WO2018078903A1 - 生産プロセスの解析方法 - Google Patents
生産プロセスの解析方法 Download PDFInfo
- Publication number
- WO2018078903A1 WO2018078903A1 PCT/JP2017/008682 JP2017008682W WO2018078903A1 WO 2018078903 A1 WO2018078903 A1 WO 2018078903A1 JP 2017008682 W JP2017008682 W JP 2017008682W WO 2018078903 A1 WO2018078903 A1 WO 2018078903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- state
- lot
- production process
- states
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 155
- 238000004458 analytical method Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims description 100
- 238000007621 cluster analysis Methods 0.000 claims description 11
- 238000000513 principal component analysis Methods 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 90
- 238000009826 distribution Methods 0.000 description 30
- 239000002994 raw material Substances 0.000 description 11
- 238000004040 coloring Methods 0.000 description 10
- 239000011265 semifinished product Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000012847 fine chemical Substances 0.000 description 5
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 101150014691 PPARA gene Proteins 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012824 chemical production Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009509 drug development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000010923 batch production Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4183—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32179—Quality control, monitor production tool with multiple sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the present invention relates to a production process analysis method, and more particularly, to a production process analysis method for identifying factors that cause variations in the quality of products and services.
- the production process for manufacturing products corresponding to batch processing of fine chemicals, etc. supports high-mix low-volume production through processes using automated manufacturing equipment and manual processes by workers.
- the quality of products and services varies among lots depending on the operation status of equipment, the work status of workers, the handling method of raw materials and products, and the like.
- the principal component analysis and cluster analysis are applied to product data and process data related to the product manufacturing process to divide the manufacturing process lots into multiple groups, contributing to superiority or inferiority between groups.
- What specifies the inhibition factor which is the data to perform is known (for example, refer patent document 1).
- Patent Document 1 the analysis method described in Patent Document 1 as described above is effective in improving a fully automated manufacturing process in which a manufacturing line is configured only by manufacturing equipment.
- the above analysis method is applied. Even if only the manufacturing process by the manufacturing facility is improved, there is a problem in that it is limited to partial optimization of the production process and does not reach the improvement of the entire production process.
- the present invention has been proposed to achieve the above object, and the invention according to claim 1 divides the lots of the production process into a plurality of groups based on data relating to the production process of the product or service.
- a method of analyzing a production process for identifying a factor that is data representing characteristics between groups the step of collecting the data for each lot of the production process, and the lot for each of a plurality of states constituting the production process Between the plurality of states, the step of determining the superiority or inferiority of each group for each state, the step of identifying the good lots included in the group determined to be the best for each state, and A step of determining whether or not at least one good lot is common, and when at least one good lot is not common among a plurality of states, the plurality of states Are classified into a selected state arbitrarily selected and other non-selected states, and in the non-selected state, the group including the good lot in the selected state is re-determined as the best group except for the best group. And a method of analyzing the production process
- the group including the good lot in the selected state in the non-selected state is the highest.
- a method for analyzing a production process in which lots of the production process are divided into a plurality of groups based on data relating to a production process of a product or service, and a factor that is data representing characteristics of the group is specified. And collecting the data including quality data indicating the quality of the product or service for each lot of the production process, and classifying the lot into a plurality of groups for each of a plurality of states constituting the production process. And determining the superiority or inferiority of each group for each state, identifying the good lot included in the group determined to be the best for each state, and at least one good lot among the plurality of states.
- a state including a group having the best duct data is selected as a selected state, and a group including a good lot in the selected state is selected in a non-selected state other than the selected state, except for the highest group.
- a step of re-determining and identifying the factor, and a method for analyzing the production process is performed.
- the state including the group having the best quality data among the plurality of states Is selected as the selected state, and in other non-selected states other than the selected state, the group including the good lot in the selected state is determined as the best group, and the factors that represent the characteristics of the group are identified.
- a feasible improvement of the production process can be achieved.
- a group including a good lot in the selected state in the non-selected state is selected in the non-selected state.
- a method for analyzing a production process which is the highest ranking group among groups including good lots in a state, is provided.
- the first state arbitrarily selected from the plurality of states and the other states
- it is possible to execute a complex production process by re-determining the group including the good lot in the first state as the best group and identifying the factors that represent the characteristics of the group.
- a production process capable of providing good and stable products and services can be obtained.
- the state including the group having the best quality data among the plurality of states Is selected as the selected state, and in the other non-selected states other than the selected state, the group including the good lot in the selected state is determined as the best group, and the factors that represent the characteristics of the group are identified. Since a feasible improvement of the production process is performed, a production process capable of providing good and stable products and services can be obtained.
- the flowchart which shows the process of the manufacturing line to which the analysis method of the production process which concerns on 1st Example of this invention is applied.
- the flowchart which shows the analysis method of the production process which concerns on 1st Example of this invention.
- surface which shows the numerical value which standardized the process data and product data for every lot in a manufacture state.
- surface which shows the numerical value which standardized the process data and product data for every lot in a working state.
- surface which shows the numerical value which standardized the process data and product data for every lot in a distribution state.
- FIG. 7 is a graph in which the principal component loadings shown in FIG.
- FIG. 6A are plotted in a coordinate system having the first principal component as the horizontal axis and the third principal component as the vertical axis.
- the flowchart which shows the analysis method of the production process which concerns on 2nd Example of this invention.
- the present invention identifies the factors that cause variations in the quality of products and services provided in complex production processes including automation processes by machinery and equipment, and manual processes by workers.
- the production process lots are divided into groups based on the data related to the production process of the product or service, and the factors that are data representing the characteristics of the group are identified.
- An analysis method a step of collecting data for each lot of the production process, a step of dividing the lot into a plurality of groups for each of a plurality of states constituting the production process, and determining the superiority or inferiority of each group for each state , A step of identifying a good lot included in the group determined to be the best for each state, and at least a good lot among a plurality of states When determining whether or not two or more are common, and when at least one good lot is not common among a plurality of states, the plurality of states are classified into a selected state arbitrarily selected and other non-selected states. And a step of re-determining the group including the good lot in the selected state as the best group except for the group determined to be the best in the non-selected state, and identifying the factor.
- the present invention also identifies factors that cause variations in the quality of products manufactured and services provided in complex production processes, including automation processes by machinery and equipment, and manual processes by workers.
- the production process lot is divided into multiple groups based on the data related to the production process of the product or service, and the factor that is the data representing the characteristics of the group is identified.
- a process analysis method that collects data including quality data indicating the quality of a product or service for each lot of the production process, and divides the lot into multiple groups for each of the multiple states constituting the production process.
- the process of determining the superiority or inferiority of each group for each state, and the good lots included in the group determined to be the best for each state The process of determining whether or not at least one good lot is common among multiple states, and the quality between multiple states if at least one good lot is not common among multiple states Select the state that includes the group with the best data as the selected state, and exclude the group that is determined to be the best in the other non-selected states except the selected state, and the group that contains the good lot in the selected state is the best group And a step of re-determining and identifying the factor.
- Production processes include processes that consist solely of machinery and equipment, all processes are automated, processes that include manual work processes by workers, manufacturing processes that are automated by mechanical equipment, and manual work processes by workers. Including processes.
- FIG. 1 is a flowchart showing steps of a fine chemical production line as an example of a production process to which the present invention is applied.
- the production process to which the present invention is applied is not limited to a production line for fine chemicals, and includes a process for providing production lines and services for products other than fine chemicals.
- Fine chemical production lines are broadly divided into pre-process and post-process.
- the pre-process is a so-called batch process in which an operator inputs raw materials into a reaction furnace and reacts the raw materials to produce a granular semi-finished product.
- the post-process is mainly manual work by workers.
- reaction process S2 which reacts a raw material in a reaction furnace
- filtration process S3 which removes impurities
- granulation process S4 which shape
- a coloring process S5 for applying a predetermined color to the semi-finished product
- a drying process S6 for drying the colored semi-finished product with a dryer
- an inspection process S7 for checking coloring defects
- a packaging process S8 for individually packaging the product
- the product is shipped through the shipping process S9.
