weight lignin used in the present invention is 4,500 to 9,400, more preferably 5,000 to 9,300.
  • the preferred molecular weight range of the molecular weight peak of the polymer lignin used in the present invention is from 10,200 to 37,000, more preferably from 11,000 to 35,000.
  • the molecular weight of lignin can be determined by the number average molecular weight.
  • the preferable average molecular weight of the low molecular weight lignin used in the present invention is 3,500 or more and 6,000 or less, more preferably 3,600 or more and 5,000 or less as the number average molecular weight in GPC molecular weight analysis using a UV detector. is there.
  • the preferred average molecular weight of the polymer lignin used in the present invention is 10,000 or more and 20,000 or less, more preferably 10,000 or more and 15,000 or less as the number average molecular weight in GPC molecular weight analysis using a UV detector. is there.
  • the preferred number average molecular weight of the lignin containing both the low molecular weight lignin and the high molecular weight lignin used in the present invention is 4,000 to 15,000 as the number average molecular weight in the GPC molecular weight analysis using the UV detector, and more Preferably, it is 6,000 or more and 10,000 or less.
  • the low molecular lignin and the high molecular lignin used in the present invention may have a plurality of molecular weight peaks as long as they are within the above molecular weight range. Furthermore, although it may have a molecular weight peak outside the above molecular weight range, in that case, the peak having the maximum height among the molecular weight peaks at a wavelength of 254 nm is the low molecular lignin used in the present invention. If the molecular weight is 4,000 to 9,500 and the polymer lignin used in the present invention, the molecular weight is preferably in the range of 10,000 to 40,000.
  • FIG. 1 shows a specific example of GPC molecular weight analysis using a UV detector when both the low molecular lignin used in the present invention and the high molecular lignin used in the present invention are contained.
  • a specific example of the low-molecular lignin used in the present invention is shown in FIG. 2, and a specific example of the high-molecular lignin used in the present invention is shown in FIG. 2
  • the low molecular lignin used in the present invention is referred to as the low molecular lignin of the present invention
  • the high molecular lignin used in the present invention is referred to as the high molecular lignin of the present invention.
  • GPC is an abbreviation for Gel Permeation Chromatography; it can separate compounds in a measurement sample for each molecular size.
  • the molecular weight can also be calculated by detecting the relative amount of the separated polymer with a detector.
  • GPC molecular weight analysis the relationship between elution time and molecular weight is obtained in advance using a standard polymer, and the molecular weight of the measurement sample is converted based on this.
  • the molecular weights of the low molecular weight lignin of the present invention and the high molecular weight lignin of the present invention are values measured using polyethylene glycol and polyethylene oxide as standard polymers.
  • the detector for GPC molecular weight analysis a detector capable of detecting 250 to 300 nm, which is the absorption wavelength region of lignin, can be used.
  • the value analyzed at 254 nm without absorption of cinnamic acids is used in order to eliminate the influence of cinnamic acids such as coumaric acid and ferulic acid which are low molecular aromatics during GPC molecular weight analysis.
  • the low molecular weight lignin of the present invention and the high molecular weight lignin of the present invention are values detected by a multi-wavelength ultraviolet-visible absorption detector (SPD-M20A) manufactured by Shimadzu Corporation.
  • SPD-M20A multi-wavelength ultraviolet-visible absorption detector
  • the number average molecular weight can be calculated from the following formula 1.
  • Mn the number average molecular weight
  • M the molecular weight
  • N the number of polymers
  • C the sample concentration
  • the column used for GPC molecular weight molecular weight analysis is not particularly limited, but the molecular weight of the present invention is a value measured using TSKgel GMPWXL and G2500PWXL.
  • the low molecular lignin of the present invention and / or the plant used as the raw material of the high molecular lignin of the present invention include conifers such as pine, cedar and cypress, broad-leaved trees such as eucalyptus and acacia, bagasse and switches that are squeezed sugar cane Grass-based biomass such as grass, napiergrass, Eliansus, corn stover, rice straw, straw, etc., biomass derived from aquatic environment such as algae and seaweed, and cereal shell biomass such as corn hull, wheat hull, soybean hull, rice hull etc. be able to. Bagasse is preferable.
  • Examples of the method for extracting the low molecular weight lignin of the present invention and / or the high molecular weight lignin of the present invention from the plant include extraction with an organic solvent (ethanol, ethyl acetate, etc.), acid extraction, alkali extraction, hydrothermal extraction, alkaline hydrothermal heat. Extraction or alkaline hot water extraction is preferred, preferably alkaline extraction or alkaline hot water extraction, and more preferably alkaline hot water extraction.
  • the alkali compound used for alkali extraction, alkaline hydrothermal extraction or alkaline hot water extraction is not particularly limited, and examples thereof include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, and ammonia, preferably sodium hydroxide. Or it is potassium hydroxide, More preferably, it is sodium hydroxide.
  • the conditions for alkaline hot water extraction are preferably pH 10 to 13.5, temperature 80 ° C. to 120 ° C., treatment time 0.5 hours or more, pH 10.5 to 13.0, temperature 90 ° C. to 120 ° C., treatment time 1 hour. It is more preferable to make it react above.
  • the upper limit of the alkali concentration is not particularly limited as long as the low-molecular lignin of the present invention and the high-molecular lignin of the present invention can be obtained. However, if the alkali concentration is too high for biomass, the pH of the feed to be finally added is affected. However, since it is accompanied by a change in the preference of the aquatic product to the feed and the growth environment, it is preferably 4 (wt / wt)% or less.
  • Hydrothermal treatment is a method of extracting lignin by treatment with pressurized hot water (180-240 ° C.).
  • Alkaline hydrothermal extraction is a method of extracting lignin by treating with pressurized hot water (180 to 240 ° C.) under the pH conditions of alkaline hot water extraction.
  • alkaline hot water extraction method examples include, for example, a bagasse 5 (wt / wt)% (dry weight) concentration solution at 90 ° C. and a 0.45 (wt / wt)% sodium hydroxide aqueous solution for 2 hours.
  • the dry weight is the weight after drying bagasse at 105 ° C. until the weight becomes constant.
  • the low molecular weight lignin of the present invention is converted into a solid fraction by neutralizing to pH 5 or lower and solid-liquid separation.
  • the polymeric lignin of the present invention can be separated. This is because the low molecular weight lignin of the present invention dissolves in water under the condition of pH 5 or lower, whereas the high molecular weight lignin of the present invention has a feature that it precipitates without dissolving in water.
  • the polymer lignin insolubilized under the condition of pH 5 or less can be redissolved in water by setting the pH again to the alkali side from pH 5, for example, pH 8 or more.
  • the form of administration of the aquatic product growth promoter of the present invention to the aquatic product may be a form in which an effective amount is administered to the aquatic product using the low molecular weight lignin of the present invention and / or the high molecular weight lignin of the present invention as a drug, Further, the low molecular weight lignin of the present invention and / or the high molecular weight lignin of the present invention may be mixed with the feed and fed as a feed for promoting aquatic product growth. It is preferable.
  • the feed may contain the low molecular lignin of the present invention and / or the high molecular lignin of the present invention as a polyphenol amount of 0.007% by weight or more in terms of catechin.
  • the content is more preferably 0.0128% by weight or more, and further preferably 0.14% by weight or more.
  • the upper limit of the amount of polyphenol is not particularly limited as long as the growth promoting effect is exhibited, but it is preferably 0.5% by weight or less, which is such that the relative proportion of other feed components is hardly affected.
  • the amount of polyphenol in terms of catechin in the present invention is a value calculated by the foreign thiocult method.
  • the foreign thiocult method was originally developed for the purpose of analyzing aromatic amino acids such as tyrosine and tryptophan and proteins having these. This is a method for colorimetric determination at 700 to 770 nm of a blue color generated by reducing phenolic hydroxyl group and molybdic acid with an alkaline phenolic hydroxyl group. The same operation is performed with a specific reference substance such as gallic acid or catechin, and a quantitative value can be shown in terms of the compound.
  • the growth of aquatic products is promoted compared to the case where the water content is given.
  • Growth promotion means the weight of the aquatic product (the weight of the fish before cooking that contains water in the organism), the length of the fish, the increase in the number of moltings in crustaceans, etc., or overcrowded culture conditions This is a decrease in the mortality rate (increased survival rate).
  • a liquid containing the active ingredient of the present invention is sprayed on a normal feed for aquatic products, or added together with a binder such as water when blending various feed materials. May be. Further, the liquid containing the active ingredient of the present invention is concentrated or dried, or the pH of the polymer lignin of the present invention is adjusted to pH 5 or lower as described above to form a precipitate, which is a solid. It can also be mixed with feed for aquatic products.
  • the active ingredient of the present invention is sprayed or mixed in a normal feed for aquatic products, it is hydrophobic on the surface of the feed for the purpose of sufficiently retaining the active ingredient of the present invention in the feed. It may be coated with a sex substance. Examples of hydrophobic substances used for coating include vegetable oils containing fatty acids, salad oils obtained by purifying vegetable oils, and animal oils.
  • the feed raw material other than the aquatic growth promoter contained in the aquatic product growth promoting feed of the present invention is not particularly limited as long as it can be applied to the feed, but fish meal, krill meal, squid meal, shrimp meal, copepod powder, starch , Fish extract, lecithin, feed yeast, yeast extract, calcium phosphate, refined fish oil, natural betaine, licorice powder, walleye liver oil, various vitamins.
  • the analysis composition of the feed is not particularly limited as long as it contains a sufficient amount of crude protein, crude fat, crude fiber, crude ash, calcium, phosphorus, etc. so that there is no significant problem in the growth of the aquatic product.
  • plant-derived substances may be included as substances other than active ingredients.
  • substances other than active ingredients include cinnamic acids such as plant-derived coumaric acid and ferulic acid.
  • Concentrations contained in the feed as other components are preferably 0 to 0.02% by weight of coumaric acid and 0 to 0.01% by weight of ferulic acid, since the addition costs in the case of high concentrations.
  • it is 0.0001 to 0.01% by weight of coumaric acid and 0.00001 to 0.01% by weight of ferulic acid.
  • These coumaric acid and ferulic acid may be purified or in the form of a crude extract.
  • an antioxidant for the purpose of preventing oxidation during storage of feed may be included.
