CN113381697B - 一种基于65nm CMOS工艺的二次谐波压控振荡器 - Google Patents

一种基于65nm CMOS工艺的二次谐波压控振荡器 Download PDF

Info

Publication number
CN113381697B
CN113381697B CN202110528799.1A CN202110528799A CN113381697B CN 113381697 B CN113381697 B CN 113381697B CN 202110528799 A CN202110528799 A CN 202110528799A CN 113381697 B CN113381697 B CN 113381697B
Authority
CN
China
Prior art keywords
inductor
harmonic voltage
inductance
controlled oscillator
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110528799.1A
Other languages
English (en)
Other versions
CN113381697A (zh
Inventor
易翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Provincial Laboratory Of Artificial Intelligence And Digital Economy Guangzhou
South China University of Technology SCUT
Original Assignee
Guangdong Provincial Laboratory Of Artificial Intelligence And Digital Economy Guangzhou
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Provincial Laboratory Of Artificial Intelligence And Digital Economy Guangzhou, South China University of Technology SCUT filed Critical Guangdong Provincial Laboratory Of Artificial Intelligence And Digital Economy Guangzhou
Priority to CN202110528799.1A priority Critical patent/CN113381697B/zh
Publication of CN113381697A publication Critical patent/CN113381697A/zh
Application granted granted Critical
Publication of CN113381697B publication Critical patent/CN113381697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1218Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the generator being of the balanced type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/20Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator
    • H03B5/24Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising resistance and either capacitance or inductance, e.g. phase-shift oscillator active element in amplifier being semiconductor device

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明公开了一种基于65nm CMOS工艺的二次谐波压控振荡器,涉及电子通讯技术。针对现有技术中小面积、高功率、高效率无法实现的问题提出本方案,利用65nm CMOS生产方法在基片上制作出二次谐波压控振荡电路结构,主要包括输出电容、第一电阻以及对称设置的第一三电感串接单元和第二三电感串接单元。工作频率为302.7GHz~317.2GHz。优点在于,采用了单振荡器结构实现高输出功率、高效率、小面积。由于有源晶体管的寄生电容会显著降低THz频段的振荡器性能,因此采用了高阶无源LC谐振电路来使这些寄生电容产生谐振,从而提高了振荡频率和效率。从优化路径中提取输出二次谐波,以产生高输出功率,面积仅0.01mm2

