WO2018076981A1 - 空调及其制热防冷风装置和方法 - Google Patents

空调及其制热防冷风装置和方法 Download PDF

Info

Publication number
WO2018076981A1
WO2018076981A1 PCT/CN2017/103141 CN2017103141W WO2018076981A1 WO 2018076981 A1 WO2018076981 A1 WO 2018076981A1 CN 2017103141 W CN2017103141 W CN 2017103141W WO 2018076981 A1 WO2018076981 A1 WO 2018076981A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ambient temperature
preset
current intensity
wind speed
Prior art date
Application number
PCT/CN2017/103141
Other languages
English (en)
French (fr)
Inventor
王美
梁义庚
叶务占
金海元
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/345,460 priority Critical patent/US10982890B2/en
Priority to EP17863765.8A priority patent/EP3534080B1/en
Publication of WO2018076981A1 publication Critical patent/WO2018076981A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of electrical appliances, and in particular to an air conditioner and a heating and cooling device and method thereof.
  • the indoor heat exchanger temperature is low, in order to prevent the air conditioner from blowing cold air, it is usually controlled by delaying the opening of the fan. Since the fan is not turned on, the indoor side high pressure rises faster after the air conditioning system is heated. The temperature of the indoor heat exchanger will also rise faster. When the temperature of the indoor heat exchanger sensor reaches the set temperature, or the delay time reaches the set value, the fan will be turned on, which is called anti-cold wind control.
  • the existing heating and anti-cold air method is simply based on the condition of the air conditioner evaporator tube temperature as the basis for entering the anti-cold wind (ie, the internal fan is started), and the load of the system cannot be accurately determined, especially in the case of low load.
  • the time of anti-cold wind ensures that the first outlet air is hot air and meets the optimal comfort experience.
  • the existing heating and anti-cold wind method has no current intensity determination condition, and can not judge the system abnormality, which is easy in the case of system failure.
  • the resulting pressure is too high, creating safety hazards; and the existing anti-cold method lacks intelligent judgment on the operation of the air deflector and the inner fan, and cannot guarantee the comfortable experience of the human body when the wind deflector is positive, and the optimal Exit the anti-cold wind time.
  • the present invention provides a water heater and a leakage detecting device and method thereof, which can effectively improve the reliability of leakage detection.
  • an air conditioning heating and cooling air device comprising: a temperature detecting unit, configured to respectively detect an indoor ambient temperature and an outdoor ambient temperature after the heating is turned on to determine the indoor ambient temperature and the outdoor environment. The integrated temperature interval to which the temperature belongs; the first determining unit is configured to determine whether the inner tube temperature of the evaporator satisfies the internal temperature of the indoor temperature and the integrated temperature range corresponding to the outdoor ambient temperature, and the inner tube of the evaporator required to enter the anti-cold air mode Whether the temperature condition, or the length of time the compressor and the four-way valve are put into operation, reach the compressor and the four-way valve operation time required to enter the anti-cold air mode corresponding to the integrated temperature range to which the indoor ambient temperature and the outdoor ambient temperature belong, or Whether the current intensity reaches the first preset current intensity threshold continuously for a predetermined period of time; the first control unit is configured to start the inner fan at the first preset wind speed if any of the determination results of the first
  • the device further includes: a setting unit, configured to set a plurality of integrated temperature intervals, the setting unit is further configured to: set a plurality of indoor ambient temperature intervals and a plurality of outdoor ambient temperature intervals, and each different indoor The ambient temperature ranges correspond to different outdoor ambient temperature intervals, forming a plurality of integrated temperature intervals.
  • a setting unit configured to set a plurality of integrated temperature intervals
  • the setting unit is further configured to: set a plurality of indoor ambient temperature intervals and a plurality of outdoor ambient temperature intervals, and each different indoor The ambient temperature ranges correspond to different outdoor ambient temperature intervals, forming a plurality of integrated temperature intervals.
  • the temperature detecting unit is further configured to: after the predetermined delay time is turned on, detect the indoor ambient temperature and the outdoor ambient temperature.
  • the device further includes: a third control unit, configured to: after the heating is turned on, the wind deflector is driven to the first preset position.
  • the third control unit is further configured to: after the internal fan is activated, the evaporation required to exit the anti-cold wind mode corresponding to the integrated temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature Whether the inner tube temperature condition, or the current intensity continues for a predetermined period of time to reach a second predetermined current intensity threshold, or the inner fan is at the first preset wind speed When the running time reaches the second preset time, the wind deflector is driven to the second preset position.
  • a method for air conditioning heating and cooling air comprising: respectively detecting an indoor ambient temperature and an outdoor ambient temperature after heating and starting to determine an integrated temperature interval to which the indoor ambient temperature and the outdoor ambient temperature belong; Determining whether the temperature of the inner tube of the evaporator satisfies the temperature condition of the inner tube of the evaporator required to enter the anti-cold wind mode corresponding to the integrated temperature range to which the indoor ambient temperature and the outdoor ambient temperature belong, or the duration of the compressor and the four-way valve being put into operation Whether the running time of the compressor and the four-way valve required to enter the anti-cold air mode corresponding to the integrated temperature range to which the indoor ambient temperature and the outdoor ambient temperature belong, or whether the current intensity continues for a predetermined period of time reaches the first preset current intensity threshold If yes, the internal fan is started at the first preset wind speed; after the internal fan is started, it is determined whether the temperature of the inner tube of the evaporator satisfies the exit
  • Evaporator inner tube temperature condition or current intensity Whether the predetermined duration reaches the second preset current intensity threshold, or whether the duration of the inner fan running at the first preset wind speed reaches a first preset duration; if so, the inner fan is turned to operate at the second preset wind speed, wherein The first preset wind speed is less than the second preset wind speed.
  • the method further includes: setting a plurality of integrated temperature intervals, comprising: setting a plurality of indoor ambient temperature intervals and a plurality of outdoor ambient temperature intervals, respectively, each different indoor ambient temperature interval corresponding to different outdoor ambient temperature intervals Forming multiple integrated temperature intervals.
  • the method further includes: after the heating is turned on, driving the air deflector to the first preset position.
  • the method further includes: after the internal fan is started, when the temperature of the inner tube of the evaporator satisfies the integrated temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature, the evaporator inner tube temperature required to exit the anti-cold air mode is satisfied.
  • the condition, or the continuous detection of the current intensity reaches the second preset current intensity threshold for a predetermined period of time, or the duration of the inner fan running at the first preset wind speed reaches the second preset duration, the wind deflector is driven to the first Two preset positions.
  • an air conditioner comprising the apparatus of any of the above.
  • the timing of entering the anti-cold air mode is determined according to the integrated temperature range in which the indoor ambient temperature and the outdoor ambient temperature are located, and the conditions of the inner tube temperature, the compressor running time, and the current intensity are integrated to optimize the system entry. Timing and system pressure of anti-cold wind mode The force and the outlet air temperature ensure the comfort of the first outlet in the heating mode; the current intensity is used as a determination condition to enter the anti-cold wind mode, which can avoid the system from being overheated due to abnormality in the anti-cold wind stage. Safety hazard; and, the integrated evaporator inner tube temperature, internal fan running time, current intensity condition to determine the exit anti-cold wind mode and the timing of the wind deflector to positive, can provide users with a comfortable heating experience.
  • FIG. 1 is a block diagram showing the structure of an air conditioner and a heating and cooling device thereof according to an embodiment of the present invention.
  • FIG. 2 is a table showing correspondence between different indoor ambient temperature intervals and outdoor ambient temperature intervals corresponding to different integrated temperature intervals according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of an air conditioner and a heating and cooling device thereof according to another embodiment of the present invention.
  • FIG. 4 is a flow chart showing a method of heating and preventing cold air in an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a flow chart showing a method of heating and preventing cold air in an air conditioner according to another embodiment of the present invention.
  • FIG. 6 is a flow chart showing a method of heating and preventing cold air in an air conditioner according to an embodiment of the present invention.