- the quality of the product in the post-process has a negative correlation with the quality of the pre-process (number of filter replacements). That is, when the number of filter replacements is small and the amount of granulation per unit time is large, mistakes are likely to occur in the coloring step S5 that is manually performed by an operator, and there is a tendency that coloring defects increase.
- Each device constituting the production line is provided with a sensor (not shown) for measuring various values.
- the measurement target of the sensor is the amount of raw material input, the temperature in the reaction furnace, the reaction temperature, the amount of granulation per unit time, and the like.
- the sensor sends a measurement value to a control device that descales the manufacturing equipment that constitutes the manufacturing line.
- the control device performs processing described later based on process data indicating the production conditions of the product measured by the sensor and product data (quality data) indicating the quality of the product (the number of times the filter has been replaced, the coloring good rate, etc.).
- Process data is a factor that can affect the quality of products.
- Production conditions of production processes such as operating conditions of manufacturing equipment), raw material conditions (such as physical properties and composition of raw materials), and work performed manually by workers. Contents (working time, number of movements, etc.) and handling contents of products etc. (semi-finished products, work-in-process residence time, etc.) are included.
- the production process is divided into three states, that is, a manufacturing state, a working state, and a distribution state, according to the type of process data.
- the “manufacturing state” refers to an item that can affect the quality of a product from the viewpoint of equipment.
- Working status refers to what can affect the quality of the product from the perspective of the worker.
- Logistics state refers to anything that can affect product quality in terms of handling raw materials, semi-finished products and products.
- the production process is not limited to one that can be classified into the three states described above, and any production process that includes at least two or more of the three states described above may be used.
- the production process is divided into multiple states, the factors (process data) that can affect the product quality in each state are individually grasped by the analysis method described later, and the effect of the change of one factor on other states The feasible improvement of the whole process can be aimed at.
- FIG. 2 is a flowchart showing a production process analysis method according to the first embodiment of the present invention.
- control device collects process data and product data measured by the sensor (S10).
- process data and product data for each lot are stored in the control device.
- step S1 the process data and product data collected in step S1 are standardized and converted into intermediate functions (S11).
- FIG. 3 is a table showing numerical values obtained by standardizing process data and product data for each lot in the manufacturing state.
- FIG. 3 shows process data pPara 1 to 16 in the manufacturing state collected in each lot for 17 lots.
- the process data pPara 1 to 16 are the raw material acceptance inspection value, the input amount, the temperature in the reactor, and the like.
- the product data is the number of replacements of the filter in the reactor.
- FIG. 4 is a table showing standardized values of process data and product data for each lot in the working state.
- FIG. 4 shows process data wPara 1 to 6 in the work state collected in each lot.
- the process data wPara 1 to 6 are work time, the number of times of movement between work places, and the like.
- the product data is a good coloration rate of the product.
- FIG. 5 is a table showing numerical values obtained by standardizing process data and product data for each lot in the distribution state.
- FIG. 5 shows process data LPara 1 to 8 in the physical distribution state collected in each lot.
- Process data LPara 1 to 8 are semi-finished products, product residence time, lead time, and the like.
- the product data is a good coloration rate of the product.
- the process data standardization process performed in step S11 is a known process, and specifically, the control device calculates based on Equation 1.
- FIG. 6 is a diagram showing a principal component load amount for each process data and a principal component score for each lot in a manufacturing state.
- FIG. 7 is a diagram showing the principal component load amount for each process data and the principal component score for each lot in the working state.
- FIG. 8 is a diagram showing the principal component load amount for each process data and the principal component score for each lot in the physical distribution state.
- step 2 first, a correlation coefficient matrix for intermediate variables is created, and eigenvalues and eigenvectors of the correlation coefficient matrix are derived.
- the first principal component PC1 is expressed as shown in Equation 2.
- the Nth principal component PCn is expressed as shown in Equation 3. .. Are used as elements in the first row and coefficients an1, an2, an3,... Are used as elements in the nth row, thereby forming a correlation coefficient matrix.
- FIG. 6A shows information amounts (principal component load amounts) of the first principal component PC1, the second principal component PC2, and the third principal component 3 of the process data pPara1 to 16 in the manufacturing state.
- FIG. 7A shows information amounts (principal component load amounts) of the first principal component PC1, the second principal component PC2, and the third principal component 3 of the process data wPara1 to 6 in the working state.
- FIG. 8A shows the information amount (principal component load amount) of the first principal component PC1, the second principal component PC2, and the third principal component 3 of the process data LPara1 to 8 in the physical distribution state.
- only three main components are shown, but the number of main components may be increased or decreased according to the contribution ratio of each main component.
- the principal component score is obtained from the eigenvector of the correlation coefficient matrix. Also, the contribution ratio of each principal component is obtained from the eigenvalues of the correlation coefficient matrix. The contribution ratio of the principal component is obtained by dividing the eigenvalue by the sum of the eigenvalues.
- the first principal component, the second principal component, and the Nth principal component are determined from the one having the larger eigenvalue.
- the control device determines the values of the first principal component PC1, the second principal component PC2,... Based on the intermediate variables x1, x2, and x3 of each lot and the coefficients of the correlation coefficient matrix, that is, The principal component score is calculated.
- FIG. 6B shows the main component scores of each lot in the manufacturing state.
- FIG. 7B shows the main component scores of each lot in the working state.
- FIG. 8B shows the main component score of each lot in the physical distribution state.
- FIG. 9 is a graph showing the principal component scores obtained by plotting the information amount shown in FIG. 6B in a coordinate system in which the first principal component in the manufacturing state is on the horizontal axis and the third principal component is on the vertical axis.
- FIG. 10 is a graph showing principal component scores obtained by plotting the information amount shown in FIG. 7B in a coordinate system having the first principal component in the working state as the horizontal axis and the third principal component as the vertical axis.
- FIG. 11 is a graph showing principal component scores obtained by plotting the information amount shown in FIG. 8B in a coordinate system having the first principal component in the physical distribution state on the horizontal axis and the third principal component on the vertical axis.
- Cluster analysis is a method of classifying analysis target data (cluster) into a plurality of groups by paying attention to similarity, and hierarchical clustering, classification optimization clustering, and the like are known.
- the “similarity” to which the cluster analysis in the present embodiment focuses is the distance between the main component scores of each lot.
- agglomerative hierarchical clustering which is one of hierarchical clustering, is used.
- a Ward method that can obtain a solution stably was used.
- the “Ward method” is to select a cluster that minimizes the amount of increase in the sum of squared deviations when two clusters are merged. For example, when the clusters A and B are merged to generate the cluster C, the deviation sums of squares Sa, Sb, and Sc in the clusters A, B, and C are expressed as Expressions 4 to 6, respectively.
- ⁇ Sab in Equation 7 means that the sum of the square deviations is increased when clusters A and B are merged to generate cluster C. Therefore, clustering is advanced by selecting and merging clusters so that ⁇ Sab is minimized at each merging stage.
- each lot could be divided into three groups G1 to G4 in the manufacturing state.
- FIG. 13 shows the result reflected in FIG. Note that the number of groups is not limited to three, and may be two or less or four or more as long as the number is easy to handle.
- FIG. 14 shows the result of the cluster analysis of the working state shown in FIG. 10, and the divided groups are referred to as groups G5 to G7.
- FIG. 15 shows the result of the cluster analysis of the distribution status shown in FIG. 11, and the divided groups are referred to as groups G8 to G10.
- step S14 the control device calls an intermediate variable obtained from the stored product data relating to the manufacturing state (the number of filter replacements) for each lot belonging to the groups G1 to G4, and determines the quality of these product data.