  • Specific examples include ethoxyquin, dibutylhydroxytoluene, butylhydroxyanisole and the like.
  • the method for feeding the aquatic product is not particularly limited as long as it is a feeding timing and a feeding amount in accordance with a conventional method.
  • it can be fed once a day to once a week, preferably 1 It is preferable to feed a feed corresponding to 2 to 5% by weight of the weight of the aquatic product 1 to 3 times a day according to the amount of the remaining feed.
  • the aquatic product to be promoted for growth is not particularly limited as long as it is an organism that lives in seawater or fresh water, but is preferably fish or crustaceans, and more preferably crustaceans.
  • fish include perch such as clownfish, perch, damselfish, tuna and bonito, eel such as eel, sturgeon such as sturgeon, crustacea such as herring and sardine, carp such as carp, crucian carp, crab Catfish such as catfish, salmon eyes such as ayu, salmon, rainbow trout, spiders such as goldfish, cod eyes such as walleye pollock, unordered eyes such as okoze and anglerfish, stingrays such as stingrays, scorpions Flatfishes such as scorpionfish, flatfish, and flounder, and pufferfishes such as riverfish and pufferfish are included, and perch is more preferable.
  • perch such as clownfish, perch, damselfish, tuna and bonito
  • eel such as eel
  • sturgeon such as sturgeon
  • crustacea such as herring and sardine
  • carp such as carp
  • crustaceans include: Cyprididae, Pteridocyceae, Craneidae, Sphagoneidae, Cyprididae, Chilobiidae, Kudahigebiidae, Kurumaebiidae, Ishibidae, Sakurabibiidae, Hyodosabiidae, Numaebiidae, Mikaebiidae Shrimpidae, Teppoweb,shrimp, Vietnamesemp, Vietnamesemp, Vietnamesemp, Crayfish, Shrimp, Shrimp, Shrimp, Shrimp, Shrimp, Shrimp Family, crabs, crabs, crabs, crabs, homola, crabs, crape, crabs, crayfish, crabs, crabs, crabs Portunus trituberculatus family, geryonidae, Ougigani Department, Enkougani Department, ocypodidae, pachygrap
  • lobsters of the lobster family lobsters of the crustaceae family, elephant lobster, black shrimp, tiger shrimp family, black tiger, white tiger, tiger shrimp, tiger shrimp, red shrimp, tiger shrimp, tiger shrimp, tiger shrimp, tiger shrimp.
  • the red tiger shrimp of the family Shrimp is preferred.
  • This alkaline extract was subjected to GPC molecular weight analysis by the method described in Reference Example 1.
  • the analysis result is as shown in FIG. 1, and it was confirmed that the low molecular lignin of the present invention having a peak at a molecular weight of 7,000 and the high molecular lignin of the present invention having a molecular weight peak at a molecular weight of 21,000 were contained.
  • the number average molecular weight was 8,900.
  • the amount of polyphenol of this bagasse alkali extract was measured according to Reference Example 2, it was 0.2% by weight in terms of catechin.
  • This bagasse alkaline hot water extract (solid content 2%, polyphenol content per solid content is 10% in terms of catechin) is formulated based on the weight of solute (Higashimaru Soy Sauce Co., Ltd., Nosan indigenous Carrot Shrimp Growing Feed H Kuruma Prawn Super B) sprayed and mixed at 0.2% per dry weight of feed (polyphenol content per dry weight of feed is 0.02% in terms of catechin, polyphenol content of low molecular weight lignin of the present invention and high molecular weight lignin of the present invention is in terms of catechin) 0.0128% by weight). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was coated on the feed surface. The prepared feed was used as a feed containing the low molecular weight lignin of the present invention and the high molecular weight lignin of the present invention.
  • the light conditions were 12 hours light and 12 hours dark, and the feed containing the low molecular weight lignin of the present invention and the high molecular weight lignin of the present invention was fed once / day immediately after extinction. Feeding amount was measured at 3% shrimp body weight ratio at the start, then 4% on the 9th day of the test and 5% on the 20th day of the test. I went. The test was carried out for 30 days, and the total number of molting of 24 fish during that period was counted. The results are shown in Table 1.
  • Test Example 2 Caramel shrimp promoting effect (low molecular weight lignin of the present invention) [Preparation of feed]
  • the bagasse alkaline hot water extract prepared in Test Example 1 was neutralized to pH 5 with 6N hydrochloric acid to precipitate the polymer lignin of the present invention.
  • solid-liquid separation is performed using a filter press (YTO type manufactured by Iwata Machinery Co., Ltd.), and the low molecular weight lignin solution of the present invention is applied to the filtrate side, and the polymer lignin of the present invention is added Separated to the solid side.
  • the obtained filtrate was adjusted to pH 7 with a 50% (wt / v) sodium hydroxide solution to obtain a low molecular weight lignin solution of the present invention.
  • the low molecular weight lignin solution of the present invention was subjected to GPC molecular weight analysis by the method described in Reference Example 1. The result is as shown in FIG. 2, and it was confirmed that the low molecular weight lignin of the present invention having a peak at a molecular weight of 7,000 was contained. Moreover, the number average molecular weight calculated
  • This low-molecular-weight lignin solution (solid content 1.5%, catechin conversion 7% per solid content) is formulated into a mixed feed (Higashimaru Soy Sauce Co., Ltd., Nosan Indigo Micromp Breeding Formula H Kuruma Prawn Super B) on a solute weight basis Sprayed and mixed at 0.2% per dry weight of feed (0.014% as catechin per dry weight of feed, and the polyphenol content of the low molecular weight lignin of the present invention was 0.007% as catechin). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was immersed in the feed surface. The prepared feed was used as a feed containing the low molecular weight lignin of the present invention.
  • Test Example 3 Caramel prawn molting promotion effect (polymer lignin of the present invention) [Preparation of feed]
  • the bagasse alkaline hot water extract prepared in Test Example 1 was neutralized to pH 3 with 6N hydrochloric acid to precipitate the polymer lignin of the present invention.
  • solid-liquid separation was performed using a filter press (YTO type manufactured by Iwata Machinery Co., Ltd.) to obtain the polymer lignin of the present invention containing diatomaceous earth as a solid.
  • the polymer lignin of the present invention containing diatomaceous earth was dried to a solid content of 85%.
  • This high molecular weight lignin of the present invention (polyphenol amount per solid content is 7% in terms of catechin) is formulated into a mixed feed (Higashimaru Soy Sauce Co., Ltd., Nosan Indigo Micromp Breeding Formula H Kuruma Prawn Super B) It was mixed at 0.2% per feed dry weight (polyphenol content per feed dry weight was 0.014% in terms of catechin). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was immersed in the feed surface. The prepared feed was used as a feed containing the polymer lignin of the present invention.
  • the molecular weight cut off of the polymer lignin of the present invention was measured separately from the feed preparation. Diatomite-containing insoluble polymer lignin of the present invention was adjusted to pH 12 by adding 50% (wt / v) sodium hydroxide to dissolve the polymer lignin of the present invention. The polymer lignin solution of the present invention was adjusted to pH 7 with 6N hydrochloric acid, and GPC molecular weight analysis was performed by the method described in Reference Example 1. The results are shown in FIG.
  • the obtained lignin was the high molecular lignin of the present invention having a peak at a molecular weight of 21,000, and the low molecular lignin of the present invention was not contained. Moreover, the number average molecular weight calculated
  • the amount of polyphenol of the polymer lignin solution of the present invention prepared at this time was measured according to Reference Example 2, it was 0.1% by weight in terms of catechin.
  • coumaric acid and ferulic acid were measured by the method described in Reference Example 3, coumaric acid and ferulic acid were not detected.
  • the number average molecular weight determined from the GPC molecular weight analysis result was 2,870.
  • the active ingredient having the highest peak height has a peak at a molecular weight of 4,000 or less, and the active ingredient having the highest peak height is the low molecular lignin of the present invention and the polymer lignin of the present invention.
  • the composition contains the low molecular lignin of the present invention and the high molecular lignin of the present invention.
  • the amount of polyphenol of this bagasse hydrothermal treatment liquid was measured according to Reference Example 2, it was 0.001% in terms of catechin (solid content 1.0%, catechin equivalent 0.1% per solid content).
  • This bagasse hydrothermal treatment liquid was mixed at 0.2% per dry weight of feed (based on dry weight of feed). Catechin conversion 0.0002%). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was immersed in the feed surface.
  • Test Example 6 Growth promotion effect of clownfish (low molecular lignin of the present invention and high molecular lignin of the present invention) [Preparation of feed] Bagasse alkaline hot water extract (2% solid content, 10% catechin conversion per solid content) prepared in Test Example 1 was added to the feed composition (Ambrose 400 manufactured by Feed One, Inc.) on a solute weight basis. Sprayed and mixed at 2% (0.02% in terms of catechin per dry weight of feed, low molecular weight lignin of the present invention and high molecular weight lignin of the present invention was 0.0128% by weight in terms of catechin). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was immersed in the feed surface.
  • feed weight oil Nishin Oilio Co., Ltd., Nisshin Salad Oil
  • Test Example 8 Clownfish growth promoting effect (polymer lignin of the present invention) [Preparation of feed] Dry feed weight of feed containing the insoluble polymer lignin of the present invention prepared in Test Example 3 (solid content 85%, catechin conversion 7% per solid content) based on the weight of solute in feed (Ambrose 400, manufactured by Feed One) It was mixed at 0.2% per unit (0.014% as catechin per dry weight of feed). Furthermore, 1% of feed weight oil (Nisshin Oilio Co., Ltd., Nisshin Salad Oil) was immersed in the feed surface.
  • Test Example 11 Growth promotion effect of prawn (low molecular lignin of the present invention and high molecular lignin of the present invention) [Preparation of feed]
  • the bagasse alkaline hot water extract prepared in Test Example 1 solid content 2%, catechin conversion 10% per solid content
  • Sprayed and mixed at 2% 0.02% in terms of catechin per dry weight of feed
  • low molecular weight lignin of the present invention and high molecular weight lignin of the present invention was 0.0128% by weight in terms of catechin).
  • the prepared feed was used as a feed containing the low molecular weight lignin of the present invention and the high molecular weight lignin of the present invention.
  • Test Example 15 Growth promotion effect of prawn (bagasse hydrothermal treatment liquid) [Preparation of feed]
  • the bagasse hydrothermal treatment liquid prepared in Test Example 5 was mixed at 0.2% per dry weight of feed when granulated feed (manufactured by Bioscience,shrimp Kong) was granulated on a solute weight basis (0.0002 in terms of catechin per dry weight of feed) %).
  • This alkaline hydrothermal treatment was subjected to GPC molecular weight analysis by the method described in Reference Example 1.
  • the analysis results are shown in FIG. From this analysis result, it was confirmed that the obtained lignin contained lignin having a peak at a molecular weight of 3,700 and did not contain the low-molecular lignin and the high-molecular lignin of the present invention.
  • the number average molecular weight was 3,300.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Environmental Sciences (AREA)
  • Birds (AREA)
  • Insects & Arthropods (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Cultivation Of Plants (AREA)