Description

一种基于65nm CMOS工艺的二次谐波压控振荡器
技术领域
本发明涉及电子通讯技术,尤其涉及一种基于65nm CMOS工艺的二次谐波压控振荡器。
背景技术
毫米波(mm-Wave)和太赫兹(THz)广泛用于高速无线通信、雷达、成像和光谱学中,出现基于在III-V族工艺实现的分立组件或单片微波集成电路(MMIC)中。由于CMOS深亚微米工艺的飞速发展,CMOS晶体管的最大振荡频率fmax不断提高,使得CMOS工艺中的毫米波和太赫兹IC成为现实。尽管CMOS工艺仍然面临性能相对较低,衬底损耗高以及高频模型不准确问题,但近年来,由于毫米波和太赫兹CMOS IC的低成本以及与CMOS数字电路的高强兼容性,它们仍是本领域技术人员所迫切需要的。高输出功率、高DC-to-RF效率和小面积信号源在CMOS技术中是毫米波和太赫兹大规模阵列系统的关键,但具有挑战性,例如用于6G通信的相控阵或MIMO收发器。由于CMOS晶体管的fmax低于工作频率,因此只能从输出信号的谐波分量中提取所需的功率。与基本振荡器和倍频器的解决方案相比,谐波振荡器可以提供高输出功率,低功耗和小的面积,但仍需要改进。增加输出功率的一种直接方法是使用大规模振荡器阵列,但要以大面积为代价。三推结构很简单,但是版图不对称,降低了效率。耦合振荡器需要注入功率和延迟线来耦合相邻的振荡器,这会扩大芯片面积并降低效率。
如何实现实现高输出功率、高效率、小面积的压控振荡器是亟待解决的技术问题。
发明内容
本发明目的在于提供一种基于65nm CMOS工艺的二次谐波压控振荡器,以解决上述现有技术存在的问题。
本发明所述基于65nm CMOS工艺的二次谐波压控振荡器,包括二次谐波压控振荡电路结构;
所述二次谐波压控振荡电路结构包括输出电容、第一电阻以及对称设置的第一三电感串接单元和第二三电感串接单元;
所述第一三电感串接单元包括从输入电压依次向输出电容串联的第一电感、第二电感和第三电感,还包括第一晶体管;所述第二三电感串接单元包括从输入电压依次向输出电容串联的第四电感、第五电感和第六电感,还包括第二晶体管;
第三电感远离第二电感的一端、第六电感远离第五电感的一端以及输出电容的一端共点,输出电容的另一端为功率输出端;
所述第一晶体管的源极共地,衬底端经过第一电阻连接衬底电压,栅极连接第四电感和第五电感的连接点,漏极连接第二电感和第三电感的连接点;
所述第二晶体管的源极共地,衬底端经过第一电阻连接衬底电压,栅极连接第一电感和第二电感的连接点,漏极连接第五电感和第六电感的连接点。
所述二次谐波压控振荡电路结构是利用65nm CMOS生产方法在基片上制作而成。
还包括串接在所述输出电容与地之间的输出负载。
所述输出负载的阻值为50Ω。
所述第一电阻的阻值为25kΩ。
工作频率为302.7GHz~317.2GHz。
本发明所述基于65nm CMOS工艺的二次谐波压控振荡器,其优点在于,采用了单振荡器结构实现高输出功率、高效率、小面积。由于有源晶体管的寄生电容会显著降低THz频段的振荡器性能,因此采用了高阶无源LC谐振电路来使这些寄生电容产生谐振,从而提高了振荡频率和效率。从优化路径中提取输出二次谐波,以产生高输出功率。提出的二次谐波压控振荡器工作在302.7GHz~317.2GHz,以2.3%的DC-RF效率实现2.3dBm的输出功率,并且在65nm CMOS工艺中面积仅0.01mm2
附图说明
图1是本发明所述二次谐波压控振荡器的电路结构示意图。
图2是本发明所述二次谐波压控振荡器的半电路原理图。
图3是本发明所述二次谐波压控振荡器的小信号模型原理图。
图4是本发明所述二次谐波压控振荡器从漏极向上看的小信号阻抗模型原理图。
图5是本发明所述二次谐波压控振荡器的输出频率调谐曲线图。
图6是本发明所述二次谐波压控振荡器的输出功率曲线图。
图7是本发明所述二次谐波压控振荡器的功耗和效率曲线图。
附图标记:
L1-第一电感、L2-第二电感、L3-第三电感、L4-第四电感、L5-第五电感、L6-第六电感;
M1-第一晶体管、M2-第二晶体管;
Cout-输出电容、CGD-栅-漏电容、CGS-栅-源电容、CDB-漏-衬底电容、CSB-源-衬底电容;
R1-第一电阻、RL-输出负载;
X-节点X、Y-节点Y、A-节点A;
VDD-输入电压、Vb-衬底电压、VY-节点Y的电压、VX-节点X的电压;
Zin-输入阻抗、Z1-第一阻抗、Z2-第二阻抗、Z3-第三阻抗;
ffund-基频、f2nd-二次谐振频率;
Pout-功率输出节点。
具体实施方式
如图1所示,本发明所述基于65nm CMOS工艺的二次谐波压控振荡器包括二次谐波压控振荡电路结构。
所述二次谐波压控振荡电路结构包括输出电容Cout、第一电阻R1以及对称设置的第一三电感串接单元和第二三电感串接单元。
所述第一三电感串接单元包括从输入电压VDD依次向输出电容Cout串联的第一电感L1、第二电感L2和第三电感L3,还包括第一晶体管M1。所述第二三电感串接单元包括从输入电压VDD依次向输出电容Cout串联的第四电感L4、第五电感L5和第六电感L6,还包括第二晶体管M2
第三电感L3远离第二电感L2的一端、第六电感L6远离第五电感L5的一端以及输出电容Cout的一端共点,输出电容Cout的另一端为功率输出端。
所述第一晶体管M1的源极共地,衬底端经过第一电阻R1连接衬底电压Vb,栅极连接第四电感L4和第五电感L5的连接点,漏极连接第二电感L2和第三电感L3的连接点。
所述第二晶体管M2的源极共地,衬底端经过第一电阻R1连接衬底电压Vb,栅极连接第一电感L1和第二电感L2的连接点,漏极连接第五电感L5和第六电感L6的连接点。
所述二次谐波压控振荡电路结构是利用65nm CMOS生产方法在基片上制作而成。
在一实施例中,在所述输出电容Cout与地之间还串接一输出负载RL用于测量。
优选地,所述输出负载RL的阻值为50Ω。