- an intermediate variable obtained from the product data coloring goodness ratio
- the quality of the product data is preferably determined based on the average value within the group. Thereby, the variation of the product data within the group is leveled, and the tendency of the quality of the product data between the groups can be grasped globally.
- the numerical values in FIG. 13 are product data (average value of the number of filter replacements) in each group.
- the numerical values in FIGS. 14 and 15 are product data (average value of coloring goodness rate) in each group.
- the quality of the product data may be determined based on the magnitude of the deviation of the product data in the group and the magnitude of the difference (range) between the maximum value and the minimum value. You may judge by combining two or more. For example, when the average value in the group is the same, it may be determined that the deviation in the group is good if the average value in the group is the same. As a result, it is possible to grasp the overall trend of product data between groups in consideration of variations in product data within the group.
- the control device compares the product data for each group in each state, and determines its superiority or inferiority. That is, in the manufacturing state, the product data is compared for each of the groups G1 to G4, and the superiority or inferiority between the groups G1 to G4 is determined. Similarly, in the working state, the product data is compared for each group G5-7 to determine the superiority or inferiority between the groups G5-7, and in the logistics state, the product data is compared for each group G8-10. Determine the superiority or inferiority between groups G8-10.
- the group G2 shows the best product data, and since the product data deteriorates in the order of G1, G3, and G4, the superiority or inferiority between the groups is the group G2, G1, It determined in order of G3 and G4.
- group G6 shows the best product data, and since product data deteriorates in the order of G5 and G7, the superiority or inferiority between groups was determined in the order of groups G6, G5 and G7.
- the group G8 shows the best product data, and since the product data deteriorates in the order of G9 and G10, the superiority or inferiority between the groups is determined in the order of the groups G8, G9 and G10. .
- a lot (good lot) included in the group determined to be excellent in each state is specified (S15). Specifically, the good lots included in the group G2 in the manufacturing state, the group G6 in the working state, and the group G8 in the physical state are specified. Lot No. Z132, Z135, Z146, Z147, Z148 and Z150 are good lots in the production state. Lot No. 128X, Z141X, Z153X, Z155X and Z156X are good lots in the working state. Furthermore, lot no. 127X, Z130X, Z142X, Z146X and Z148X are good lots in the physical distribution state.
- the good lot in the work state is specified (S17).
- a good lot included in the work state (selected state) is a lot number. Are 128X, Z141X, Z153X, Z155X and Z156X.
- the group including the good lot in the working state is determined again as the best (S18).
- the group G1 is a higher-ranking group than the other groups G3 and 4 including the good lot Z128X in the working state and including the good lot in the working state.
- the group G9 including Z128X, Z153X, Z155X, and Z156X is a group including the good lots in the working state. Therefore, the most excellent group in the manufacturing state is G1, and the most excellent group in the physical distribution state is G9.
- FIG. 16 is a graph showing the principal component load amount obtained by plotting the information amount shown in FIG. 6A in a coordinate system having the first principal component in the manufacturing state on the horizontal axis and the third principal component on the vertical axis.
- FIG. 17 is a graph showing the principal component load amount in which the information amount shown in FIG. 7A is plotted in a coordinate system with the first principal component in the working state as the horizontal axis and the third principal component as the vertical axis.
- FIG. 18 is a graph showing the principal component load amount in which the information amount shown in FIG. 8A is plotted in a coordinate system having the first principal component in the physical distribution state on the horizontal axis and the third principal component on the vertical axis. .
- PC1 three coordinate system
- the process data para1 to 16 corresponding to this position on the principal component load amount graph shown in FIG. 16 are specified as factors that are the process data characterizing the group G1.
- step S18 since the most advantageous group in the manufacturing state is changed to the group G1, the characteristic arrangement of the group G1 on the PC1, 3 coordinate system, that is, on the PC1, 3 coordinate system. 1, it is read that the first principal component PC1 coordinate is positive and the third principal component PC3 coordinate is positive.
- the process data corresponding to the characteristic arrangement of the group G1 on the PC1, 3 coordinate system is read from the principal component load amount graph shown in FIG. In this way, the PC1 of the principal component load amount and the process data (pPara4, 8, etc.) existing in the first quadrant on the three-coordinate system are determined as the first factor P1 that can affect the product data in the manufacturing state.
- the process data (pPara 9, 10, etc.) near the position that is point-symmetric with the first factor P1 with respect to the origin can affect the product data in the manufacturing state. It is determined as the second factor P2. This is because each process data on the PC1, 3 coordinate system of the principal component load amount is a vector. Therefore, if a negative value is substituted for the second factor P2, the first component value on the PC1, 3 coordinate system of the principal component load amount is calculated. This can be a quadrant.
- PC1, 2 coordinate system the characteristics of the most advantageous group G6 on the coordinate system (hereinafter referred to as “PC1, 2 coordinate system”) of the first principal component PC1 and the second principal component PC2 based on FIGS.
- the process data (wPara3, 5, etc.) existing in the second quadrant on the PC1, 2 coordinate system shown in FIG. 17 is determined as the third factor P3.
- the most advantageous group in the physical distribution state is the group G9. Therefore, on the PC1, 2 coordinate system shown in FIG. 18 corresponding to the characteristic arrangement of the group G9 in the PC1, 2 coordinate system of FIG.
- the process data (LPara2, 7, etc.) existing in the fourth quadrant is determined as the fourth factor P4.
- Step S16 when at least one or more good lots in the manufacturing state, working state, and physical distribution state are common (Yes in Step S16), the group G2 in the manufacturing state determined in Step S14, the group in the working state Based on G5 and the group G8 in the physical distribution state, the factors that can affect the quality are specified as in step S19.
- the selection state arbitrarily selected from the above and other selection states (manufacturing state, physical distribution state) are classified, and the highest-order groups G1 and G9 including the good lots in the selected state in the non-selected state are selected.
- FIG. 19 is a flowchart showing a production process analysis method according to the second embodiment of the present invention.
- the production process analysis method according to the present embodiment is different in only the process corresponding to the process S17 of the first embodiment described above, and the other processes are common. Accordingly, among the steps of the present embodiment, the steps overlapping with those of the first embodiment are denoted by reference numerals in the 20th order, and the description overlapping with the description of the first embodiment is omitted.
- the production process lots are divided into a plurality of groups in the same procedure as in steps S10 to S16 of the first embodiment described above, and the lots (good lots) included in the best group in each state are specified. Then, it is determined whether at least one good lot is common between the states (S20 to S26).
- the good lot included in the group having the best product data is specified (S27).
- the product data G6 in the work state and the product data G8 in the physical distribution state can be compared in common with the coloring good rate.
- the product data of the group G6 in the working state is 87%
- the product data of the group G8 in the logistics state is 86%. Therefore, the group having the best comparative product data (coloring good rate) is the group G6. It becomes.
- the good lots included in the group G6 are assigned lot numbers as shown in FIG. Becomes 128X, Z141X, Z153X, Z155X and Z156X.
- the highest ranking group including the good lot in the above-described working state is re-determined as the best (S28), and the characteristics of the group are expressed.
- Factors P1 to P4 are specified (S29).
- the best lot included in the groups G2, 6, and 8 determined to be the best in each state is not common among the three states.
- the state including the group G6 with the best product data among them (working state) is selected as the selected state, and in the other non-selected states (manufacturing state, physical distribution state) other than the selected state, the best lot including the selected lot is included.
- the “production process” in the present invention includes a process for manufacturing a product (product) or a process for providing a service. That is, the production process is not limited to a process for manufacturing a product. Services provided in the production process include, for example, services such as parts cleaning and analysis of clinical trial results in drug development.