Abstract

UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークを、分子量4,000~9,500の範囲に有する低分子リグニンおよび/または分子量10,000~40,000の範囲に有する高分子リグニンを有効成分とする、水産生物成長促進剤。

Description

水産生物成長促進剤
 本発明は水産生物の成長を促進する剤、およびそれを用いた水産生物の成長促進方法に関する。
 家畜用の飼料に、従来廃棄されていた植物資源を有効利用する検討が行われており、例えば、木質系バイオマスはリグニンを除去することによって、家畜の飼料として有効活用されている(特許文献1)。また、飼料に様々な植物資源由来の化学物質を添加して、水産生物の肉質や成長を向上させる検討も行われており、例えば、ビタミンEやビタミンCを魚類の飼料に添加すると魚肉の褐変や脂質酸化の抑制に効果があることが古くから知られているが、最近では、エノキタケ廃菌床抽出物(非特許文献1)や、柚子の皮(非特許文献2)でも同様の効果が得られることが明らかになっている。
特開平07-231752号公報
Huynh N.D. Baoら、Aquaculture 295, 243-249 (2009) Fukadaら、Journal of aquatic food product technology 23, 5, 511-521 (2014)
 水産生物の成長促進を目的とした植物由来の安全な飼料を提供することを課題とする。
 本発明者は鋭意検討の結果、UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークを、分子量4,000~9,500の範囲に有する低分子リグニンおよび/または分子量10,000~40,000の範囲に有する高分子リグニンが、水産生物の成長を促進することを発見し、本発明を完成した。
 すなわち本発明は、以下の[1]~[3]の構成を有する。
[1]UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークを、分子量4,000~9,500の範囲に有する低分子リグニンおよび/または分子量10,000~40,000の範囲に有する高分子リグニンを有効成分とする、水産生物成長促進剤。
[2]前記低分子リグニンおよび/または高分子リグニンがバガスのアルカリ熱水抽出物由来である、[1]に記載の水産生物成長促進剤。
[3]甲殻類の脱皮を促進する、[1]または[2]に記載の水産生物成長促進剤。
[4]前記水産生物成長促進剤を含む、水産生物成長促進用飼料。
[5]前記低分子リグニンおよび/または高分子リグニンを、ポリフェノール量としてカテキン換算0.007重量%以上含む、[4]に記載の水産生物成長促進用飼料。
[6]前記水産生物成長促進剤を水産生物に投与して、水産生物の成長を促進する方法。
〔7〕前記水産生物成長促進用飼料を水産生物に給餌して、水産生物の成長を促進する方法。
[8]前記水産生物が甲殻類である、〔6〕または〔7〕に記載の水産生物の成長を促進する方法。
 本発明では、これまで水産生物用飼料として活用されてこなかったバガスのアルカリ抽出物を有効成分とし、水産生物の成長促進効果を有する。
バガスアルカリ熱水抽出液のGPC分子量分析結果具体例 低分子リグニンのGPC分子量分析結果具体例 高分子リグニンのGPC分子量分析結果具体例 バガス水熱処理液のGPC分子量分析結果具体例 リグノスルホン酸液のGPC分子量分析結果具体例 アルカリ水熱処理液のGPC分子量分析結果具体例
 本発明を実施するための形態に関し、詳細に説明する。
 リグニンは植物由来の高分子フェノール性化合物である。リグニンは、複雑かつ多様な構造を有しているため、詳細な構造は明らかになっていない。また、バイオマスの種類、抽出方法、分析方法によって分子量が異なるが、報告されている一般的な数平均分子量は、2400~9700である(Biofuels Bioproducts & Biorefinering, Volume8, Issue6, 836-856(2014))。
 本発明の水産生物成長促進剤は、波長254nmにおけるGPC分子量分析において、分子量4,000~9,500の範囲に分子量ピークを有する低分子リグニンおよび/または、分子量10,000~40,000の範囲に分子量ピークを有する高分子リグニンを有効成分とする。
 本発明で用いる低分子リグニンが有する分子量ピークの好ましい分子量の範囲は、4,500~9,400であり、さらに好ましくは5,000~9,300である。
 本発明で用いる高分子リグニンが有する分子量ピークの好ましい分子量の範囲は、10,200~37,000であり、さらに好ましくは11,000~35,000である。
 また、リグニンの分子量は、数平均分子量でも判断することができる。本発明で用いる低分子リグニンの好ましい平均分子量は、UV検出器を用いたGPC分子量分析における数平均分子量として3,500以上6,000以下であり、より好ましくは3,600以上5,000以下である。本発明で用いる高分子リグニンの好ましい平均分子量は、UV検出器を用いたGPC分子量分析における数平均分子量として10,000以上20,000以下であり、より好ましくは10,000以上15,000以下である。本発明で用いる低分子リグニンおよび高分子リグニンが両方含まれるリグニンの好ましい数平均分子量は、UV検出器を用いたGPC分子量分析における数平均分子量として4,000以上15,000以下であり、よりに好ましくは、6,000以上10,000以下である。
 また、本発明で用いる低分子リグニンおよび高分子リグニンには、上記の分子量範囲内であれば分子量ピークは複数あってもよい。さらに、上記の分子量範囲外に分子量ピークを有していてもよいが、その場合は、波長254nmにおける分子量ピークのうち、最大の高さを持つピークが、本発明で用いる低分子リグニンであれば分子量4,000~9,500、本発明で用いる高分子リグニンであれば、分子量10,000~40,000の範囲内であることが好ましい。
 本発明で用いる低分子リグニンおよび本発明で用いる高分子リグニンを両方含んでいる場合の、UV検出器を用いたGPC分子量分析の具体例を図1に示す。また、本発明で用いる低分子リグニンの具体例を図2、本発明で用いる高分子リグニンの具体例を図3に示す。
 以降、本明細書中では、本発明で用いる低分子リグニンを本発明の低分子リグニン、本発明で用いる高分子リグニンを本発明の高分子リグニンと記載する。
 GPCは、Gel Permeation chromatography;ゲル浸透クロマトグラフィーの略であり、測定試料中の化合物を、分子サイズごとに分離することができる。また、分離したポリマーの相対量を検出器により検出することで、分子量も計算することができる。GPC分子量分析では、標準ポリマーを用いて溶出時間と分子量との関係を予め求め、これに基づいて測定試料の分子量を換算する。本発明の低分子リグニンと本発明の高分子リグニンの分子量は、ポリエチレングリコール、ポリエチレンオキサイドを標準ポリマーとして用いて測定した値である。
 GPC分子量分析の検出器はリグニンの吸収波長領域である250~300nmを検出できる検出器を利用することができる。本発明では、GPC分子量分析時に低分子芳香族であるクマル酸、フェルラ酸等の桂皮酸類の影響を除くために桂皮酸類の吸収を持たない254nmで分析した値を用いている。本発明の低分子リグニンと本発明の高分子リグニンは、株式会社島津製作所製の多波長紫外-可視吸収検出器(SPD-M20A)で検出した値である。GPC分子量分析では、以下の式1より数平均分子量を算出することができる。
 Mn=Σ(Mi・Ni)/Σ(Ni)=ΣCi/Σ(Ci/Mi)・・・式(1)。
ここでMnは数平均分子量、Mは分子量、Nはポリマーの数、Cは試料濃度を示す。
 GPC分子量分子量分析に用いるカラムとしては、特に制限はないが、本願発明の分子量はTSKgelGMPWXLとG2500PWXLを使用して測定した値である。
 本発明の低分子リグニン、および/または、本発明の高分子リグニンの原料となる植物としては、マツ、スギ、ヒノキなどの針葉樹、ユーカリ、アカシアなどの広葉樹、さとうきびの搾りかすであるバガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、稲わら、麦わらなどの草本系バイオマス、さらに藻類、海草など水生環境由来のバイオマス、コーン外皮、小麦外皮、大豆外皮、籾殻などの穀物外皮バイオマスなどを用いることができる。好ましくはバガスである。
 前記植物から本発明の低分子リグニンおよび/または本発明の高分子リグニンを抽出する方法としては、有機溶媒(エタノール、酢酸エチル等)による抽出、酸抽出、アルカリ抽出、水熱抽出、アルカリ水熱抽出またはアルカリ熱水抽出等があり、好ましくはアルカリ抽出またはアルカリ熱水抽出であり、さらに好ましくは、アルカリ熱水抽出である。
 アルカリ抽出、アルカリ水熱抽出またはアルカリ熱水抽出に用いるアルカリ化合物は特に制限されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、アンモニアなどが挙げられ、好ましくは水酸化ナトリウムまたは水酸化カリウムであり、さらに好ましくは水酸化ナトリウムである。