优选地,所述第一电阻R1的阻值为25kΩ。
优选地,工作频率为302.7GHz~317.2GHz。
本发明所述基于65nm CMOS工艺的二次谐波压控振荡器具有高度对称性,因此工作原理可以用第一晶体管M1所在的半电路进行描述,如图2至4所示。
由于交叉耦合的连接,从节点Y到第一晶体管M1的栅极有-1的增益。在基频基频ffund上,即差分工作下,节点A和节点B都是虚拟地。当第三电感L3和漏-衬底电容CDB在基频ffund谐振时,二者都呈现高阻抗。因此,基频信号可以从节点X流向节点Y,然后反馈到栅极。优化了从节点X到栅极的延迟,以产生最大的二次谐波电流。在二次谐波频率二次谐振频率f2nd处,节点B为高阻抗,并且从节点X到输入电压VDD的路径也为高阻抗,因此输出的二次谐波信号主要流经第三电感L3并在二次谐振频率f2nd处经过适当的阻抗进入输出负载RL
为了计算振荡频率,基频ffund处的小信号模型如图3所示。假设所有器件都是无损的,考虑到米勒效应,栅-漏电容CGD增加三倍。注意到栅-漏电容CGD和第二电感L2并联,栅-源电容CGS和第一电感L1也是并联。因此,栅-源电容CGS、栅-漏电容CGD和漏-衬底电容CDB等三个寄生电容可分别与第一电感L1,第二电感L2和第三电感L3产生谐振,从而提高了振荡频率和效率。从漏极向上看的小信号阻抗模型如图4所示,高阶无源LC谐振回路的输入阻抗输入阻抗Zin是三个LC谐振回路的组合:第一阻抗Z1与第二阻抗Z2串联,第三阻抗Z3与之并联。所以输入阻抗Zin可以表示为:
Figure BDA0003066301490000041
将式(1)归一化并将其分母置零,则振荡频率(忽略较高解)可得出:
Figure BDA0003066301490000042
其中
A=L1L2L3(4CGDCDB+CGSCDB+4CGDCGS),
B=L1(L2+L3)CGS+4L2(L1+L3)CGD+L3(L1+L2)CDB,
C=L1+L2+L3.
经测试,仿真结果与计算结果吻合良好。
在65nm CMOS工艺中设置电路参数。所述二次谐波压控振荡器由于结构简单,使得在该工艺下实现芯片面积仅0.01mm2(0.12mm*0.8mm)。然后进行仿真测试,结果如图5-7所示。图5中,当衬底电压Vb从-1.4V到1.4V变化时,输出频率为302.7GHz~317.2GHz,即310GHz左右的调谐范围为4.7%。图6为仿真的输出功率,并得到了1.0~2.3dBm的高输出功率。图7所示仿真的功耗约为46mW,DC-RF效率为2.7%~3.8%。表1总结了所述二次谐波压控振荡器的性能,并与300GHz附近的谐波VCO进行了比较。证明实现了更高的效率和极其紧凑的面积。
表1.性能总结和与谐波VCOS在300GHz左右的比较
Figure BDA0003066301490000051
综合可见,在65nm CMOS工艺中所提出的310GHz二次谐波VCO,通过使用简单结构和适当设计的三个谐振电路,在后仿真结果中表现出高输出功率和高效率,且面积小,这表明了其在大规模THz阵列中的具有广阔前景。
所述表1中的产品序号结构对应下列对比文件:
[1]K.Sengupta and A.Hajimiri,“A 0.28THz power-generation and beam-steering array in CMOS based on distributed active radiators,”IEEE J.Solid-State Circuits,vol.47,no.12,pp.3013–3031,2012.
[2]J.Grzyb,Y.Zhao,and U.R.Pfeiffer,“A 288-GHz lens-integratedbalanced triple-push source in a 65-nm CMOS technology,”IEEE J.Solid-StateCircuits,vol.48,no.7,pp.1751–1761,2013.
[3]P.Y.Chiang,Z.Wang,O.Momeni,and P.Heydari,“A 300GHz frequencysynthesizer with 7.9%locking range in 90nm SiGe BiCMOS,”in IEEEInternational Solid-State Circuits Conference(ISSCC),2014,pp.260–261.
[4]M.Adnan and E.Afshari,“A 247-to-263.5GHz VCO with 2.6mW peakoutput power and 1.14%DC-to-RF efficiency in 65nm bulk CMOS,”in IEEEInternational Solid-State Circuits Conference(ISSCC),2014,pp.262–263.
[5]Y.M.Tousi,O.Momeni,and E.Afshari,“A 283-to-296GHz VCO with 0.76mWpeak output power in 65nm CMOS,”in IEEE International Solid-State CircuitsConference(ISSCC),2012,pp.258–259.
[6]R.Han and E.Afshari,“A CMOS high-power broadband 260-GHz radiatorarray for spectroscopy,”IEEE J.Solid-State Circuits,vol.48,no.12,pp.3090–3104,2013.
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (6)