- the production process including the manufacturing state, the working state, and the physical distribution state has been described as an example. However, the manufacturing process is not necessarily limited to the one including these three states, and at least of these three states. What is necessary is just to include two or more states.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Primary Health Care (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
【課題】機械設備による自動化工程や作業員による手作業工程等を含む複雑な生産プロセスで製造された製品や提供されるサービスの品質のばらつきを生じさせる要因を特定し、製品、サービスの品質を安定化させる生産プロセスの解析方法を提供する。 【解決手段】生産プロセスを構成する複数の状態毎に最優と判定されたグループに含まれる良ロットを特定する工程S13と、良ロットが複数の状態間で少なくとも1つ以上共通しない場合に、複数の状態を任意に選択された選択状態とその他の非選択状態とに区分し、非選択状態において選択状態内の良ロットを含む最も高順位のグループを最優のグループと判定し直す工程S18と、最優と判定されたグループを特徴付ける要因P1~5を特定する工程S19と、を含む生産プロセスの解析方法。
Description
本発明は、生産プロセスの解析方法に関し、特に、製品やサービスの品質にばらつきが生じる要因を特定する生産プロセスの解析方法に関する。
ファインケミカル等のバッチ処理に対応した製品を製造する生産プロセスでは、自動化された製造設備による工程や作業者による手作業の工程等を経て多品種少量生産に対応している。
また、パーツ洗浄や医薬品開発における治験結果の解析等のサービスを提供する生産プロセスでは、洗浄装置や解析装置を用いつつも作業者による手作業が欠かせない。
このような製品製造やサービス提供を行う生産プロセスでは、設備の運転状況、作業員の作業状況、原料や製品のハンドリングの仕方等によってロット間でも製品やサービスの品質にバラつきが生じる。
製品の品質のばらつきを抑制するために、製品の製造プロセスに関するプロダクトデータ及びプロセスデータに主成分分析及びクラスター分析を適用して製造プロセスのロットを複数のグループに区分し、グループ間の優劣に寄与するデータである阻害要因を特定するものが知られている(例えば、特許文献1参照)。
このような製造プロセスの解析方法では、グループ間の優劣に寄与する阻害要因を特定することにより、製造プロセスが効率的良く改善されるため、ロット間の製品の品質を向上させることができる。
しかしながら、上述したような特許文献1記載の解析方法は、製造ラインが製造設備のみで構成されるような全自動化された製造プロセスの改善には効果的である。一方、例えば製造設備が製造した半製品に作業員が手作業を施すような製造設備による製造工程とその他の工程とが複雑に関連する生産プロセスの場合には、上述した解析方法を適用して製造設備による製造工程のみを改善しても生産プロセスの部分最適化に留まり、生産プロセス全体の改善には及ばないという問題があった。
そこで、機械設備による自動化工程や作業員による手作業工程等を含む複雑な生産プロセスを経て製造される製品や提供されるサービスの品質のばらつきを生じさせる要因を特定し、製品やサービスの品質を安定化させるために解決すべき技術的課題が生じてくるのであり、本発明は、この課題を解決することを目的とする。
本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、製品又はサービスの生産プロセスに関するデータに基づいて前記生産プロセスのロットを複数のグループに区分し、該グループ間の特徴を表すデータである要因を特定する生産プロセスの解析方法であって、前記データを前記生産プロセスのロット毎に収集する工程と、前記生産プロセスを構成する複数の状態毎に前記ロットを複数のグループに区分し、前記状態毎に各グループの優劣を判定する工程と、前記状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、前記複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、前記良ロットが複数の状態間で少なくとも1つ以上共通しない場合、前記複数の状態を任意に選択された選択状態とその他の非選択状態とに区分し、前記非選択状態において前記最優のグループを除き前記選択状態内の良ロットを含むグループを最優のグループと判定し直して前記要因を特定する工程と、を含む生産プロセスの解析方法を提供する。
この構成によれば、各状態で最優と判定されたグループに含まれる良ロットが複数の状態間で少なくとも1つ以上共通しない場合、非選択状態において選択状態内の良ロットを含むグループを最優のグループと判定し直してグループの特徴を表す要因を特定することにより、複雑な生産プロセスの実行可能な改善を図ることができる。
請求項2記載の発明は、製品又はサービスの生産プロセスに関するデータに基づいて前記生産プロセスのロットを複数のグループに区分し、該グループの特徴を表すデータである要因を特定する生産プロセスの解析方法であって、前記製品又はサービスの品質を示す品質データを含む前記データを前記生産プロセスのロット毎に収集する工程と、前記生産プロセスを構成する複数の状態毎に前記ロットを複数のグループに区分し、前記状態毎に各グループの優劣を判定する工程と、前記状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、前記複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、前記良ロットが複数の状態間で少なくとも1つ以上共通しない場合、前記複数の状態間でプロダクトデータが最も優れたグループを含む状態を選択状態として選択し、前記選択状態を除く他の非選択状態において前記最優のグループを除き前記選択状態内の良ロットを含むグループを最優のグループと判定し直して前記要因を特定する工程と、を含む生産プロセスの解析方法を提供する。
この構成によれば、各状態で最優と判定されたグループに含まれる良ロットが複数の状態間で少なくとも1つ以上共通しない場合、複数の状態間で品質データが最も優れたグループを含む状態を選択状態として選択し、選択状態を除くその他の非選択状態において選択状態内の良ロットを含むグループを最優のグループと判定し直してグループの特徴を表す要因を特定することにより、複雑な生産プロセスの実行可能な改善を図ることができる。
請求項3記載の発明は、請求項1又は2記載の生産プロセスの解析方法の構成に加えて、前記非選択状態において前記選択状態内の良ロットを含むグループは、前記非選択状態において前記選択状態内の良ロットを含むグループ間で最高順位のグループである生産プロセスの解析方法を提供する。
この構成によれば、非選択状態においてプロダクトデータが他のグループより相対的に優れている高順位のグループに基づいて要因を特定するため、複雑な生産プロセスの実行可能且つ効果的な改善を図ることができる。
本発明は、各状態で最優と判定されたグループに含まれる良ロットが複数の状態間で少なくとも1つ以上共通しない場合、複数の状態を任意に選択された第1の状態とその他の状態とに区分し、その他の状態において第1の状態内の良ロットを含むグループを最優のグループと判定し直してグループの特徴を表す要因を特定することにより、複雑な生産プロセスの実行可能な改善を行うため、良好且つ安定した製品やサービスを提供可能な生産プロセスを得ることができる。
また、本発明は、各状態で最優と判定されたグループに含まれる良ロットが複数の状態間で少なくとも1つ以上共通しない場合、複数の状態間で品質データが最も優れたグループを含む状態を選択状態として選択し、選択状態を除く他の非選択状態において選択状態内の良ロットを含むグループを最優のグループと判定し直してグループの特徴を表す要因を特定することにより、複雑な生産プロセスの実行可能な改善を行うため、良好且つ安定した製品やサービスを提供可能な生産プロセスを得ることができる。
本発明は、機械設備による自動化工程や作業員による手作業工程等を含む複雑な生産プロセスで製造された製品や提供されるサービスの品質のばらつきを生じさせる要因を特定し、製品又はサービスの品質を安定化させるという目的を達成するために、製品又はサービスの生産プロセスに関するデータに基づいて生産プロセスのロットを複数のグループに区分し、グループの特徴を表すデータである要因を特定する生産プロセスの解析方法であって、データを生産プロセスのロット毎に収集する工程と、生産プロセスを構成する複数の状態毎にロットを複数のグループに区分し、状態毎に各グループの優劣を判定する工程と、状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、良ロットが複数の状態間で少なくとも1つ以上共通しない場合、複数の状態を任意に選択された選択状態とその他の非選択状態とに区分し、非選択状態において最優と判定されたグループを除き選択状態内の良ロットを含むグループを最優のグループと判定し直して要因を特定する工程と、を含むことにより実現する。
