WO2018076933A1 - 一种毫米波基频振荡电路及毫米波振荡器 - Google Patents

一种毫米波基频振荡电路及毫米波振荡器 Download PDF

Info

Publication number
WO2018076933A1
WO2018076933A1 PCT/CN2017/100739 CN2017100739W WO2018076933A1 WO 2018076933 A1 WO2018076933 A1 WO 2018076933A1 CN 2017100739 W CN2017100739 W CN 2017100739W WO 2018076933 A1 WO2018076933 A1 WO 2018076933A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
output
unit
bypass
millimeter wave
Prior art date
Application number
PCT/CN2017/100739
Other languages
English (en)
French (fr)
Inventor
周海峰
丁庆
Original Assignee
深圳市华讯方舟微电子科技有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟微电子科技有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟微电子科技有限公司
Publication of WO2018076933A1 publication Critical patent/WO2018076933A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator

Definitions

  • the present invention belongs to the field of radio frequency communication, and in particular, to a millimeter wave fundamental frequency oscillating circuit and a millimeter wave oscillator.
  • oscillators which are key components of communications and radar systems, require lower phase noise, higher output frequencies, and greater output power. To improve its performance.
  • High-frequency periodic signals can usually be obtained directly from a fundamental frequency oscillator or a super-harmonic oscillator. Due to the development of the CMOS process, as the size of the MOS device is reduced, both ft and fmax are greatly improved, but The current oscillator cannot directly provide the fundamental frequency oscillation signal of the millimeter wave band. At present, the fundamental frequency oscillation signal of the millimeter wave band is usually obtained by using the nonlinearity of the device to extract an even harmonic or higher harmonic oscillator. .
  • the millimeter wave oscillator of the conventional push-pull structure has a small output power and a large power consumption, and cannot meet the requirements of a high-quality millimeter wave radar.
  • An object of the embodiments of the present invention is to provide a millimeter wave fundamental frequency oscillating circuit, which aims to solve the problem that the output power of the conventional millimeter wave oscillator is small and the power consumption is large.
  • the embodiment of the present invention is implemented as follows, a millimeter wave fundamental frequency oscillating circuit, the circuit includes: [0007] a bypass capacitor C1, one end of the bypass capacitor C1 is connected to a power supply voltage, and the bypass The other end of the capacitor C1 is grounded;
  • an output matching unit configured to maximize a second harmonic output energy of the oscillator, a power supply end of the output matching unit is connected to one end of the bypass capacitor C1, and an output end of the output matching unit outputs a millimeter Wave oscillation signal
  • a negative resistance effect generating unit for compensating for loss of the resonant circuit by using a cross-coupled pair of tubes to generate a negative resistance effect
  • a buffer unit configured to generate a buffer level output signal by using a bypass tube
  • an inductor transformer unit for forming a transformer structure by using an inductor to reduce parasitic capacitance of the bypass tube, and feeding back the buffer stage output signal to the resonant circuit to improve the operating frequency and output power of the oscillator.
  • the first group of the first end of the inductive transformer unit and the second end of the second group are respectively connected to the second control end and the first control end of the negative resistance effect generating unit, and the first group of the inductive voltage transforming unit
  • the second end and the second end of the second group are connected to the first input end and the second input end of the negative resistance effect generating unit, respectively.
  • the terminal is further connected to the second control end and the first control end of the buffer unit, respectively, the first group third end and the second group third end of the inductive transformer unit are respectively connected to the first input of the buffer unit
  • the second input end is connected, and the output end of the inductance transforming unit is connected to the input end of the output matching unit.
  • Another object of an embodiment of the present invention is to provide a millimeter wave oscillator using the above-described millimeter wave fundamental frequency oscillating circuit.
  • the embodiment of the present invention utilizes a cross-coupled pair of tubes to generate a negative resistance effect to compensate the loss of the resonant circuit, and the inductor is used to form a transformer structure to reduce the parasitic capacitance of the bypass tube, and feedback the buffer stage output signal back to the resonance
  • the loop increases the operating frequency and output power of the oscillator to improve the efficiency of the millimeter-wave oscillator, reduce the power consumption of the millimeter-wave oscillator, and is suitable for low-voltage applications to meet the requirements of high-quality millimeter-wave radar.
  • FIG. 1 is a structural diagram of a millimeter wave fundamental frequency oscillating circuit according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an inductance transformer unit in a millimeter wave fundamental frequency oscillation circuit according to an embodiment of the present invention
  • FIG. 3 is an output spectrum diagram of a millimeter wave oscillator according to an embodiment of the present invention.
