WO2018079310A1 - エクソン20挿入変異型egfr選択的阻害剤 - Google Patents

エクソン20挿入変異型egfr選択的阻害剤 Download PDF

Info

Publication number
WO2018079310A1
WO2018079310A1 PCT/JP2017/037186 JP2017037186W WO2018079310A1 WO 2018079310 A1 WO2018079310 A1 WO 2018079310A1 JP 2017037186 W JP2017037186 W JP 2017037186W WO 2018079310 A1 WO2018079310 A1 WO 2018079310A1
Authority
WO
WIPO (PCT)
Prior art keywords
exon
egfr
amino
quinolin
compound
Prior art date
Application number
PCT/JP2017/037186
Other languages
English (en)
French (fr)
Inventor
和孝 宮寺
芳美 青柳
真一 羽迫
Original Assignee
大鵬薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3041015A priority Critical patent/CA3041015A1/en
Priority to ES17864975T priority patent/ES2955832T3/es
Application filed by 大鵬薬品工業株式会社 filed Critical 大鵬薬品工業株式会社
Priority to JP2018547565A priority patent/JP6896755B2/ja
Priority to EP17864975.2A priority patent/EP3533449B1/en
Priority to MX2019004969A priority patent/MX2019004969A/es
Priority to BR112019008374A priority patent/BR112019008374A2/pt
Priority to FIEP17864975.2T priority patent/FI3533449T3/fi
Priority to CN201780067762.5A priority patent/CN110191711B/zh
Priority to PL17864975.2T priority patent/PL3533449T3/pl
Priority to SG11201903875QA priority patent/SG11201903875QA/en
Priority to IL266239A priority patent/IL266239B2/en
Priority to DK17864975.2T priority patent/DK3533449T3/da
Priority to KR1020197015270A priority patent/KR102639585B1/ko
Priority to AU2017350440A priority patent/AU2017350440B2/en
Priority to RU2019116780A priority patent/RU2774629C2/ru
Priority to US16/345,792 priority patent/US11857513B2/en
Publication of WO2018079310A1 publication Critical patent/WO2018079310A1/ja
Priority to ZA2019/02629A priority patent/ZA201902629B/en
Priority to PH12019500957A priority patent/PH12019500957A1/en
Priority to US18/512,528 priority patent/US20240148734A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to an antitumor agent for cancer having exon 20 insertion mutant epidermal growth factor receptor (Epidmal Growth Factor Receptor, hereinafter also referred to as “EGFR”).
  • Epidmal Growth Factor Receptor epidermal growth factor receptor
  • EGFR epidermal growth factor
  • somatic mutation of the EGFR gene is known as a causative gene for cancer, for example, a deletion of amino acids 746 to 750 in the exon 19 region of EGFR (hereinafter also referred to as “exon 19 deletion mutation”) and A mutated amino acid 858 in the exon 21 region from leucine to arginine (hereinafter also referred to as “L858R mutation”) constitutively induces EGF-independent kinase activity and contributes to the growth and survival of cancer cells ( Non-patent document 2).
  • These mutations are observed in East Asia, for example, in 30 to 50% of non-small cell lung cancer, and in Europe and the United States, it has been reported to be observed in about 10% of non-small cell lung cancer. It is considered as one of these (Non-Patent Document 3).
  • an EGFR inhibitor as an antitumor agent has been actively carried out, and has been introduced for the treatment of EGFR mutation-positive lung cancer.
  • gefitinib, erlotinib, and afatinib at therapeutic doses, develop skin abnormalities and gastrointestinal disorders that are widely attributed to inhibition of wild-type EGFR as side effects, while exon 19 deletion and L858R variants High antitumor effect against EGFR positive lung cancer.
  • These therapeutic effects are thought to be due to the EGFR inhibitor selectively inhibiting mutant EGFR as compared to wild-type EGFR (Non-patent Document 4).
  • Patent Document 1 describes a compound that can be used for the treatment of a disease characterized by exon 20 insertion mutant EGFR.
  • the compound described in Document 1 has a structure that is greatly different from that of the compound according to the present invention, and does not disclose selectivity by comparison with wild-type EGFR and effectiveness in an in vivo model.
  • Patent Document 2 describes a quinoline-substituted compound, but does not describe an inhibitory activity against exon 20 insertion mutant EGFR.
  • An object of the present invention is an inhibitor having high selectivity for exon 20 insertion mutant EGFR, which is not sufficiently therapeutic effect with conventional EGFR inhibitors, and has reduced side effects due to inhibition of wild-type EGFR. It is to provide an antitumor agent.
  • EGFR inhibitors that have been introduced in conventional treatments are wild-type EGFR and exon 20 insertions, in addition to the fact that exon 20 insertion mutant EGFR is appropriate as a therapeutic target for cancer. It was found that the selectivity between mutant EGFR was poor. In addition, it was confirmed that the specific compound exhibits selectivity for the exon 20 insertion mutant EGFR and a tumor growth inhibitory effect, and is superior to afatinib, which is a typical EGFR mutation-positive cancer therapeutic agent. It came to be completed.
  • the present invention includes the following aspects.
  • the compound is (S) -N- (4-amino-6-methyl-5- (quinolin-3-yl) -8,9-dihydropyrimido [5,4-b] indolizin-8-yl) acrylamide Item 2.
  • Item 3. The antitumor according to Item 1 or 2, wherein the malignant tumor patient expressing EGFR having an exon 20 insertion mutation is a patient with lung cancer, breast cancer, head and neck cancer, brain tumor, uterine cancer, hematopoietic tumor, or skin cancer. Tumor agent.
  • Item 4. The antitumor agent according to any one of Items 1 to 3, wherein the malignant tumor patient expressing EGFR having an exon 20 insertion mutation is a lung cancer patient.
  • Item 5 The antitumor agent according to any one of Items 1 to 4, wherein the exon 20 insertion mutation is a mutation in which one or more amino acids are inserted into the exon 20 region.
  • Item 6 The antitumor agent according to any one of Items 1 to 5, wherein the exon 20 insertion mutation is a mutation in which 1 to 7 amino acids are inserted into the exon 20 region.
  • Item 7. The antitumor agent according to any one of Items 1 to 6, wherein the exon 20 insertion mutation is a mutation in which 1 to 4 amino acids are inserted into the exon 20 region.
  • Item 8 Exon 20 insertion mutations, A763_Y764insFQEA, V769_D770insASV, D770_N771insSVD, D770_N771insNPG, D770_N771insG, D770> GY, N771_P772insN, P772_R773insPR, H773_V774insNPH, H773_V774insPH, H773_V774insAH, H773_V774insH, V774_C774insHV, or A761_E762insEAFQ, according to any one of claims 1 to 7 Antitumor agent.
  • Item 9 The antitumor agent according to any one of Items 1 to 8, wherein the exon 20 insertion mutation is V769_D770insASV, D770_N771insSVD, D770_N771insG, H773_V774insNPH, H773_V774insPH.
  • Item 10 An effective amount of (S) -N- (4-amino-6-methyl-5- (quinolin-3-yl) -8,9-dihydropyri in patients with malignant tumors expressing EGFR with an exon 20 insertion mutation Mid [5,4-b] indolizin-8-yl) acrylamide; (S) -N- (4-amino-6-methylene-5- (quinolin-3-yl) -7,8-dihydro-6H-pyrimido [5,4-b] pyrrolidin-7-yl) acrylamide; (S, E) -N- (4-Amino-6-methylene-5- (quinolin-3-yl) -7,8-dihydro-6H-pyrimido [5,4-b] pyrrolidin-7-yl)- 3-chloroacrylamide; and (R) -N- (4-amino-6-methyl-5- (quinolin-3-yl) -8,9-dihydropyrimi
  • the antitumor agent according to the present invention exhibits high selectivity for exon 20 insertion mutant EGFR without inhibiting wild-type EGFR. Therefore, it has excellent therapeutic effect on malignant tumor patients expressing EGFR having exon 20 insertion mutation, in which the therapeutic effect is not sufficient with conventional EGFR inhibitors while reducing side effects caused by inhibiting wild-type EGFR. This is useful for providing an antitumor agent that exerts its effect.
  • Conventional EGFR inhibitors have lower selectivity to exon 20 insertion mutant EGFR compared to wild-type EGFR, and therefore doses exhibiting an anti-tumor effect and side effects caused by wild-type EGFR (skin abnormalities, gastrointestinal tract) It was difficult to exert a sufficient therapeutic effect due to a small deviation from the dose at which disability occurred.
  • the antitumor agent according to the present invention since the antitumor agent according to the present invention has high selectivity for exon 20 insertion mutant EGFR, it is possible to increase the dose without causing side effects caused by wild type EGFR. An excellent therapeutic effect can be exerted on a malignant tumor patient expressing EGFR having a mutation.
  • Wild-type EGFR and exon 20 insertion mutants calculated from test results on cell growth inhibition of compound A, B, C, D, and comparative compounds, gefitinib, erlotinib, and afatinib against wild-type and mutant EGFR-expressing cell lines IC50 ratio with EGFR is shown.
  • RTV relative tumor volume
  • FIG. 2 shows body weights after grouping of tumors of mutant EGFR-expressing cell lines (H1975-EGFRinsSVD cells) subcutaneous transplant model mice for measuring the toxicity of Compound A.
  • mold EGFR expression cell line (NIH3T3-EGFRinsNPH) subcutaneous transplant model mouse for measuring the toxicity of the compound A is shown.
  • mold EGFR expression cell strain (NIH3T3-EGFRinsNPH) subcutaneous transplant model mouse for measuring the toxicity of the compound A is shown.
  • the tumor volume in a mutant type EGFR-expressing cell line (H1975-EGFRinsSVD cell) subcutaneous transplant model rat for measuring the antitumor effect of Compound A is shown.
  • FIG. 2 shows body weights after grouping of tumors of a mutant EGFR-expressing cell line (H1975-EGFRinsSVD cell) subcutaneous transplant model rat for measuring the toxicity of Compound A.
  • FIG. The tumor volume in the V769_D770insASV mutant type
  • mold EGFR positive lung cancer patient-derived tumor subcutaneous transplantation model mouse for measuring the toxicity of this invention compound A is shown.
  • the amino acid sequence of wild-type EGFR (Wild-type EGFR) is shown (SEQ ID NO: 1).
  • EGFR indicates a human epidermal growth factor receptor protein and is also referred to as ErbB-1 or HER1.
  • wild-type EGFR refers to EGFR that has no somatic mutation, and is specifically a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 (GenBank accession number: NP — 005219.2). ).
  • the “exon 20 insertion mutation” means one or more (preferably 1 to 7, more preferably 1 to 4) in the EGFR exon 20 region (amino acid sequence from 761 to 823 in SEQ ID NO: 1).
  • the amino acid sequence FQEA phenylalanine, glutamine, glutamic acid, alanine in this order from the N-terminal side
  • FQEA phenylalanine, glutamine, glutamic acid, alanine in this order from the N-terminal side
  • Mutation (A763_Y764insFQEA), mutation in which amino acid sequence ASV (alanine, serine, valine in order from the N-terminal side) is inserted between 769 valine to 770 aspartic acid in exon 20 region (V769_D770insASV), 770 in exon 20 region No. 771 from aspartic acid Mutation (D770_N771insSVD) in which the amino acid sequence SVD (serine, valine, aspartic acid in this order from the N-terminal side) is inserted between the paragins, and the amino acid sequence NPG (NPN between the 770th aspartic acid and the 771th asparagine in the exon 20 region.
  • ASV alanine, serine, valine in order from the N-terminal side
  • Mutation in which asparagine, proline and glycine) are inserted in order from the last side, mutation in which amino acid G (glycine) is inserted between 770 aspartic acid to 771 asparagine in the exon 20 region (D770_N771insG), exon A mutation (D770> GY) in which the amino acid sequence GY (glycine, tyrosine) was inserted in place of the deletion of 770 aspartic acid in the 20 region, and 771 asparagine to 772 pro in the exon 20 region.
  • V769_D770insASV a mutation in which the amino acid sequence ASV (alanine, serine, valine in order from the N-terminal side) is inserted between 769 valine to 770 aspartic acid in the exon 20 region, and 770 asparagine in the exon 20 region.
  • a mutation in which the amino acid sequence SVD (serine, valine, aspartic acid in order from the N-terminal side) is inserted between the acid and the 771 asparagine, and the amino acid between the 770 aspartic acid and the 771 asparagine in the exon 20 region G (glycine) inserted mutation (D770_N771insG), amino acid sequence NPH (asparagine, proline, histidine in order from N-terminal side) was inserted between 773 histidine to 774 valine in exon 20 region Different (H773_V774insNPH), (proline in order from the N-terminal side, histidine) amino acid sequence PH between 774 No.
  • valine 773 th histidine exon 20 region include insertion mutations (H773_V774insPH). Particularly preferably, a mutation (D770_N771insSVD) in which the amino acid sequence SVD (serine, valine, aspartic acid in order from the N-terminal side) is inserted between 770 aspartic acid to 771 asparagine in the exon 20 region, and 770 in the exon 20 region. Examples include a mutation (D770_N771insG) in which an amino acid G (glycine) is inserted between aspartic acid and No. 771 asparagine.
  • a malignant tumor patient expressing EGFR having an exon 20 insertion mutation refers to a malignant tumor patient expressing an EGFR having an exon 20 insertion mutation in at least one of the exon 20 regions of EGFR.
  • the EGFR may have an exon 20 insertion mutation at two or more different positions, but preferably has an exon 20 insertion mutation at one position.
  • the EGFR can also have mutations other than the exon 20 insertion mutation (for example, exon 19 deletion mutation, L858R mutation, L790M mutation, etc.).
  • a method for detecting that EGFR expressed in a malignant tumor patient has an exon 20 insertion mutation is not particularly limited as long as the mutation can be detected, and a known detection method can be used.
  • a known detection method can be used.
  • any of the genomic sequence of the EGFR gene, the transcript of the EGFR gene, or the EGFR protein can be detected.
  • the sample used for detection of the exon 20 insertion mutation is not particularly limited as long as it is a biological sample derived from a malignant tumor patient, particularly a sample collected from a malignant tumor patient and containing malignant tumor cells.
  • biological samples include body fluids (blood, urine, etc.), tissues, extracts thereof, and cultures of collected tissues.
  • the collection method of a biological sample can be suitably selected according to the kind of biological sample.
  • the biological sample is prepared by appropriate processing depending on the detection method.
  • the reagent for example, reagent containing a primer or a probe
  • the reagent used for detection can be adjusted by a commonly used method according to the detection method.
  • a step of detecting that the EGFR expressed by the malignant tumor patient has an exon 20 insertion mutation can be performed prior to administration of an antitumor agent to a malignant tumor patient.
  • the compounds A to D can be produced, for example, by the production method described in WO2015 / 025936A1 or the method shown in the examples. However, the production methods of the compounds A to D are not limited to these reaction examples.
  • any isomers and mixtures are included in the compound of the present invention unless otherwise specified. Is done.
  • compounds A to D have optical isomers, unless otherwise specified, racemates and optical isomers resolved from racemates are also included in the compounds of the present invention.
  • the salts of the above compounds A to D mean pharmaceutically acceptable salts, and can include base addition salts and acid addition salts.
  • the base addition salt examples include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt; ammonium salt; such as trimethylamine salt, triethylamine salt, dicyclohexylamine salt and ethanolamine.
  • organic amine salts such as salts, diethanolamine salts, triethanolamine salts, procaine salts, and N, N′-dibenzylethylenediamine salts.
  • the acid addition salt examples include inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate and perchlorate; for example, acetate, formate, maleate, fumarate, tartrate, citric acid Organic salts such as salts, ascorbates and trifluoroacetates; for example, sulfonates such as methanesulfonate, isethionate, benzenesulfonate and p-toluenesulfonate.
  • inorganic acid salts such as hydrochloride, sulfate, nitrate, phosphate and perchlorate
  • Organic salts such as salts, ascorbates and trifluoroacetates