また、本発明は、機械設備による自動化工程や作業員による手作業工程等を含む複雑な生産プロセスで製造された製品や提供されるサービスの品質のばらつきを生じさせる要因を特定し、製品又はサービスの品質を安定化させるという目的を達成するために、製品又はサービスの生産プロセスに関するデータに基づいて生産プロセスのロットを複数のグループに区分し、グループの特徴を表すデータである要因を特定する生産プロセスの解析方法であって、製品又はサービスの品質を示す品質データを含むデータを生産プロセスのロット毎に収集する工程と、生産プロセスを構成する複数の状態毎にロットを複数のグループに区分し、状態毎に各グループの優劣を判定する工程と、状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、良ロットが複数の状態間で少なくとも1つ以上共通しない場合、複数の状態間で品質データが最も優れたグループを含む状態を選択状態として選択し、選択状態を除く他の非選択状態において最優と判定されたグループを除き選択状態内の良ロットを含むグループを最優のグループと判定し直して要因を特定する工程と、を含むことにより実現する。
本発明に係る解析方法は、製品(物)を製造するプロセス又はサービスを提供するプロセス(以下、総称して「生産プロセス」と称す)に適用される。生産プロセスには、機械設備のみで構成されて全ての工程が自動化されたプロセス、作業者の手作業による作業工程を含むプロセス並びに機械設備によって自動化された製造工程及び作業者の手作業による作業工程を含むプロセスを含む。
以下、本発明の第1実施例に係る生産プロセスの解析方法について説明する。なお、以下の実施例において、構成要素の数、数値、量、範囲等に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも構わない。
図1は、本発明を適用する生産プロセスの一例であるファインケミカルの製造ラインの工程を示すフローチャートである。なお、本発明を適用する生産プロセスは、ファインケミカルの製造ラインに限定して解釈されるものではなく、ファインケミカル以外の製品の製造ライン及びサービスを提供するプロセスも含まれることは言うまでもない。
ファインケミカルの製造ラインは、前工程と後工程とに大別される。前工程は、作業員が原料を反応炉に投入し、原料を反応させて粒状の半製品を製造するものであり、所謂バッチプロセスである。後工程は、主に作業員による手作業である。
前工程では、原料を反応炉に投入する受入工程S1、反応炉内で原料を反応させる反応工程S2、不純物を除去するろ過工程S3及び原料を所定サイズの粒状に成形する造粒工程S4を経て、半製品を製造する。前工程では、良好に反応が進むと、ろ過フィルタの目詰まりが少なくなるため、前工程での製品の品質(フィルタの交換回数)は減少する。これにより、前工程での単位時間当たりの造粒量は増大する。
後工程では、半製品に所定の色を塗布する着色工程S5、着色後の半製品を乾燥機で乾燥させる乾燥工程S6、着色不良をチェックする検査工程S7、製品を個装する包装工程S8及び出荷工程S9を経て製品が出荷される。後工程における製品の品質(着色良率)は、前工程の品質(フィルタ交換回数)と負の相関関係がある。即ち、フィルタの交換回数が少なく単位時間当たりの造粒量が多いと、作業員が手作業で行う着色工程S5でミスが発生し易くなり、着色不良が増加する傾向がある。
製造ラインを構成する各機器には、種々の値を測定する図示しないセンサが設けられている。センサの測定対象は、原料の投入量、反応炉内の温度、反応温度、単位時間当たりの造粒量等である。センサは、製造ラインを構成する製造設備を整除する制御装置に測定値を送る。
制御装置は、センサが測定した製品の生産条件を示すプロセスデータ、製品の品質(フィルタの交換回数、着色良率等)を示すプロダクトデータ(品質データ)に基づいて、後述する処理を行う。プロセスデータは、製品の品質に影響し得る因子であり、生産プロセスの生産条件(製造設備の運転条件等)、原料の条件(原料の物性、組成等)、作業員が手作業で行う作業の内容(作業時間、移動回数等)及び製品等のハンドリングの内容(半製品、仕掛品の滞留時間等)を含む。
なお、本実施例では、プロセスデータの種類に応じて、生産プロセスを製造状態、作業状態及び物流状態の3つの状態に区分している。具体的には、「製造状態」とは、設備の観点で製品の品質に影響し得るものを指す。「作業状態」とは、作業員の観点で製品の品質に影響し得るものを指す。「物流状態」とは、原料、半製品及び製品のハンドリングの観点で製品の品質に影響し得るものを指す。なお、生産プロセスは、上述した3つの状態に区分可能なものに限定されず、上述した3つの状態のうち少なくとも2つ以上の状態が含まれるものであればよい。
なお、生産プロセスを成す複数の状態は、互いに相関関係を有し、全状態のプロダクトデータを一様に改善することが難しい場合がある。そこで、生産プロセスを複数の状態に区分し、後述する解析方法によって各状態において製品の品質に影響し得る要因(プロセスデータ)を個別に把握して、ある要因の変更が他の状態に及ぼす影響を検討しながらプロセス全体の実行可能な改善を図ることができる。
次に、本実施例に係る生産プロセスの解析方法について、図面に基づいて説明する。図2は、本発明の第1実施例に係る生産プロセスの解析方法を示すフローチャートである。
まず、動作済みの生産プロセスについて、制御装置は、センサが測定したプロセスデータとプロダクトデータとを収集する(S10)。この工程S10では、ロット毎のプロセスデータ及びプロダクトデータを制御装置に記憶する。
次に、工程S1で収集したプロセスデータ及びプロダクトデータを標準化して中間関数に変換する(S11)。
図3は、製造状態におけるロット毎のプロセスデータ及びプロダクトデータを標準化した数値を示す表である。図3では、17のロットについて、各ロットで収集した製造状態におけるプロセスデータpPara1~16を示している。プロセスデータpPara1~16は、原料の受入検査値、投入量、反応炉内の温度等である。また、プロダクトデータは、反応炉内のフィルターの交換回数である。
図4は、作業状態におけるロット毎のプロセスデータ及びプロダクトデータを標準化した数値を示す表である。図4では、各ロットで収集した作業状態におけるプロセスデータwPara1~6を示している。プロセスデータwPara1~6は、作業時間や作業場間の移動回数等である。また、プロダクトデータは、製品の着色良率である。
図5は、物流状態におけるロット毎のプロセスデータ及びプロダクトデータを標準化した数値を示す表である。図5では、各ロットで収集した物流状態におけるプロセスデータLPara1~8を示している。プロセスデータLPara1~8は、半製品、製品の滞留時間やリードタイム等である。また、プロダクトデータは、製品の着色良率である。
次に、工程S2で求めた中間変数に主成分分析法を適用して、図6~8に示すような主成分負荷量及び主成分得点を求める(S12)。図6は、製造状態におけるプロセスデータ毎の主成分負荷量及びロット毎の主成分得点を示す図である。図7は、作業状態におけるプロセスデータ毎の主成分負荷量及びロット毎の主成分得点を示す図である。図8は、物流状態におけるプロセスデータ毎の主成分負荷量及びロット毎の主成分得点を示す図である。
工程2では、まず、中間変数における相関係数行列を作成し、相関係数行列の固有値と固有ベクトルを導出する。相関係数行列は、中間変数がx1、x2、x3・・のときに、第1主成分PC1は、数式2で示すように表される。また、第N主成分PCnは、数式3で示すように表される。そして、係数a11、a12、a13・・を1行目の要素、係数an1、an2、an3・・をn行目の要素に用いることにより、相関係数行列が形成される。
図6(a)に製造状態におけるプロセスデータpPara1~16の第1主成分PC1、第2主成分PC2、第3主成分3の情報量(主成分負荷量)を示す。図7(a)に作業状態におけるプロセスデータwPara1~6の第1主成分PC1、第2主成分PC2、第3主成分3の情報量(主成分負荷量)を示す。図8(a)に物流状態におけるプロセスデータLPara1~8の第1主成分PC1、第2主成分PC2、第3主成分3の情報量(主成分負荷量)を示す。なお、本実施例では、3つの主成分のみを示しているが、各主成分の寄与率に応じて主成分の数を増減しても構わない。
次に、相関係数行列の固有ベクトルから主成分得点を求める。また、相関係数行列の固有値から各主成分の寄与率を求める。主成分の寄与率は、固有値を固有値の総和で割ることで得られる。ここで、固有値の大きい方から、第1主成分、第2主成分・・第N主成分を決定する。
具体的には、制御装置が、各ロットの中間変数x1、x2、x3と相関係数行列の各係数とに基づいて、第1主成分PC1、第2主成分PC2・・の値、即ち、主成分得点を算出とする。図6(b)に製造状態における各ロットの主成分得点を示す。図7(b)に作業状態における各ロットの主成分得点を示す。図8(b)に物流状態における各ロットの主成分得点を示す。
図9は、製造状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図6(b)に示す情報量をプロットした主成分得点を示すグラフである。図10は、作業状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図7(b)に示す情報量をプロットした主成分得点を示すグラフである。図11は、物流状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図8(b)に示す情報量をプロットした主成分得点を示すグラフである。
次に、制御装置が図6(b)、図7(b)及び図8(b)に示す主成分得点にクラスター分析を適用して、各ロットを複数のグループに区分する(S13)。「クラスター分析」とは、解析対象データ(クラスター)を類似性に着目して複数のグループに分類する方法であり、階層的クラスタリングや分類最適化クラスタリング等が知られている。本実施例におけるクラスター分析が着目する「類似性」とは、各ロットの主成分得点同士の距離をいう。本実施例では、階層的クラスタリングの一つである凝集型階層的クラスタリングを用いた。また、クラスター間の距離算出方法として、安定して解を得られるウォード法を用いた。「ウォード法」とは、2つのクラスターを併合した際の偏差平方和の増加量が最小になるクラスターを選択するものである。例えば、クラスターA、Bを併合してクラスターCを生成する場合、クラスターA、B、C内の偏差平方和Sa、Sb、Scは、それぞれ数式4~6のように表される。