  • the embodiment of the present invention utilizes a cross-coupling pair of tubes to generate a negative resistance effect to compensate the loss of the resonant circuit, and the inductor is used to form a transformer structure to reduce the parasitic capacitance of the bypass tube, and feedback the buffer stage output signal back to the resonance
  • the loop increases the operating frequency and output power of the oscillator to improve the efficiency of the millimeter-wave oscillator, reduce the power consumption of the millimeter-wave oscillator, and is suitable for low-voltage applications to meet the requirements of high-quality millimeter-wave radar.
  • FIG. 1 shows the structure of a millimeter wave fundamental frequency oscillating circuit according to an embodiment of the present invention. For the convenience of description, only parts related to the present invention are shown.
  • the millimeter wave fundamental frequency oscillating circuit can be applied to any millimeter wave oscillator, including:
  • the bypass capacitor C1, one end of the bypass capacitor C1 is connected to the power supply voltage, and the other end of the bypass capacitor C1 is grounded;
  • the output matching unit 11 is configured to maximize the second harmonic output energy of the oscillator, and output The second harmonic 2f Q , wherein f Q is the fundamental frequency, the power supply end of the output matching unit is connected to one end of the bypass capacitor C1, and the output end of the output matching unit outputs a millimeter wave oscillation signal;
  • a negative resistance effect generating unit 12 for compensating for loss of the resonant circuit by using a cross-coupled pair of tubes to generate a negative resistance effect
  • the buffer unit 13 is configured to generate a buffer level output signal by using a bypass tube
  • the inductive transformer unit 14 is configured to form a transformer structure by using an inductor to reduce parasitic capacitance of the bypass tube, and feed back the buffer stage output signal to the resonant circuit to improve the operating frequency and output power of the oscillator.
  • the first group first end and the second group first end of the pressing unit are respectively connected to the second control end and the first control end of the negative resistance effect generating unit, and the first group second end and the second group of the inductance transforming unit
  • the second end is respectively connected to the first input end and the second input end of the negative resistance effect generating unit, and the first group first end and the second group first end of the inductance transforming unit are respectively respectively connected to the second control end of the buffer unit , the first control terminal is connected, the electricity
  • the first group of third ends and the second group of third terminals of the voltage sensing unit are respectively connected to the first input end and the second input end of the buffer unit, and the output end of the inductive voltage transform unit is connected to the input end of the output matching unit.
  • the output matching unit 11 includes: a coplanar waveguide CPW and a capacitor C2;
  • One end of the coplanar waveguide CPW is a power supply end of the output matching unit, and the other end of the coplanar waveguide CPW is an input end of the output matching unit connected to one end of the capacitor C2, and the other end of the capacitor C2 is an output end of the output matching unit. .
  • the coplanar waveguide CPW in the output matching unit 11 can also be replaced by a microstrip line, and the output matching unit 11 includes: a microstrip line and a capacitor C2;
  • One end of the microstrip line is a power supply end of the output matching unit, and the other end of the microstrip line is connected to an input end of the output matching unit and one end of the capacitor C2, and the other end of the capacitor C2 is an output end of the output matching unit.
  • the negative resistance effect generating unit 12 includes:
  • the control end of the first switch M1 and the control end of the second switch M2 are respectively a first control end and a second control end of the negative resistance effect generating unit;
  • the current input terminal of the first bypass transistor M1 and the current input terminal of the second bypass transistor M2 are respectively a first input end and a second input end of the negative resistance effect generating unit;
  • the first bypass transistor M1 and the second bypass transistor M2 are active switching devices, such as NMOS, PMO
  • the buffer unit 13 includes:
  • control end of the third switch M3 and the control end of the fourth switch M4 are respectively a first control end and a second control end of the buffer unit;
  • the current input terminal of the third bypass transistor M3 and the current input terminal of the fourth bypass transistor M4 are respectively a first input end and a second input end of the buffer unit;
  • the third bypass transistor M3 and the fourth bypass transistor M4 are active switching devices.
  • the inductor transforming unit 14 includes: [0044] Inductance L1, inductor L2, inductor L3, inductor ⁇ , inductor L2', inductor L3';
  • the inductor L1 is coupled to the inductor L2, the inductor L1' is coupled to the inductor L2', and the coupling coefficient is K2;
  • the inductor L2 is coupled to the inductor L3, the inductor L2' is coupled with the inductor, and the coupling coefficient is K1;
  • the same name end of the inductor L1, the inductor L2, and the inductor L3 are respectively the first group first end, the first group second end, and the first group third end of the inductor transforming unit, the inductor L1, the inductor L2, and the inductor L3