  • sulfonates such as methanesulfonate, isethionate, benzenesulfonate and p-toluenes
  • the compounds A to D or salts thereof include prodrugs thereof.
  • a prodrug is a compound that is converted into compounds A to D or a salt thereof by a reaction with an enzyme, gastric acid, or the like under physiological conditions in vivo, that is, the compound of the present invention or a salt thereof by enzymatically causing oxidation, reduction, hydrolysis, etc. Or a compound that undergoes hydrolysis or the like due to gastric acid or the like and changes to compounds A to D or a salt thereof. It can also be converted to compounds AD or salts thereof under physiological conditions as described in Hirokawa Shoten 1990, “Drug Development”, Volume 7, Molecular Design, pages 163 to 198.
  • the tumor to be the subject of the present invention is not particularly limited, and examples thereof include head and neck cancer, digestive organ cancer (esophageal cancer, gastric cancer, duodenal cancer, liver cancer, biliary tract cancer (eg, gallbladder / bile duct cancer), pancreatic cancer, colorectal cancer. Cancer (colon cancer, rectal cancer, etc.), lung cancer (non-small cell lung cancer, small cell lung cancer, mesothelioma, etc.), breast cancer, genital cancer (ovarian cancer, uterine cancer (cervical cancer, endometrial cancer, etc.), etc.
  • digestive organ cancer esophageal cancer, gastric cancer, duodenal cancer, liver cancer, biliary tract cancer (eg, gallbladder / bile duct cancer), pancreatic cancer, colorectal cancer.
  • Cancer colon cancer, rectal cancer, etc.
  • lung cancer non-small cell lung cancer, small cell lung cancer, mesothelioma, etc
  • Urinary cancer renal cancer, bladder cancer, prostate cancer, testicular tumor, etc.
  • hematopoietic tumor leukemia, malignant lymphoma, multiple myeloma, etc.
  • bone / soft tissue tumor skin cancer, brain tumor and the like.
  • lung cancer breast cancer, head and neck cancer, brain tumor, uterine cancer, hematopoietic tumor, or skin cancer.
  • a pharmaceutical carrier can be blended as necessary, and various administration forms can be adopted depending on the purpose of prevention or treatment.
  • the form may be any of oral preparations, injections, suppositories, ointments, patches and the like, and preferably oral preparations are employed.
  • Each of these dosage forms can be produced by a conventional formulation method known to those skilled in the art.
  • the pharmaceutical carrier various organic or inorganic carrier substances commonly used as pharmaceutical materials are used, and excipients, binders, disintegrants, lubricants, coloring agents in solid preparations, solvents in liquid preparations, dissolution aids, It is blended as a suspending agent, isotonic agent, buffer, soothing agent and the like.
  • formulation additives such as preservatives, antioxidants, colorants, sweeteners, stabilizers and the like can be used as necessary.
  • an excipient When preparing a solid preparation for oral administration, an excipient, if necessary, a binder, a disintegrant, a lubricant, a coloring agent, a flavoring / flavoring agent, etc. are added to compounds A to D, followed by a conventional method. Tablets, coated tablets, granules, powders, capsules and the like can be produced.
  • excipients include lactose, sucrose, D-mannitol, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, and anhydrous silicic acid.
  • binder examples include water, ethanol, 1-propanol, 2-propanol, simple syrup, glucose solution, ⁇ -starch solution, gelatin solution, D-mannitol, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, Shellac, calcium phosphate, polyvinylpyrrolidone and the like can be mentioned.
  • Examples of the disintegrant include dry starch, sodium alginate, agar powder, sodium hydrogen carbonate, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, and lactose.
  • Examples of the lubricant include purified talc, sodium stearate, magnesium stearate, borax, and polyethylene glycol.
  • Examples of the colorant include titanium oxide and iron oxide.
  • Examples of the flavoring / flavoring agent include sucrose, orange peel, citric acid, tartaric acid and the like.
  • oral liquids, syrups, elixirs and the like can be produced by conventional methods by adding a flavoring agent, buffer, stabilizer, flavoring agent and the like to compounds A to D.
  • the buffer examples include sodium citrate.
  • the stabilizer examples include tragacanth, gum arabic, and gelatin.
  • an enteric coating or a coating can be applied to the oral preparation by a known method for the purpose of sustaining the effect.
  • examples of such a coating agent include hydroxypropylmethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylcellulose, polyoxyethylene glycol, Tween 80 (trademark), and the like.
  • Examples of the pH adjuster and buffer include sodium citrate, sodium acetate, sodium phosphate and the like.
  • examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid and the like.
  • Examples of local anesthetics include procaine hydrochloride and lidocaine hydrochloride.
  • isotonic agents include sodium chloride, glucose, D-mannitol, glycerin and the like.
  • a compound carrier known to those skilled in the art such as polyethylene glycol, lanolin, cocoa butter, fatty acid triglyceride and the like, is added to an interface such as Tween 80 (trademark) if necessary. After adding an activator etc., it can manufacture by a conventional method.
  • bases, stabilizers, wetting agents, preservatives and the like that are commonly used for compounds A to D are blended as necessary, and can be mixed and formulated by conventional methods.
  • Examples of the base include liquid paraffin, white petrolatum, white beeswax, octyldodecyl alcohol, paraffin and the like.
  • preservative examples include methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, and the like.
  • preparing a patch it can be produced by applying the ointment, cream, gel, paste or the like to a normal support by a conventional method.
  • the support examples include woven or non-woven fabrics made of cotton, suf, chemical fibers, soft vinyl chloride, polyethylene, polyurethane and other films or foam sheets.
  • the amount of the above-mentioned compounds A to D to be formulated in each dosage unit form is not constant depending on the symptoms of the patient to which this compound is applied, or depending on the dosage form, etc. Is preferably 0.05 to 1000 mg, 0.01 to 500 mg for injections, and 1 to 1000 mg for suppositories.
  • the daily dose of the drug having the above dosage form varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally, but is usually an adult (weight 50 kg) as the active ingredient compounds A to D.
  • the dose may be 0.05 to 5000 mg, preferably 0.1 to 1000 mg per day, and is preferably administered once a day or divided into 2 to 3 times a day.
  • the present invention also includes the step of administering an antitumor agent comprising an effective amount of a compound selected from the group consisting of compounds AD or a salt thereof to a malignant tumor patient expressing EGFR having an exon 20 insertion mutation.
  • an antitumor agent comprising an effective amount of a compound selected from the group consisting of compounds AD or a salt thereof to a malignant tumor patient expressing EGFR having an exon 20 insertion mutation.
  • the present invention provides a method for treating patients with malignant tumors.
  • the present invention also provides a compound selected from the group consisting of compounds A to D or a salt thereof for treating a malignant tumor patient expressing EGFR having an exon 20 insertion mutation.
  • the present invention also provides the use of a compound selected from the group consisting of compounds A to D or a salt thereof for treating a malignant tumor patient expressing EGFR having an exon 20 insertion mutation.
  • the present invention also provides a compound selected from the group consisting of compounds A to D or a salt thereof for producing an antitumor agent for treating a malignant tumor patient expressing EGFR having an exon 20 insertion mutation. Provide use.
  • the present invention also provides a method of chemotherapy using an antitumor agent comprising, as an active ingredient, a compound selected from the group consisting of compounds A to D or a salt thereof in a malignant tumor patient, comprising the following steps (1) to (2): How to predict treatment effects: (1) a step of detecting the presence or absence of a mutation in the EGFR gene contained in a biological sample collected from the patient; and (2) as a result of the detection in the above step (1), the EGFR gene has an exon 20 insertion mutation. And predicting that the chemotherapy for the patient is likely to have a sufficient therapeutic effect.
  • the present invention also includes a method for treating a malignant tumor patient, comprising the following steps (1) to (3): (1) a step of detecting the presence or absence of a mutation in the EGFR gene contained in a biological sample collected from the patient; and (2) as a result of the detection in the above step (1), the EGFR gene has an exon 20 insertion mutation. Predicting that chemotherapy using an antitumor agent containing a compound selected from the group consisting of compounds A to D or a salt thereof for the patient is likely to have a sufficient therapeutic effect, and (3) A step of administering the antitumor agent to a patient who is predicted to have a high possibility that the chemotherapy has a sufficient therapeutic effect in the step (2).
  • the base sequence of the EGFR gene is known.
  • GenBank accession number of the cDNA base sequence is NM_005228.4.
  • the “therapeutic effect” can be evaluated by the tumor shrinking effect, the recurrence suppressing effect, the life prolonging effect, etc., and the recurrence suppressing effect is an extension of the recurrence-free survival period and / or the improvement of the recurrence rate, It can be expressed by the degree of extension of the median of survival and / or progression-free survival.
  • Chemotherapy using an anti-tumor agent containing Compound A or a salt thereof as an active ingredient indicates “sufficient therapeutic effect” by administering an anti-tumor agent containing Compound A or a salt thereof as an active ingredient Compared to the case of non-administration, it means an excellent therapeutic effect that significantly extends the survival period or significantly suppresses recurrence.
  • test examples the present invention will be described in more detail with reference to test examples, but the present invention is not limited to these examples (test examples).
  • Test example 1 In vitro drug efficacy test Evaluation of cell growth inhibitory effect on wild-type and mutant EGFR-expressing cell lines (1)
  • the inhibitory activity of the compound against wild-type EGFR and mutant EGFR was performed using Ba / F3 cells, which are mouse B lymphocyte progenitor cell lines into which the human EGFR gene was introduced.
  • Ba / F3 cells are RPMI containing 10% fetal bovine serum (FBS), 100 U / mL penicillin / 100 ⁇ g / mL streptomycin (Thermo Fisher Scientific) and 1 ng / mL mouse interleukin-3 (mIL-3) (CST).
  • Ba / F3 cells expressing wild-type EGFR (hereinafter also referred to as “Ba / F3-EGFR_WT”) showed mIL-3-independent growth in the presence of 50 ng / mL EGF (R & D Systems), and exon 20 inserted.
  • Ba / F3 cells expressing mutant EGFR (hereinafter referred to as “Ba / F3-EGFRinsSV”, “Ba / F3-EGFRinsSVD”, “Ba / F3-EGFRinsG”, “Ba / F3-EGFRinsNPH”, “Ba / F3- (Also referred to as “EGFRinsPH”) showed mIL-3-independent growth in the absence of EGF.
  • Ba / F3-EGFR_WT cells were suspended in RPMI-1640 medium containing 10% FBS, 100 U / mL penicillin, 100 ⁇ g / mL streptomycin and 50 ng / mL EGF. Each well of a well flat bottom microplate was seeded so that the number of cells per well was 30,000.
  • Ba / F3 cells expressing exon 20 insertion mutant EGFR were suspended in RPMI-1640 medium containing 10% FBS, 100 U / mL penicillin, 100 ⁇ g / mL streptomycin, and the cell suspension was suspended in a 96-well flat bottom microplate.
  • the number of cells after culture was measured using Cell Titer-Glo (trademark) Luminescent Cell Viability Assay (Promega) based on the protocol recommended by the manufacturer.
  • the growth inhibition rate was calculated from the following formula, and the concentration (IC 50 ( ⁇ M)) of the test compound that inhibited by 50% was determined.
  • IC 50 ratio IC 50 (WT) / IC 50 (ex20ins)
  • compounds A to D show a cell growth inhibitory effect on the cell line expressing exon 20 insertion mutant EGFR, and the mutation selectivity is higher than that of comparative compounds, gefitinib, erlotinib, and afatinib. it was high.
  • Test example 2 Cell growth inhibitory effect on wild type and mutant EGFR expressing human cell lines
  • NCI-H1975 cell (hereinafter referred to as “H1975-EGFRinsSVD”) is a human lung adenocarcinoma cell line expressing D770_N771insSVD mutant EGFR by genetic modification.
  • A431 cells a human epidermoid cancer cell line expressing wild type EGFR, were used.
  • the H1975-EGFRinsSVD cells were obtained by combining the PB-CMV-MCS-EF1-RFP + Puro vector encoding D770_N771insSVD (insSVD) into the NCI-H1975 cells together with the Super PiggyBacTransposase expression vector using the Amaxa (TM) Cell Line K After introducing by puromycin (SIGMA), XTN (trademark) TALENs Site-Specific Nucleases (Transposagen) was introduced by electroporation with Amaxa (trademark) Cell Line Nucleofector (trademark) Kit R. EGFR (T790M / L858R) knocked out Cells were selected by the sequence.
  • each cell was suspended in a medium recommended by ATCC.
  • the cell suspension was seeded in each well of a 96-well flat bottom plate so that the number of cells per well was 3,000, and cultured at 37 ° C. in an incubator containing 5% carbon dioxide gas for 1 day.
  • Compound A, comparative compound, gefitinib, erlotinib and afatinib were dissolved in DMSO, and the test compound was diluted with DMSO to a concentration 200 times the final concentration.
  • a DMSO solution of the test compound is diluted with the medium used for suspending each cell, and this is added to each well of the cell culture plate so that the final concentration of DMSO is 0.5%.
  • the number of cells at the start of culture (day 0) and after culture (day 3) was measured using CellTiter-Glo (trademark) Luminescent Cell Viability Assay (Promega) based on the protocol recommended by the manufacturer.
  • the growth inhibition rate was calculated from the following equation, and the concentration (GI 50 ( ⁇ M)) of the test compound that inhibits 50% was determined. The results are shown in Table 1.
  • GI 50 ratio GI 50 (A431) / GI 50 (H1975 EGFRinsSVD) GI 50 (A431): GI 50 against wild-type EGFR GI 50 (H1975 EGFRinsSVD): GI 50 against exon 20 insertion mutant EGFR.
  • Compound A exhibits a cell growth inhibitory effect on the cell line expressing exon 20 insertion mutant EGFR, and the mutation selectivity is comparable to that of the comparative compounds, gefetinib, erlotinib, afatinib and osmeltinib It was expensive.
  • Test example 3 Evaluation of phosphorylated EGFR inhibitory activity against wild-type and mutant EGFR-expressing cell lines
  • A431 cells which are human epithelial cancer cell lines overexpressing wild-type EGFR
  • H1975-EGFRinsSVD cells which are human lung adenocarcinoma cell lines expressing D770_N771insSVD mutant EGFR by genetic modification
  • Each cell suspension was seeded in a 60 mm dish and cultured at 37 ° C. for 1 day in an incubator containing 5% carbon dioxide gas.
  • Compound A was dissolved in DMSO, and the test compound was diluted with DMSO to a concentration 1000 times the final concentration.
  • a DMSO solution of the test compound is diluted with the medium used for suspending each cell, and this is added to the cell culture dish so that the final concentration of DMSO is 0.1%, and an incubator containing 5% carbon dioxide gas is added. Cultured at 37 ° C for 6 hours. After culturing, the cells were collected and stored in a pellet state at ⁇ 80 ° C. until use. Add RIPA buffer (Thermo Fisher Scientific) with protease inhibitor cocktail (Thermo Fisher Scientific) to the pellet, extract intracellular proteins, and then use BCA protein assay kit (Thermo Fisher Scientific) The concentration was measured, and each sample was adjusted to a protein concentration suitable for phosphorylated EGFR expression measurement.