  • the air conditioner 1 includes a heating and cooling device 100.
  • the heating and cooling device 100 includes a temperature detecting unit 110, a first determining unit 120, a first control unit 130, a second determining unit 140, and a second control unit 150.
  • the temperature detecting unit 110 is configured to respectively detect the inner tube temperature and the outdoor ambient temperature after the heating is turned on to determine the integrated temperature interval to which the indoor ambient temperature and the outdoor ambient temperature belong.
  • the temperature detecting unit 110 can detect the outdoor ambient temperature through the outer ring temperature sensing package of the air conditioner.
  • inverter air conditioners generally have an outer ring temperature sensing package for measuring the outdoor ambient temperature.
  • the temperature detecting unit 110 detects the intermediate temperature of the condenser, and uses the intermediate temperature of the condenser as the outdoor ambient temperature. Since the intermediate temperature of the condenser is close to the temperature of the outdoor environment at the time of starting the power, there is no sense of the outer ring.
  • the temperature of the air conditioner can be used as the outdoor ambient temperature.
  • the intermediate temperature of the condenser can be detected as the outdoor ambient temperature.
  • the intermediate temperature of the condenser can be specifically measured by a temperature sensing package.
  • the temperature detecting unit 110 detects the indoor ambient temperature and the outdoor ambient temperature after the predetermined delay time of starting, to avoid the impact of the compressor phase current, and prevent the program from entering incorrectly.
  • the temperature detecting unit 110 detects that the indoor ambient temperature and the outdoor ambient temperature respectively belong to the indoor ambient temperature interval and the outdoor ambient temperature interval corresponding to any integrated temperature interval, it is determined that the indoor ambient temperature and the outdoor ambient temperature belong to the integrated temperature interval.
  • the apparatus may further include a setting unit (not shown) for pre-setting a plurality of integrated temperature intervals.
  • the setting unit is configured to set a plurality of indoor ambient temperature intervals and a plurality of outdoor ambient temperature intervals, and each of the different indoor ambient temperature intervals respectively correspond to different outdoor ambient temperature intervals to form a plurality of integrated temperature intervals.
  • the indoor ambient temperature interval is set to be a first temperature interval, a second temperature interval, and a third temperature interval, respectively
  • the outdoor ambient temperature interval is set to a fourth temperature interval, a fifth temperature interval, and a sixth temperature, respectively.
  • Interval, forming multiple integrated temperature intervals are: first Interval, second interval, third interval, fourth interval, fifth interval, sixth interval, seventh interval, eighth interval, and ninth interval, wherein
  • the first interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the fourth temperature interval;
  • the second interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the fourth temperature interval;
  • the third interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the fourth temperature interval;
  • the fourth interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the fifth temperature interval;
  • the fifth interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the fifth temperature interval;
  • the sixth interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the fifth temperature interval;
  • the seventh interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the sixth temperature interval;
  • the eighth interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the sixth temperature interval;
  • the ninth interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the sixth temperature interval.
  • the first temperature interval is t ⁇ 10 ° C
  • the second temperature interval is 10 ° C ⁇ t ⁇ 20 ° C
  • the third temperature interval is t ⁇ 20 ° C
  • the fourth temperature interval is t ⁇ 10 ° C
  • the fifth temperature interval is 0 ° C ⁇ t ⁇ 10 ° C
  • the sixth temperature interval is t ⁇ 0 ° C
  • the inner ring represents the indoor ambient temperature
  • the outer ring represents the outdoor ambient temperature
  • A1, A2, ..., A9 respectively represent the above One section, the second section, ..., the ninth section, it should be understood that the first section, the second section, ..., the ninth section are also represented by A1, A2, ..., A9 in the following description.
  • the first determining unit 120 is configured to determine whether the temperature of the inner tube of the evaporator satisfies the requirements of entering the anti-cold air mode corresponding to the integrated temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature. Whether the temperature condition of the inner tube of the evaporator or the length of time when the compressor and the four-way valve are put into operation reaches the compressor and the four-way valve required to enter the anti-cold air mode corresponding to the integrated temperature range to which the indoor ambient temperature and the outdoor ambient temperature belong. The running time, or whether the current intensity continues for a predetermined period of time reaches a first predetermined current intensity threshold.
  • the indoor temperature range and the outdoor ambient temperature belong to different temperature ranges, and the corresponding evaporator temperature conditions that are required to enter the anti-cold air mode are different.
  • the evaporator inner tube temperature condition required to enter the anti-cold air mode corresponding to the sections A2, A3, A5, and S6 is T steam 35 ° C; the corresponding entry of the sections A1, A8, and A9
  • the evaporator inner tube temperature condition to be satisfied in the cold air mode is T steaming 38 ° C;
  • the evaporator inner tube temperature condition required to enter the anti-cold air mode corresponding to the interval A4 is T steaming 40 ° C;
  • the evaporator inner tube temperature condition to be satisfied in the cold air mode is T distillation 43 °C.
  • the indoor temperature range and the outdoor ambient temperature belong to different integrated temperature ranges, and the corresponding compressor and four-way valve operation time required to enter the anti-cold air mode are different.
  • the compressors and crosses required to enter the anti-cold wind mode corresponding to the intervals A1, A4, and A7 are set.
  • the valve is operated for 120 seconds, and the compressors and four-way valves required to enter the anti-cold mode corresponding to the sections A2, A3, A5, A6, A8, and A9 have a running time of 90 seconds.
  • the first judging unit 120 determines whether the current intensity reaches the first preset current intensity threshold for a predetermined predetermined period of time, that is, whether the continuous detection current intensity reaches the first preset current intensity threshold at a predetermined duration, for example, whether the continuous 3S (second) The current intensity is detected to reach I0 (the first preset current intensity threshold).
  • the first preset current intensity thresholds of different air conditioners are different.
  • the invention adopts the current intensity as a determination condition for determining the entry into the anti-cold wind mode, and the determination of the current intensity can prevent the system from being abnormal in the anti-cold wind stage, resulting in an excessive system pressure and a safety hazard.
  • the first control unit 130 is configured to start the inner fan at the first preset wind speed if any of the determination results of the first determining unit is YES.
  • the first determining unit 120 determines that any one of the above conditions is satisfied, the inner fan is started at the first preset wind speed.
  • the second determining unit 140 is configured to start the internal fan, determine whether the temperature of the inner tube of the evaporator satisfies the temperature condition of the inner tube of the evaporator required to exit the anti-cold air mode corresponding to the indoor temperature range and the integrated temperature range to which the outdoor ambient temperature belongs. Whether the current intensity continues for a predetermined period of time to reach a second predetermined current intensity threshold, or the duration of the inner fan operating at the first predetermined wind speed is Whether the first preset duration is reached;
  • the indoor temperature range and the outdoor ambient temperature belong to different temperature ranges, and the corresponding evaporator temperature conditions that are required to enter the anti-cold air mode are different.
  • the evaporator inner tube temperature condition required to exit the anti-cold air mode corresponding to the sections A2, A3, and A6 is T steam 40 ° C; the intervals A1, A4, A5, A8, A9 correspond to
  • the evaporator inner tube temperature condition required to exit the anti-cold air mode is T steaming 43 ° C;
  • the evaporator inner tube temperature condition required to exit the anti-cold air mode corresponding to the section A7 is T steaming 45 ° C.
  • the second determining unit 140 determines whether the current intensity reaches a second preset current intensity threshold for a predetermined predetermined duration, that is, whether the continuous detection current intensity reaches the second preset current intensity threshold at a predetermined duration, for example, the continuous 3S detects that the current intensity reaches I2 (second preset current intensity threshold).
  • a second preset current intensity threshold for a predetermined predetermined duration that is, whether the continuous detection current intensity reaches the second preset current intensity threshold at a predetermined duration, for example, the continuous 3S detects that the current intensity reaches I2 (second preset current intensity threshold).
  • the second preset current intensity thresholds of different air conditioners are different.