  • the different ends of the inductors are respectively connected to the different names of the inductor L1 ', the inductor L2', and the inductor L3', and the same end of the inductor L1', the inductor L2', and the inductor are respectively the second group first end of the inductor transformer unit,
  • the second end of the second group and the third end of the second group, the different ends of the inductor L1, the inductor L2, the inductor L3, the inductor L1', the inductor L2', and the inductor L3' are the output ends of the inductor transformer unit.
  • the inductor L1 is coupled with the inductor L1'
  • the inductor L2 is coupled with the inductor L2'
  • the inductor L3 is coupled with the inductor L3'.
  • the different end of the inductor L2' and the inductor L3' is the common mode junction of the inductor.
  • the coupling form of the inductor is not limited, and can be realized by a plane coupling structure in the same layer of the layout, or by coupling at different positions of different layers of the layout.
  • the inductor L1, the inductor L2, the inductor L3, the inductor, the inductor L2', and the inductor L3' form an octagonal plane coupling structure, of course, in order to improve the coupling effect, the coupling effect can be improved.
  • the number of polygons for example, 16-angle, 32-angle, but increasing the number of polygons of the polygons leads to an increase in the difficulty of the process, thereby increasing the process cost, and thus an octagonal structure is preferred.
  • the MOS transistors M1 and ⁇ 2 constitute a cross-coupled pair of tubes, and the ⁇ 3 and ⁇ 4 are MOS tubes of an output buffer stage.
  • the inductor L1, the inductor L1', the inductor L2, the inductor L2' and the parasitic capacitance of the MOS device form a resonant network
  • the inductor L3, the inductor L3' is the load of the output buffer stage, and the signal is taken out from the common mode junction of the inductor
  • the capacitor C2 is used as the output matching of the circuit, so that the second harmonic output energy of the oscillator is the largest
  • the capacitor C1 is the bypass capacitor of the power supply.
  • the working principle of the circuit is as follows:
  • the MOS devices M1 and M2 form a cross-coupling pair tube, which generates a negative resistance effect for compensating for the loss of the resonant circuit;
  • the inductor L1, the inductor L1', the inductor L2, and the inductor L2' form a transformer structure.
  • inductor L2 Effectively reduce the parasitic capacitance of MOS devices and increase the operating frequency of the oscillator; inductor L2, electricity Sense L2 'Inductance L3, Inductance L3' form a transformer structure, and feedback the output signal of the buffer stage back to the resonant circuit, which is beneficial to increase the output power of the signal; Coplanar waveguide CPW and capacitor C2 serve as the output matching circuit structure of the oscillator, making the oscillation The second harmonic output energy of the device is the largest; the capacitor C1 is the bypass capacitor of the power supply voltage.
  • the millimeter wave oscillator of the push-pull structure provided by the present application has a power supply voltage of 0.6V, a current consumption of 16 mA, an output frequency of 202 GHz, and an output power after calibration of greater than -10 dBm.
  • the test result is shown in FIG. 3, wherein the marker Marker shows that the tested output power is -74.51 dBm, the output frequency is 202.33 GHz, the chip operates at a 0.6V power supply voltage, and the current consumption is 16 mA, and the output is 16 mA.
  • the frequency is 202 GHz and the test path loss is 65 dB.
  • the calculated output power of the chip is - 9.51 dBm, and the power efficiency of the oscillator is 1.166%.
  • the present invention combines a novel inductor device, realizes a transformer structure composed of three sets of inductors, utilizes a coupling effect of an output buffer stage inductor and a resonant loop inductor; and also utilizes a gate terminal and a drain terminal inductance of an active bypass device.
  • the coupling effect increases the output frequency and power of the oscillator.
  • the output signal is extracted from the common mode node of the circuit, and the output matching is realized by the coplanar waveguide structure, and the second harmonic of the circuit is extracted, thereby realizing a new high output frequency, high output power, high efficiency, and low power consumption.
  • Millimeter wave oscillator circuit realizes a transformer structure composed of three sets of inductors, utilizes a coupling effect of an output buffer stage inductor and a resonant loop inductor; and also utilizes a gate terminal and a drain terminal inductance of an active bypass device.
  • the coupling effect increases the output frequency and power of the oscillator.
  • Embodiments of the present invention utilize a cross-coupled pair of tubes to generate a negative resistance effect to compensate for the loss of the resonant tank, and a transformer structure is used to reduce the parasitic capacitance of the bypass tube, and the buffer stage output signal is fed back to the resonance.
  • the loop reduces the parasitic capacitance of the resonant tank to increase the operating frequency of the oscillator, thereby increasing the output power, output frequency and efficiency of the millimeter wave oscillator, reducing the power consumption of the millimeter wave oscillator, and being suitable for low voltage applications. High quality millimeter wave radar requirements.
  • Another object of an embodiment of the present invention is to provide a millimeter wave oscillator using the above-described millimeter wave fundamental frequency oscillating circuit.