 アルカリ熱水抽出の条件は、pH10~13.5、温度80℃~120℃、処理時間0.5時間以上が好ましく、pH10.5~13.0、温度90℃~120℃、処理時間1時間以上反応させることがより好ましい。アルカリ濃度の上限は、本発明の低分子リグニンと本発明の高分子リグニンを得られれば特に制限はないが、バイオマスに対してアルカリ濃度が高すぎる場合は最終的に添加する飼料のpHに影響し、水産生物の飼料への嗜好性や生育環境の変化を伴うため、4(wt/wt)%以下が好ましい。
 水熱処理は、加圧熱水(180~240℃)で処理しリグニンを抽出する方法である。
 アルカリ水熱抽出は、アルカリ熱水抽出のpH条件において、加圧熱水(180~240℃)で処理しリグニンを抽出する方法である。
 アルカリ熱水抽出方法の具体例としては、例えばバガス5(wt/wt)%(乾燥重量)濃度の溶液に対し、90℃、0.45(wt/wt)%の水酸化ナトリウム水溶液で2時間反応させることによって本発明の低分子リグニンおよび/または本発明の高分子リグニンを抽出することができる。上記の乾燥重量とはバガスを105℃で重量が一定になるまで乾燥させた後の重量である。
 本発明の低分子リグニンと本発明の高分子リグニンを分離したい場合には、pH5以下に中和して固液分離することで、液体画分に本発明の低分子リグニンを、固体画分に本発明の高分子リグニンを分離することができる。これは、pH5以下の条件で本発明の低分子リグニンは水に溶解するのに対し、本発明の高分子リグニンは水に溶解せず沈殿する特長を有しているためである。pH5以下の条件で不溶化した高分子リグニンはpHを再度pH5よりアルカリ側に、例えばpH8以上にすることで水に再溶解させることができる。
 本発明の水産生物成長促進剤の水産生物への投与の形態は、本発明の低分子リグニンおよび/または本発明の高分子リグニンを薬剤として有効量を水産生物に投与する形態であってよく、また、本発明の低分子リグニンおよび/または本発明の高分子リグニンを飼料に配合して水産生物成長促進用飼料として給餌する形態であってもよいが、水産生物成長促進用飼料の形態をとることが好ましい。
 本発明が水産生物成長促進用飼料である場合は、該飼料に本発明の低分子リグニンおよび/または本発明の高分子リグニンをポリフェノール量としてはカテキン換算0.007重量%以上含んでいることが好ましく、有量は、0.0128重量%以上含んでいることがより好ましく、0.14重量%以上含んでいることがさらに好ましい。ポリフェノール量の上限は成長促進効果が発揮されれば特に制限はないが、他の飼料成分の相対的な割合低下がほとんど影響のない程度である0.5重量%以下が好ましい。
 本発明でのカテキン換算のポリフェノール量はフォーリンチオカルト法によって算出した値である。フォーリンチオカルト法は、元来、チロシン、トリプトファン等の芳香族アミノ酸やこれらを有するたんぱく質の分析を目的に開発された方法である。フェノール性水酸基がアルカリ性でリンタングステン酸、モリブデン酸を還元して生ずる青色を700~770nmで比色定量する方法である。没食子酸、カテキン等特定の基準物質で同様の操作を行い、その化合物換算で定量値を示すことができる。
 本発明の低分子リグニンおよび/または高分子リグニンを有効成分とする水産生物成長促進剤または、当該水産生物成長促進剤を含む飼料を水産生物に与えると、当該有効成分を含まない水産生物用飼料を与えた場合と比べて、水産生物の成長が促進される。ここでいう成長促進とは、水産生物の体重(生物内に水分を含んだ調理前の魚の重量)、体長が増加すること、あるいは甲殻類等での脱皮回数の増加、あるいは過密な養殖条件下における斃死率の低下(生残率の増加)である。
 本発明の水産生物成長促進用飼料の調製方法としては、本発明の有効成分を含む液体を通常の水産生物用飼料に噴霧したり、各種飼料原料の配合時に水などのバインダーと共に添加したりしても良い。また、本発明の有効成分を含む液体を濃縮したり、乾燥させたり、上記のように本発明の高分子リグニンのpHをpH5以下に調整して沈殿を生じさせたりして固体とし、通常の水産生物用飼料に混ぜ込んで与えたりすることもできる。また本発明の有効成分を通常の水産生物用飼料に噴霧したり、混ぜ込んだりした場合には、本発明の有効成分を飼料中に十分に保持させることを目的として、当該飼料の表面に疎水性の物質などでコーティングしても良い。コーティングに用いる疎水性物質としては、例えば脂肪酸を含む植物油、植物油を精製したサラダ油、動物性の油などが挙げられる。
 本発明の水産生物成長促進用飼料に含まれる水産成長促進剤以外の飼料原料としては、飼料に適用できるものであれば特に制限はないが、魚粉、オキアミミール、イカミール、エビミール、コペポーダ粉末、デンプン、魚介抽出物、レシチン、飼料用酵母、酵母抽出物、リン酸カルシウム、精製魚油、天然ベタイン、甘草末、スケトウダラ肝油、各種ビタミンなどがある。飼料の分析組成についても、粗タンパク、粗脂肪、粗繊維、粗灰分、カルシウム、リンなどが水産生物の生育に著しく問題がない程度に十分量含有されていれば特に制限はない。
 また、有効成分以外の物質として、植物由来物質が含まれていてもよい。有効成分以外の物質としては例えば、植物由来のクマル酸、フェルラ酸等の桂皮酸類が挙げられる。その他の成分として飼料中に含まれる濃度としては、高濃度の場合は添加のためのコストがかかる事から、クマル酸0~0.02重量%フェルラ酸0~0.01重量%が好ましく、さらに好ましくはクマル酸0.0001~0.01重量、フェルラ酸0.00001~0.01重量%である。これらのクマル酸、フェルラ酸は精製したものでも良いし、粗抽出物の状態でも良い。
 また、飼料の保管中の酸化防止を目的とした抗酸化剤が含まれていても良い。具体的には、エトキシキン、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソールなどが挙げられる。
 水産生物への飼料の給餌方法としては、常法に則った給餌タイミング、給餌量であれば特に制限はないが、たとえば、1日~1週間に1度給餌することができ、好ましくは、1日1~3回、水産生物の体重の2~5重量%にあたる飼料を、残餌量に合わせて調整して給与することがよい。
 成長促進の対象となる水産生物としては、海水、淡水で生活する生物であれば特に制限はないが、好ましくは魚類または甲殻類であり、より好ましくは甲殻類である。
 魚類の具体例としては、カクレクマノミ、スズキ、スズメダイ、マグロ、カツオなどのスズキ目、ウナギなどのウナギ目、チョウザメなどのチョウザメ目、ニシン、マイワシなどのニシン目、コイ、フナ、ドジョウなどのコイ目、ナマズなどのナマズ目、アユ、サケ、ニジマスなどのサケ目、キンメダイなどの棘鰭上目、スケトウダラなどのタラ目、オコゼ、アンコウなどのアンコウ目、アカエイなどのエイ目、カサゴ、ホウボウなどのカサゴ目、カレイ、ヒラメなどのカレイ目、カワハギ、フグなどのフグ目が挙げられ、さらに好ましくはスズキ目である。
 甲殻類の具体例としては、シリプトシャコ科、フトユビシャコ科、ハナシャコ科、トゲシャコ科、シャコ科、チヒロエビ科、クダヒゲエビ科、クルマエビ科、イシエビ科、サクラエビ科、ヒオドシエビ科、ヌマエビ科、オキエビ科、ミカワエビ科、テナガエビ科、テッポウエビ科、モエビ科、タラバエビ科、トゲヒラタエビ科、エビシャコ科、アメリカザリガニ科、ザリガニ科、アカザエビ科、オサテエビ科、センジュエビ科、イセエビ科、セミエビ科、アナエビ科、ヨシオリエビ科、カニダマシ科、タラバガニ科、サワガニ科、アサヒガニ科、コウナガカムリ科、カイカムリ科、ミズヒキガニ科、ホモラ科、ヘイケガニ科、カラッパ科、クモガニ科、ヤワラガニ科、ヒシガニ科、イチョウガニ科、コブシガニ科、クリガニ科、ヒゲガニ科、ガザミ科、オオエンコウガニ科、オウギガニ科、エンコウガニ科、スナガニ科、イワガニ科、カクレガニ科などが挙げられる。このうち、特に、イセエビ科のイセエビ、セミエビ科のウチワエビ、ゾウリエビ、セミエビ、クルマエビ科のブラックタイガー、ホワイトタイガー、クルマエビ、シバエビ、アカエビ、バナメイエビ、アシアカエビ、サクラエビ科のサクラエビ、タラバエビ科のアマエビ、ボタンエビ、アカザエビ科のアカザエビが好ましい。
 以下に、本発明を具体的に説明する。
 (参考例1)GPC分子量分析測定
 GPC分子量分析は以下の条件で実施した。
検出器:多波長紫外-可視吸収検出器 UV(株式会社島津製作所製SPD-M20A、波長254nm)
カラム:TSKgelGMPWXL、G2500PWXL各1本(φ7.8mm×30cm、東ソー)
溶媒:アンモニア緩衝液(pH11)/メタノール(1/1=v/v)
流速:0.7mL/min
カラム温度:23℃
注入量:0.2mL
標準試料:東ソー株式会社製、Polymer Laboratories製単分散ポリエチレンオキサイド、ポリエチレングリコール。
 標準試料であらかじめ溶出時間と分子量の対数との関係を取得し、LogM(Mは分子量)あたりの重量分率dW/dlogM(Wは重量)で変換し、横軸を分子量の対数、縦軸をピーク面積が1になるようにプロットして解析した。
 (参考例2)ポリフェノール量の測定
 適宜希釈した測定試料1.0mL、フェノール試液(ナカライテスク社)1.0mL、水5mLを25mLのメスフラスコに入れて5分間室温で放置し、これに7%炭酸ナトリウム水溶液10mLを加える。更に水を加えて25mLとして混合し、2時間室温で放置する。反応液の一部を取り、φ0.45μmのPTFEフィルターでろ過し、750nmで吸光度を測定する(吸光度は0.6ABS以下となるようにサンプルを適宜希釈)。標準物質としてカテキン試薬(シグマ社、純度98%以上)を用い、カテキン換算値として算出した。