数式7のΔSabは、クラスターA、Bを併合してクラスターCを生成した際の偏差平方和の増分であることを意味する。したがって、各併合段階でΔSabが最小になるようにクラスターを選択して併合することにより、クラスタリングを進めていく。
本実施例では、図12に示すよう、クラスター分析の結果、製造状態においては各ロットを3つのグループG1~4に区分することができた。この結果を図9に反映させたものを図13に示す。なお、グループの数は、3つに限定されるものではなく、ハンドリングし易い数であれば2つ以下でも4つ以上であっても構わない。
また、作業状態についてクラスター分析した結果を図10に反映したものを図14に示し、区分されたグループをグループG5~7と称す。さらに、物流状態についてクラスター分析した結果を図11に反映したものを図15に示し、区分されたグループをグループG8~10と称す。
次に、グループ毎に優劣を判定する(S14)。この工程S14では、制御装置は、記憶された製造状態に関するプロダクトデータ(フィルタの交換回数)から得られる中間変数をグループG1~4に属するロット毎に呼び出し、これらプロダクトデータの良否を判定する。また、作業状態及び物流状態についても同様に、グループG5~10に属するロット毎にプロダクトデータ(着色良率)から得られる中間変数をグループG5~10に属するロット毎に呼び出し、これらのプロダクトデータの良否を判定する。
なお、プロダクトデータの良否は、グループ内の平均値に基づいて行うのが好ましい。これにより、グループ内のプロダクトデータのばらつきが平準化され、グループ間のプロダクトデータの良否の傾向を大局的に把握することができる。図13中の数値は、各グループにおけるプロダクトデータ(フィルタの交換回数の平均値)である。また、図14、15中の数値は、各グループにおけるプロダクトデータ(着色良率の平均値)である。
また、プロダクトデータの良否は、グループ内におけるプロダクトデータの偏差の大小や最大値及び最小値の差(範囲)の大小に基づいて判定しても構わないし、平均値、偏差又はR値等を2つ以上組み合わせて判定しても構わない。平均値と偏差とを組み合わせてプロダクトデータの良否を判定するものとして、例えば、グループ内の平均値が同一の場合には、グループ内の偏差が小さいものを良と判断することが考えられる。これにより、グループ内でのプロダクトデータのばらつきを考慮したグループ間のプロダクトデータの良否の傾向を大局的に把握することができる。
そして、制御装置は、各状態におけるグループ毎にプロダクトデータを比較し、その優劣を決定する。すなわち、製造状態においては、グループG1~4毎にプロダクトデータを比較し、グループG1~4間の優劣を決定する。同様に、作業状態においては、グループG5~7毎にプロダクトデータを比較して、グループG5~7間の優劣を決定し、物流状態においては、グループG8~10毎にプロダクトデータを比較して、グループG8~10間の優劣を決定する。
具体的には、製造状態では、グループG2が最も良好なプロダクトデータを示し、以下、G1、G3、G4の順にプロダクトデータが悪化していることから、グループ間の優劣は、グループG2、G1、G3、G4の順に決定した。また、作業状態では、グループG6が最も良好なプロダクトデータを示し、以下、G5、G7の順にプロダクトデータが悪化していることから、グループ間の優劣は、グループG6、G5、G7の順に決定した。さらに、物流状態では、グループG8が最も良好なプロダクトデータを示し、以下、G9、G10の順にプロダクトデータが悪化していることから、グループ間の優劣は、グループG8、G9、G10の順に決定した。
次に、各状態において優と判定されたグループに含まれるロット(良ロット)を特定する(S15)。具体的には、製造状態のグループG2、作業状態におけるグループG6及び物流状態におけるグループG8に含まれる良ロットを特定する。ロットNo.がZ132、Z135、Z146、Z147、Z148及びZ150が製造状態における良ロットである。また、ロットNo.が128X、Z141X、Z153X、Z155X及びZ156Xが作業状態における良ロットである。さらに、ロットNo.が127X、Z130X、Z142X、Z146X及びZ148Xが物流状態における良ロットである。
次に、3つの状態間で良ロットが少なくとも1つ以上共通するか否かを判定する(S16)。本実施例では、グループG2、G6、G8全てに共通する良ロットは存在しない。
製造状態、作業状態及び物流状態の各良ロットが少なくとも1つ以上共通しない場合には(工程S16でNo)、作業状態の良ロットを特定する(S17)。作業状態(選択状態)に含まれる良ロットは、ロットNo.が128X、Z141X、Z153X、Z155X及びZ156Xである。
次に、製造状態及び物流状態(非選択状態)において、作業状態の良ロットを含むグループを最優と判定し直す(S18)。本実施例では、製造状態では、グループG1が、作業状態の良ロットZ128Xを含み、且つ製造状態において作業状態の良ロットを含む他のグループG3、4よりも高順位のグループである。また、物流状態においては、Z128X、Z153X、Z155X及びZ156Xを含むグループG9が、作業状態の良ロットを含むグループである。したがって、製造状態において最も優れたグループをG1とし、物流状態において最も優れたグループをG9とする。
次に、各状態において最優と判定されたグループの特徴を表す要因を特定する(S19)。工程S19では、図13~18に基づいて最優と判定されたグループG1の特徴を表す要因を特定する。図16は、製造状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図6(a)に示す情報量をプロットした主成分負荷量を示すグラフである。また、図17は、作業状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図7(a)に示す情報量をプロットした主成分負荷量を示すグラフである。また、図18は、物流状態の第1主成分を横軸、第3主成分を縦軸とする座標系に図8(a)に示す情報量をプロットした主成分負荷量を示すグラフである。
製造状態における最優と判定されたグループG1の特徴を表す要因を特定する際には、第1主成分PC1、第3主成分PC3の座標系(以下、「PC1、3座標系」という)上のグループG1の特徴的な配置関係に着目し、図16に示す主成分負荷量のグラフ上でこの位置に対応するプロセスデータpara1~16がグループG1を特徴付けるプロセスデータである要因として特定する。
具体的には、工程S18において、製造状態における最優のグループがグループG1に変更されたことから、グループG1のPC1、3座標系上での特徴的な配置、即ち、PC1、3座標系上において第1主成分PC1座標がプラスであり、且つ第3主成分PC3座標がプラスであることを読み取る。次に、グループG1のPC1、3座標系上での特徴的な配置に対応するプロセスデータを図16に示す主成分負荷量のグラフ上から読み取る。このようにして、主成分負荷量のPC1、3座標系上における第1象限に存在するプロセスデータ(pPara4、8等)を製造状態のプロダクトデータに影響し得る第1の要因P1として判定する。
また、図16に示す主成分負荷量のグラフ上において、原点に対して第1の要因P1と点対称な位置付近のプロセスデータ(pPara9、10等)を製造状態のプロダクトデータに影響し得る第2の要因P2として判定する。これは、主成分負荷量のPC1、3座標系上の各プロセスデータはベクトルであるから、第2の要因P2に負の値を代入すると主成分負荷量のPC1、3座標系上における第1象限にもなり得るためである。
作業状態においても同様に、図14、17に基づいて、第1主成分PC1、第2主成分PC2の座標系(以下、「PC1、2座標系」という)上の最優のグループG6の特徴的な配置関係に着目することにより、図17に示すPC1、2座標系上における第2象限に存在するプロセスデータ(wPara3、5等)を第3の要因P3として判定する。
また、物流状態においては、物流状態における最優のグループがグループG9であるから、図15のPC1、2座標系におけるグループG9の特徴的な配置に対応する図18に示すPC1、2座標系上における第4象限に存在するプロセスデータ(LPara2、7等)を第4の要因P4として判定する。
なお、工程S16において、製造状態、作業状態及び物流状態の各良ロットが少なくとも1つ以上共通する場合には(工程S16でYes)、工程S14で判定した製造状態におけるグループG2、作業状態におけるグループG5及び物流状態におけるグループG8に基づいて、工程S19と同様に品質に影響し得る要因を特定する。
上述したように、本実施例に係る発明は、各状態で最優と判定されたグループG2、6、8に含まれる良ロットが3つの状態間で少なくとも1つ以上共通しない場合、これらの状態から任意に選択された選択状態(作業状態)とその他の選択状態(製造状態、物流状態)とを区分し、非選択状態において選択状態内の良ロットを含む最も高順位のグループG1、9を最優のグループと判定し直して要因P1~4を特定することにより、複雑な生産プロセスの実行可能な改善が図れるため、良好な製品性能及び製造性能を安定して示す生産プロセスを得ることができる。
また、作業状態において品質に影響し得る要因を製造状態又は物流状態において品質に影響し得る要因に優先して特定することにより、作業者が効率的に作業できるように生産プロセス全体を改善することができる。
次に、本発明の第2実施例に係る生産プロセスの解析方法について、図面に基づいて説明する。図19は、本発明の第2実施例に係る生産プロセスの解析方法を示すフローチャートである。なお、本実施例に係る生産プロセスの解析方法は、上述した第1実施例の工程S17に対応する工程が異なるのみであり、その他の工程は共通する。したがって、本実施例の工程のうち第1実施例と重複する工程は20番台の符号を付して、第1実施例の説明と重複する説明を省略する。
まず、上述した第1実施例に係る工程S10~16と同様の手順で、生産プロセスのロットを複数のグループに区分し、各状態で最優のグループに含まれるロット(良ロット)を特定して、状態間で良ロットが少なくとも1つ以上共通するかを判定する(S20~26)。