  • RIPA buffer Thermo Fisher Scientific
  • protease inhibitor cocktail Thermo Fisher Scientific
  • Phosphorylated EGFR expression measurement was performed using Simple Western (trademark) assay system (Protein Simple) based on the manufacturer's recommended protocol.
  • Phospho-EGF Receptor Tyr1068 # 3777 (CST) was diluted 1:50 and used for measurement.
  • a calibration curve of protein concentration (x axis) and phosphorylated EGFR expression level (y axis) was prepared for each cell, and the phosphorylated EGFR expression level of each sample was converted to protein concentration based on the calibration curve.
  • the phosphorylated EGFR inhibition rate was calculated from the following formula, and the concentration (IC 50 ( ⁇ M)) of the test compound capable of inhibiting phosphorylated EGFR by 50% was determined.
  • Phosphorylated EGFR inhibition rate (%) T / C ⁇ 100
  • T Equivalent protein concentration of sample to which test compound was added
  • C Equivalent protein concentration of sample to which test compound was not added
  • IC 50 ratio IC 50 (A431) / IC 50 (H1975 EGFRinsSVD) IC 50 (A431): IC 50 against wild-type EGFR IC 50 (H1975 EGFRinsSVD): IC 50 against exon 20 insertion mutant EGFR.
  • Test example 4 Evaluation of phosphorylated EGFR inhibitory activity against wild-type and mutant EGFR-expressing cell lines (2) The autophosphorylation inhibitory activity of the wild-type EGFR and mutant EGFR of the compound was carried out using NIH-3T3 cells, a mouse fibroblast cell line into which the human EGFR gene was introduced.
  • NIH-3T3 cells are D-MEM (high glucose) medium containing 10% newborn calf serum (NBCS), 1,500 mg / L sodium bicarbonate, 100 U / mL penicillin / 100 ⁇ g / mL streptomycin (Thermo Fisher Scientific)
  • NIH-3T3 cells expressing wild-type EGFR (hereinafter also referred to as “NIH3T3-EGFR_WT”) showed growth under 1% NBCS conditions and in the presence of 50 ng / mL EGF (R & D Systems), and exon 20 insertion mutant EGFR (Hereinafter also referred to as "NIH3T3-EGFRinsSV", “NIH3T3-EGFRinsSVD”, “NIH3T3-EGFRinsG”, “NIH3T3-EGFRinsNPH”, “NIH3T3-EGFRInsPH” and “NIH3T3-EGFRInsGF”) It showed growth in the absence.
  • NIH3T3 cells into which human EGFR was introduced were suspended in the medium.
  • the cell suspensions were seeded on 60 mm mm dishes or 6-well flat bottom plates, respectively, and cultured at 37 ° C. for 1 day in an incubator containing 5% carbon dioxide gas.
  • Compound A was dissolved in DMSO, and the test compound was diluted with DMSO to a concentration 400 times the final concentration.
  • the DMSO solution of the test compound was diluted with the medium used for suspending each cell, and this was added to the cell culture dish so that the final concentration of DMSO was 0.25%.
  • EGF was added to a culture dish of NIH3T3-EGFR_WT cells to a final concentration of 50 ng / mL. All culture dishes were cultured at 37 ° C. for 6 hours in an incubator containing 5% carbon dioxide gas. After culturing, the cells were collected and stored in a pellet state at ⁇ 80 ° C. until use. Add RIPA buffer (Thermo Fisher Scientific) with protease inhibitor cocktail (Thermo Fisher Scientific) to the pellet, extract the protein in the cell, and then use BCA protein assay kit (Thermo Fisher Scientific) The concentration was measured, and each sample was adjusted to a protein concentration suitable for phosphorylated EGFR expression measurement.
  • RIPA buffer Thermo Fisher Scientific
  • protease inhibitor cocktail Thermo Fisher Scientific
  • Phosphorylated EGFR expression was measured using a Simple Western (trademark) assay system (Protein Simple) based on the manufacturer's recommended protocol.
  • Primary antibody Phospho-EGF Receptor (Tyr1068) # 3777 (CST) was diluted 1/50 and used for measurement.
  • a calibration curve of protein concentration (x axis) and phosphorylated EGFR expression level (y axis) was created for each cell, and the phosphorylated EGFR expression level of each sample was converted to protein concentration based on the calibration curve.
  • the phosphorylated EGFR inhibition rate was calculated from the following formula, and the concentration (IC 50 ( ⁇ M)) of the test compound capable of inhibiting phosphorylated EGFR by 50% was determined.
  • Phosphorylated EGFR inhibition rate (%) T / C ⁇ 100
  • T Equivalent protein concentration of sample to which test compound was added
  • C Equivalent protein concentration of sample to which test compound was not added
  • IC 50 ratio IC 50 (WT) / IC 50 (exon 20 insertion mutant EGFR)
  • compounds A to D show a cell growth inhibitory effect accompanied by an EGFR inhibitory effect on a cell line expressing exon 20 insertion mutant EGFR.
  • the selectivity was higher compared to the comparative compounds, gefetinib, erlotinib afatinib and osimertinib.
  • Test Example 5 In vivo efficacy test Evaluation of anti-tumor effect using a mutant EGFR-expressing cell line subcutaneous transplant model NIH3T3-EGFRinsASV cells, NIH3T3-EGFRinsSVD cells or H1975-EGFRinsSVD cells introduced with human mutant EGFR were transplanted subcutaneously into nude mice, and tumors were alive wearing the when the tumor volume became about 100-200 mm 3 in nude mice, assignment 5-6 animals per group by randomization stratification so that the mean tumor volume of each group is uniform, compound a and AFATINIB was orally administered once daily for 14 days.
  • the administration dose is 20 mg / kg / day of the maximum tolerated dose (maximum dose at which weight loss during the administration period is less than 20%) in 14 days, which is the administration period of this study, for afatinib, and 200 mg / kg for Compound A. kg / day (maximum tolerated dose) was used.
  • the maximum tolerated dose was set from a humanitarian viewpoint according to “Guidelines Involving Experiential Neoplasma Proposals in Mice and Rats” by the National Cancer Institute (NCI).
  • the relative tumor volume (relative tumor weight, hereinafter also referred to as “RTV”) with the tumor volume at the time of grouping being 1 as the tumor growth rate is as follows: Calculated according to the formula.
  • the body weight was measured over time as an index of toxicity, and the average weight change rate (Body weight change, hereinafter referred to as “BWC (%)”) with respect to the grouping date was calculated according to the following formula.
  • Figure 3-8 shows changes in the average values of RTV and BWC for each individual.
  • RTV (tumor volume on the day of tumor volume measurement) / (tumor volume at the time of grouping)
  • BWC (%) (body weight on body weight measurement day) / (body weight at the time of grouping).
  • Compound A exhibited a marked antitumor effect against the exon 20 insertion mutant EGFR-expressing cell line transplanted subcutaneously into nude mice.
  • the effect was higher than that of afatinib, and no severe weight loss, stool abnormalities, or skin abnormalities were observed in mice.
  • Test Example 6 In vivo efficacy test Evaluation of Antitumor Effect Using Mutant EGFR-expressing Cell Line Subcutaneous Transplant Model NIH3T3-EGFRinsNPH cells into which human mutant EGFR was introduced were transplanted subcutaneously into nude mice. When the tumor volume of nude mice engrafted with tumors reached about 100-200 mm 3 , 6 mice were assigned to each group by random stratification so that the average tumor volume of each group was uniform. Afatinib was orally administered once daily for 10 days.
  • the maximum tolerated dose 20 mg / kg / day of the maximum tolerated dose (maximum administration dose at which weight loss during the administration period is less than 20%) was used for afatinib, and 100 and 200 mg / kg / day were used for Compound A.
  • the maximum tolerated dose was set from a humanitarian viewpoint according to the “Guidelines Involving Experiential Neoplasma Proposals in Mice and Rats” by the National Cancer Institute (NCI).
  • the tumor volume of each individual (hereinafter also referred to as “TV”) was calculated according to the following formula.
  • body weight was measured over time as an index of toxicity, and a weight change rate (Body weight change, hereinafter referred to as “BWC (%)”) with respect to the grouping date was calculated according to the following formula. Changes in the average values of TV and BWC for each individual are shown in Fig. 9-10.
  • T / C (%) (tumor volume of test compound administration group) / (tumor volume of control group).
  • Compound A of the present invention has a remarkable antitumor effect accompanied by tumor growth suppression or tumor regression on exon 20 insertion mutant EGFR-expressing cell line transplanted subcutaneously into nude mice. At that time, no significant weight loss was observed in the animals evaluated.
  • Test Example 7 Evaluation of Antitumor Effect Using Mutant EGFR-expressing Cell Line Rat Subcutaneous Transplant Model H1975-EGFRinsSVD cells introduced with human mutant EGFR were transplanted subcutaneously into nude rats. When the tumor volume of the nude rats engrafted with tumors reached about 200-500 mm 3 , 6 mice were assigned to each group by random stratification so that the average of the tumor volumes of each group became uniform. It was orally administered once a day for 14 days.
  • the doses used were 20 and 40 mg / kg / day, which were less than the maximum tolerated dose (maximum dose at which body weight loss during the administration period was less than 20%) over the administration period of this study for 14 days.
  • the maximum tolerated dose was set from a humanitarian viewpoint according to “Guidelines Involving Experiential Neoplasma Proposals in Mice and Rats” by the National Cancer Institute (NCI).
  • NCI National Cancer Institute
  • the tumor volume of each individual hereinafter also referred to as “TV”) was calculated according to the following formula.
  • T / C (%) (tumor volume of test compound administration group) / (tumor volume of control group).
  • Compound A exhibits a marked antitumor effect with tumor growth suppression or tumor regression on exon 20 insertion mutant EGFR-expressing cell line implanted subcutaneously in nude rats, At that time, no serious weight loss was observed in the animals evaluated.
  • Test Example 8 Evaluation of antitumor effect using mouse subcutaneous transplantation model of tumor derived from mutated EGFR positive lung cancer patient V769_D770insASV mutant EGFR positive human lung cancer patient-derived tumor LXF 2478 was transplanted subcutaneously into nude mice.
  • the tumor volume of nude mice engrafted with tumors reached about 100-200 mm 3
  • 8 mice were assigned to each group by random stratification so that the average of the tumor volumes of each group became uniform.
  • Afatinib was orally administered once daily for 28 days, followed by a 2-week observation period.
  • the maximum tolerated dose 20 mg / kg / day of the maximum tolerated dose (maximum administration dose at which weight loss during the administration period is less than 20%) was used for afatinib, and 100 and 200 mg / kg / day were used for Compound A.
  • the maximum tolerated dose was set from a humanitarian viewpoint according to the “Guidelines Involving Experiential Neoplasma Proposals in Mice and Rats” by the National Cancer Institute (NCI).
  • the relative tumor volume (relative tumor weight, hereinafter also referred to as “RTV”) with the tumor volume at the time of grouping as 1 as the growth rate of the tumor is shown below. Calculated according to the formula.
  • body weight was measured over time as an index of toxicity, and a weight change rate (Body weight change, hereinafter referred to as “BWC (%)”) with respect to the grouping date was calculated according to the following formula.
  • BWC Body weight change rate
  • RTV (tumor volume on the day of tumor volume measurement) / (tumor volume at the time of grouping)
  • BWC (%) (body weight on body weight measurement day) / (body weight at the time of grouping).
  • T / C (%) (RTV of test compound administration group) / (RTV of control group).
  • Compound A exhibited a marked antitumor effect with tumor regression on tumors derived from exon 20 insertion mutant EGFR-positive lung cancer patients implanted subcutaneously in nude mice. The effect persisted throughout the period. At that time, no serious weight loss was observed in the animals evaluated.
  • H1975-EGFRins SVD-Luc strain was established in which Luciferase was introduced into H1975-EGFRinsSVD, a human mutant EGFR-introduced cell line.
  • H1975-EGRainsSVD-Luc cells were transformed into NCI-H1975-EGFRinsSVD cells with the pJTI TM FAST DEST vector encoding Luciferase along with the pJTI TM PhiC31 Integrate Cell Line Nucle TM Cell Line Nucle TM After introduction by the perforation method, selection was performed with hygromycin B (Nacalai Tesque).
  • an equal amount of Matrigel was added to a suspension of cultured H1975-EGFRinsSVD-Luc cells to prepare a cell suspension, which was then transplanted into the right lung of a nude mouse.
  • Luciferin was administered to all mice surviving at 6 days after transplantation by tail vein, and 9 mice were assigned to each group by random stratification so that the average value of luminescence intensity of each group was uniform.
  • a and afatinib were orally administered once a day every day.
  • the maximum tolerated dose 20 mg / kg / day of the maximum tolerated dose (maximum dose at which weight loss during the administration period is less than 20%) was used for afatinib, and 100 and 200 mg / kg / day were used for Compound A.
  • the maximum tolerated dose was set from a humanitarian viewpoint according to the “Guidelines Involving Experiential Neoplasma Proposals in Mice and Rats” by the National Cancer Institute (NCI).
  • the survival time after transplantation was observed, and the survival days were determined for each mouse.
  • the median survival time of each group (Media survival time, hereinafter also referred to as “MST”) is calculated from the obtained survival days, and the survival time extension effect (MST of the control group and the test compound administration group) is calculated using the following formula: Increase in life span (hereinafter also referred to as “ILS (%)”).
  • ILS (%) Increase in life span
  • body weight was measured over time as an index of toxicity
  • BWC (%) weight change rate with respect to the grouping date was calculated according to the following formula.
  • I. L. S. (%) (T / C-1) ⁇ 100 T: MST of test compound administration group C: Control group MST.
  • BWC (%) (weight on weight measurement day) / (weight at the time of grouping).
  • Compound A was determined to be effective when the MST of the test compound administration group was greater than the MST of the control group and showed a statistically significant difference (Wilcoxon test, p ⁇ 0.05). The results are shown in Table 8.
  • Test Example 10 Evaluation of phosphorylated EGFR inhibitory activity in transplanted tumors and mouse skin tissues NIH3T3-EGFRinsSVD cells introduced with human mutant EGFR were transplanted subcutaneously into nude mice, and the tumor volume of the nude mice engrafted with tumors was about 250-500 mm 3 At that time, three mice were assigned to each group by random stratification so that the average tumor volume of each group was uniform, and Compound A and afatinib were orally administered once. After administration, tumors and skin tissues were collected at time points of 1 hour and 3 hours, which are around the time to reach the maximum blood concentrations of Compound A and afatinib, respectively.
  • the collected tissue was snap-frozen using liquid nitrogen and stored at ⁇ 80 ° C. until use.
  • Tumors and skin tissues were homogenized with RIPA buffer (Thermo Fisher Scientific) added with protease inhibitor cocktail (Thermo Fisher Scientific) to extract intracellular proteins, and then BCA protein assay kit (Thermo Thermo Scientific). (Fisher Scientific) was used to measure the protein concentration, and each sample was adjusted to a protein concentration suitable for phosphorylated EGFR expression measurement. Proteins were separated by SDS-PAGE and transferred to a PDVF membrane.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