  • the second determining unit 140 determines whether the length of time that the inner fan runs at the first preset wind speed reaches the first preset time length, that is, whether the time to enter the anti-cold air mode reaches the first preset time length.
  • the first preset duration is, for example, 5 minutes (minutes).
  • the second control unit 150 is configured to: if the determination result of the second determining unit is yes, turn the inner fan to operate at the second preset wind speed, wherein the first preset wind speed is less than the second preset wind speed. That is, if the second determining unit 140 determines that any one of the above conditions is satisfied, the second control unit 150 turns the inner fan to operate at the second preset wind speed.
  • the second preset wind speed may be a preset wind speed of the system (the default wind speed of the system in the heating mode), or may be a preset wind speed according to the user's own needs, and the wind speed refers to the internal fan speed, for example, 700. Rev / min (r / min). The first preset wind speed is less than the second preset wind speed.
  • the wind speed of the air conditioner may be set to a low wind speed, a medium wind speed, and a high wind speed.
  • the low wind speed is set to an inner fan speed of 700 rpm
  • the middle speed is set to an inner fan speed 870.
  • the high wind speed is set to the internal fan speed of 1080 rev / min (corresponding to low wind, mid and high wind, respectively), the first preset wind speed is low wind speed, the second preset wind speed can be set by the user, for example When the user sets the high wind speed, the inner fan runs at a low wind speed for a certain period of time (the first preset time length) and then runs at the high wind speed set by the user, thereby ensuring that the temperature of the first air outlet of the air conditioner satisfies the demand.
  • the air conditioning heating and cooling device further includes a third control unit 160.
  • the third control unit 160 is configured to drive the air deflector to the first preset position after the heating is turned on. Further, the third control unit 160 is further configured to: after the internal fan is activated, when the temperature of the inner tube of the evaporator satisfies the integrated temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature, the evaporator required to exit the anti-cold wind mode is satisfied.
  • the wind deflector is driven to the second pre-time Set the location.
  • the first preset position is preferably the highest position to the wind deflector.
  • the third control unit 160 first drives the air deflector to the highest position.
  • the third control unit 160 drives the air deflector to the second preset position, where the second preset position may be the positive position of the air deflector, or may be Set anywhere.
  • the air deflector is positive when exiting the anti-cold air mode.
  • the second preset duration may be the same as the first preset duration or may be different.
  • the intelligent control of the air deflector is realized when the air conditioner is heating and preventing cold wind.
  • the air conditioning heating and cooling air prevention method includes step S110, step S120, step S130, step S140, and step S150.
  • Step S110 After the heating is turned on, the indoor ambient temperature and the outdoor ambient temperature are respectively detected to determine a comprehensive temperature interval to which the indoor ambient temperature and the outdoor ambient temperature belong.
  • the temperature detecting unit 110 can detect the outdoor ambient temperature through the outer ring temperature sensing package of the air conditioner.
  • inverter air conditioners generally have an outer ring temperature sensing package for measuring the outdoor ambient temperature.
  • the temperature detecting unit 110 detects the intermediate temperature of the condenser, and uses the intermediate temperature of the condenser as the outdoor ambient temperature. Since the intermediate temperature of the condenser is close to the temperature of the outdoor environment at the time of starting the power, there is no sense of the outer ring.
  • the temperature of the air conditioner can be used as the outdoor ambient temperature.
  • the intermediate temperature of the condenser can be detected as the outdoor ambient temperature.
  • the intermediate temperature of the condenser can be specifically measured by a temperature sensing package.
  • the indoor ambient temperature and the outdoor ambient temperature are detected to avoid the impact of the compressor phase current, and the program is prevented from entering.
  • the indoor ambient temperature and the outdoor ambient temperature respectively belong to the indoor ambient temperature interval and the outdoor ambient temperature interval corresponding to any integrated temperature interval
  • the step of setting a plurality of integrated temperature intervals may include: setting a plurality of indoor ambient temperature intervals and a plurality of outdoor ambient temperature intervals, and respectively respectively different different indoor ambient temperature intervals.
  • the outdoor ambient temperature interval forms a plurality of integrated temperature intervals.
  • the indoor ambient temperature interval is set to be a first temperature interval, a second temperature interval, and a third temperature interval, respectively
  • the outdoor ambient temperature interval is set to a fourth temperature interval, a fifth temperature interval, and a sixth temperature, respectively.
  • the plurality of integrated temperature intervals are: a first interval, a second interval, a third interval, a fourth interval, a fifth interval, a sixth interval, a seventh interval, an eighth interval, and a ninth interval, wherein
  • the first interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the fourth temperature interval;
  • the second interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the fourth temperature interval;
  • the third interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the fourth temperature interval;
  • the fourth interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the fifth temperature interval;
  • the fifth interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the fifth temperature interval;
  • the sixth interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the fifth temperature interval;
  • the seventh interval the indoor ambient temperature is within the first temperature interval, and the outdoor ambient temperature is within the sixth temperature interval;
  • the eighth interval the indoor ambient temperature is in the second temperature interval, and the outdoor ambient temperature is in the sixth temperature interval;
  • the ninth interval the indoor ambient temperature is in the third temperature interval, and the outdoor ambient temperature is in the sixth temperature interval.
  • the first temperature interval is t ⁇ 10 ° C
  • the second temperature interval is 10 ° C ⁇ t ⁇ 20 ° C
  • the third temperature interval For t ⁇ 20°C
  • the fourth temperature interval is t ⁇ 10°C
  • the fifth temperature interval is 0°C ⁇ t ⁇ 10°C
  • the sixth temperature interval is t ⁇ 0°C
  • the inner ring represents the indoor ambient temperature
  • the outer ring Indicates the outdoor ambient temperature
  • A1, A2, ..., A9 represent the first interval, the second interval, ..., the ninth interval, respectively, and it should be understood that the above first is also indicated by A1, A2, ..., A9 in the following description.
  • Interval, second interval, ..., ninth interval is also indicated by A1, A2, ..., A9 in the following description.
  • Step S120 determining whether the evaporator inner tube temperature satisfies the evaporator inner tube temperature condition, or the compressor and the four-way valve input, which are required to enter the anti-cold air mode corresponding to the indoor temperature and the outdoor temperature range to which the outdoor ambient temperature belongs. Whether the running time reaches the integrated temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature, and the running time of the compressor and the four-way valve required to enter the anti-cold wind mode, or whether the current intensity is continuous for a predetermined period of time reaches the first preset Current intensity threshold.
  • the indoor temperature range and the outdoor ambient temperature belong to different temperature ranges, and the corresponding evaporator temperature conditions that are required to enter the anti-cold air mode are different. Taking the correspondence relationship between different indoor ambient temperature intervals and outdoor ambient temperature intervals corresponding to different integrated temperature ranges shown in FIG. 2 as an example, it is assumed that the sections A2, A3, A5, and A6 correspond to the required evaporators to enter the anti-cold wind mode.
  • the tube temperature condition is T steam ⁇ 35 ° C; the interval of the evaporator inner tube temperature required to enter the anti-cold wind mode corresponding to the sections A1, A8, A9 is T steaming 38 ° C; the interval A4 corresponding to the entry into the anti-cold wind mode is required to meet
  • the evaporator inner tube temperature condition is T steam 40 ° C; the interval A7 corresponding to the inlet cold air mode required to meet the evaporator inner tube temperature condition is T steam 43 ° C.
  • the indoor temperature range and the outdoor ambient temperature belong to different integrated temperature ranges, and the corresponding compressor and four-way valve operation time required to enter the anti-cold air mode are different.
  • the compressors and crosses required to enter the anti-cold wind mode corresponding to the intervals A1, A4, and A7 are set.
  • the valve operation time is 120 seconds; the compressors and four-way valves required to enter the anti-cold air mode corresponding to the sections A2, A3, A5, A6, A8, and A9 have a running time of 90 seconds.
  • Determining whether the current intensity reaches a predetermined predetermined duration to a first predetermined current intensity threshold that is, determining whether the continuous monitoring current intensity reaches a first preset current intensity threshold for a predetermined period of time, for example, whether the current intensity is detected continuously for 3 seconds (seconds) I0 (first preset current intensity threshold) is reached.