製造状態、作業状態及び物流状態の各良ロットが少なくとも1つ以上共通しない場合には(工程S26でNo)、プロダクトデータが最も優れたグループに含まれる良ロットを特定する(S27)。本実施例では、作業状態のプロダクトデータG6及び物流状態のプロダクトデータG8は、何れも着色良率で共通して比較可能である。そして、作業状態のグループG6のプロダクトデータは87%であり、物流状態のグループG8のプロダクトデータは86%であるから、比較可能なプロダクトデータ(着色良率)が最も優れたグループは、グループG6となる。そして、グループG6に含まれる良ロットは、図14に示すように、ロットNo.が128X、Z141X、Z153X、Z155X及びZ156Xとなる。
そして、工程S28~29と同様の手順で、製造状態及び物流状態においては、上述した作業状態における良ロットを含む最も高順位のグループを最優と判定し直し(S28)、グループの特徴を表す要因P1~4を特定する(S29)。
上述したように、本実施例に係る発明は、各状態で最優と判定されたグループG2、6、8に含まれる良ロットが3つの状態間で少なくとも1つ以上共通しない場合、これらの状態間でプロダクトデータが最も優れたグループG6を含む状態(作業状態)を選択状態として選択し、選択状態を除く他の非選択状態(製造状態、物流状態)において選択状態内の良ロットを含む最も高順位のグループG2、9を最優のグループと判定し直して各グループの特徴を表す要因P1~4を特定することにより、製造設備の全自動作業と作業員の手作業とを含む生産プロセスが効率良く改善されるため、良好な製品性能及び製造性能を安定して示す生産プロセスを得ることができる。
なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が該改変されたものにも及ぶことは当然である。
本発明における「生産プロセス」とは、製品(物)を製造するプロセス又はサービスを提供するプロセスを含むものである。すなわち、生産プロセスとは、物を製造するプロセスに限定されない。生産プロセスで提供されるサービスとは、例えば、パーツ洗浄や医薬品開発における治験結果の解析等のサービスが含まれる。また、上述した実施例では、製造状態、作業状態及び物流状態を含む生産プロセスを例に説明したが、必ずしもこれら3つの状態を含むものに限定されるものではなく、これら3つの状態のうち少なくとも2つ以上の状態が含まれるものであればよい。
Claims (3)
- 製品又はサービスの生産プロセスに関するデータに基づいて前記生産プロセスのロットを複数のグループに区分し、該グループの特徴を表すデータである要因を特定する生産プロセスの解析方法であって、
前記データを前記生産プロセスのロット毎に収集する工程と、
前記生産プロセスを構成する複数の状態毎に前記ロットを複数のグループに区分し、前記状態毎に各グループの優劣を判定する工程と、
前記状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、
前記複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、
前記良ロットが複数の状態間で少なくとも1つ以上共通しない場合、前記複数の状態を任意に選択された選択状態とその他の非選択状態とに区分し、前記非選択状態において前記選択状態内の良ロットを含むグループを最優のグループと判定し直して前記要因を特定する工程と、
を含むことを特徴とする生産プロセスの解析方法。 - 製品又はサービスの生産プロセスに関するデータに主成分分析及びクラスター分析を適用して前記生産プロセスのロットを複数のグループに区分し、該グループ間の特徴を表すデータである要因を特定する生産プロセスの解析方法であって、
前記製品又はサービスの品質を示す品質データを含む前記データを前記生産プロセスのロット毎に収集する工程と、
前記生産プロセスを構成する複数の状態毎に前記ロットを複数のグループに区分し、前記状態毎に各グループの優劣を判定する工程と、
前記状態毎に最優と判定されたグループに含まれる良ロットを特定する工程と、
前記複数の状態間で良ロットが少なくとも1つ以上共通するか否かを判定する工程と、
前記良ロットが複数の状態間で少なくとも1つ以上共通しない場合、前記複数の状態間で品質データが最も優れたグループを含む状態を選択状態として選択し、前記選択状態を除く他の非選択状態において前記選択状態内の良ロットを含むグループを最優のグループと判定し直して前記要因を特定する工程と、を含むことを特徴とする生産プロセスの解析方法。 - 前記非選択状態において前記選択状態内の良ロットを含むグループは、前記非選択状態において前記選択状態内の良ロットを含むグループ間で最高順位のグループであることを特徴とする請求項1又は2記載の生産プロセスの解析方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/304,645 US10902530B2 (en) | 2016-10-26 | 2017-03-06 | Production process analysis method |
DE112017002268.1T DE112017002268T5 (de) | 2016-10-26 | 2017-03-06 | Analyseverfahren für fertigungsprozesse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016209179A JP6716423B2 (ja) | 2016-10-26 | 2016-10-26 | 生産プロセスの解析方法 |
JP2016-209179 | 2016-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018078903A1 true WO2018078903A1 (ja) | 2018-05-03 |
Family
ID=62023321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008682 WO2018078903A1 (ja) | 2016-10-26 | 2017-03-06 | 生産プロセスの解析方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10902530B2 (ja) |
JP (1) | JP6716423B2 (ja) |
DE (1) | DE112017002268T5 (ja) |
TW (1) | TWI637251B (ja) |
WO (1) | WO2018078903A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210334947A1 (en) * | 2020-04-27 | 2021-10-28 | Yokogawa Electric Corporation | Data analysis system, data analysis method, and non-transitory computer-readable medium |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11112784B2 (en) | 2016-05-09 | 2021-09-07 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for communications in an industrial internet of things data collection environment with large data sets |
US11327475B2 (en) | 2016-05-09 | 2022-05-10 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for intelligent collection and analysis of vehicle data |
US11774944B2 (en) | 2016-05-09 | 2023-10-03 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for the industrial internet of things |
US11442445B2 (en) | 2017-08-02 | 2022-09-13 | Strong Force Iot Portfolio 2016, Llc | Data collection systems and methods with alternate routing of input channels |
JP7217593B2 (ja) * | 2018-05-24 | 2023-02-03 | 株式会社日立ハイテクソリューションズ | 予兆診断システム |
JP6481916B1 (ja) * | 2018-06-26 | 2019-03-13 | 三菱ケミカルエンジニアリング株式会社 | 生産システム、生産方法及び制御装置 |
JP6549760B1 (ja) * | 2018-06-26 | 2019-07-24 | 三菱ケミカルエンジニアリング株式会社 | 生産システム、生産方法、及び制御装置 |
KR102458999B1 (ko) * | 2019-09-30 | 2022-10-25 | 미쓰비시덴키 가부시키가이샤 | 정보 처리 장치, 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체 및 정보 처리 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005284650A (ja) * | 2004-03-29 | 2005-10-13 | Toshiba Corp | 不良原因装置特定システム及び不良原因装置特定方法 |