明細書に記載の化合物A~Dからなる群から選択される化合物又はその塩を含有する、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための抗腫瘍剤。

Description

エクソン20挿入変異型EGFR選択的阻害剤
 本発明はエクソン20挿入変異型上皮成長因子受容体(Epidermal Growth Factor Receptor、以下、「EGFR」とも称する)を有する癌に対する抗腫瘍剤に関する。
 EGFRは受容体チロシンキナーゼであり、正常組織においてはリガンドである上皮成長因子(Epidermal Growth Factor、以下「EGF」とも称する)と結合することで生理機能を発揮し、上皮組織において増殖及びアポトーシス阻害に寄与している(非特許文献1)。また、EGFR遺伝子の体細胞変異は癌の原因遺伝子として知られており、例えばEGFRのエクソン19領域の746~750番アミノ酸が欠失したもの(以下、「エクソン19欠失変異」とも称する)及びエクソン21領域の858番アミノ酸がロイシンからアルギニンへ変異したもの(以下、「L858R変異」とも称する)はEGF非依存的なキナーゼ活性を恒常的に誘導し、癌細胞の増殖及び生存に寄与する(非特許文献2)。これらの変異は、東アジアにおいては、例えば非小細胞肺癌の30~50%で認められ、また、欧米においても非小細胞肺癌のおよそ10%で認められると報告されており、癌の原因因子の1つとして考えられている(非特許文献3)。
 そのため、EGFR阻害剤の抗腫瘍剤としての研究開発は従来から活発に行われており、EGFR変異陽性肺癌の治療に導入されている。例えばゲフィチニブ、エルロチニブ、及びアファチニブは、治療用量において、野生型EGFRの阻害に起因すると広く考えられている皮膚の異常及び消化管障害が副作用として発現する一方、エクソン19欠失変異型及びL858R変異型EGFR陽性肺癌に対して高い抗腫瘍効果を示す。これらの治療効果は、EGFR阻害剤が野生型EGFRに比し変異型EGFRを選択的に阻害することに起因すると考えられている(非特許文献4)。
 しかし近年、癌の中にはエクソン20領域に1つ以上のアミノ酸が挿入された変異(以下、「エクソン20挿入変異」とも称する)を持つEGFRを有するものが存在し、これらの癌は従来のEGFR阻害剤に低感受性であることが明らかとなってきた。例えばアファチニブのEGFR変異陽性肺癌に対する臨床の抗腫瘍効果は、エクソン19欠失変異及びL858R変異に比しエクソン20挿入変異では著しく低いことが報告されている(非特許文献5)。そのためこれらの患者には化学療法が汎用されているが、治療法の選択肢が限定されること及び十分な治療効果が得られていないことから、更に治療効果の高い抗腫瘍剤が必要とされている。
 特許文献1には、エクソン20挿入変異型EGFRに特徴付けられる疾患の治療に用いることができる化合物が記載されている。しかし当該文献1に記載の化合物は、本発明に係る化合物と構造が大きく異なる上、野生型EGFRとの比較による選択性及びin vivoモデルにおける有効性は開示されていない。
 また、特許文献2には、キノリン置換化合物が記載されているが、エクソン20挿入変異型EGFRに対する阻害活性は記載されていない。
WO2015/175632A1 WO2015/025936A1
Nat. Rev. Cancer,vol.6,pp803-812(2006) Nature Medicine,vol.19,pp1389-1400(2013) Nat. Rev. Cancer,vol.7,pp169-181(2007) Lancet Oncol.vol.13,e23-31(2012) Lancet Oncol.vol.16,pp830-838(2015)
 本発明の課題は、従来のEGFR阻害剤で治療効果が十分ではない、エクソン20挿入変異型EGFRへの選択性が高い阻害剤であり、かつ、野生型EGFRを阻害することによる副作用が低減した抗腫瘍剤を提供することにある。
 本発明者らは、鋭意研究の結果、エクソン20挿入変異型EGFRが癌の治療標的として妥当であることと併せて、従来治療に導入されているEGFR阻害剤が、野生型EGFRとエクソン20挿入変異型EGFR間の選択性に乏しいことを見出した。また、特定の化合物が、エクソン20挿入変異型EGFRに対する選択性及び腫瘍増殖抑制効果を示し、代表的なEGFR変異陽性癌治療薬であるアファチニブより優れたものであることを確認し、本発明を完成するに至った。
 従って、本発明は、以下の態様を包含する。
 項1.(S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド(以下、「化合物A」とも称する);
(S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド(以下、「化合物B」とも称する);
(S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド(以下、「化合物C」とも称する);及び
(R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド(以下、「化合物D」とも称する)からなる群から選択される化合物又はその塩を含有する、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための抗腫瘍剤。
 項2.化合物が、(S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミドである、項1に記載の抗腫瘍剤。
 項3.エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者は、肺癌、乳癌、頭頸部癌、脳腫瘍、子宮癌、造血器腫瘍、又は皮膚癌の患者である、項1又は2に記載の抗腫瘍剤。
 項4.エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者は、肺癌患者である、項1~3のいずれか一項に記載の抗腫瘍剤。
 項5.エクソン20挿入変異が、エクソン20領域に1つ以上のアミノ酸が挿入された変異である、項1~4のいずれか一項に記載の抗腫瘍剤。
 項6.エクソン20挿入変異が、エクソン20領域に1~7つのアミノ酸が挿入された変異である、項1~5のいずれか一項に記載の抗腫瘍剤。
 項7.エクソン20挿入変異が、エクソン20領域に1~4つのアミノ酸が挿入された変異である、項1~6のいずれか一項に記載の抗腫瘍剤。
 項8.エクソン20挿入変異が、A763_Y764insFQEA、V769_D770insASV、D770_N771insSVD、D770_N771insNPG、D770_N771insG、D770>GY、N771_P772insN、P772_R773insPR、H773_V774insNPH、H773_V774insPH、H773_V774insAH、H773_V774insH、V774_C774insHV、又はA761_E762insEAFQである、項1~7のいずれか一項に記載の抗腫瘍剤。
 項9.エクソン20挿入変異が、V769_D770insASV、D770_N771insSVD、D770_N771insG、H773_V774insNPH、H773_V774insPHである、項1~8のいずれか一項に記載の抗腫瘍剤。
 項10.エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者に有効量の
 (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
(S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
(S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
(R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
からなる群から選択される化合物又はその塩を含む抗腫瘍剤を投与する工程を含む、悪性腫瘍患者の治療方法。
 項11.エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための、
 (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
(S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
(S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
(R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
からなる群から選択される化合物又はその塩。
 項12.エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための抗腫瘍剤を製造するための、
(S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
(S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
(S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
(R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
からなる群から選択される化合物又はその塩の使用。
 本発明に係る抗腫瘍剤は、野生型EGFRを阻害せずに、エクソン20挿入変異型EGFRへの高い選択性を示す。したがって、野生型EGFRを阻害することによる副作用を低減しつつ、従来のEGFR阻害剤で治療効果が十分ではない、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者に対する優れた治療効果を発揮する抗腫瘍剤を提供するものとして有用である。
 従来のEGFR阻害剤は、野生型EGFRに比べてエクソン20挿入変異型EGFRへの選択性が低いため、抗腫瘍効果を発揮する投与量と野生型EGFRに起因する副作用(皮膚の異常、消化管障害など)が生じる投与量との乖離が小さく、十分な治療効果を発揮することが困難であった。一方、本発明に係る抗腫瘍剤は、エクソン20挿入変異型EGFRへの選択性が高いため、野生型EGFRに起因する副作用を生じさせずに投与量を増加させること可能であり、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者に対して優れた治療効果を発揮することができる。
野生型及び変異型EGFR発現細胞株に対する化合物A、B、C、D、並びに、比較化合物、ゲフィチニブ、エルロチニブ、及びアファチニブの細胞増殖抑制に関する試験結果から算出した、野生型EGFRとエクソン20挿入変異型EGFRとのIC50比を示す。 野生型及び変異型EGFR発現ヒト細胞株に対する化合物A、比較化合物、ゲフィチニブ、エルロチニブ、及びアファチニブの細胞増殖抑制に関する試験結果から算出した、野生型EGFRとエクソン20挿入変異型EGFRとのGI50比を示す。 化合物Aの抗腫瘍効果を測定するための変異型EGFR発現細胞株(NIH3T3-EGFRinsASV細胞)皮下移植モデルマウスにおける相対的腫瘍体積(以下、「RTV」ともいう。)を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(NIH3T3-EGFRinsASV細胞)皮下移植モデルマウスの腫瘍の群分け後における体重を示す。 化合物Aの抗腫瘍効果を測定するための変異型EGFR発現細胞株(NIH3T3-EGFRinsSVD細胞)皮下移植モデルマウスにおける相対的腫瘍体積を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(NIH3T3-EGFRinsSVD細胞)皮下移植モデルマウスの腫瘍の群分け後における体重を示す。 化合物Aの抗腫瘍効果を測定するための変異型EGFR発現細胞株(H1975-EGFRinsSVD細胞)皮下移植モデルマウスにおける相対的腫瘍体積を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(H1975-EGFRinsSVD細胞)皮下移植モデルマウスの腫瘍の群分け後における体重を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(NIH3T3―EGFRinsNPH)皮下移植モデルマウスにおける腫瘍体積を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(NIH3T3―EGFRinsNPH)皮下移植モデルマウスの腫瘍の群分け後における体重を示す。 化合物Aの抗腫瘍効果を測定するための変異型EGFR発現細胞株(H1975-EGFRinsSVD細胞)皮下移植モデルラットおける腫瘍体積を示す。 化合物Aの毒性を測定するための変異型EGFR発現細胞株(H1975-EGFRinsSVD細胞)皮下移植モデルラットの腫瘍の群分け後における体重を示す。 化合物Aの毒性を測定するためのV769_D770insASV変異型EGFR陽性肺癌患者由来腫瘍皮下移植モデルマウスにおける腫瘍体積を示す。 本発明化合物Aの毒性を測定するためのV769_D770insASV変異型EGFR陽性肺癌患者由来腫瘍皮下移植モデルマウスの腫瘍の群分け後における体重を示す。 野生型EGFR(Wild-type EGFR)のアミノ酸配列を示す(配列番号1)。
 明細書の上記又は下記記載において、本発明範囲に含まれる様々な定義の好適例を、下記で詳細に説明する。
 本明細書において「EGFR」とは、ヒト上皮成長因子受容体タンパク質を示し、ErbB-1又はHER1とも呼ばれている。
 本明細書において「野生型EGFR」とは、体細胞変異を有していないEGFRを示し、具体的には配列番号1で示されるアミノ酸配列からなるタンパク質である(GenBankアクセッション番号:NP_005219.2)。
 本明細書において「エクソン20挿入変異」とは、EGFRのエクソン20領域(配列番号1における761~823番のアミノ酸配列)に1つ以上(好ましくは1~7つ、より好ましくは1~4つ)のアミノ酸が挿入された変異を示し、好ましくは、エクソン20領域の763番アラニンから764番チロシンの間にアミノ酸配列FQEA(N末側から順番にフェニルアラニン、グルタミン、グルタミン酸、アラニン)が挿入された変異(A763_Y764insFQEA)、エクソン20領域の769番バリンから770番アスパラギン酸の間にアミノ酸配列ASV(N末側から順番にアラニン、セリン、バリン)が挿入された変異(V769_D770insASV)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸配列SVD(N末側から順番にセリン、バリン、アスパラギン酸)が挿入された変異(D770_N771insSVD)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸配列NPG(N末側から順番にアスパラギン、プロリン、グリシン)が挿入された変異(D770_N771insNPG)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸G(グリシン)が挿入された変異(D770_N771insG)、エクソン20領域の770番アスパラギン酸が欠失し替わりにアミノ酸配列GY(N末側から順にグリシン、チロシン)が挿入された変異(D770>GY)、エクソン20領域の771番アスパラギンから772番プロリンの間にアミノ酸N(アスパラギン)が挿入された変異(N771_P772insN)、エクソン20領域の772番プロリンから773番ヒスチジンの間にアミノ酸配列PR(N末側から順にプロリン、アルギニン)が挿入された変異(P772_R773insPR)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸配列NPH(N末側から順番にアスパラギン、プロリン、ヒスチジン)が挿入された変異(H773_V774insNPH)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸配列PH(N末側から順番にプロリン、ヒスチジン)が挿入された変異(H773_V774insPH)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸配列AH(N末側から順番にアラニン、ヒスチジン)が挿入された変異(H773_V774insAH)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸H(ヒスチジン)が挿入された変異(H773_V774insH)、エクソン20領域の774番バリンから775番システインの間にアミノ酸配列HV(N末側から順番にヒスチジン、バリン)が挿入された変異(V774_C774insHV)、エクソン20領域の761番アラニンから762番グルタミン酸の間にアミノ酸配列EAFQ(N末側から順番にグルタミン酸、アラニン、フェニルアラニン、グルタミン)が挿入された変異(A761_E762insEAFQ)等が挙げられる。より好ましくはエクソン20領域の769番バリンから770番アスパラギン酸の間にアミノ酸配列ASV(N末側から順番にアラニン、セリン、バリン)が挿入された変異(V769_D770insASV)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸配列SVD(N末側から順番にセリン、バリン、アスパラギン酸)が挿入された変異(D770_N771insSVD)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸G(グリシン)が挿入された変異(D770_N771insG)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸配列NPH(N末側から順番にアスパラギン、プロリン、ヒスチジン)が挿入された変異(H773_V774insNPH)、エクソン20領域の773番ヒスチジンから774番バリンの間にアミノ酸配列PH(N末側から順番にプロリン、ヒスチジン)が挿入された変異(H773_V774insPH)が挙げられる。特に好ましくはエクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸配列SVD(N末側から順番にセリン、バリン、アスパラギン酸)が挿入された変異(D770_N771insSVD)、エクソン20領域の770番アスパラギン酸から771番アスパラギンの間にアミノ酸G(グリシン)が挿入された変異(D770_N771insG)が挙げられる。
 本明細書において「エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者」とは、EGFRのエクソン20領域の少なくとも1箇所にエクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を示し、当該EGFRは異なった2箇所以上にエクソン20挿入変異を有してもよいが、好ましくは1箇所にエクソン20挿入変異を有するものである。また、当該EGFRはエクソン20挿入変異以外の変異(例えば、エクソン19欠失変異、L858R変異、L790M変異など)を有することもできる。
 本発明において、悪性腫瘍患者が発現しているEGFRがエクソン20挿入変異を有することの検出方法は、当該変異が検出できれば特に制限されず、公知の検出方法を使用することができる。エクソン20挿入変異の検出においては、EGFR遺伝子のゲノム配列、EGFR遺伝子の転写産物、又はEGFRタンパク質のいずれをも検出対象とすることができる。
 エクソン20挿入変異の検出に供する試料としては、悪性腫瘍患者由来の生体試料、特に悪性腫瘍患者から採取したものであり悪性腫瘍細胞を含む試料であれば特に限定されない。生体試料としては、例えば体液(血液、尿等)、組織、その抽出物及び採取した組織の培養物などが例示できる。また、生体試料の採取方法は、生体試料の種類に応じ適宜選択することができる。
 生体試料は、検出方法に応じて、適切な処理をされることにより調製される。また、検出に用いられる試薬(例えば、プライマー又はプローブを含む試薬)は、検出方法に応じて、慣用される方法により調整することができる。
 本発明の1つの態様において、抗腫瘍剤の悪性腫瘍患者への投与の前に、悪性腫瘍患者が発現しているEGFRがエクソン20挿入変異を有することの検出する工程を行うことができる。
 次に、化合物A~D(化合物A、B、C及びD)(本明細書において、「本発明化合物」、「本発明に係る化合物」と総称する場合がある)及びその製造法について説明する。