 (参考例3)芳香族化合物の測定
 クマル酸、フェルラ酸等の芳香族化合物濃度の測定は以下の条件で実施した。
機器:日立高速液体クロマトグラムLaChrom Eite
カラム:Synergi 2.5μ Hydro-RP100A 100×3.00mm (Phenomenex)
移動相:0.1%リン酸:アセトニトリル=93:7から5:95までグラジェント
検出器:Diode Array
流速:0.6mL/min
温度:40℃。
 (試験例1)クルマエビの脱皮促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
 [飼料の調製]
 バガス1kg(台糖農産株式会社より購入、ベトナム製)を0.45wt%水酸化ナトリウム水溶液に乾燥重量で5wt%添加・混合し、90℃、2時間反応させ、6N塩酸を用いてpHを7に調整した後、ザルで固体を分離し、MF膜(商品名:トレフィルHFSタイプ、東レ社製)で濾過を行い、バガスアルカリ熱水抽出液を作製した。このアルカリ抽出液を参考例1に記載の方法でGPC分子量分析を行った。分析結果は図1に示すとおりで、分子量7,000にピークを有する本発明の低分子リグニン、および分子量21,000に分子量ピークを有する本発明の高分子リグニンを含有することを確認した。また、数平均分子量は8,900であった。更にこのバガスアルカリ抽出液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.2重量%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸が0.08重量%、フェルラ酸が0.016重量%であり、同濃度のクマル酸、フェルラ酸のみ含有した液体のポリフェノール含量はカテキン換算で0.072重量%であった。このことから、本発明の低分子リグニンおよび本発明の高分子リグニンのポリフェノール含量はカテキン換算で0.128重量%あることが分かる。このバガスアルカリ熱水抽出液(固形分2%、固形分あたりポリフェノール含量はカテキン換算10%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりポリフェノール含量はカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンのポリフェノール含量はカテキン換算0.0128重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面にコーティングした。作製した飼料を本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料として用いた。
 [成長促進効果の評価]
 平均体重14.1g(標準偏差1.5)、平均全長143.1mm(標準偏差6.0)のクルマエビ24尾を1水槽あたり8尾(12.5尾/m)3水槽で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。水槽底部には底砂をひき、海水は天然濾過海水を加温し、20~25℃とし、換水率は3.8回/日とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1回/日、消灯直後に給餌した。給餌量は開始時のエビ体重比3%で計量し、その後、試験開始9日目に同比4%、試験開始20日目に同比5%と摂餌状況に応じて段階的に給餌量をあげていった。30日間試験を実施し、その期間中の24尾の合計脱皮回数を計測した。結果を表1に示す。
 (試験例2)クルマエビの脱皮促進効果(本発明の低分子リグニン)
 [飼料の調製]
 試験例1で作製したバガスアルカリ熱水抽出液を6N塩酸でpH5に中和し、本発明の高分子リグニンを沈殿させた。珪藻土を1%添加・混合後、フィルタープレス(薮田機械社株式会社製YTO型)を用いて固液分離を行い、本発明の低分子リグニン液をろ液側に、本発明の高分子リグニンを固形分側に分離した。得られたろ液を水酸化ナトリウム50%(wt/v)溶液でpH7に調整し本発明の低分子リグニン液を得た。この本発明の低分子リグニン液を参考例1に記載の方法でGPC分子量分析を行った。結果は図2に示すとおりで、分子量7,000にピークを有する本発明の低分子リグニンを含有することを確認した。また、GPC分子量分析結果から求められる数平均分子量は4,000であった。更にこの低分子リグニン液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.1%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸が0.06重量%、フェルラ酸が0.012重量%であり、同濃度のクマル酸、フェルラ酸のみ含有した液体のポリフェノール含量はカテキン換算で0.05重量%であった。このことから、本発明の低分子リグニンはカテキン換算で0.05重量%あることが分かる。この低分子リグニン液(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンのポリフェノール含量はカテキン換算0.007重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。作製した飼料を本発明の低分子リグニンを含有する飼料として用いた。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
 (試験例3)クルマエビの脱皮促進効果(本発明の高分子リグニン)
 [飼料の調製]
 試験例1で作製したバガスアルカリ熱水抽出液を6N塩酸でpH3に中和し、本発明の高分子リグニンを沈殿させた。濾過助剤として珪藻土を1%添加・混合後、フィルタープレス(薮田機械株式会社製YTO型)を用いて固液分離を行い、固体として珪藻土を含有した本発明の高分子リグニンを得た。珪藻土を含有した本発明の高分子リグニンを乾燥させ、固形分85%とした。この本発明の高分子リグニン(固形分あたりのポリフェノール量がカテキン換算で7%)を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりポリフェノール含量はカテキン換算0.014%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。作製した飼料を本発明の高分子リグニンを含有する飼料として用いた。
 一方、飼料作製とは別に、本発明の高分子リグニンの分画分子量の測定を実施した。珪藻土含有不溶性本発明の高分子リグニンに対し、50%(wt/v)の水酸化ナトリウムを添加してpHを12に調整し、本発明の高分子リグニンを溶解した。この本発明の高分子リグニン液に6N塩酸でpH7に調整し、参考例1に記載の方法でGPC分子量分析を行った。結果を図3に示す。この分析結果から、得られたリグニンは、分子量21,000にピークを有する本発明の高分子リグニンであり、本発明の低分子リグニンは含有していないことを確認した。また、この分析結果から求められる数平均分子量は13,800であった。この時調整した本発明の高分子リグニン液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.1重量%であった。また、参考例3に記載の方法でクマル酸、フェルラ酸を測定したところ、クマル酸、フェルラ酸は検出されなかった。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
 (試験例4)クルマエビの脱皮促進効果(無添加)
 [飼料の調製]
 配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させ、無添加飼料を作製した。
 [成長促進効果の評価]
 本試験例での無添加飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
 (試験例5)クルマエビの脱皮促進効果(バガス水熱処理液)
 [飼料の調製]
 バガスを乾燥重量30%に調整し、高圧で180℃、10分水熱処理(高圧蒸煮処理)を行った。得られたバガス熱水処理液を、1N水酸化ナトリウムを用いてpH7に調整した。バガス熱水処理液を参考例1に記載の方法でGPC分子量分析を行った結果を図4に示す。この分析結果から、バガスの熱水処理液は、ピーク高さが高い順に、分子量3,200、分子量6,000および分子量17,000に分子量ピークを有するリグニンを含んでいることがわかった。また、GPC分子量分析結果から求められる数平均分子量は2,870であった。バガス水熱処理液は、ピーク高さが最高となる有効成分は分子量4,000以下にピークをもち、このピーク高さが最高となる有効成分は本発明の低分子リグニン、本発明の高分子リグニンとは異なるものの、組成としては本発明の低分子リグニンおよび本発明の高分子リグニンを含有する。また、このバガス水熱処理液を参考例2に従ってポリフェノール量を測定したところ、カテキン換算で0.001%であった(固形分1.0%、固形分あたりのカテキン換算0.1%)。このバガス水熱処理液を溶質の重量ベースで配合飼料(ヒガシマル醤油株式会社製、ノーサン印くるまえび育成用配合飼料 H クルマエビ スーパーB)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例1と同様とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、試験例1~3の本発明の低分子リグニンおよび/または本発明の高分子リグニンを含有する飼料を用いた場合、試験例4の無添加飼料を用いた場合と比べてクルマエビの脱皮回数が増加することが分かった。