JP2016177794A (ja) * | 2015-03-10 | 2016-10-06 | 三菱化学エンジニアリング株式会社 | 製造プロセスの解析方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3099932B2 (ja) * | 1993-12-14 | 2000-10-16 | 株式会社東芝 | インテリジェントテストラインシステム |
JP3834008B2 (ja) * | 2003-03-19 | 2006-10-18 | 株式会社東芝 | 不良解析装置、不良解析方法および不良解析プログラム |
JP3913715B2 (ja) * | 2003-06-18 | 2007-05-09 | 株式会社東芝 | 不良検出方法 |
US7477958B2 (en) * | 2005-05-11 | 2009-01-13 | International Business Machines Corporation | Method of release and product flow management for a manufacturing facility |
CN101308385B (zh) * | 2008-07-11 | 2011-04-13 | 东北大学 | 基于二维动态核主元分析的非线性过程故障检测方法 |
CN101963810A (zh) * | 2010-10-22 | 2011-02-02 | 北京理工大学 | 一种分批流水生产压件数量分析方法 |
JP5263339B2 (ja) * | 2011-06-14 | 2013-08-14 | オムロン株式会社 | データ収集システム、解析装置、解析方法、およびプログラム |
CN102520705B (zh) * | 2011-12-31 | 2014-11-26 | 中国石油天然气股份有限公司 | 一种炼化生产过程优化分析方法及系统 |
KR20130112098A (ko) * | 2012-04-03 | 2013-10-14 | 이진용 | 공정설계 및 공정분석 방법 |
US10290088B2 (en) * | 2014-02-14 | 2019-05-14 | Kla-Tencor Corporation | Wafer and lot based hierarchical method combining customized metrics with a global classification methodology to monitor process tool condition at extremely high throughput |
JP2016076089A (ja) * | 2014-10-07 | 2016-05-12 | 東京電力株式会社 | 生産効率分析方法 |
-
2016
- 2016-10-26 JP JP2016209179A patent/JP6716423B2/ja active Active
-
2017
- 2017-03-06 US US16/304,645 patent/US10902530B2/en active Active
- 2017-03-06 DE DE112017002268.1T patent/DE112017002268T5/de active Pending
- 2017-03-06 WO PCT/JP2017/008682 patent/WO2018078903A1/ja active Application Filing
- 2017-03-16 TW TW106108780A patent/TWI637251B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005284650A (ja) * | 2004-03-29 | 2005-10-13 | Toshiba Corp | 不良原因装置特定システム及び不良原因装置特定方法 |
JP2016177794A (ja) * | 2015-03-10 | 2016-10-06 | 三菱化学エンジニアリング株式会社 | 製造プロセスの解析方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210334947A1 (en) * | 2020-04-27 | 2021-10-28 | Yokogawa Electric Corporation | Data analysis system, data analysis method, and non-transitory computer-readable medium |
Also Published As
Publication number | Publication date |
---|---|
US20190304037A1 (en) | 2019-10-03 |
TW201816533A (zh) | 2018-05-01 |
JP6716423B2 (ja) | 2020-07-01 |
DE112017002268T5 (de) | 2019-01-17 |
TWI637251B (zh) | 2018-10-01 |
JP2018072969A (ja) | 2018-05-10 |
US10902530B2 (en) | 2021-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018078903A1 (ja) | 生産プロセスの解析方法 | |
JP5956094B1 (ja) | 製造プロセスの解析方法 | |
Kumar et al. | An ISM based framework for structural relationship among various manufacturing flexibility dimensions | |
TWI756645B (zh) | 產生塗料、清漆、印刷油墨、研磨樹脂、顏料濃縮物、或其它塗覆材料之組合物的方法、電腦系統、電腦程式、及系統 | |
JP2016167205A (ja) | 製造プロセスのモニタリング方法 | |
Lateef-Ur-Rehman | Manufacturing configuration selection using multicriteria decision tool | |
Koulouris et al. | Throughput analysis and debottlenecking of integrated batch chemical processes | |
Thakkar et al. | Multi-objective optimization on the basis of ratio analysis method (MOORA) | |
Miraz et al. | Industry 5.0: The Integration of Modern Technologies | |
Kumar | Simulation of manufacturing system at different part mix ratio and routing flexibility | |
JP6923420B2 (ja) | 生産プロセスの解析方法 | |
US20200090186A1 (en) | Fabricated data detection method | |
Schuh et al. | A framework for assessing and characterizing cellular production structures | |
Xionglin et al. | Interaction analysis and decomposition principle for control structure design of large-scale systems | |
Calmano et al. | Evaluation of control strategies in forming processes | |
Vannucci et al. | AI Data Analysis and SOM for the Monitoring and Improvement of Quality in Rolled Steel Bars | |
JP2021121915A (ja) | 生産プロセスのモニタリング方法 | |
Piotrowski et al. | Multi-criteria robot selection problem for an automated single-sided lapping system | |
Venkateswarlu et al. | Selection of equipment by using saw and Vikor methods | |
Torn et al. | Towards a Structured Decision-Making Framework for Automating Cognitively Demanding Manufacturing Tasks | |
Bhattacharjee et al. | Selection of robotic grippers under MCDM environment: An optimized trade Off technique | |
JP7507596B2 (ja) | 生産性改善支援システム及び生産性改善支援方法 | |
US20230394492A1 (en) | Ai-based defect diagnosis system and method | |
Batra et al. | Challenges in Flexible Manufacturing Systems: A Review | |
Sand et al. | Holistic production analysis for actuator manufacturing using data mining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17863807 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17863807 Country of ref document: EP Kind code of ref document: A1 |