 化合物A((S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド)は、下記化学式で表される。
Figure JPOXMLDOC01-appb-C000001
 化合物B((S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド)は、下記化学式で表される。
Figure JPOXMLDOC01-appb-C000002
 化合物C((S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド)は、下記化学式で表される。
Figure JPOXMLDOC01-appb-C000003
 化合物D((R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド)は、下記化学式で表される。
Figure JPOXMLDOC01-appb-C000004
 上記化合物A~Dは、例えば、WO2015/025936A1に記載された製造法又は実施例に示す方法等により製造することができる。ただし、化合物A~Dの製造法はこれら反応例に限定されるものではない。
 上記化合物A~Dが、光学異性体、立体異性体、回転異性体、互変異性体等の異性体を有する場合には、特に明記しない限り、いずれの異性体も混合物も本発明化合物に包含される。例えば、化合物A~Dに光学異性体が存在する場合には、特に明記しない限り、ラセミ体及びラセミ体から分割された光学異性体も本発明化合物に包含される。
 上記化合物A~Dの塩とは、薬学的に許容される塩を意味し、塩基付加塩又は酸付加塩を挙げることができる。
 該塩基付加塩としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩;例えばカルシウム塩、マグネシウム塩等のアルカリ土類金属塩;例えばアンモニウム塩;例えばトリメチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、プロカイン塩、N,N’-ジベンジルエチレンジアミン塩等の有機アミン塩等が挙げられる。
 該酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩等の無機酸塩;例えば酢酸塩、ギ酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩、アスコルビン酸塩、トリフルオロ酢酸塩等の有機酸塩;例えばメタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩等が挙げられる。
 上記化合物A~D又はその塩には、そのプロドラッグも含まれる。プロドラッグは、生体内における生理条件下で酵素、胃酸等による反応により化合物A~D又はその塩に変換する化合物、即ち酵素的に酸化、還元、加水分解等を起こして本発明化合物又はその塩に変化する化合物、胃酸等により加水分解等を起こして化合物A~D又はその塩に変化する化合物をいう。また、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような生理的条件で化合物A~D又はその塩に変化するものとすることもできる。
[疾患の記載]
 本発明の対象となる腫瘍は特に制限はされないが、例えば、頭頚部癌、消化器癌(食道癌、胃癌、十二指腸癌、肝臓癌、胆道癌(胆嚢・胆管癌等)、膵臓癌、結腸直腸癌(結腸癌、直腸癌等)等)、肺癌(非小細胞肺癌、小細胞肺癌、中皮腫等)、乳癌、生殖器癌(卵巣癌、子宮癌(子宮頚癌、子宮体癌等)等)、泌尿器癌(腎癌、膀胱癌、前立腺癌、精巣腫瘍等)、造血器腫瘍(白血病、悪性リンパ腫、多発性骨髄腫等)、骨・軟部腫瘍、皮膚癌、脳腫瘍等が挙げられる。好ましくは、肺癌、乳癌、頭頸部癌、脳腫瘍、子宮癌、造血器腫瘍、又は皮膚癌である。
 上記化合物A~D又はその塩を医薬として用いるにあたっては、必要に応じて薬学的担体を配合し、予防又は治療目的に応じて各種の投与形態を採用可能である。該形態としては、例えば、経口剤、注射剤、坐剤、軟膏剤、貼付剤等のいずれでもよく、好ましくは、経口剤が採用される。これらの投与形態は、各々当業者に公知慣用の製剤方法により製造できる。
 薬学的担体としては、製剤素材として慣用の各種有機或いは無機担体物質が用いられ、固形製剤における賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等として配合される。また、必要に応じて防腐剤、抗酸化剤、着色剤、甘味剤、安定化剤等の製剤添加物を用いることもできる。
 経口用固形製剤を調製する場合は、化合物A~Dに賦形剤、必要に応じてさらに結合剤、崩壊剤、滑沢剤、着色剤、矯味・矯臭剤等を加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等を製造することができる。
 賦形剤としては、乳糖、白糖、D-マンニトール、ブドウ糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、無水ケイ酸等が挙げられる。結合剤としては、水、エタノール、1-プロパノール、2-プロパノール、単シロップ、ブドウ糖液、α-デンプン液、ゼラチン液、D-マンニトール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドン等が挙げられる。崩壊剤としては、乾燥デンプン、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖等が挙げられる。滑沢剤としては、精製タルク、ステアリン酸塩ナトリウム、ステアリン酸マグネシウム、ホウ砂、ポリエチレングリコール等が挙げられる。着色剤としては、酸化チタン、酸化鉄等が挙げられる。矯味・矯臭剤としては白糖、橙皮、クエン酸、酒石酸等が挙げられる。
 経口用液体製剤を調製する場合は、化合物A~Dに矯味剤、緩衝剤、安定化剤、矯臭剤等を加えて常法により内服液剤、シロップ剤、エリキシル剤等を製造することができる。
 矯味・矯臭剤としては、前記に挙げられたものを用いることができる。緩衝剤としては、クエン酸ナトリウム等が挙げられる。安定剤としては、トラガント、アラビアゴム、ゼラチン等が挙げられる。必要により、腸溶性コーティング又は、効果の持続を目的として、経口製剤に公知の方法により、コーティングを施すこともできる。このようなコーティング剤にはヒドロキシプロピルメチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、ポリオキシエチレングリコール、Tween80(商標)等が挙げられる。
 注射剤を調製する場合は、化合物A~DにpH調節剤、緩衝剤、安定化剤、等張化剤、局所麻酔剤等を添加し、常法により皮下、筋肉内及び静脈内用注射剤を製造することができる。
 pH調節剤及び緩衝剤としては、クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等が挙げられる。安定化剤としては、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等が挙げられる。局所麻酔剤としては、塩酸プロカイン、塩酸リドカイン等が挙げられる。等張化剤としては、塩化ナトリウム、ブドウ糖、D-マンニトール、グリセリン等が挙げられる。
 坐剤を調製する場合は、化合物A~Dに当業者において公知の製剤用担体、例えば、ポリエチレングリコール、ラノリン、カカオ脂、脂肪酸トリグリセリド等を、更に必要に応じてTween80(商標)のような界面活性剤等を加えた後、常法により製造することができる。
 軟膏剤を調製する場合は、化合物A~Dに通常使用される基剤、安定剤、湿潤剤、保存剤等が必要に応じて配合され、常法により混合、製剤化することができる。
 基剤としては、流動パラフィン、白色ワセリン、サラシミツロウ、オクチルドデシルアルコール、パラフィン等が挙げられる。
 保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等が挙げられる。
 貼付剤を調製する場合は、通常の支持体に前記軟膏、クリーム、ゲル、ペースト等を常法により塗布することにより製造することができる。
 支持体としては、綿、スフ、化学繊維からなる織布若しくは不織布、軟質塩化ビニル、ポリエチレン、ポリウレタン等のフィルム或いは発泡体シートが挙げられる。
 上記の各投与単位形態中に配合されるべき上記化合物A~Dの量は、これを適用すべき患者の症状により、或いはその剤形等により一定ではないが、一般に投与単位形態あたり、経口剤では0.05~1000mg、注射剤では0.01~500mg、坐剤では1~1000mgとするのが望ましい。
 また、上記投与形態を有する薬剤の1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり一概には決定できないが、有効成分の化合物A~Dとして通常成人(体重50kg)1日あたり0.05~5000mg、好ましくは0.1~1000mgとすることができ、これを1日1回又は2~3回程度に分けて投与するのが好ましい。
 本発明はまた、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者に有効量の化合物A~Dからなる群から選択される化合物又はその塩を含む抗腫瘍剤を投与する工程を含む、悪性腫瘍患者の治療方法を提供する。
 本発明はまた、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための、化合物A~Dからなる群から選択される化合物又はその塩を提供する。
 本発明はまた、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための、化合物A~Dからなる群から選択される化合物又はその塩の使用を提供する。
 本発明はまた、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための抗腫瘍剤を製造するための、化合物A~Dからなる群から選択される化合物又はその塩の使用を提供する。
 本発明はまた、下記工程(1)~(2)を含む、悪性腫瘍患者における化合物A~Dからなる群から選択される化合物又はその塩を有効成分とする抗腫瘍剤を用いた化学療法の治療効果を予測する方法:
 (1)当該患者から採取された生体試料に含まれるEGFR遺伝子の変異の有無を検出する工程、及び
 (2)上記工程(1)における検出の結果、EGFR遺伝子がエクソン20挿入変異を有している場合、当該患者に対する当該化学療法が十分な治療効果を示す可能性が高いと予測する工程。
 本発明はまた、下記工程(1)~(3)を含む、悪性腫瘍患者の治療方法:
 (1)当該患者から採取された生体試料に含まれるEGFR遺伝子の変異の有無を検出する工程、及び
 (2)上記工程(1)における検出の結果、EGFR遺伝子がエクソン20挿入変異を有している場合、当該患者に対す化合物A~Dからなる群から選択される化合物又はその塩を含有する抗腫瘍剤を用いた化学療法が十分な治療効果を示す可能性が高いと予測する工程、及び
 (3)上記工程(2)で当該化学療法が十分な治療効果を示す可能性が高いと予測された患者に、当該抗腫瘍剤を投与する工程。
 EGFR遺伝子の塩基配列は公知である。cDNAの塩基配列のGenBankアクセッション番号は、NM_005228.4である。
 なお、「治療効果」は、腫瘍縮小効果、再発抑制効果、延命効果などにより評価することができ、再発抑制効果は無再発生存期間の延長及び/又は再発率の改善の程度、延命効果は全生存期間及び/又は無増悪生存期間の中央値の延長の程度などにより表すことができる。化合物A又はその塩を有効成分として含有する抗腫瘍剤を用いた化学療法が「十分な治療効果を示す」とは、化合物A又はその塩を有効成分として含有する抗腫瘍剤を投与することにより、非投与の場合と比較して、生存期間を顕著に延長させたり、再発を顕著に抑制させたりする程度の優れた治療効果をいう。
 以下に試験例を示し、本発明をさらに詳しく説明するが、本発明はこれら実施例(試験例)に制限されるものではない。
 試験例1
In vitro 薬効試験
野生型及び変異型EGFR発現細胞株に対する細胞増殖抑制効果の評価(1)
 化合物の野生型EGFR及び変異型EGFRに対する阻害活性は、ヒトEGFR遺伝子を導入したマウスBリンパ球前駆細胞株であるBa/F3細胞を用いて行った。Ba/F3細胞は10%ウシ胎児血清(FBS)、100U/mL ペニシリン/100μg/mL ストレプトマイシン(サーモフィッシャーサイエンティフィック)及び1ng/mL マウスインターロイキン-3(mIL-3)(CST)を含むRPMI-1640培地(サーモフィッシャーサイエンティフィック)にて維持し、ヒトEGFR遺伝子(野生型(WT)、V769_D770insASV(insASV)、D770_N771insSVD(insSVD)、D770_N771insG(insG)、H773_V774insNPH(insNPH)、H773_V774insPH(insPH))をコードしたPB-CMV-MCS-EF1-GFP+PuroベクターもしくはPB-CMV-MCS-EF1-RFP+PuroベクターをSuper PiggyBacTransposase発現ベクターと共にAmaxa(商標) Cell Line Nucleofector (商標) Kit Vによる電気穿孔法により導入した後ピューロマイシン(SIGMA)にて選択した。野生型EGFRを発現したBa/F3細胞(以下、「Ba/F3―EGFR_WT」とも称する)は50ng/mL EGF(R&Dシステムズ)存在下でmIL-3非依存的な増殖を示し、又エクソン20挿入変異型EGFRを発現したBa/F3細胞(以下、「Ba/F3-EGFRinsASV」、「Ba/F3-EGFRinsSVD」、「Ba/F3-EGFRinsG」、「Ba/F3-EGFRinsNPH」、「Ba/F3-EGFRinsPH」とも称する)はEGF非存在下でmIL-3非依存的な増殖を示した。
 細胞増殖抑制効果の評価に際し、Ba/F3―EGFR_WT細胞を10% FBS、100U/mL ペニシリン、100μg/mL ストレプトマイシン及び50ng/mL EGFを含むRPMI-1640培地にて懸濁し、細胞懸濁液を96ウェル平底マイクロプレートの各ウェルに1ウェルあたりの細胞数が30,000個になるよう播種した。一方、エクソン20挿入変異型EGFRを発現したBa/F3細胞は10% FBS、100U/mL ペニシリン、100μg/mL ストレプトマイシンを含むRPMI-1640培地にて懸濁し、細胞懸濁液を96ウェル平底マイクロプレートの各ウェルに1ウェルあたりの細胞数が15,000個になるように播種した。次に特許文献2に記載の製造方法に従って得られた(S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド(化合物A)、(S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド(化合物B)、(S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド(化合物C)、(R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド(化合物D)及びWO2013/125709A1に記載の製造方法に従って得られた(S)-N-(4-アミノ-5-(キノリン-3-イル)-6,7,8,9-テトラヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド(WO2013/125709A1の実施例1の化合物)(以下、「比較化合物」とも称する)をDMSOに溶解し、DMSOもしくは各細胞の懸濁に用いた培地を用いて希釈し、これを細胞の培養プレートの各ウェルに加え、5%炭酸ガス含有の培養器中37℃で3日培養した。培養後の細胞数の計測はCell Titer-Glo(商標) Luminescent Cell Viability Assay(プロメガ)を用いて、メーカーの推奨するプロトコールに基づき行った。以下の式より増殖阻害率を算出し、50%阻害する被検化合物の濃度(IC50(μM))を求めた。
  増殖阻害率(%)=T / C ×100
   T:被検化合物を添加したウェルの発光強度
   C:被検化合物を添加しなかったウェルの発光強度。
 また、以下の式より野生型EGFRとエクソン20挿入変異型EGFRとのIC50の比を算出した。結果を図1に示す。
 IC50 ratio=IC50(WT) / IC50(ex20ins)
  IC50(WT):野生型EGFRに対するIC50
  IC50(ex20ins):エクソン20挿入変異型EGFRに対するIC50
 図1から明らかなとおり、化合物A~Dはエクソン20挿入変異型EGFRを発現した細胞株に対して細胞増殖抑制効果を示し、変異選択性は比較化合物、ゲフィチニブ、エルロチニブ、及びアファチニブに比して高かった。
 試験例2
野生型及び変異型EGFR発現ヒト細胞株に対する細胞増殖抑制効果(2)
 化合物の野生型EGFR及び変異型EGFRに対する阻害活性を評価するために、遺伝子改変によりD770_N771insSVD変異型EGFRを発現させたヒト肺腺癌細胞株であるNCI-H1975細胞(以下、「H1975-EGFRinsSVD」とも称する)、野生型EGFRを発現しているヒト類上皮癌細胞株であるA431細胞を使用した。H1975-EGFRinsSVD細胞は、NCI-H1975細胞にD770_N771insSVD(insSVD)をコードしたPB-CMV-MCS-EF1-RFP+PuroベクターをSuper PiggyBacTransposase発現ベクターと共にAmaxa(商標) Cell Line Nucleofector(商標) Kit Rによる電気穿孔法により導入した後ピューロマイシン(SIGMA)にて選択した後、XTN(商標) TALENs Site-Specific Nucleases(Transposagen)をAmaxa(商標) Cell Line Nucleofector(商標) Kit Rによる電気穿孔法により導入し、内在性EGFR(T790M/L858R)がノックアウトされた細胞をシーケンスにより選択した。
 細胞増殖抑制効果の評価に際し、それぞれの細胞をATCCにより推奨されている培地中に懸濁させた。細胞懸濁液を96ウェル平底プレートの各ウェルに1ウェルあたりの細胞数が3,000個になるよう播種し、5%炭酸ガス含有の培養器中37℃で1日培養した。化合物A、比較化合物、ゲフィチニブ、エルロチニブ及びアファチニブをDMSOに溶解し、DMSOを用いて被検化合物を終濃度の200倍の濃度になるように希釈した。被検化合物のDMSO溶液を各細胞の懸濁に用いた培地で希釈し、これを細胞の培養プレートの各ウェルにDMSOの最終濃度が0.5%になるように加え、5%炭酸ガス含有の培養器中37℃で3日培養した。培養開始時(day0)及び培養後(day3)の細胞数の計測はCellTiter-Glo(商標) Luminescent Cell Viability Assay(プロメガ)を用いて、メーカーの推奨するプロトコールに基づき行った。以下の式より増殖阻害率を算出し、50%阻害する被検化合物の濃度(GI50(μM))を求めた。結果を表1に示す。
 1)Tday3≧Cday0の場合
  増殖率(%)=(Tday3-Cday0)/(Cday3-Cday0)×100
  T:被検化合物を添加したウェルの発光強度
  C:被験化合物を添加しなかったウェルの発光強度
  day0:被験化合物を添加する日
  day3:評価日。
 2)Tday3<Cday0の場合
  増殖率(%)=(Tday3-Cday0)/(Cday0)×100
  T:被検化合物を添加したウェルの発光強度
  C:被験化合物を添加しなかったウェルの発光強度
  day0:被験化合物を添加する日
  day3:評価日。
Figure JPOXMLDOC01-appb-T000005
 また、以下の式より野生型EGFRとエクソン20挿入変異型EGFRのGI50値の比を算出した。結果を図2に示す。
 GI50 ratio=GI50(A431) / GI50(H1975 EGFRinsSVD)
  GI50(A431):野生型EGFRに対するGI50
  GI50(H1975 EGFRinsSVD):エクソン20挿入変異型EGFRに対するGI50
 表1及び図2から明らかなとおり、化合物Aはエクソン20挿入変異型EGFRを発現した細胞株に対して細胞増殖抑制効果を示し、変異選択性は比較化合物、ゲフェチニブ、エルロチニブ、アファチニブ及びオシメルチニブに比して高かった。
 試験例3
野生型及び変異型EGFR発現細胞株に対するリン酸化EGFR阻害活性の評価(1)