  • the first preset current intensity thresholds of different air conditioners are different.
  • the present invention uses the current intensity as a determination condition for determining the entry into the anti-cold air mode, and can prevent the system from being abnormal during the anti-cold wind stage.
  • the system pressure is too high, posing a safety hazard.
  • Step S130 if yes, starting the inner fan at the first preset wind speed.
  • the cold air prevention mode can be entered. That is to say, when it is judged that any one of the above conditions is satisfied, the inner fan is started at a first preset wind speed, wherein the first preset wind speed is a low wind speed.
  • Step S140 after starting the internal fan, determining whether the temperature of the inner tube of the evaporator satisfies the temperature condition of the inner tube of the evaporator or the current intensity required to exit the anti-cold wind mode corresponding to the integrated temperature range of the indoor ambient temperature and the outdoor ambient temperature. Whether the predetermined predetermined duration reaches the second preset current intensity threshold or whether the duration of the inner fan running at the first preset wind speed reaches the first preset duration.
  • the indoor temperature range and the outdoor ambient temperature belong to different temperature ranges, and the corresponding evaporator temperature conditions that are required to enter the anti-cold air mode are different. Taking the correspondence relationship between different indoor ambient temperature intervals and outdoor ambient temperature intervals corresponding to different integrated temperature intervals shown in FIG. 2 as an example, the evaporator inner tube temperature required to exit the anti-cold wind mode corresponding to the sections A2, A3, and A6 is set.
  • the condition is T steaming 40 °C; the evaporator inner tube temperature condition required to exit the anti-cold wind mode corresponding to the intervals A1, A4, A5, A8, A9 is T steaming 43 ° C; the interval A7 corresponding to the exiting anti-cold wind mode
  • the evaporator inner tube temperature condition to be satisfied is T steaming at 45 °C.
  • Determining whether the current intensity reaches a second predetermined current intensity threshold continuously for a predetermined period of time that is, determining whether the continuous detection current intensity reaches a second preset current intensity threshold at a predetermined duration, for example, the continuous 3S detects that the current intensity reaches I2 (second pre- Set the current intensity threshold).
  • the second preset current intensity thresholds of different air conditioners are different.
  • the first preset duration is, for example, 5 minutes (minutes).
  • Step S150 if yes, the inner fan is turned to operate at the second preset wind speed.
  • the anti-cold air mode can be exited, that is, if it is judged that any of the above conditions is satisfied, the inner fan is turned to operate at the second preset wind speed.
  • the second preset wind speed may be a preset wind speed of the system (the default wind speed of the system in the heating mode), or may be a preset wind speed according to the user's own needs, and the wind speed refers to the internal fan speed, for example, 700. Rev / min (r / min).
  • the first preset wind speed is less than the second preset wind speed speed.
  • the wind speed of the air conditioner may be set to a low wind speed, a medium wind speed, and a high wind speed.
  • the low wind speed is set to an inner fan speed of 700 rpm
  • the middle speed is set to an inner fan speed 870.
  • the high wind speed is set to the internal fan speed of 1080 rev / min (corresponding to low wind, mid and high wind, respectively), the first preset wind speed is low wind speed, the second preset wind speed can be set by the user, for example When the user sets the high wind speed, the inner fan runs at a low wind speed for a certain period of time (the first preset time length) and then runs at the high wind speed set by the user, thereby ensuring that the temperature of the first air outlet of the air conditioner satisfies the demand.
  • FIG. 5 is a flow chart showing a method of heating and preventing cold air in an air conditioner according to another embodiment of the present invention. Based on the above embodiment, as shown in FIG. 5, the method of the present invention further includes step 101 and step S151.
  • Step S101 after the heating is turned on, the wind deflector is driven to the first preset position.
  • This step can be performed before step S110, that is, in the heating mode, the air deflector is first driven to the first preset position after the compressor is turned on.
  • the first preset position is preferably the highest position of the wind deflector, that is, the wind direction is super obliquely upward.
  • Step S151 after the internal fan is started, when the temperature of the inner tube of the evaporator satisfies the comprehensive temperature range corresponding to the indoor ambient temperature and the outdoor ambient temperature, the evaporator inner tube temperature condition or the current intensity continuously needs to be satisfied.
  • the predetermined duration reaches the second preset current intensity threshold, or the duration of the inner fan running at the first preset wind speed reaches the second preset duration, the wind deflector is driven to the second preset position.
  • the air deflector is further driven to a second preset position, where the second preset position may be a positive position of the air deflector, or may be any preset position.
  • the second preset position may be a positive position of the air deflector, or may be any preset position.
  • the wind deflector is positive to ensure the comfort of the first air outlet.
  • the second preset duration may be the same as the first preset duration or may be different.
  • the intelligent control of the air deflector is realized when the air conditioner is heating and preventing cold wind.
  • the timing of entering the anti-cold air mode is determined according to the integrated temperature range in which the indoor ambient temperature and the outdoor ambient temperature are located, and the conditions of the inner tube temperature, the compressor running time, and the current intensity are integrated to optimize the system entry.
  • the timing of the anti-cold wind mode, the system pressure and the outlet air temperature; the current intensity is used as a determination condition for entering the anti-cold wind mode, which can avoid the system from being overheated during the anti-cold wind stage, causing the system pressure to be too high and causing safety hazards;
  • the inner tube temperature, the inner fan running time, and the current intensity condition determine the timing of exiting the anti-cold air mode and the air deflector to correct, which can provide a comfortable heating experience for the user.
  • FIG. 6 is a flow chart showing a method of heating and preventing cold air in an air conditioner according to an embodiment of the present invention.
  • a method of air conditioning heating and cooling air according to an embodiment of the present invention will be described with reference to FIG.
  • the different indoor ambient temperature intervals and outdoor ambient temperature intervals corresponding to different integrated temperature ranges are shown in Fig. 2.
  • the predetermined delay time is set to 6S (seconds), and the evaporator inner tube temperature condition required to enter the anti-cold air mode corresponding to the sections A2, A3, A5, and A6 is T steaming 35 ° C; the corresponding entry of the sections A1, A8, and A9
  • the temperature of the inner tube of the evaporator to be satisfied in the anti-cold wind mode is T ⁇ 38 ° C; the temperature of the inner tube of the evaporator required to enter the anti-cold wind mode corresponding to the interval A4 is T ⁇ 40 ° C; the corresponding entry of the interval A7
  • the first preset duration is 5 min (minutes), and the second preset duration is the same as the first preset duration.
  • the continuous predetermined duration of the detected current intensity is 3S (seconds), the first preset current intensity threshold is I0, and the second preset current intensity threshold is I2. It is assumed that the evaporator inner tube temperature condition required to exit the anti-cold wind mode corresponding to the sections A2, A3, and A6 is T steaming 40 ° C; the interval A1, A4, A5, A8, A9 corresponding exiting the anti-cold wind mode is required to be satisfied.
  • the temperature condition of the inner tube of the evaporator is T ⁇ 43 ° C; the temperature condition of the inner tube of the evaporator required to exit the anti-cold wind mode corresponding to the interval A7 is T ⁇ 45 ° C. As shown in FIG. 6, the following steps are specifically included:
  • Step S1 After the heating is turned on, the air deflector is driven to the highest position;
  • Step S2 detecting the indoor ambient temperature and the outdoor ambient temperature, and determining the integrated temperature interval
  • the indoor ambient temperature and the outdoor ambient temperature are detected, and the integrated temperature range to which the indoor ambient temperature and the outdoor ambient temperature belong is determined, and the following comprehensive temperature range A1 is taken as an example.
  • Step S3 determining whether the condition for entering the anti-cold wind is satisfied, including the following judgment conditions:
  • the corresponding interval A1 correspondingly judge whether the compressor and the four-way valve are put into operation for 120 seconds, or whether the evaporator inner tube temperature satisfies T steaming ⁇ 38 ° C; or whether the continuous 3S detects that the current intensity satisfies I ⁇ I0;
  • Step S4 if the result of the above determination is yes, the inner fan is started at a first preset wind speed (low wind speed);
  • Step S5 determining whether the condition for exiting the anti-cold wind is satisfied, including the following judgment conditions:
  • Step S6 If the above judgment satisfies any one, the inner fan is turned to the second preset wind speed, and the air deflector is positive.
  • the other temperature interval (A2 to A9) determination step similar to the interval A1, can be combined with FIG. 6 and refer to the determination process of the A1 interval, and will not be described herein.