 (試験例6)カクレクマノミの成長促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
 [飼料の調製]
 試験例1で作製したバガスアルカリ熱水抽出液(固形分2%、固形分あたりカテキン換算10%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.0128重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
 [成長促進効果の評価]
 体長20±3mmのカクレクマノミを1水槽あたり10固体(10固体/20L)3水槽で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。海水は天然濾過海水を加温し、約25℃とし、換水率は1日に50%換水とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1回/日、消灯直後に給餌した。給餌量は開始時のカクレクマノミ体重比3%とした。7日間試験を実施し、試験終了後にカクレクマノミを回収し1個体当たりの平均体重を測定した。結果を表2に示す。
 (試験例7)カクレクマノミの成長促進効果(本発明の低分子リグニン)
 [飼料の調製]
 試験例2で作製した本発明の低分子リグニン液(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.007重量%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
 [成長促進効果の評価]
 本試験例で調製した本発明の低分子リグニンを含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
 (試験例8)カクレクマノミの成長促進効果(本発明の高分子リグニン)
 [飼料の調製]
 試験例3で作製した不溶性の本発明の高分子リグニン(固形分85%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.014%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
 [成長促進効果の評価]
 本試験例で調製した本発明の高分子リグニンを含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
 (試験例9)カクレクマノミの成長促進効果(無添加)
 [飼料の調製]
 配合飼料(Feed One社製、アンブローズ400)に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させ、無添加飼料を作製した。
 [成長促進効果の評価]
 本試験例での無添加飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
 (試験例10)カクレクマノミの成長促進効果(バガス水熱処理液)
 [飼料の調製]
 試験例5で作製したバガス熱水処理液(固形分1%、固形分あたりのカテキン換算0.1%)を溶質の重量ベースで配合飼料(Feed One社製、アンブローズ400)に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。更に飼料重量の1%の油(日清オイリオ株式会社製、日清サラダ油)を飼料表面に浸漬させた。
 [成長促進効果の評価]
 本試験例で調製したバガス水熱処理液含有する飼料を用いる以外は試験例6と同様とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、試験例6~8の本発明の低分子リグニンおよび/または本発明の高分子リグニンを含有する飼料を用いた場合、試験例9の無添加飼料を用いた場合と比べて、カクレクマノミの平均体重が増加することが分かった。
 (試験例11)クルマエビの成長促進効果(本発明の低分子リグニンおよび本発明の高分子リグニン)
 [飼料の調製]
 試験例1で調製したバガスアルカリ熱水抽出液(固形分2%、固形分あたりカテキン換算10%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.02%、本発明の低分子リグニンおよび本発明の高分子リグニンはカテキン換算0.0128重量%)。作製した飼料を本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料として用いた。
 [成長促進効果の評価]
 平均体重32.2mg(標準偏差11.3)、平均全長15.5mm(標準偏差1.9)のクルマエビを1水槽あたり150尾(1,500尾/m)で本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料の水産生物成長促進効果を評価した。水槽底部には底砂をひかず、海水は天然濾過海水を加温し、20~25℃とし、換水率は5回/日とした。光条件は12時間明、12時間暗とし、本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料を1日3回給餌した。給餌量はエビ体重比3~5%で摂餌状況に応じて段階的に給餌量をあげていった。50日間試験を実施し、その期間中の生残数、平均体重、平均全長を測定した。結果を表3に示す。
 (試験例12)クルマエビの成長促進効果(本発明の低分子リグニン)
 [飼料の調製]
 試験例2で調製した低分子リグニン(固形分1.5%、固形分あたりカテキン換算7%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%、本発明の低分子リグニンはカテキン換算0.007重量%)。作製した飼料を本発明の低分子リグニンを含有する飼料として用いた。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
 (試験例13)クルマエビの成長促進効果(本発明の高分子リグニン)
 [飼料の調製]
 試験例3で調製した珪藻土を含有した本発明の高分子リグニン(固形分あたりのポリフェノール量がカテキン換算で7%)を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で噴霧・混合した(飼料乾燥重量あたりカテキン換算0.014%)。作製した飼料を本発明の高分子リグニンを含有する飼料として用いた。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
 (試験例14)クルマエビの成長促進効果(無添加)
 [飼料の調製]
 配合飼料(バイオ科学社製、エビコング)を何も添加することなく造粒し無添加飼料を作製した。
 [成長促進効果の評価]
 本試験例での無添加飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
 (試験例15)クルマエビの成長促進効果(バガス水熱処理液)
 [飼料の調製]
 試験例5で調製したバガス水熱処理液を溶質の重量ベースで配合飼料(バイオ科学社製、エビコング)造粒時に飼料乾燥重量あたり0.2%で混合した(飼料乾燥重量あたりカテキン換算0.0002%)。
 [成長促進効果の評価]
 本試験例で調製した飼料を用いる以外は試験例11と同様とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、試験例11~13の本発明の低分子リグニンおよび本発明の高分子リグニンを含有する飼料、本発明の低分子リグニンを含有する飼料、本発明の高分子リグニンを含有する飼料を用いた場合、試験例14の無添加飼料に比べてクルマエビの生残数、体重、全長が増加することが分かった。
 (参考例4)リグノスルホン酸液のGPC分子量分析
 一般的なリグニン市販品であるリグノスルホン酸(日本製紙ケミカル社製 サンエキスP252をNaOHでpH10に調整した水溶液に3%溶解させたもの)を参考例1に記載の方法でGPC分子量分析を行った。結果を図5に示す。この結果から、得られたリグニンは、分子量100,000にピークを有するリグニンを含有し、本発明の低分子リグニン、高分子リグニンを含有しないことを確認した。また、数平均分子量は39,000であった。
 (参考例5)UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークが4,000以下に有するリグニンのGPC分子量分析
 バガス1kg(台糖農産株式会社より購入、ベトナム製)を0.6(wt/wt)%水酸化ナトリウム水溶液に乾燥重量で5wt%添加・混合し、180℃、5分反応させ、6N塩酸を用いてpHを7に調整した後、ザルで固体を分離し、MF膜(商品名:トレフィルHFSタイプ、東レ社製)で濾過を行い、バガスアルカリ水熱処理液を作製した。このアルカリ水熱処理を参考例1に記載の方法でGPC分子量分析を行った。分析結果を図6に示す。この分析結果から、得られたリグニンは、分子量3,700にピークを有するリグニンを含有し、本発明の低分子リグニン、高分子リグニンを含有しないことを確認した。また、数平均分子量は3,300であった。
 