 野生型EGFRを過剰発現しているヒト類上皮癌細胞株であるA431細胞、遺伝子改変によりD770_N771insSVD変異型EGFRを発現しているヒト肺腺癌細胞株であるH1975-EGFRinsSVD細胞をそれぞれ培地中に懸濁させた。細胞懸濁液をそれぞれ60 mm ディッシュに播種し,5%炭酸ガス含有の培養器中37℃で1日培養した。化合物AをDMSOに溶解し、DMSOを用いて被検化合物を終濃度の1000倍の濃度になるように希釈した。被検化合物のDMSO溶液を各細胞の懸濁に用いた培地で希釈し、これを細胞の培養ディッシュにDMSOの最終濃度が0.1%になるように加え、5%炭酸ガス含有の培養器中37℃で6時間培養した。培養後、細胞を回収し、ペレットの状態で使用時まで-80℃で保管した。ペレットにプロテアーゼインヒビターカクテル(サーモフィッシャーサイエンティフィック)を加えたRIPA バッファー(サーモフィッシャーサイエンティフィック)を添加し細胞内のタンパク質を抽出後、BCAタンパク質アッセイキット(サーモフィッシャーサイエンティフィック)を用いてタンパク質濃度を測定し、各サンプルをリン酸化EGFR発現測定に適したタンパク質濃度にそれぞれ調整した。リン酸化EGFR発現測定はSimple Western(商標)アッセイシステム(プロテインシンプル)を用いて、メーカー推奨のプロトコールに基づき行った。1次抗体はPhospho-EGF Receptor(Tyr1068)#3777(CST)を50分の1に希釈し、測定に用いた。
 細胞ごとにタンパク質濃度(x軸)とリン酸化EGFR発現量(y軸)の検量線を作成し、その検量線を基に各サンプルのリン酸化EGFR発現量をタンパク質濃度に換算した。以下の式よりリン酸化EGFR阻害率を算出し、リン酸化EGFRを50%阻害することのできる被検化合物の濃度(IC50(μM))を求めた。
 リン酸化EGFR阻害率(%)=T / C ×100
  T:被検化合物を添加したサンプルのタンパク質濃度相当量
  C:被検化合物を添加しなかったサンプルのタンパク質濃度相当量。
 また、以下の式より野生型EGFRとエクソン20挿入変異型EGFRとの選択性を算出した。結果を表2に示す。
 IC50比=IC50(A431) / IC50(H1975 EGFRinsSVD)
  IC50(A431):野生型EGFRに対するIC50
  IC50(H1975 EGFRinsSVD):エクソン20挿入変異型EGFRに対するIC50
Figure JPOXMLDOC01-appb-T000006
 表2から明らかなとおり、化合物Aは、エクソン20挿入変異型EGFRに対する選択的阻害活性を示した。
 試験例4
野生型及び変異型EGFR発現細胞株に対するリン酸化EGFR阻害活性の評価(2)
 化合物の野生型EGFR及び変異型EGFRの自己リン酸化阻害活性は、ヒトEGFR遺伝子を導入したマウス線維芽細胞株であるNIH-3T3細胞を用いて行った。NIH-3T3細胞は10%ウシ新生児血清(NBCS)、1,500mg/L炭酸水素ナトリウム、100U/mL ペニシリン/100μg/mL ストレプトマイシン(サーモフィッシャーサイエンティフィック)を含むD-MEM(高グルコース)培地(和光純薬)にて維持し、ヒトEGFR遺伝子(WT,insASV、insSVD、insG、insNPH、insPH)をコードしたPB-CMV-MCS-EF1-RFP+PuroベクターをSuper PiggyBacTransposase発現ベクターと共にAmaxa(商標) Cell Line Nucleofector(商標) Kit Rによる電気穿孔法により導入した後ピューロマイシン(SIGMA)にて選択した。野生型EGFRを発現したNIH-3T3細胞(以下、「NIH3T3-EGFR_WT」とも称する)は1%NBCS条件下かつ50ng/mL EGF(R&Dシステムズ)存在下で増殖を示し、又エクソン20挿入変異型EGFRを発現したNIH-3T3細胞(以下、「NIH3T3-EGFRinsASV」、「NIH3T3―EGFRinsSVD」、「NIH3T3-EGFRinsG」、「NIH3T3-EGFRinsNPH」、「NIH3T3-EGFRinsPH」とも称する)は1%NBCS条件下かつEGF非存在下で増殖を示した。
 EGFR自己リン酸化阻害活性評価に際し、ヒトEGFRを導入したNIH3T3細胞をそれぞれ培地中に懸濁させた。細胞懸濁液をそれぞれ60 mm ディッシュ又は6ウェル平底プレートに播種し,5%炭酸ガス含有の培養器中37℃で1日培養した。化合物AをDMSOに溶解し、DMSOを用いて被検化合物を終濃度の400倍の濃度になるように希釈した。被検化合物のDMSO溶液を各細胞の懸濁に用いた培地で希釈し、これを細胞の培養ディッシュにDMSOの最終濃度が0.25%になるように加えた。更にNIH3T3-EGFR_WT細胞の培養ディッシュにはEGFを終濃度50 ng/mLとなるよう加えた。全ての培養ディッシュを5%炭酸ガス含有の培養器中37℃で6時間培養した。培養後、細胞を回収し、ペレットの状態で使用時まで-80℃で保管した。ペレットにプロテアーゼインヒビターカクテル(サーモフィッシャーサイエンティフィック)を加えたRIPA バッファー(サーモフィッシャーサイエンティフィック)を添加し細胞内のタンパク質を抽出後、BCAタンパク質アッセイキット(サーモフィッシャーサイエンティフィック)を用いてタンパク質濃度を測定し、各サンプルをリン酸化EGFR発現測定に適したタンパク質濃度にそれぞれ調整した。リン酸化EGFR発現測定はSimple Western(商標) アッセイシステム(プロテインシンプル)を用いて、メーカー推奨のプロトコールに基づき行った。1次抗体はPhospho-EGF Receptor(Tyr1068)#3777(CST)を50分の1に希釈し、測定に用いた。
 細胞ごとにタンパク質濃度(x軸)及びリン酸化EGFR発現量(y軸)の検量線を作成し、その検量線を基に各サンプルのリン酸化EGFR発現量をタンパク質濃度に換算した。以下の式よりリン酸化EGFR阻害率を算出し、リン酸化EGFRを50%阻害することのできる被検化合物の濃度(IC50(μM))を求めた。
 リン酸化EGFR阻害率(%)=T / C ×100
  T:被検化合物を添加したサンプルのタンパク質濃度相当量
  C:被検化合物を添加しなかったサンプルのタンパク質濃度相当量。
 また、以下の式より野生型EGFRとエクソン20挿入変異型EGFRとの選択性を算出した。結果を表3に示す。
 IC50比=IC50(WT) / IC50(エクソン20挿入変異型EGFR)
Figure JPOXMLDOC01-appb-T000007
 表3から明らかなとおり、化合物Aは、種々のエクソン20挿入変異型EGFRに対する選択的阻害活性を示した。
 上記試験例1から4の結果から明らかなように、化合物A~Dはエクソン20挿入変異型EGFRを発現した細胞株に対してEGFR阻害効果を伴った細胞増殖抑制効果を示し、その効果及び変異選択性は比較化合物、ゲフェチニブ、エルロチニブアファチニブ及びオシメルチニブに比して高かった。
 試験例5
In vivo薬効試験
変異型EGFR発現細胞株皮下移植モデルを用いた抗腫瘍効果の評価
 ヒト変異型EGFRを導入したNIH3T3-EGFRinsASV細胞、NIH3T3-EGFRinsSVD細胞もしくはH1975-EGFRinsSVD細胞をヌードマウスの皮下に移植し、腫瘍が生着したヌードマウスの腫瘍体積が100-200mm程度になった時点で、各群の腫瘍体積の平均が均一になるよう無作為層別化により1群5-6匹を割付、化合物A及びアファチニブを14日間、1日1回連日経口投与した。
 投与用量は、アファチニブでは本試験の投与期間である14日間での最大耐薬用量(投与期間中の体重減少が20%未満となる最大投与用量)の20mg/kg/dayを、化合物Aでは200mg/kg/day(最大耐薬用量)を使用した。なお、最大耐薬用量は、アメリカ国立がん研究所(NCI)による「Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats」に従って人道的観点から設定した。
 各被験化合物投与における腫瘍の経時的増殖推移を比較するため、腫瘍の増殖割合として群分け時の腫瘍体積を1とした相対腫瘍体積(Relative tumor weight、以下、「RTV」とも称する)を以下の式に従って算出した。また毒性の指標として経時的に体重を測定して群分け日に対する平均体重変化率(Body weight change,以下、「BWC(%)」とも称する)を以下の式に従って算出した。各個体のRTV及びBWCの平均値の推移を図3-8に示す。
 RTV=(腫瘍体積計測日の腫瘍体積)/(群分け時の腫瘍体積)
 BWC(%)=(体重測定日の体重)/(群分け時の体重)。
 最終評価日の化合物A投与群の平均RTV値が、アファチニブの投与群の平均RTV値より小さく、かつ統計的有意差(Student-t検定、p<0.05)を示した場合に、化合物Aは、アファチニブよりも有意に有効であると判定し、図中に*印で示す。なお、最終評価日のT/C(%)を以下の式に従って算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
 図3-8及び表4に示す結果から明らかなように、化合物Aはヌードマウスの皮下に移植したエクソン20挿入変異型EGFR発現細胞株に対して顕著な抗腫瘍効果を示した。またその効果はアファチニブに比して高かく、その際にマウスでの重篤な体重減少、便異常、皮膚異常の症状は認められなかった。
 試験例6
In vivo薬効試験
変異型EGFR発現細胞株皮下移植モデルを用いた抗腫瘍効果の評価
 ヒト変異型EGFRを導入したNIH3T3―EGFRinsNPH細胞をヌードマウスの皮下に移植した。腫瘍が生着したヌードマウスの腫瘍体積が100-200mm程度になった時点で、各群の腫瘍体積の平均が均一になるよう無作為層別化により1群6匹を割付、化合物A及びアファチニブを10日間1日1回連日経口投与した。
 投与用量は、アファチニブでは最大耐薬用量(投与期間中の体重減少が20%未満となる最大投与用量)の20mg/kg/dayを、化合物Aでは100及び200mg/kg/dayを使用した。なお、最大耐薬用量は、アメリカ国立がん研究所(NCI)による「Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats」に従って人道的観点から設定した。
 各被験化合物投与における腫瘍の経時的増殖推移の比較のため、各個体の腫瘍体積(以下、「TV」とも称する)を以下の式に従って算出した。また毒性の指標として経時的に体重を測定して群分け日に対する体重変化率(Body weight change,以下、「BWC(%)」とも称する)を以下の式に従って算出した。各個体のTV及びBWCの平均値の推移を図9-10に示す。
 TV(mm)=(長径×短径)/2
 BWC(%)=(体重測定日の体重)/(群分け時の体重)。
 抗腫瘍効果について、化合物A投与群の最終投与翌日の平均TV値が、コントロール群の平均TV値より小さく、かつ統計的有意差(Dunnett検定、p<0.05)を示した場合に、化合物Aは有効であると判定し、図中に*印で示す。なお、最終評価日のT/C(%)を以下の式に従って算出した。結果を表5に示す。
 T/C(%)=(被験化合物投与群の腫瘍体積)/(コントロール群の腫瘍体積)。
Figure JPOXMLDOC01-appb-T000009
 図9-10及び表5から明らかなように、本発明化合物Aはヌードマウス皮下に移植したエクソン20挿入変異型EGFR発現細胞株に対して腫瘍増殖抑制又は腫瘍退縮を伴う顕著な抗腫瘍効果を示し、その際に評価動物での重篤な体重減少は認められなかった。
 試験例7
変異型EGFR発現細胞株ラット皮下移植モデルを用いた抗腫瘍効果の評価
 ヒト変異型EGFRを導入したH1975―EGFRinsSVD細胞をヌードラットの皮下に移植した。腫瘍が生着したヌードラットの腫瘍体積が200-500mm程度になった時点で、各群の腫瘍体積の平均が均一になるよう無作為層別化により1群6匹を割付、化合物Aを14日間1日1回連日経口投与した。
 投与用量は本試験の投与期間である14日間での最大耐薬用量(投与期間中の体重減少が20%未満となる最大投与用量)未満の20及び40mg/kg/dayを使用した。なお、最大耐薬用量は、アメリカ国立がん研究所(NCI)による「Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats」に従って人道的観点から設定した。
 各被験化合物投与における腫瘍の経時的増殖推移の比較のため、各個体の腫瘍体積(以下、「TV」とも称する)を以下の式に従って算出した。また毒性の指標として経時的に体重を測定して群分け日に対する体重変化率(Body weight change,以下、「BWC(%)」とも称する)を以下の式に従って算出した。各個体のTV及びBWCの平均値の推移を図11-12に示す。
 TV(mm)=(長径×短径)/2
 BWC(%)=(体重測定日の体重)/(群分け時の体重)。
 抗腫瘍効果について、化合物A投与群の最終評価日の平均TV値が、コントロール群の平均TV値より小さく、かつ統計的有意差(Dunnett検定、p<0.05)を示した場合に、化合物Aは有効であると判定し、図中に*印で示す。なお、最終評価日のT/C(%)を以下の式に従って算出した。結果を表6に示す。
 T/C(%)=(被験化合物投与群の腫瘍体積)/(コントロール群の腫瘍体積)。
Figure JPOXMLDOC01-appb-T000010
 図11-12及び表6から明らかなように、化合物Aはヌードラット皮下に移植したエクソン20挿入変異型EGFR発現細胞株に対して腫瘍増殖抑制又は腫瘍退縮を伴う顕著な抗腫瘍効果を示し、その際に評価動物での重篤な体重減少は認められなかった。
 試験例8
変異型EGFR陽性肺癌患者由来腫瘍のマウス皮下移植モデルを用いた抗腫瘍効果の評価
 V769_D770insASV変異型EGFR陽性ヒト肺癌患者由来腫瘍であるLXF 2478をヌードマウスの皮下に移植した。腫瘍が生着したヌードマウスの腫瘍体積が100-200mm程度になった時点で、各群の腫瘍体積の平均が均一になるよう無作為層別化により1群8匹を割付、化合物A及びアファチニブを28日間1日1回連日経口投与した後、2週間の観察期間を設けた。
 投与用量は、アファチニブでは最大耐薬用量(投与期間中の体重減少が20%未満となる最大投与用量)の20mg/kg/dayを、化合物Aでは100及び200mg/kg/dayを使用した。なお、最大耐薬用量は、アメリカ国立がん研究所(NCI)による「Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats」に従って人道的観点から設定した。
 各被験化合物投与における腫瘍の経時的増殖推移の比較のため、腫瘍の増殖割合として群分け時の腫瘍体積を1とした相対腫瘍体積(Relative tumor weight、以下、「RTV」とも称する)を以下の式に従って算出した。また毒性の指標として経時的に体重を測定して群分け日に対する体重変化率(Body weight change,以下、「BWC(%)」とも称する)を以下の式に従って算出した。各個体のRTV及びBWCの平均値の推移を図13-14に示す。
 RTV=(腫瘍体積計測日の腫瘍体積)/(群分け時の腫瘍体積)
 BWC(%)=(体重測定日の体重)/(群分け時の体重)。
 投与最終日翌日(Day28)の化合物A投与群の平均RTV値が、コントロール群の平均RTV値より小さく、かつ統計的有意差(Dunnett検定、p<0.05)を示した場合に、化合物Aは有効であると判定し、図中に*印で示す。なお、最終投与日翌日(Day28)のT/C(%)を以下の式に従って算出した。結果を表7に示す。
 T/C(%)=(被験化合物投与群のRTV)/(コントロール群のRTV)。
Figure JPOXMLDOC01-appb-T000011
 図13-14及び表7から明らかなように、化合物Aはヌードマウスの皮下に移植したエクソン20挿入変異型EGFR陽性肺癌患者由来腫瘍に対して腫瘍退縮を伴う顕著な抗腫瘍効果を示し、観察期間中もその効果は持続した。その際に評価動物での重篤な体重減少は認められなかった。
 試験例9
変異型EGFR発現細胞株肺移植モデルを用いた延命効果の評価
 ヒト変異型EGFR導入細胞株であるH1975-EGFRinsSVDにLuciferaseを導入したH1975―EGFRinsSVD―Luc株を樹立した。H1975―EGFRinsSVD―Luc細胞は、NCI-H1975―EGFRinsSVD細胞にLuciferaseをコードしたpJTI(商標)FAST DESTベクターをpJTI(商標)PhiC31 Integrase発現ベクターと共にAmaxa(商標) Cell Line Nucleofector(商標) Kit Rによる電気穿孔法により導入した後、ハイグロマイシンB(ナカライテスク株式会社)にて選択した。
 延命効果の評価に際し、培養したH1975-EGFRinsSVD-Luc細胞の懸濁液にMatrigelを等量加えて細胞浮遊液を調製した後、ヌードマウスの右肺に移植した。移植後6日の時点で生存している全てのマウスにLuciferinを尾静脈内投与し、各群の発光強度の平均値が均一になるよう無作為層別化により1群9匹を割付、化合物A及びアファチニブを1日1回連日経口投与した。投与用量は、アファチニブでは最大耐薬用量(投与期間中の体重減少が20%未満となる最大投与用量)の20mg/kg/dayを、化合物Aでは100及び200mg/kg/dayを使用した。なお、最大耐薬用量は、アメリカ国立がん研究所(NCI)による「Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats」に従って人道的観点から設定した。
 延命効果の評価として、移植後生存期間を観察し、個々のマウスについて生存日数を求めた。求めた生存日数から各群の生存日数中央値(Median survival time、以下「MST」とも称す)を算出し、コントロール群と被験化合物投与群のMSTを用いて以下の計算式により生存期間延長効果(Increase in life span、以下「I.L.S.(%)」とも称す)を算出した。また毒性の指標として経時的に体重を測定して群分け日に対する体重変化率(Body weight change,以下、「BWC(%)」とも称する)を以下の式に従って算出した。
 I.L.S.(%)=(T/C-1)×100
  T:被験化合物投与群のMST
  C:コントロール群のMST。
 BWC(%)=(体重測定日の体重)/(群分け時の体重)。
 延命効果の判定として、被験化合物投与群のMSTが、コントロール群のMSTより大きく、かつ統計的有意差(Wilcoxon検定、p<0.05)を示した場合に、化合物Aは有効であると判定し、結果を表8に示す。
Figure JPOXMLDOC01-appb-T000012
 表8から明らかなように、化合物Aはエクソン20挿入変異型EGFR発現細胞株をヌードマウスの肺同所に移植したモデルにおいて顕著な延命作用を示した。一方、アファチニブには本モデルにおける延命作用は認められなかった。また、化合物Aの投与による動物の重篤な体重減少は認められなかった。
 試験例10
移植腫瘍及びマウス皮膚組織におけるリン酸化EGFR阻害活性の評価
 ヒト変異型EGFRを導入したNIH3T3-EGFRinsSVD細胞をヌードマウスの皮下に移植し、腫瘍が生着したヌードマウスの腫瘍体積が250-500mm程度になった時点で、各群の腫瘍体積の平均が均一になるよう無作為層別化により1群3匹を割付け、化合物A及びアファチニブを単回経口投与した。投与後、化合物A及びアファチニブそれぞれの最高血中濃度到達時間付近である1時間及び3時間の時点で腫瘍並びに皮膚組織を採取した。採取した組織は液体窒素を用いて瞬間凍結し、使用時まで-80℃で保管した。腫瘍及び皮膚組織はプロテアーゼインヒビターカクテル(サーモフィッシャーサイエンティフィック)を加えたRIPA バッファー(サーモフィッシャーサイエンティフィック)を添加した状態でホモジナイズして細胞内のタンパク質を抽出した後、BCAタンパク質アッセイキット(サーモフィッシャーサイエンティフィック)を用いてタンパク質濃度を測定し、各サンプルをリン酸化EGFR発現測定に適したタンパク質濃度にそれぞれ調整した。タンパク質はSDS-PAGEにより分離してPDVFメンブレンに転写した。ブロッキングした後、一次抗体であるPhospho-EGF Receptor(Tyr1068)#2234(CST)を0.1% TBS-Tバッファーで1000分の1に希釈し、4℃で一晩反応させた。その後二次抗体であるHRP標識抗ラビット抗体#NA9340V(GEヘルスケア)を0.1% TBS-Tバッファーで調製した5%スキムミルク溶液に2500分の1に希釈し、室温で40分反応させた。ECL-Prime(GEヘルスケア)で反応させた後、LAS-3000(GEヘルスケア)で検出した。
 上記試験の結果から、化合物Aは皮膚の野生型EGFRに比し腫瘍の変異型EGFRを選択的に阻害することが明らかとなった。