Abstract

本方案适用于射频通信领域,提供了一种毫米波基频振荡电路及毫米波振荡器,该电路包括:旁路电容;输出匹配单元,使振荡器的二次谐波输出能量最大,输出毫米波振荡信号;负阻效应产生单元,产生负阻效应来补偿谐振回路的损耗;缓冲单元,生成缓冲级输出信号;电感变压单元,利用电感形成变压器结构来降低开关管的寄生电容,并将缓冲级输出信号反馈回给谐振回路。本方案利用输出缓冲级电感与谐振回路电感的耦合效应,利用了有源开关器件的栅端和漏端电感的耦合效应,来提高振荡器的输出频率和能量,将输出信号从电路的共模结点引出,由共面波导结构实现输出匹配,将电路的二次谐波提取出来,实现了输出频率、输出功率高的毫米波振荡器电路。

Description

一种毫米波基频振荡电路及毫米波振荡器
技术领域
[0001] 本发明属于射频通信领域, 尤其涉及一种毫米波基频振荡电路及毫米波振荡器 背景技术
[0002] 随着新兴无线通信和毫米波雷达的快速发展, 作为通信与雷达系统的关键部件 振荡器, 也随之要求具有更低的相位噪声、 更高的输出频率和更大的输出功率 , 来提高其性能。
[0003] 高频周期信号通常可以直接从基频振荡器或者超谐波振荡器获得, 由于 CMOS 工艺的发展, 随着 MOS器件尺寸的减少, 其 ft和 fmax都得到了较大的提升, 但是 目前的振荡器还无法直接提供毫米波频段的基频振荡信号, 目前毫米波频段的 基频振荡信号通常是利用器件的非线性, 提取偶次谐波或者更高次谐波的振荡 器来获得。
[0004] 而现有推挽结构的毫米波振荡器的输出功率较小, 功耗较大, 无法满足高品质 毫米波雷达的要求。
技术问题
[0005] 本发明实施例的目的在于提供一种毫米波基频振荡电路, 旨在解决现有毫米波 振荡器的输出功率小、 功耗大的问题。
问题的解决方案
技术解决方案
[0006] 本发明实施例是这样实现的, 一种毫米波基频振荡电路, 所述电路包括: [0007] 旁路电容 Cl, 所述旁路电容 C1的一端连接电源电压, 所述旁路电容 C1的另一 端接地;
[0008] 输出匹配单元, 用于使振荡器的二次谐波输出能量最大, 所述输出匹配单元的 电源端与所述旁路电容 C1的一端连接, 所述输出匹配单元的输出端输出毫米波 振荡信号; [0009] 负阻效应产生单元, 用于利用交叉耦合的对管产生负阻效应来补偿谐振回路的 损耗;
[0010] 缓冲单元, 用于利用幵关管生成缓冲级输出信号;
[0011] 电感变压单元, 用于利用电感形成变压器结构来降低幵关管的寄生电容, 并将 所述缓冲级输出信号反馈回给谐振回路, 以提高振荡器的工作频率及输出功率 , 所述电感变压单元的第一组第一端、 第二组第一端分别与所述负阻效应产生 单元的第二控制端、 第一控制端连接, 所述电感变压单元的第一组第二端、 第 二组第二端分别与所述负阻效应产生单元的第一输入端、 第二输入端连接, 所 述电感变压单元的第一组第一端、 第二组第一端还分别与所述缓冲单元的第二 控制端、 第一控制端连接, 所述电感变压单元的第一组第三端、 第二组第三端 分别与所述缓冲单元的第一输入端、 第二输入端连接, 所述电感变压单元的输 出端与所述输出匹配单元的输入端连接。
[0012] 本发明实施例的另一目的在于, 提供一种采用上述毫米波基频振荡电路的毫米 波振荡器。
发明的有益效果
有益效果
[0013] 本发明实施例利用交叉耦合的对管产生负阻效应来补偿谐振回路的损耗, 利用 电感形成变压器结构来降低幵关管的寄生电容, 并将所述缓冲级输出信号反馈 回给谐振回路, 以提高振荡器的工作频率及输出功率, 从而提高毫米波振荡器 的效率, 降低毫米波振荡器的功耗, 并且适于低电压应用, 能够满足高品质毫 米波雷达的要求。
对附图的简要说明
附图说明
[0014] 图 1为本发明实施例提供的毫米波基频振荡电路的结构图;
[0015] 图 2为本发明实施例提供的毫米波基频振荡电路中电感变压单元的结构图;
[0016] 图 3为本发明实施例提供的毫米波振荡器的输出频谱图。 本发明的实施方式
[0017] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。 此外, 下面所描述的本发明各个实施方 式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0018] 本发明实施例利用交叉耦合的对管产生负阻效应来补偿谐振回路的损耗, 利用 电感形成变压器结构来降低幵关管的寄生电容, 并将所述缓冲级输出信号反馈 回给谐振回路, 以提高振荡器的工作频率及输出功率, 从而提高毫米波振荡器 的效率, 降低毫米波振荡器的功耗, 并且适于低电压应用, 能够满足高品质毫 米波雷达的要求。