 

Claims (8)

  1.  UV検出器を用いたGPC分子量分析において、波長254nmにおける分子量ピークを、分子量4,000~9,500の範囲に有する低分子リグニンおよび/または分子量10,000~40,000の範囲に有する高分子リグニンを有効成分とする、水産生物成長促進剤。
  2.  前記低分子リグニンおよび/または高分子リグニンがバガスのアルカリ熱水抽出物由来である、請求項1に記載の水産生物成長促進剤。
  3.  甲殻類の脱皮を促進する、請求項1または2に記載の水産生物成長促進剤。
  4.  前記水産生物成長促進剤を含む、水産生物成長促進用飼料。
  5.  前記低分子リグニンおよび/または高分子リグニンを、ポリフェノール量としてカテキン換算0.007重量%以上含む、請求項4に記載の水産生物成長促進用飼料。
  6.  前記水産生物成長促進剤を水産生物に投与して、水産生物の成長を促進する方法。
  7.  前記水産生物成長促進用飼料を水産生物に給餌して、水産生物の成長を促進する方法。
  8.  前記水産生物が甲殻類である、請求項6または7に記載の水産生物の成長を促進する方法。
PCT/JP2017/038642 2016-10-27 2017-10-26 水産生物成長促進剤 WO2018079641A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/342,601 US20190261653A1 (en) 2016-10-27 2017-10-26 Aquatic organism growth promotor
EP17864412.6A EP3533340A4 (en) 2016-10-27 2017-10-26 GROWTH CONVEYOR FOR WATER ORGANISMS
CN201780064798.8A CN109890216A (zh) 2016-10-27 2017-10-26 水产生物生长促进剂
JP2017559133A JP6344534B1 (ja) 2016-10-27 2017-10-26 水産生物成長促進剤
PH12019500642A PH12019500642A1 (en) 2016-10-27 2019-03-22 Aquatic organism growth promoter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016210701 2016-10-27
JP2016-210701 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079641A1 true WO2018079641A1 (ja) 2018-05-03