Claims (11)

  1.  (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミドl;
    (S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
    (S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
    (R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミドからなる群から選択される化合物又はその塩を含有する、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための抗腫瘍剤。
  2.  化合物が、(S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミドである、請求項1に記載の抗腫瘍剤。
  3.  エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者は、肺癌、乳癌、頭頸部癌、脳腫瘍、子宮癌、造血器腫瘍、又は皮膚癌の患者である、請求項1又は2に記載の抗腫瘍剤。
  4.  エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者は、肺癌患者である、請求項1~3のいずれか一項に記載の抗腫瘍剤。
  5.  エクソン20挿入変異が、エクソン20領域に1つ以上のアミノ酸が挿入された変異である、請求項1~4のいずれか一項に記載の抗腫瘍剤。
  6.  エクソン20挿入変異が、エクソン20領域に1~7つのアミノ酸が挿入された変異である、請求項1~5のいずれか一項に記載の抗腫瘍剤。
  7.  エクソン20挿入変異が、エクソン20領域に1~4つのアミノ酸が挿入された変異である、請求項1~6のいずれか一項に記載の抗腫瘍剤。
  8.  エクソン20挿入変異が、V769_D770insASV、D770_N771insSVD、D770_N771insG、H773_V774insNPH、H773_V774insPHである、請求項1~7のいずれか一項に記載の抗腫瘍剤。
  9.  エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者に有効量の
    (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
    (S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
    (S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
    (R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
    からなる群から選択される化合物又はその塩を投与する工程を含む、悪性腫瘍患者の治療方法。
  10.  エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための、
    (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
    (S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
    (S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
    (R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
    からなる群から選択される化合物又はその塩。
  11.  (S)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)アクリルアミド;
    (S)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)アクリルアミド;
    (S,E)-N-(4-アミノ-6-メチレン-5-(キノリン-3-イル)-7,8-ジヒドロ-6H-ピリミド[5,4-b]ピロリジン-7-イル)-3-クロロアクリルアミド;及び
    (R)-N-(4-アミノ-6-メチル-5-(キノリン-3-イル)-8,9-ジヒドロピリミド[5,4-b]インドリジン-8-イル)-N-メチルアクリルアミド
    からなる群から選択される化合物又はその塩の、エクソン20挿入変異を有するEGFRを発現している悪性腫瘍患者を治療するための医薬を製造するための使用。
PCT/JP2017/037186 2016-10-31 2017-10-13 エクソン20挿入変異型egfr選択的阻害剤 WO2018079310A1 (ja)

Priority Applications (19)