[0019] 以下结合具体实施例对本发明的实现进行详细描述:
[0020] 图 1示出了本发明实施例提供的毫米波基频振荡电路的结构, 为了便于说明, 仅示出了与本发明相关的部分。
[0021] 作为本发明一实施例, 该毫米波基频振荡电路可以应用于任何毫米波振荡器中 , 包括:
[0022] 旁路电容 Cl, 旁路电容 C1的一端连接电源电压, 旁路电容 C1的另一端接地; [0023] 输出匹配单元 11, 用于使振荡器的二次谐波输出能量最大, 输出二次谐波 2f Q , 其中 f Q为基波频率, 输出匹配单元的电源端与旁路电容 C1的一端连接, 输出 匹配单元的输出端输出毫米波振荡信号;
[0024] 负阻效应产生单元 12, 用于利用交叉耦合的对管产生负阻效应来补偿谐振回路 的损耗;
[0025] 缓冲单元 13, 用于利用幵关管生成缓冲级输出信号;
[0026] 电感变压单元 14, 用于利用电感形成变压器结构来降低幵关管的寄生电容, 并 将缓冲级输出信号反馈回给谐振回路, 以提高振荡器的工作频率及输出功率, 电感变压单元的第一组第一端、 第二组第一端分别与负阻效应产生单元的第二 控制端、 第一控制端连接, 电感变压单元的第一组第二端、 第二组第二端分别 与负阻效应产生单元的第一输入端、 第二输入端连接, 电感变压单元的第一组 第一端、 第二组第一端还分别与缓冲单元的第二控制端、 第一控制端连接, 电 感变压单元的第一组第三端、 第二组第三端分别与缓冲单元的第一输入端、 第 二输入端连接, 电感变压单元的输出端与输出匹配单元的输入端连接。
[0027] 作为本发明一实施例, 输出匹配单元 11包括: 共面波导 CPW和电容 C2;
[0028] 共面波导 CPW的一端为输出匹配单元的电源端, 共面波导 CPW的另一端为输 出匹配单元的输入端与电容 C2的一端连接, 电容 C2的另一端为输出匹配单元的 输出端。
[0029] 当然, 输出匹配单元 11中的共面波导 CPW还可以用微带线来代替, 输出匹配单 元 11包括: 微带线和电容 C2;
[0030] 微带线的一端为输出匹配单元的电源端, 微带线的另一端为输出匹配单元的输 入端与电容 C2的一端连接, 电容 C2的另一端为输出匹配单元的输出端。
[0031] 作为本发明一实施例, 负阻效应产生单元 12包括:
[0032] 第一幵关管 Ml和第二幵关管 M2;
[0033] 第一幵关管 Ml的控制端和第二幵关管 M2的控制端分别为负阻效应产生单元第 一控制端和第二控制端;
[0034] 第一幵关管 Ml的电流输入端和第二幵关管 M2的电流输入端分别为负阻效应产 生单元第一输入端和第二输入端;
[0035] 第一幵关管 Ml的电流输出端和第二幵关管 M2的电流输出端同吋接地。
[0036] 优选地, 第一幵关管 Ml和第二幵关管 M2为有源幵关器件, 例如 NMOS、 PMO
S等。
[0037] 作为本发明一实施例, 缓冲单元 13包括:
[0038] 第三幵关管 M3、 第四幵关管 M4;
[0039] 第三幵关管 M3的控制端和第四幵关管 M4的控制端分别为缓冲单元第一控制端 和第二控制端;
[0040] 第三幵关管 M3的电流输入端和第四幵关管 M4的电流输入端分别为缓冲单元第 一输入端和第二输入端;
[0041] 第三幵关管 M3的电流输出端和第四幵关管 M4的电流输出端同吋接地。
[0042] 优选地, 第三幵关管 M3和第四幵关管 M4为有源幵关器件。
[0043] 作为本发明一实施例, 电感变压单元 14包括: [0044] 电感 Ll、 电感 L2、 电感 L3、 电感 Ι^ 、 电感 L2' 、 电感 L3' ;
[0045] 其中, 所述电感 L1与所述电感 L2形成耦合, 所述电感 L1' 与所述电感 L2' 形 成耦合, 耦合系数均为 K2;
[0046] 所述电感 L2与所述电感 L3形成耦合, 所述电感 L2' 与电感 形成耦合, 耦 合系数均为 K1;
[0047] 电感 Ll、 电感 L2、 电感 L3的同名端分别为电感变压单元的第一组第一端、 第 一组第二端、 第一组第三端, 电感 Ll、 电感 L2、 电感 L3的异名端分别与电感 L1 ' 、 电感 L2' 、 电感 L3' 的异名端对应连接, 电感 L1' 、 电感 L2' 、 电感 的同名端分别为电感变压单元的第二组第一端、 第二组第二端、 第二组第三端 , 电感 Ll、 电感 L2、 电感 L3、 电感 L1' 、 电感 L2' 、 电感 L3' 的异名端同吋为 电感变压单元的输出端。