Family

ID=62025008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038642 WO2018079641A1 (ja) 2016-10-27 2017-10-26 水産生物成長促進剤

Country Status (6)

Country Link
US (1) US20190261653A1 (ja)
EP (1) EP3533340A4 (ja)
JP (1) JP6344534B1 (ja)
CN (1) CN109890216A (ja)
PH (1) PH12019500642A1 (ja)
WO (1) WO2018079641A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213703A1 (en) * 2018-05-11 2019-11-14 The Product Makers (Australia) Pty Ltd Sugar cane extracts for use in animal feeds
IT201900006617A1 (it) * 2019-05-07 2020-11-07 Green Innovation Gmbh Associazione vegetale come ingrediente funzionale per mangimi in acquacoltura
WO2022050171A1 (ja) * 2020-09-02 2022-03-10 三井製糖株式会社 アワビ又はウニの食欲増進剤、アワビ又はウニにおけるニューロペプチドyの合成促進剤、及びこれらの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933072B1 (ko) * 2018-07-09 2018-12-27 동의대학교 산학협력단 어류용 사료 조성물
CN112072086B (zh) * 2020-08-20 2021-06-25 华南理工大学 一种木质素富氮碳/氧化锌纳米复合材料及其制备方法与应用
CN111990303A (zh) * 2020-09-10 2020-11-27 苏州市农业科学院 一种稻田里养殖澳洲淡水小龙虾的方法
CN115088657B (zh) * 2022-07-29 2023-06-13 杭州师范大学 一种提高大龄凡纳滨对虾受精率及孵化率的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231752A (ja) 1993-12-27 1995-09-05 Hayashibara Biochem Lab Inc 発酵バガス飼料とその製造方法並びに用途
JP2006174779A (ja) * 2004-12-24 2006-07-06 Yoshitaka Kajimura 牡蛎の養殖法および同養殖法に用いる補助餌
US20120034344A1 (en) * 2010-05-07 2012-02-09 Menon & Associates, Inc. Bioreactors comprising fungal strains
US20130337030A1 (en) * 2012-06-14 2013-12-19 Empire Technology Development Llc Neutrally buoyant ingestible compositions
JP2016174588A (ja) * 2015-03-23 2016-10-06 公立大学法人 滋賀県立大学 養魚用の配合飼料の原料及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124583A1 (en) * 2008-04-30 2010-05-20 Xyleco, Inc. Processing biomass
WO2014173862A1 (en) * 2013-04-23 2014-10-30 Herbonis Ag Method for improving mineral resorption in farmed fish and crustacean

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231752A (ja) 1993-12-27 1995-09-05 Hayashibara Biochem Lab Inc 発酵バガス飼料とその製造方法並びに用途
JP2006174779A (ja) * 2004-12-24 2006-07-06 Yoshitaka Kajimura 牡蛎の養殖法および同養殖法に用いる補助餌
US20120034344A1 (en) * 2010-05-07 2012-02-09 Menon & Associates, Inc. Bioreactors comprising fungal strains
US20130337030A1 (en) * 2012-06-14 2013-12-19 Empire Technology Development Llc Neutrally buoyant ingestible compositions
JP2016174588A (ja) * 2015-03-23 2016-10-06 公立大学法人 滋賀県立大学 養魚用の配合飼料の原料及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOFUELS BIOPRODUCTS & BIOREFINERING, vol. 8, no. 6, 2014, pages 836 - 856
FUKADA ET AL., JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY, vol. 23, no. 5, 2014, pages 511 - 521
HUYNH N. D. BAO ET AL., AQUACULTURE, vol. 295, 2009, pages 243 - 249

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213703A1 (en) * 2018-05-11 2019-11-14 The Product Makers (Australia) Pty Ltd Sugar cane extracts for use in animal feeds
CN112384074A (zh) * 2018-05-11 2021-02-19 产品制造商(澳大利亚)有限公司 用于动物饲料的甘蔗提取物
EP3806652A4 (en) * 2018-05-11 2022-02-09 The Product Makers (Australia) Pty Ltd SUGAR CANE EXTRACTS FOR USE IN ANIMAL FEED
AU2019264860B2 (en) * 2018-05-11 2022-12-08 Poly Gain Pte Ltd Sugar cane extracts for use in animal feeds
IT201900006617A1 (it) * 2019-05-07 2020-11-07 Green Innovation Gmbh Associazione vegetale come ingrediente funzionale per mangimi in acquacoltura
WO2020225237A1 (en) * 2019-05-07 2020-11-12 Green Innovation Gmbh A vegetal association as a functional ingredient for aquaculture feed
WO2022050171A1 (ja) * 2020-09-02 2022-03-10 三井製糖株式会社 アワビ又はウニの食欲増進剤、アワビ又はウニにおけるニューロペプチドyの合成促進剤、及びこれらの製造方法

Also Published As

Publication number Publication date
JP6344534B1 (ja) 2018-06-20
JPWO2018079641A1 (ja) 2018-10-25
PH12019500642A1 (en) 2019-07-24
US20190261653A1 (en) 2019-08-29
CN109890216A (zh) 2019-06-14
EP3533340A4 (en) 2020-07-01
EP3533340A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6344534B1 (ja) 水産生物成長促進剤
Valenzuela-Gutiérrez et al. Exploring the garlic (Allium sativum) properties for fish aquaculture
JP5890880B1 (ja) ヨウ素を低減化させた褐藻類の製造法
WO2021243151A1 (en) Use of mannose oligosaccharide compositions for feeding crustaceans
Kheirabadi et al. Red yeast (Phaffia rhodozyma) and its effect on growth, antioxidant activity and color pigmentation of rainbow trout (Oncorhynchus mykiss)
Garcia Beltran et al. Effects of dietary dehydrated lemon peel on some biochemical markers related to general metabolism, welfare and stress in gilthead seabream (Sparus aurata L.)
del Hierro et al. Potential of edible insects as a new source of bioactive compounds against metabolic syndrome
Bhavan et al. Effects of Myristica fragrans, Glycyrrhiza glabra and Quercus infectoria on growth promotion in the prawn Macrobrachium rosenbergii
JP2007016004A (ja) 繊維芽細胞増殖促進剤
KR101318787B1 (ko) 항균 기능성 천연 사료첨가제
JP5099812B2 (ja) 血糖値上昇抑制剤
Kermani et al. Growth performance, plasma parameters and liver antioxidant enzymes activities of Rainbow trout (Oncorhynchus mykiss) juvenile fed on Spirulina platensis extract
Al-Ngada et al. Effect of dietary supplementation of green tea (Camellia sinensis) on growth, body composition and serum biochemistry of the Asian seabass, Lates calcarifer fingerlings
JP2006304755A (ja) ペット用食物
JP3596777B1 (ja) 健康食品及び経口用抗腫瘍剤
KR100608153B1 (ko) 사육방법 및 사료
García-Lópeza et al. Potential strategies and opportunities for the development of Arthrospira maxima (Spirulina) processes: A review
JP5749469B2 (ja) 血圧降下剤
JP7473148B2 (ja) 水産生物用組成物、水産生物の育成方法、及びオリーブ採油粕発酵物の使用
KR100679698B1 (ko) 혈당강하기능을 갖는 청전류 추출물 및 이를 함유하는기능성 식품
KR20090095360A (ko) 크산토필을 함유한 가축사료첨가제의 제조방법
CN1342086A (zh) 功能性口服剂
Yerima Performance of Mycelial Biomass from the Mushroom Ganoderma Lucidum as Feed Additive on Growth and Quality of Red Hybrid Tilapia (Oreochromis Spp.)
Barnes Astaxanthin: a powerful antioxidant used in aquaculture for coloration with aquatic animal health implications
US10159264B2 (en) Tunicate extract for use in animal feeds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017559133

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017864412

Country of ref document: EP

Effective date: 20190527