Abstract

一种空调及其制热防冷风装置和方法,方法包括:制热开机后分别检测室内环境温度和室外环境温度,以确定所属的综合温度区间(S110);判断蒸发器内管温度是否满足进入防冷风模式所需满足的蒸发器内管温度条件、或压缩机和四通阀投入运行的时长是否达到进入防冷风模式所需达到的运行时长、或电流强度是否连续预定时长达到第一预设电流强度阈值(S120);若是,则以第一预设风速启动内风机(S130);判断蒸发器内管温度是否满足退出防冷风模式所需满足的蒸发器内管温度条件、或电流强度是否连续预定时长达到第二预设电流强度阈值、或内风机以第一预设风速运行的时长是否达到第一预设时长(S140);若是,则将内风机转为以第二预设风速运行(S150)。

Description

空调及其制热防冷风装置和方法
本申请要求于2016年10月28日提交中国专利局、申请号为201610973252.1、发明名称为“空调及其制热防冷风装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电器技术领域,尤其涉及一种空调及其制热防冷风装置和方法。
背景技术
空调制热初期,由于室内换热器温度偏低,为防止空调吹冷风,通常通过延迟开启风机的方式进行控制,由于风机不开启,空调系统制热运行后,室内侧高压升高较快,室内换热器的温度也会较快升高,当室内换热器传感器温度达到设定温度,或延迟时间达到设定值后,风机才开启,称为防冷风控制。
现有的制热防冷风方法只是简单的根据空调蒸发器管温条件作为进入防冷风(即,内风机启动)的依据,无法准确判定系统的负荷,尤其在低负荷的情况下不能准确调节进入防冷风的时间,保证第一口出风为热风,满足最优舒适体验;其次,现有的制热防冷风方法没有电流强度判定条件,不能对系统异常做出判断,容易在系统故障的情况下导致压力过高,制造安全隐患;并且,现有的防冷风方法缺少对导风板及内风机运行的智能判定,无法保证导风板打正时的人体的体验较为舒适,以及最优的退出防冷风时间。
综上,需要提出一种空调制热防冷风方案,以解决上述问题。
发明内容
有鉴于此,本发明提供一种热水器及其漏电检测装置和方法,能有效提高漏电检测可靠性。
根据本发明的第一方面,提供一种空调制热放冷风装置,包括:温度检测单元,用于制热开机后分别检测室内环境温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间;第一判断单元,用于判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值;第一控制单元,用于若第一判断单元的任一判断结果为是,则以第一预设风速启动内风机;第二判断单元,用于启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是否达到第一预设时长;第二控制单元进一步用于:若第二判断单元的任一判断结果为是,则将内风机转为以第二预设风速运行,其中,第一预设风速小于第二预设风速。
进一步地,所述装置还包括:设置单元,用于设置多个综合温度区间,所述设置单元进一步用于:设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
进一步地,所述温度检测单元进一步用于:开机预定延迟时间后,再检测所述室内环境温度和室外环境温度。
进一步地,所述装置还包括:第三控制单元,用于制热开机后,将导风板打至第一预设位置。
进一步地,所述第三控制单元进一步用于:启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速 运行的时长达到第二预设时长时,将导风板打至第二预设位置。
根据本发明第二方面,提供一种空调制热放冷风方法,包括:制热开机后分别检测室内环境温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间;判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值;若是,则以第一预设风速启动内风机;启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是否达到第一预设时长;若是,则将内风机转为以第二预设风速运行,其中,第一预设风速小于第二预设风速。
进一步地,所述方法还包括:设置多个综合温度区间,包括:设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
进一步地,所述方法还包括:制热开机后,将导风板打至第一预设位置。
进一步地,所述方法还包括:启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或在预定时长内连续检测到电流强度达到第二预设电流强度阈值、或内风机以所述第一预设风速运行的时长达到第二预设时长时,将导风板打至第二预设位置。
根据本发明的第三方面,提供一种空调,包括上述任一项所述的装置。
根据本发明的上述方案,根据室内环境温度和室外环境温度所在的综合温度区间,并综合蒸发器内管温度、压缩机运行时间、电流强度等条件判定进入防冷风模式的时机,优化了系统进入防冷风模式的时机、系统压 力以及出风温度,保证了制热模式下第一口出风的舒适度;将电流强度作为进入防冷风模式的一个判定条件,能够避免系统在防冷风阶段出现异常导致系统压力过高而引起安全隐患;并且,综合蒸发器内管温度、内风机运行时间、电流强度条件判定退出防冷风模式以及导风板打正的时机,能够给用户提供舒适的制热体验。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明一实施例的空调及其制热防冷风装置的结构框图。
图2示出了根据本发明一具体实施例的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系表。
图3示出了根据本发明另一实施例的空调及其制热防冷风装置的结构框图。
图4示出了根据本发明一实施例的空调制热防冷风方法的流程图。
图5示出了根据本发明另一实施例的空调制热防冷风方法的流程图。
图6示出了根据本发明一具体实施例的空调制热防冷风方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本 发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,结合附图说明本发明的空调及空调制热防冷风装置。
图1示出了根据本发明一实施例的空调及其制热防冷风装置的结构框图。如图1所示,空调1包括制热防冷风装置100。该制热防冷风装置100包括温度检测单元110、第一判断单元120、第一控制单元130、第二判断单元140和第二控制单元150。
温度检测单元110用于制热开机后分别检测内管温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间。
在一种具体实施方式中,温度检测单元110可以通过空调的外环感温包检测室外环境温度。例如,变频空调一般都具有外环感温包,用于测量室外环境温度。在另一种具体实施方式中,温度检测单元110检测冷凝器中间温度,将冷凝器中间温度作为室外环境温度,由于冷凝器中间温度在刚开机时与室外环境温度接近,因此对于没有外环感温包的空调,可以将冷凝器中间温度作为室外环境温度,例如,对于没有外环感温包的定频空调,可以检测冷凝器中间温度作为室外环境温度。冷凝器中间温度具体可以通过感温包测量。
温度检测单元110在开机预定延迟时间后,再检测所述室内环境温度和室外环境温度,以避免压缩机相电流冲击,杜绝程序误进入。当温度检测单元110检测到室内环境温度和室外环境温度分别属于任一综合温度区间对应的室内环境温度区间和室外环境温度区间时,确定所述室内环境温度和室外环境温度属于所述综合温度区间。进一步地,所述装置还可以包括设置单元(图未示),用于预先设置多个综合温度区间。具体地,所述设置单元设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
在一种具体实施方式中,设置室内环境温度区间分别为第一温度区间、第二温度区间和第三温度区间,设置室外环境温度区间分别为第四温度区间、第五温度区间和第六温度区间,形成多个综合温度区间分别为:第一 区间、第二区间、第三区间、第四区间、第五区间、第六区间、第七区间、第八区间、第九区间,其中,
第一区间:室内环境温度在第一温度区间内,室外环境温度在第四温度区间内;
第二区间:室内环境温度在第二温度区间内,室外环境温度在第四温度区间内;
第三区间:室内环境温度在第三温度区间内,室外环境温度在第四温度区间内;
第四区间:室内环境温度在第一温度区间内,室外环境温度在第五温度区间内;
第五区间:室内环境温度在第二温度区间内,室外环境温度在第五温度区间内;
第六区间:室内环境温度在第三温度区间内,室外环境温度在第五温度区间内;
第七区间:室内环境温度在第一温度区间内,室外环境温度在第六温度区间内;
第八区间:室内环境温度在第二温度区间内,室外环境温度在第六温度区间内;
第九区间:室内环境温度在第三温度区间内,室外环境温度在第六温度区间内。
图2示出了根据本发明一个具体实施例的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系。如图2所示,设第一温度区间为t<10℃,第二温度区间为10℃≤t<20℃,第三温度区间为t≥20℃,第四温度区间为t≥10℃;第五温度区间为0℃≤t<10℃,第六温度区间为t<0℃;其中,内环表示室内环境温度,外环表示室外环境温度,A1、A2、…、A9分别表示上述第一区间、第二区间、……、第九区间,应该理解,在后面的描述中也以A1、A2、…、A9表示上述第一区间、第二区间、……、第九区间。
第一判断单元120用于判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的 蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值。
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需满足的蒸发器温度条件不同。在一种具体实施方式中,设区间A2、A3、A5、S6对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧35℃;区间A1、A8、A9对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧38℃;区间A4对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A7对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃。
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需达到的压缩机和四通阀运行时长不同。以图2所示的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系为例,设区间A1、A4、A7对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为120秒,区间A2、A3、A5、A6、A8、A9对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为90秒。
第一判断单元120判断电流强度是否连续预定时长达到第一预设电流强度阈值,即是判断是否在预定时长连续检测电流强度均达到第一预设电流强度阈值,例如,是否连续3S(秒)检测到电流强度达到I0(第一预设电流强度阈值)。其中,不同空调的第一预设电流强度阈值不同。本发明将电流强度作为判定进入防冷风模式的一个判定条件,通过电流强度的判断能够避免系统在防冷风阶段出现异常,导致系统压力过高,产生安全隐患。
第一控制单元130用于若第一判断单元的任一判断结果为是,则以第一预设风速启动内风机。当第一判断单元120判断满足上述任意一个条件时,则以第一预设风速启动内风机。
第二判断单元140用于启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是 否达到第一预设时长;
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需满足的蒸发器温度条件不同。在一种具体实施方式中,设区间A2、A3、A6对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A1、A4、A5、A8、A9对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃;区间A7对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧45℃。
第二判断单元140判断电流强度是否连续预定时长达到第二预设电流强度阈值,即判断是否在预定时长连续检测电流强度均达到第二预设电流强度阈值,例如,连续3S检测到电流强度达到I2(第二预设电流强度阈值)。其中,不同空调的第二预设电流强度阈值不同。
第二判断单元140判断内风机以所述第一预设风速运行的时长是否达到第一预设时长,即判断进入防冷风模式的时间是否达到第一预设时长。所述第一预设时长,例如5min(分钟)。
第二控制单元150用于若第二判断单元的任一判断结果为是,则将内风机转为以第二预设风速运行,其中,第一预设风速小于第二预设风速。也就是说,若第二判断单元140判断满足上述任意一个条件,第二控制单元150将内风机转为以第二预设风速运行。其中,第二预设风速可以为系统预先设定的风速(制热模式的系统默认风速),也可以为用户根据自己的需求预先设定的风速,所述风速指内风机转速,例如,700转/分钟(r/min)。所述第一预设风速小于第二预设风速。在一种具体实施方式中,空调的风速(内风机转速)可以设置为低风速、中风速和高风速,例如,低风速设置为内风机转速700转/分钟,中风速设置为内风机转速870转/分钟,高风速设置为内风机转速1080转/分钟(分别对应低风档、中风档和高风档),第一预设风速为低风速,第二预设风速可以由用户设置,例如用户设置为高风速,则内风机以低风速运行一定时长(第一预设时长)后再以用户设置的高风速运行,以此保证空调第一口出风的温度满足需求。