[0048] 在本发明实施例中, 电感 L1与电感 L1' 形成耦合, 电感 L2与电感 L2' 形成耦 合, 电感 L3与电感 L3' 形成耦合, 电感 Ll、 电感 L2、 电感 L3、 电感 L1' 、 电感 L2' 、 电感 L3' 的异名端为电感的共模结点。 并且, 电感的耦合形式并不限定 , 既可以在版图的同一层通过平面耦合结构实现, 也可以在版图的不同层的相 近位置实现耦合。
[0049] 结合图 2, 以同层平面耦合为例, 电感 Ll、 电感 L2、 电感 L3、 电感 、 电感 L2' 、 电感 L3' 形成了一个八角形的平面耦合结构, 当然为了提高耦合效果可 以提高多角形的数量, 例如 16角形、 32角形, 但提高多角形数量的同吋会导致 工艺的难度增加, 从而增加工艺成本, 因此优选八角形结构。
[0050] 在本发明实施例中, MOS管 Ml、 Μ2构成交叉耦合对管, Μ3、 Μ4为输出缓冲 级的 MOS管。 电感 Ll、 电感 L1' , 电感 L2、 电感 L2' 与 MOS器件的寄生电容构 成谐振网络, 电感 L3、 电感 L3' 为输出缓冲级的负载, 信号从电感的共模结点 引出, 共面波导 CPW和电容 C2用来作为电路的输出匹配, 使得振荡器的二次谐 波输出能量最大, 电容 C1为电源的旁路电容。
[0051] 电路的工作原理如下: MOS器件 Ml、 M2构成交叉耦合对管, 产生负阻效应, 用于补偿谐振回路的损耗; 电感 Ll、 电感 L1' , 电感 L2、 电感 L2' 形成变压器 结构, 有效降低 MOS器件寄生电容影响, 提高振荡器的工作频率; 电感 L2、 电 感 L2 ' 电感 L3、 电感 L3 ' 形成变压器结构, 将缓冲级的输出信号反馈回谐振回 路, 有利于增加信号的输出功率; 共面波导 CPW和电容 C2作为振荡器的输出匹 配电路结构, 使得振荡器的二次谐波输出能量最大; 电容 C1为电源电压的旁路 电容。
[0052] 经测试, 本申请提供的推挽结构的毫米波振荡器, 电源电压 0.6V, 电流消耗 16 mA, 输出频率 202GHz, 校准后输出功率大于 -10dBm。
[0053] 测试结果如图 3所示, 其中标记点 Marker显示出, 经测试的输出端功率为 -74.51 dBm, 输出频率为 202.33 GHz, 芯片工作在 0.6V电源电压下, 消耗电流为 16mA , 输出频率为 202GHz, 测试路径损耗为 65dB, 则计算得到的芯片的输出功率为- 9.51dBm, 本振荡器的功率效率为 1.166%。
[0054] 本发明结合新型电感器件, 实现了三组电感构成的变压器结构, 利用了输出缓 冲级电感与谐振回路电感的耦合效应; 还利用了有源幵关器件的栅端和漏端电 感的耦合效应, 提高了振荡器的输出频率和功率。 输出信号从电路的共模结点 引出, 由共面波导结构实现输出匹配, 将电路的二次谐波提取出来, 实现了一 种新的输出频率高、 输出功率高、 效率高、 功耗低的毫米波振荡器电路。
[0055] 本发明实施例利用交叉耦合的对管产生负阻效应来补偿谐振回路的损耗, 利用 电感形成变压器结构来降低幵关管的寄生电容, 并将所述缓冲级输出信号反馈 回给谐振回路来降低谐振回路的寄生电容, 以提高振荡器的工作频率, 从而提 高毫米波振荡器的输出功率、 输出频率和效率, 降低毫米波振荡器的功耗, 并 且适于低电压应用, 能够满足高品质毫米波雷达的要求。
[0056] 本发明实施例的另一目的在于, 提供一种采用上述毫米波基频振荡电路的毫米 波振荡器。
[0057] 以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
[权利要求 1] 一种毫米波基频振荡电路, 其特征在于, 所述电路包括:
旁路电容 Cl, 所述旁路电容 C1的一端连接电源电压, 所述旁路电容 C 1的另一端接地;
输出匹配单元, 用于使振荡器的二次谐波输出能量最大, 所述输出匹 配单元的电源端与所述旁路电容 C1的一端连接, 所述输出匹配单元 的输出端输出毫米波振荡信号;
负阻效应产生单元, 用于利用交叉耦合的对管产生负阻效应来补偿谐 振回路的损耗;