Application Number Priority Date Filing Date Title
IL266239A IL266239B2 (en) 2016-10-31 2017-10-13 A selective inhibitor of EGFR with an EXON 20 insertion mutation
SG11201903875QA SG11201903875QA (en) 2016-10-31 2017-10-13 Selective inhibitor of exon 20 insertion mutant egfr
DK17864975.2T DK3533449T3 (da) 2016-10-31 2017-10-13 SELEKTIV HÆMMER AF EXON-20-INSERTIONsMUTANT EGFR
ES17864975T ES2955832T3 (es) 2016-10-31 2017-10-13 Inhibidor selectivo del EGFR mutante de inserción del exón 20
MX2019004969A MX2019004969A (es) 2016-10-31 2017-10-13 Inhibidor selectivo de receptor de factor de crecimiento epidermico mutante de insercion de exon 20.
BR112019008374A BR112019008374A2 (pt) 2016-10-31 2017-10-13 inibidor seletivo de egfr mutante por inserção do éxon 20
FIEP17864975.2T FI3533449T3 (fi) 2016-10-31 2017-10-13 Eksoni 20:n insertiomutantti-egfr:n selektiivinen estäjä
CN201780067762.5A CN110191711B (zh) 2016-10-31 2017-10-13 外显子20插入突变型egfr的选择性抑制剂
PL17864975.2T PL3533449T3 (pl) 2016-10-31 2017-10-13 Selektywny inhibitor EGFR z mutacją insercyjną w eksonie 20
CA3041015A CA3041015A1 (en) 2016-10-31 2017-10-13 Selective inhibitor of exon 20 insertion mutant egfr
EP17864975.2A EP3533449B1 (en) 2016-10-31 2017-10-13 Selective inhibitor of exon 20 insertion mutant egfr
JP2018547565A JP6896755B2 (ja) 2016-10-31 2017-10-13 エクソン20挿入変異型egfr選択的阻害剤
KR1020197015270A KR102639585B1 (ko) 2016-10-31 2017-10-13 엑손 20 삽입 변이형 egfr 선택적 저해제
AU2017350440A AU2017350440B2 (en) 2016-10-31 2017-10-13 Selective inhibitor of exon 20 insertion mutant EGFR
RU2019116780A RU2774629C2 (ru) 2016-10-31 2017-10-13 Селективный ингибитор мутанта egfr со вставкой в экзоне 20
US16/345,792 US11857513B2 (en) 2016-10-31 2017-10-31 Selective inhibitor of exon 20 insertion mutant EGFR
ZA2019/02629A ZA201902629B (en) 2016-10-31 2019-04-25 Selective inhibitor of exon 20 insertion mutant egfr
PH12019500957A PH12019500957A1 (en) 2016-10-31 2019-04-29 Selective inhibitor of exon 20 insertion mutant egfr
US18/512,528 US20240148734A1 (en) 2016-10-31 2023-11-17 Selective inhibitor of exon 20 insertion mutant egfr

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213072 2016-10-31
JP2016-213072 2016-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/345,792 A-371-Of-International US11857513B2 (en) 2016-10-31 2017-10-31 Selective inhibitor of exon 20 insertion mutant EGFR
US18/512,528 Continuation US20240148734A1 (en) 2016-10-31 2023-11-17 Selective inhibitor of exon 20 insertion mutant egfr

Publications (1)

Publication Number Publication Date
WO2018079310A1 true WO2018079310A1 (ja) 2018-05-03

Family

ID=62024991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037186 WO2018079310A1 (ja) 2016-10-31 2017-10-13 エクソン20挿入変異型egfr選択的阻害剤

Country Status (22)

Country Link
US (2) US11857513B2 (ja)
EP (1) EP3533449B1 (ja)
JP (1) JP6896755B2 (ja)
KR (1) KR102639585B1 (ja)
CN (1) CN110191711B (ja)
AU (1) AU2017350440B2 (ja)
BR (1) BR112019008374A2 (ja)
CA (1) CA3041015A1 (ja)
DK (1) DK3533449T3 (ja)
ES (1) ES2955832T3 (ja)
FI (1) FI3533449T3 (ja)
HU (1) HUE063712T2 (ja)
IL (1) IL266239B2 (ja)
JO (1) JOP20190073A1 (ja)
MX (1) MX2019004969A (ja)
PH (1) PH12019500957A1 (ja)
PL (1) PL3533449T3 (ja)
PT (1) PT3533449T (ja)
SG (1) SG11201903875QA (ja)
TW (1) TWI774699B (ja)
WO (1) WO2018079310A1 (ja)
ZA (1) ZA201902629B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503266A (ja) * 2016-11-24 2020-01-30 中国科学院上海薬物研究所Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences ピリミド[5,4−b]インドリジン又はピリミド[5,4−b]ピロリジン化合物、その製造方法及び用途
WO2020166680A1 (ja) 2019-02-15 2020-08-20 大鵬薬品工業株式会社 7H-ピロロ[2,3-d]ピリミジン-4-アミン誘導体
CN113423403A (zh) * 2018-12-28 2021-09-21 大鹏药品工业株式会社 对l718和/或l792突变型治疗有抗性的egfr抑制剂
CN113861195A (zh) * 2020-06-30 2021-12-31 上海和誉生物医药科技有限公司 一种多稠环egfr抑制剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181104A (zh) * 2019-09-29 2022-10-14 深圳市塔吉瑞生物医药有限公司 取代的稠合三环衍生物及其组合物及用途
CN116096372B (zh) * 2020-07-09 2024-09-03 上海和誉生物医药科技有限公司 一种egfr抑制剂、其制备方法和在药学上的应用
WO2022055895A1 (en) * 2020-09-08 2022-03-17 Cullinan Pearl Corp. Treatment regimens for exon-20 insertion mutant egfr cancers
WO2022121967A1 (zh) * 2020-12-09 2022-06-16 南京药石科技股份有限公司 Egfr酪氨酸激酶抑制剂及其用途
PE20240327A1 (es) 2021-04-13 2024-02-22 Nuvalent Inc Heterociclos con sustitucion amino para tratar canceres con mutaciones de egfr
CN115785107A (zh) * 2022-12-15 2023-03-14 南京雷正医药科技有限公司 一种取代8,9-二氢嘧啶并[5,4-b]吲嗪类化合物、药物组合物及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125709A1 (ja) 2012-02-23 2013-08-29 大鵬薬品工業株式会社 キノリルピロロピリミジル縮合環化合物又はその塩
WO2015025936A1 (ja) 2013-08-22 2015-02-26 大鵬薬品工業株式会社 新規キノリン置換化合物
WO2015175632A1 (en) 2014-05-13 2015-11-19 Ariad Pharmaceuticals, Inc. Heteroaryl compounds for kinase inhibition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440562B (en) 1994-05-20 2001-06-16 Taiho Pharmaceutical Co Ltd Condensed-indan derivative and pharmaceutically acceptable salts thereof
RU2007138264A (ru) 2005-03-17 2009-09-10 Новартис АГ (CH) N-[3-(1-АМИНО-5,6,7,8-ТЕТРАГИДРО-2,4,4b-ТРИАЗАФЛУОРЕН-9-ИЛ)ФЕНИЛ]БЕНЗАМИДЫ В КАЧЕСТВЕ ИНГИБИТОРОВ ТИРОЗИН/ТРЕОНИНКИНАЗ, ПРЕЖДЕ ВСЕГО КИНАЗ В-RAF
ATE509624T1 (de) 2005-12-23 2011-06-15 Nutricia Nv Zusammensetzung enthaltend mehrfach ungesättigte fettsäuren, proteine, mangan und/oder molybden und nukleotide/nukleoside, zur behandlung von demenz
KR101609412B1 (ko) 2009-07-10 2016-04-05 다이호야쿠힌고교 가부시키가이샤 아자 2 고리형 화합물 또는 그 염
US7718662B1 (en) 2009-10-12 2010-05-18 Pharmacyclics, Inc. Pyrazolo-pyrimidine inhibitors of bruton's tyrosine kinase
US8912181B2 (en) 2011-01-07 2014-12-16 Taiho Pharmaceutical Co., Ltd. Bicyclic compound or salt thereof
JP5878178B2 (ja) 2011-09-30 2016-03-08 大鵬薬品工業株式会社 1,2,4−トリアジン−6−カルボキサミド誘導体
TWI594986B (zh) 2011-12-28 2017-08-11 Taiho Pharmaceutical Co Ltd Antineoplastic agent effect enhancer
TW201336847A (zh) 2012-02-07 2013-09-16 Taiho Pharmaceutical Co Ltd 喹啉基吡咯并嘧啶化合物或其鹽
CA2898274A1 (en) 2013-02-22 2014-08-28 Taiho Pharmaceutical Co., Ltd. Method for producing tricyclic compound, and tricyclic compound capable of being produced by said production method
US10227342B2 (en) 2014-06-19 2019-03-12 Ariad Pharmaceuticals, Inc. Heteroaryl compounds for kinase inhibition
JP6583614B2 (ja) 2015-05-11 2019-10-02 大同特殊鋼株式会社 アーク炉の電極折損防止装置
PL3677266T3 (pl) 2017-09-01 2024-07-01 Taiho Pharmaceutical Co., Ltd. Selektywny inhibitor egfr z mutacją w eksonie 18 i/lub eksonie 21

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125709A1 (ja) 2012-02-23 2013-08-29 大鵬薬品工業株式会社 キノリルピロロピリミジル縮合環化合物又はその塩
WO2015025936A1 (ja) 2013-08-22 2015-02-26 大鵬薬品工業株式会社 新規キノリン置換化合物
WO2015175632A1 (en) 2014-05-13 2015-11-19 Ariad Pharmaceuticals, Inc. Heteroaryl compounds for kinase inhibition

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. NM_005228.4
"GenBank", Database accession no. NP _005219.2
"Molecular Design", vol. 7, 1990, HIROKAWA SHOTEN CO., article "Iyakuhin no Kaihatsu [Development of Pharmaceuticals", pages: 163 - 198
HIRANO , TOSHIYUKI: "In vitro modeling to deternine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant: EGFR mutant in non-small lung cancer", ONCOTARGET, vol. 6, no. 36, 15 October 2015 (2015-10-15), pages 38787 - 38803, XP055589110 *
JIA, YONG: "EGF816 Exerts Anticancer Effects in Non- Small Cell lung Cancer by Irreversibly and Selectively Targeting Primary and Acquired Activating Mutations in the EGF Receptor", CANCER RESEARCH, vol. 76, no. 6, 15 March 2016 (2016-03-15), pages 1591 - 1602, XP009191015 *
LANCET ONCOL. VOL., vol. 16, 2015, pages 830 - 838
LANCET ONCOL., vol. 13, 2012, pages 23 - 31
NAT. REV. CANCER, vol. 6, 2006, pages 803 - 812
NAT. REV. CANCER, vol. 7, 2007, pages 169 - 181
NATURE MEDICINE, vol. 19, 2013, pages 1389 - 1400
YASUDA, HIROYUKI: "Structual, Biochemical, and Clinical Characterization of epidemal Growth Factor Receptor !EGFR) Exon 20 lnsertion mutations in Lung cancer", SCIENCE TRANSLATIONAL MEDICINE, vol. 5, no. 214-216, December 2013 (2013-12-01), pages 135 - 144, XP055589118 *
YASUDA, HIROYUKI: "Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer", THE MEDICAL FRONTLINE, vol. 71, no. 8, August 2016 (2016-08-01), pages 1721 - 1725, XP055589103, ISSN: 0370-8241 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503266A (ja) * 2016-11-24 2020-01-30 中国科学院上海薬物研究所Shanghai Institute Of Materia Medica, Chinese Academy Of Sciences ピリミド[5,4−b]インドリジン又はピリミド[5,4−b]ピロリジン化合物、その製造方法及び用途
CN113423403A (zh) * 2018-12-28 2021-09-21 大鹏药品工业株式会社 对l718和/或l792突变型治疗有抗性的egfr抑制剂
JP2022522573A (ja) * 2018-12-28 2022-04-20 大鵬薬品工業株式会社 L718及び/又はl792変異型治療抵抗性egfr阻害剤
JP7303303B2 (ja) 2018-12-28 2023-07-04 大鵬薬品工業株式会社 L718及び/又はl792変異型治療抵抗性egfr阻害剤
TWI837266B (zh) * 2018-12-28 2024-04-01 日商大鵬藥品工業股份有限公司 L718及/或l792突變型治療抗性egfr抑制劑
WO2020166680A1 (ja) 2019-02-15 2020-08-20 大鵬薬品工業株式会社 7H-ピロロ[2,3-d]ピリミジン-4-アミン誘導体
CN113861195A (zh) * 2020-06-30 2021-12-31 上海和誉生物医药科技有限公司 一种多稠环egfr抑制剂及其制备方法和应用

Also Published As

Publication number Publication date
IL266239B1 (en) 2023-06-01
KR20190080901A (ko) 2019-07-08
JPWO2018079310A1 (ja) 2019-09-12
KR102639585B1 (ko) 2024-02-23
AU2017350440B2 (en) 2023-01-12
CA3041015A1 (en) 2018-05-03
PL3533449T3 (pl) 2023-11-20
US20190262345A1 (en) 2019-08-29
JOP20190073A1 (ar) 2019-04-07
US11857513B2 (en) 2024-01-02
RU2019116780A (ru) 2020-11-30
CN110191711B (zh) 2022-09-23
EP3533449B1 (en) 2023-07-12
TWI774699B (zh) 2022-08-21
SG11201903875QA (en) 2019-05-30
IL266239B2 (en) 2023-10-01
MX2019004969A (es) 2019-09-18
DK3533449T3 (da) 2023-10-09
BR112019008374A2 (pt) 2019-10-01
EP3533449A1 (en) 2019-09-04
JP6896755B2 (ja) 2021-06-30
ZA201902629B (en) 2023-12-20
ES2955832T3 (es) 2023-12-07
CN110191711A (zh) 2019-08-30
IL266239A (en) 2019-06-30
EP3533449A4 (en) 2020-06-17
US20240148734A1 (en) 2024-05-09
RU2019116780A3 (ja) 2020-12-28
FI3533449T3 (fi) 2023-09-15
TW201821079A (zh) 2018-06-16
PH12019500957A1 (en) 2019-08-05
AU2017350440A1 (en) 2019-05-16
HUE063712T2 (hu) 2024-01-28
PT3533449T (pt) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2018079310A1 (ja) エクソン20挿入変異型egfr選択的阻害剤
JP7065103B2 (ja) エクソン18及び/又はエクソン21変異型egfr選択的阻害剤
TWI837266B (zh) L718及/或l792突變型治療抗性egfr抑制劑
RU2785657C2 (ru) Селективный ингибитор egfr, имеющего мутацию в экзоне 18 и/или экзоне 21
RU2774629C2 (ru) Селективный ингибитор мутанта egfr со вставкой в экзоне 20

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3041015

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019008374

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017350440

Country of ref document: AU

Date of ref document: 20171013

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015270

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017864975

Country of ref document: EP

Effective date: 20190531

ENP Entry into the national phase

Ref document number: 112019008374

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190425