图3为根据本发明另一实施例的空调及其制热防冷风装置的结构框图,如图3所示,基于上述实施例,空调制热防冷风装置还包括第三控制单元160。第三控制单元160,用于制热开机后,将导风板打至第一预设位置。 进一步地,第三控制单元160进一步用于启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长达到第二预设时长时,将导风板打至第二预设位置。
所述第一预设位置优选为到导风板的最高位置。在制热模式下压缩机开启后,第三控制单元160先将导风板打至最高位置。启动内风机后,当满足上述任意条件时,第三控制单元160再将导风板打至第二预设位置,所述第二预设位置可以为导风板的正位置,也可以为预先设置的任意位置。例如,在退出防冷风模式时将导风板打正。第二预设时长可以与第一预设时长相同,也可以不同。实现了空调制热防冷风时对导风板的智能控制。
以下附图对本发明的空调制热防冷风方法进行描述。
图4示出了根据本发明一实施例的所述方法的流程图。如图4所示,所述空调制热防冷风方法包括步骤S110、步骤S120、步骤S130、步骤S140以及步骤S150。
步骤S110,制热开机后分别检测室内环境温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间。
在一种具体实施方式中,温度检测单元110可以通过空调的外环感温包检测室外环境温度。例如,变频空调一般都具有外环感温包,用于测量室外环境温度。在另一种具体实施方式中,温度检测单元110检测冷凝器中间温度,将冷凝器中间温度作为室外环境温度,由于冷凝器中间温度在刚开机时与室外环境温度接近,因此对于没有外环感温包的空调,可以将冷凝器中间温度作为室外环境温度,例如,对于没有外环感温包的定频空调,可以检测冷凝器中间温度作为室外环境温度。冷凝器中间温度具体可以通过感温包测量。
具体地,开机预定时长后,再检测所述室内环境温度和室外环境温度,以避免压缩机相电流冲击,杜绝程序误进入。当检测到室内环境温度和室外环境温度分别属于任一综合温度区间对应的室内环境温度区间和室外环境温度区间时,确定所述室内环境温度和室外环境温度属于所述综合温度 区间。其中,可以预先设置多个综合温度区间,设置多个综合温度区间的步骤具体可以包括:设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
在一种具体实施方式中,设置室内环境温度区间分别为第一温度区间、第二温度区间和第三温度区间,设置室外环境温度区间分别为第四温度区间、第五温度区间和第六温度区间,形成多个综合温度区间分别为:第一区间、第二区间、第三区间、第四区间、第五区间、第六区间、第七区间、第八区间、第九区间,其中,
第一区间:室内环境温度在第一温度区间内,室外环境温度在第四温度区间内;
第二区间:室内环境温度在第二温度区间内,室外环境温度在第四温度区间内;
第三区间:室内环境温度在第三温度区间内,室外环境温度在第四温度区间内;
第四区间:室内环境温度在第一温度区间内,室外环境温度在第五温度区间内;
第五区间:室内环境温度在第二温度区间内,室外环境温度在第五温度区间内;
第六区间:室内环境温度在第三温度区间内,室外环境温度在第五温度区间内;
第七区间:室内环境温度在第一温度区间内,室外环境温度在第六温度区间内;
第八区间:室内环境温度在第二温度区间内,室外环境温度在第六温度区间内;
第九区间:室内环境温度在第三温度区间内,室外环境温度在第六温度区间内。
图2示出了根据本发明一个具体实施例的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系表。如图2所示,设第一温度区间为t<10℃,第二温度区间为10℃≤t<20℃,第三温度区间 为t≥20℃,第四温度区间为t≥10℃;第五温度区间为0℃≤t<10℃,第六温度区间为t<0℃;其中,内环表示室内环境温度,外环表示室外环境温度,A1、A2、…、A9分别表示上述第一区间、第二区间、……、第九区间,应该理解在后面的描述中也以A1、A2、…、A9表示上述第一区间、第二区间、……、第九区间。
步骤S120,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值。
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需满足的蒸发器温度条件不同。以图2所示的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系为例,设区间A2、A3、A5、A6对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧35℃;区间A1、A8、A9对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧38℃;区间A4对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A7对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃。
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需达到的压缩机和四通阀运行时长不同。以图2所示的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系为例,设区间A1、A4、A7对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为120秒;区间A2、A3、A5、A6、A8、A9对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为90秒。
判断电流强度是否达连续预定时长到第一预设电流强度阈值,即是判断是否在预定时长连续监测电流强度均达到第一预设电流强度阈值,例如,是否连续3S(秒)检测到电流强度达到I0(第一预设电流强度阈值)。其中,不同空调的第一预设电流强度阈值不同。本发明将电流强度作为判定进入防冷风模式的一个判定条件,能够避免系统在防冷风阶段出现异常, 导致系统压力过高,产生安全隐患。
步骤S130,若是,则以第一预设风速启动内风机。
若上述判断中任意一项的判断结果为是,即可进入防冷风模式。也就是说,当判断满足上述任意一个条件时,以第一预设风速启动内风机,其中第一预设风速为低风速。
步骤S140,启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是否达到第一预设时长。
室内环境温度和室外环境温度所属的综合温度区间不同,对应的进入防冷风模式所需满足的蒸发器温度条件不同。以图2所示的不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间的对应关系为例,设区间A2、A3、A6对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A1、A4、A5、A8、A9对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃;区间A7对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧45℃。
判断电流强度是否连续预定时长达到第二预设电流强度阈值,即判断是否在预定时长连续检测电流强度均达到第二预设电流强度阈值,例如,连续3S检测到电流强度达到I2(第二预设电流强度阈值)。其中,不同空调的第二预设电流强度阈值不同。
判断内风机以所述第一预设风速运行的时长是否达到第一预设时长,即判断进入防冷风模式的时间是否达到第一预设时长。所述第一预设时长,例如5min(分钟)。
步骤S150,若是,则将内风机转为以第二预设风速运行。
上述判断中任意一项的判断结果为是,即可退出防冷风模式,也是就是说,若判断满足上述任意一个条件,则将内风机转为以第二预设风速运行。其中,第二预设风速可以为系统预先设定的风速(制热模式的系统默认风速),也可以为用户根据自己的需求预先设定的风速,所述风速指内风机转速,例如,700转/分钟(r/min)。所述第一预设风速小于第二预设风 速。在一种具体实施方式中,空调的风速(内风机转速)可以设置为低风速、中风速和高风速,例如,低风速设置为内风机转速700转/分钟,中风速设置为内风机转速870转/分钟,高风速设置为内风机转速1080转/分钟(分别对应低风档、中风档和高风档),第一预设风速为低风速,第二预设风速可以由用户设置,例如用户设置为高风速,则内风机以低风速运行一定时长(第一预设时长)后再以用户设置的高风速运行,以此保证空调第一口出风的温度满足需求。
图5示出了根据本发明另一实施例的空调制热防冷风方法的流程图。基于上述实施例,如图5所示,本发明的方法还包括步骤101和步骤S151。
步骤S101,制热开机后,将导风板打至第一预设位置。
该步骤可以在步骤S110之前执行,也就是说,在制热模式下,压缩机开启后先将导风板打至第一预设位置。所述第一预设位置优选为导风板的最高位置,即风向超向斜上方。
步骤S151,启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或电流强度连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长达到第二预设时长时,将导风板打至第二预设位置。
在启动内风机后,当满足上述任意条件时,再将导风板打至第二预设位置,所述第二预设位置可以为导风板的正位置,也可以为预先设置的任意位置。例如,在退出防冷风模式时将导风板打正,以保证第一口出风的舒适度。第二预设时长可以与第一预设时长相同,也可以不同。实现了空调制热防冷风时对导风板的智能控制。
以上对本发明的空调及其制热防冷风的装置和方法进行了描述。根据本发明的上述方案,根据室内环境温度和室外环境温度所在的综合温度区间,并综合蒸发器内管温度、压缩机运行时间、电流强度等条件判定进入防冷风模式的时机,优化了系统进入防冷风模式的时机、系统压力以及出风温度;将电流强度作为进入防冷风模式的一个判定条件,能够避免系统在防冷风阶段出现异常导致系统压力过高而引起安全隐患;并且,综合蒸 发器内管温度、内风机运行时间、电流强度条件判定退出防冷风模式以及导风板打正的时机,能够给用户提供舒适的制热体验。
图6示出了根据本发明一具体实施例的空调制热防冷风方法的流程图。以下结合图6对本发明一具体实施例的空调制热防冷风方法进行说明。
不同综合温度区间对应的不同室内环境温度区间和室外环境温度区间如图2所示。设预定延迟时间为6S(秒),区间A2、A3、A5、A6对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧35℃;区间A1、A8、A9对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧38℃;区间A4对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A7对应的进入防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃;区间A1、A4、A7对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为120秒,区间A2、A3、A5、A6、A8、A9对应的进入防冷风模式所需达到的压缩机和四通阀运行时长为90秒。第一预设时长为5min(分钟),第二预设时长与第一预设时长相同。检测电流强度的连续预定时长为3S(秒),第一预设电流强度阈值为I0,第二预设电流强度阈值为I2。设区间A2、A3、A6对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧40℃;区间A1、A4、A5、A8、A9对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧43℃;区间A7对应的退出防冷风模式所需满足的蒸发器内管温度条件为T蒸≧45℃。如图6所示,具体包括以下步骤:
步骤S1、制热开机后,导风板打至最高位置;
步骤S2、检测室内环境温度和室外环境温度,确定所属综合温度区间;
经过6秒延迟时间后检测室内环境温度和室外环境温度,确定室内环境温度和室外环境温度所属的综合温度区间,以下均以所属综合温度区间A1为例。
步骤S3、判断是否满足进入防冷风条件,包括以下判断条件:
S31:压缩机和四通阀运行的时长是否达到进入防冷风需达到的运行时长;或者,
S32:蒸发器内管温度是否满足进入防冷风所需满足的温度条件;或者,
S33:电流强度是否连续预定时间达到第一预设电流强度阈值;
若S31、S32、S33满足任一项(判断次序不分先后),则判断结果为是;
所属区间A1,对应地判断压缩机和四通阀均投入运行时间是否达到120秒,或者蒸发器内管温度是否满足T蒸≥38℃;或者是否连续3S检测到电流强度满足I≥I0;
步骤S4、若上述判断结果为是,内风机以第一预设风速(低风速)启动;
步骤S5、判断是否满足退出防冷风条件,包括以下判断条件:
S51:蒸发器内管温度是否满足退出防冷风所需满足的温度条件;或者,
S52:电流强度是否连续预定时间达到第二预设电流强度阈值;或者,
S53:内风机运行时长是否达到第一预设时长;
若S51、S52、S53满足任一项(判断次序不分先后),则判断结果为是;
内风机投入运行之后,继续监测蒸发器内管温度以及电流强度;所属区间A1,对应地判断蒸发器温度是否满足T蒸≥43℃,或者电流强度是否满足I≥I2,或者内风机低风速运行时长是否达到5分钟;
步骤S6、若上述判断满足任一项,内风机转为第二预设风速运行,导风板打正。
对于所属的综合温度区间为其他温度区间(A2至A9)判定步骤,与区间A1相类似,可结合图6,并参考A1区间的判定过程,在此不加赘述。
需要说明的是,本发明中装置部分的实施例与方法部分的实施例可相互参照。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合,例如:该方法在该装置中实施等等。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (11)