缓冲单元, 用于利用幵关管生成缓冲级输出信号; 电感变压单元, 用于利用电感形成变压器结构来降低幵关管的寄生电 容, 并将所述缓冲级输出信号反馈回给谐振回路, 以提高振荡器的工 作频率及输出功率, 所述电感变压单元的第一组第一端、 第二组第一 端分别与所述负阻效应产生单元的第二控制端、 第一控制端连接, 所 述电感变压单元的第一组第二端、 第二组第二端分别与所述负阻效应 产生单元的第一输入端、 第二输入端连接, 所述电感变压单元的第一 组第一端、 第二组第一端还分别与所述缓冲单元的第二控制端、 第一 控制端连接, 所述电感变压单元的第一组第三端、 第二组第三端分别 与所述缓冲单元的第一输入端、 第二输入端连接, 所述电感变压单元 的输出端与所述输出匹配单元的输入端连接。
[权利要求 2] 如权利要求 1所述的电路, 其特征在于, 所述输出匹配单元包括: 共 面波导和电容 C2;
所述共面波导的一端为所述输出匹配单元的电源端, 所述共面波导的 另一端为所述输出匹配单元的输入端与所述电容 C2的一端连接, 所 述电容 C2的另一端为所述输出匹配单元的输出端。
[权利要求 3] 如权利要求 1所述的电路, 其特征在于, 所述输出匹配单元包括: 微 带线和电容 C2;
所述微带线的一端为所述输出匹配单元的电源端, 所述微带线的另一 端为所述输出匹配单元的输入端与所述电容 C2的一端连接, 所述电 容 C2的另一端为所述输出匹配单元的输出端。
[权利要求 4] 如权利要求 1所述的电路, 其特征在于, 所述负阻效应产生单元包括 第一幵关管和第二幵关管;
所述第一幵关管的控制端和所述第二幵关管的控制端分别为所述负阻 效应产生单元第一控制端和第二控制端;
所述第一幵关管的电流输入端和所述第二幵关管的电流输入端分别为 所述负阻效应产生单元第一输入端和第二输入端; 所述第一幵关管的电流输出端和所述第二幵关管的电流输出端同吋接 地。
[权利要求 5] 如权利要求 4所述的电路, 其特征在于, 所述第一幵关管和所述第二 幵关管为有源幵关器件。
[权利要求 6] 如权利要求 1所述的电路, 其特征在于, 所述缓冲单元包括:
第三幵关管、 第四幵关管;
所述第三幵关管的控制端和所述第四幵关管的控制端分别为所述缓冲 单元第一控制端和第二控制端;
所述第三幵关管的电流输入端和第四幵关管的电流输入端分别为所述 缓冲单元第一输入端和第二输入端;
所述第三幵关管的电流输出端和所述第四幵关管的电流输出端同吋接 地。
[权利要求 7] 如权利要求 6所述的电路, 其特征在于, 所述第三幵关管和所述第四 幵关管为有源幵关器件。
[权利要求 8] 如权利要求 1所述的电路, 其特征在于, 所述电感变压单元包括: 电感 Ll、 电感 L2、 电感 L3、 电感 L1 ' 、 电感 L2 ' 、 电感 L3 ' ; 其中, 所述电感 L1与所述电感 L2形成耦合, 所述电感 L1 ' 与所述电 感 L2 ' 形成耦合, 耦合系数均为 K2;
所述电感 L2与所述电感 L3形成耦合, 所述电感 L2 ' 与电感 L3 ' 形成 耦合, 耦合系数均为 Kl;
所述电感 LI、 所述电感 L2、 所述电感 L3的同名端分别为所述电感变 压单元的第一组第一端、 第一组第二端、 第一组第三端, 所述电感 L 1、 所述电感 L2、 所述电感 L3的异名端分别与所述电感 、 所述电 感 L2' 、 所述电感 L3' 的异名端对应连接, 所述电感 L1' 、 所述电 感 L2' 、 所述电感 L3' 的同名端分别为所述电感变压单元的第二组 第一端、 第二组第二端、 第二组第三端, 所述电感 Ll、 所述电感 L2 、 所述电感 L3、 所述电感 L1' 、 所述电感 L2' 、 所述电感 L3' 的异 名端同吋为所述电感变压单元的输出端。
[权利要求 9] 如权利要求 8所述的电路, 其特征在于, 所述电感 Ll、 电感 L2、 电感
L3形成平面耦合结构。
[权利要求 10] —种毫米波振荡器, 其特征在于, 所述毫米波振荡器包括如权利要求
1-9任一项所述的毫米波基频振荡电路。
PCT/CN2017/100739 2016-10-31 2017-09-06 一种毫米波基频振荡电路及毫米波振荡器 WO2018076933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610930567.8A CN106411264B (zh) 2016-10-31 2016-10-31 一种毫米波基频振荡电路及毫米波振荡器
CN201610930567.8 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018076933A1 true WO2018076933A1 (zh) 2018-05-03