  1. 一种空调制热防冷风装置,其特征在于,包括:
    温度检测单元,用于制热开机后分别检测室内环境温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间;
    第一判断单元,用于判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值;
    第一控制单元,用于若第一判断单元的任一判断结果为是,则以第一预设风速启动内风机;
    第二判断单元,用于启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是否达到第一预设时长;
    第二控制单元进一步用于:若第二判断单元的任一判断结果为是,则将内风机转为以第二预设风速运行,其中,第一预设风速小于第二预设风速。
  2. 如权利要求1所述的装置,其特征在于,还包括:设置单元,用于设置多个综合温度区间,所述设置单元进一步用于:
    设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
  3. 如权利要求1所述的装置,其特征在于,所述温度检测单元进一步用于:开机预定延迟时间后,再检测所述室内环境温度和室外环境温度。
  4. 如权利要求1所述的装置,其特征在于,还包括:
    第三控制单元,用于制热开机后,将导风板打至第一预设位置。
  5. 如权利要求4所述的装置,其特征在于,所述第三控制单元进一步用于:
    启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长达到第二预设时长时,将导风板打至第二预设位置。
  6. 一种空调制热防冷风方法,其特征在于,包括:
    制热开机后分别检测室内环境温度和室外环境温度,以确定所述室内环境温度和室外环境温度所属的综合温度区间;
    判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需满足的蒸发器内管温度条件、或者压缩机和四通阀投入运行的时长是否达到所述室内环境温度和室外环境温度所属的综合温度区间对应的进入防冷风模式所需达到的压缩机和四通阀运行时长、或者电流强度是否连续预定时长达到第一预设电流强度阈值;
    若是,则以第一预设风速启动内风机;
    启动内风机后,判断蒸发器内管温度是否满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或者电流强度是否连续预定时长达到第二预设电流强度阈值、或者内风机以所述第一预设风速运行的时长是否达到第一预设时长;
    若是,则将内风机转为以第二预设风速运行,其中,第一预设风速小于第二预设风速。
  7. 如权利要求6所述的方法,其特征在于,还包括:设置多个综合温度区间,包括:
    设置多个室内环境温度区间和多个室外环境温度区间,将每个不同的室内环境温度区间分别对应不同的室外环境温度区间,形成多个综合温度区间。
  8. 如权利要求6所述的方法,其特征在于,开机预定延迟时间后,再检测所述室内环境温度和室外环境温度。
  9. 如权利要求6所述的方法,其特征在于,还包括:
    制热开机后,将导风板打至第一预设位置。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    启动内风机后,当蒸发器内管温度满足所述室内环境温度和室外环境温度所属的综合温度区间对应的退出防冷风模式所需满足的蒸发器内管温度条件、或在预定时长内连续检测到电流强度达到第二预设电流强度阈值、或内风机以所述第一预设风速运行的时长达到第二预设时长时,将导风板打至第二预设位置。
  11. 一种空调,包括如权利要求1-5任一项所述的装置。
PCT/CN2017/103141 2016-10-28 2017-09-25 空调及其制热防冷风装置和方法 WO2018076981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/345,460 US10982890B2 (en) 2016-10-28 2017-09-25 Air conditioner, and device and method for preventing cold air during heating of air conditioner
EP17863765.8A EP3534080B1 (en) 2016-10-28 2017-09-25 Air conditioner, device and method for cold air prevention during heating for air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610973252.1 2016-10-28
CN201610973252.1A CN106568170B (zh) 2016-10-28 2016-10-28 空调及其制热防冷风装置和方法