Family

ID=58013236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100739 WO2018076933A1 (zh) 2016-10-31 2017-09-06 一种毫米波基频振荡电路及毫米波振荡器

Country Status (2)

Country Link
CN (1) CN106411264B (zh)
WO (1) WO2018076933A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411264B (zh) * 2016-10-31 2018-09-14 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器
CN110113007A (zh) * 2019-05-31 2019-08-09 华讯方舟科技有限公司 一种注入锁定振荡电路、频率调节方法及注入锁定振荡器
CN111525920A (zh) * 2020-05-22 2020-08-11 广州昌钰行信息科技有限公司 Cmos毫米波高速时钟缓冲电路
CN112953395B (zh) * 2021-03-25 2022-05-24 华南理工大学 一种逆f类压控振荡器及芯片
CN113381697B (zh) * 2021-05-14 2022-05-10 华南理工大学 一种基于65nm CMOS工艺的二次谐波压控振荡器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075799A1 (en) * 2005-10-04 2007-04-05 National Taiwan University Of Science And Technology Dual-band voltage controlled oscillator utilizing switched feedback technology
CN103078591A (zh) * 2012-12-31 2013-05-01 东南大学 低功耗宽带压控振荡器
CN103095217A (zh) * 2013-01-16 2013-05-08 东南大学 低相位噪声压控振荡器
CN103107811A (zh) * 2012-12-07 2013-05-15 南京邮电大学 一种低相位噪声电感电容压控振荡器
CN104753498A (zh) * 2012-04-12 2015-07-01 杭州电子科技大学 一种低相噪低功耗宽带压控振荡器电路
CN105281762A (zh) * 2015-11-07 2016-01-27 浙江大学 60GHz锁相环低电压下抗工艺涨落的电压控制CMOS LC振荡器
CN106411264A (zh) * 2016-10-31 2017-02-15 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器
CN206149214U (zh) * 2016-10-31 2017-05-03 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075799A1 (en) * 2005-10-04 2007-04-05 National Taiwan University Of Science And Technology Dual-band voltage controlled oscillator utilizing switched feedback technology
CN104753498A (zh) * 2012-04-12 2015-07-01 杭州电子科技大学 一种低相噪低功耗宽带压控振荡器电路
CN103107811A (zh) * 2012-12-07 2013-05-15 南京邮电大学 一种低相位噪声电感电容压控振荡器
CN103078591A (zh) * 2012-12-31 2013-05-01 东南大学 低功耗宽带压控振荡器
CN103095217A (zh) * 2013-01-16 2013-05-08 东南大学 低相位噪声压控振荡器
CN105281762A (zh) * 2015-11-07 2016-01-27 浙江大学 60GHz锁相环低电压下抗工艺涨落的电压控制CMOS LC振荡器
CN106411264A (zh) * 2016-10-31 2017-02-15 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器
CN206149214U (zh) * 2016-10-31 2017-05-03 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器

Also Published As

Publication number Publication date
CN106411264A (zh) 2017-02-15
CN106411264B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
WO2018076933A1 (zh) 一种毫米波基频振荡电路及毫米波振荡器
US20220360219A1 (en) Radio frequency oscillator
TWI382655B (zh) 用於類比及混合信號應用之折疊串接拓樸結構
CN112671344B (zh) 一种带压控电容匹配的基于变压器的自混频三倍频器
CN113839619B (zh) 一种高功率、高效率的片上硅基双模太赫兹信号源结构
CN109510597B (zh) 一种宽带增强型注入锁定四倍频器
CN102624334A (zh) 高功率大调谐范围的旋转行波压控振荡器
Yu et al. A 212–260 GHz broadband frequency multiplier chain (× 4) in 130-nm BiCMOS technology
CN111342775B (zh) 一种基于电流复用和变压器耦合缓冲放大器的双核振荡器
Saavedra et al. Self-oscillating mixers: A natural fit for active antennas
CN113746429A (zh) 一种基于变压器耦合的堆叠压控振荡器
US10236841B2 (en) Differential amplifier
CN206149214U (zh) 一种毫米波基频振荡电路及毫米波振荡器
WO2020125192A1 (zh) 一种无源宽带混频器
Chen et al. A V-band inverse class F power amplifier with 16.3% PAE in 65nm CMOS
Gong et al. An ultra-low power K band balanced frequency doubler with a novel current-reused structure
CN110971200B (zh) 一种新型双频带高效f类功率放大器
Syu et al. A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1: 1: 1 trifilar transformer
CN110784178A (zh) 宽带注入锁定倍频器
Wang et al. A 28 GHz Front-End for Phased Array Receivers Simulated in 180 nm CMOS
CN105680888A (zh) 一种采用cmos工艺实现的太赫兹发射机电路
Dilshad et al. An Ultra-Broadband K/Ka-Band (17–40 GHz) LNA MMIC in $0.15\mu\mathrm {m} $ GaAs pHEMT
Yu et al. Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review
KR102570537B1 (ko) 주파수 체배기를 이용한 초고주파 신호 생성 장치
Chlis et al. A novel differential Hartley CMOS oscillator circuit topology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865639

Country of ref document: EP

Kind code of ref document: A1