Publications (1)

Publication Number Publication Date
WO2018076981A1 true WO2018076981A1 (zh) 2018-05-03

Family

ID=58539876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103141 WO2018076981A1 (zh) 2016-10-28 2017-09-25 空调及其制热防冷风装置和方法

Country Status (4)

Country Link
US (1) US10982890B2 (zh)
EP (1) EP3534080B1 (zh)
CN (1) CN106568170B (zh)
WO (1) WO2018076981A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568170B (zh) 2016-10-28 2018-10-19 珠海格力电器股份有限公司 空调及其制热防冷风装置和方法
CN107514744B (zh) 2017-08-02 2019-10-01 广东美的暖通设备有限公司 新风机及其防冷风控制方法和装置
CN107477788B (zh) * 2017-08-18 2020-04-03 广东美的暖通设备有限公司 空调系统及其室内风机的控制方法和装置
CN108195038A (zh) * 2017-11-29 2018-06-22 珠海格力电器股份有限公司 一种空调出风控制方法、装置、存储介质及空调
CN109210686B (zh) * 2018-09-20 2020-11-20 宁波奥克斯电气股份有限公司 一种空调防冷风的控制方法及空调器
CN110542190B (zh) * 2019-09-12 2021-01-29 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN110617604B (zh) * 2019-09-19 2020-09-22 珠海格力电器股份有限公司 空调防冷风的控制方法、装置、设备、空调和存储介质
CN110701759B (zh) * 2019-10-23 2021-06-29 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN110986328A (zh) * 2019-11-04 2020-04-10 青岛海尔空调器有限总公司 用于空调制热开机时防冷风的控制方法
US11543142B1 (en) * 2019-12-23 2023-01-03 Trane International Inc. Systems and methods for operation of a climate control system
CN111023417A (zh) * 2019-12-26 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器防冷风控制方法、装置、空调器及存储介质
CN111238000B (zh) * 2020-02-22 2021-01-29 珠海格力电器股份有限公司 一种空调自动风速控制方法及空调控制系统、空调
CN111578452B (zh) * 2020-04-26 2022-01-21 青岛海尔空调器有限总公司 用于控制空调器升温灭菌的方法及装置、空调器
CN112254290B (zh) * 2020-09-18 2021-10-29 青岛海尔空调器有限总公司 用于空调风机控制的方法、装置及空调
CN112815485B (zh) * 2021-01-08 2021-12-14 珠海格力电器股份有限公司 一种空调制热防冷风运行控制方法、装置及空调
CN113418231B (zh) * 2021-06-30 2022-12-20 广东美的制冷设备有限公司 空调器及其控制方法、计算机可读存储介质
CN113819640B (zh) * 2021-09-08 2023-03-21 青岛海尔空调器有限总公司 用于控制室外风机的方法及装置、空调室外机
CN113739350B (zh) * 2021-09-23 2022-05-03 宁波奥克斯电气股份有限公司 一种低温制热变频控制方法、装置、存储介质和空调器
CN113959074B (zh) * 2021-10-12 2022-10-25 珠海格力电器股份有限公司 一种空调器的控制方法及空调器
CN115164388B (zh) * 2022-08-09 2024-02-02 宁波奥克斯电气股份有限公司 一种空调器的制热防冷风控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563806A (zh) * 2012-01-09 2012-07-11 广东美的电器股份有限公司 一种空调器出风温度的控制方法
JP2014190640A (ja) * 2013-03-28 2014-10-06 Ntt Facilities Inc 空調システム
CN105042771A (zh) * 2015-07-02 2015-11-11 珠海格力电器股份有限公司 空调制热开机防冷风控制方法及控制装置
CN106568170A (zh) * 2016-10-28 2017-04-19 珠海格力电器股份有限公司 空调及其制热防冷风装置和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2854365B2 (ja) * 1990-02-16 1999-02-03 株式会社日立製作所 空調制御装置
JPH07159008A (ja) * 1993-12-09 1995-06-20 Matsushita Electric Ind Co Ltd 空気調和機の膨張弁制御装置
JPH1026386A (ja) * 1996-07-12 1998-01-27 Fujitsu General Ltd 空気調和機の制御方法
KR20020015561A (ko) * 2000-08-22 2002-02-28 구자홍 공기조화기의 실내팬제어방법
CN100587353C (zh) 2007-09-28 2010-02-03 海信(山东)空调有限公司 一种空调制热防冷风控制方法
CN103307697B (zh) * 2012-03-15 2015-10-28 广东美芝精密制造有限公司 空调器的制热控制方法
CN103982979B (zh) * 2014-04-29 2016-08-17 珠海格力电器股份有限公司 空调机组开机控制方法和系统、以及空调机组
CN105066353B (zh) * 2015-08-07 2018-03-23 广东美的制冷设备有限公司 一种变频空调的风速控制方法及空调器
CN105757886B (zh) * 2016-03-03 2018-12-14 珠海格力电器股份有限公司 空调制热控制方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563806A (zh) * 2012-01-09 2012-07-11 广东美的电器股份有限公司 一种空调器出风温度的控制方法
JP2014190640A (ja) * 2013-03-28 2014-10-06 Ntt Facilities Inc 空調システム
CN105042771A (zh) * 2015-07-02 2015-11-11 珠海格力电器股份有限公司 空调制热开机防冷风控制方法及控制装置
CN106568170A (zh) * 2016-10-28 2017-04-19 珠海格力电器股份有限公司 空调及其制热防冷风装置和方法

Also Published As

Publication number Publication date
EP3534080B1 (en) 2021-03-10
CN106568170A (zh) 2017-04-19
EP3534080A4 (en) 2020-05-06
US10982890B2 (en) 2021-04-20
US20190271495A1 (en) 2019-09-05
CN106568170B (zh) 2018-10-19
EP3534080A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018076981A1 (zh) 空调及其制热防冷风装置和方法
CN110513819B (zh) 一种空调控制方法、空调以及存储介质
CN105627524B (zh) 空调器防冻结控制方法及空调器
CN106766007B (zh) 一种空调器及提高空调器除霜过程舒适度的方法
CN108644979A (zh) 空调器的控制方法、控制系统和空调器
WO2018196578A1 (zh) 空调器制热运行控制方法
CN102425839B (zh) 一种空调器的强制化霜控制方法
CN104729019A (zh) 空调器的控制方法、空调器的控制系统和空调器
CN109990439A (zh) 一种空调四通阀换向异常的控制方法、控制装置及空调器
CN110542182A (zh) 运行控制方法、运行控制装置、空调器和存储介质
CN108105942A (zh) 空调器及其除霜方法
CN109373540B (zh) 一种空调控制方法、系统及空调器
CN107575998A (zh) 空调及其室外机的除霜控制方法
CN111023457A (zh) 空调除霜方法、空调器及存储介质
CN105180347A (zh) 空调器防热风控制方法及空调器
WO2018196577A1 (zh) 一种空调器制热控制方法
US10443901B2 (en) Indoor unit of air conditioner
WO2018196579A1 (zh) 制热控制方法、控制装置和空调器
WO2018177079A1 (zh) 空调器制热控制方法、控制装置及空调器
CN110836466B (zh) 用于定频空调的除霜控制方法
EP3026364A1 (en) Heat pump type heating and hot water supply apparatus
JPH09243210A (ja) 空気調和機の制御方法およびその装置
CN115247862B (zh) 一种空调器和电加热器的运行控制方法
JPH10122626A (ja) 空気調和機
CN110836465B (zh) 空调器除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017863765

Country of ref document: EP

Effective date: 20190528