1.一种基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,包括二次谐波压控振荡电路结构;
所述二次谐波压控振荡电路结构包括输出电容(Cout)、第一电阻(R1)以及对称设置的第一三电感串接单元和第二三电感串接单元;
所述第一三电感串接单元包括从输入电压(VDD)依次向输出电容(Cout)串联的第一电感(L1)、第二电感(L2)和第三电感(L3),还包括第一晶体管(M1);所述第二三电感串接单元包括从输入电压(VDD)依次向输出电容(Cout)串联的第四电感(L4)、第五电感(L5)和第六电感(L6),还包括第二晶体管(M2);
第三电感(L3)远离第二电感(L2)的一端、第六电感(L6)远离第五电感(L5)的一端以及输出电容(Cout)的一端共点,输出电容(Cout)的另一端为功率输出端;
所述第一晶体管(M1)的源极共地,衬底端经过第一电阻(R1)连接衬底电压(Vb),栅极连接第四电感(L4)和第五电感(L5)的连接点,漏极连接第二电感(L2)和第三电感(L3)的连接点;
所述第二晶体管(M2)的源极共地,衬底端经过第一电阻(R1)连接衬底电压(Vb),栅极连接第一电感(L1)和第二电感(L2)的连接点,漏极连接第五电感(L5)和第六电感(L6)的连接点。
2.根据权利要求1所述基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,所述二次谐波压控振荡电路结构是利用65nm CMOS生产方法在基片上制作而成。
3.根据权利要求1所述基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,还包括串接在所述输出电容(Cout)与地之间的输出负载(RL)。
4.根据权利要求3所述基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,所述输出负载(RL)的阻值为50Ω。
5.根据权利要求1所述基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,所述第一电阻(R1)的阻值为25kΩ。
6.根据权利要求1所述基于65nm CMOS工艺的二次谐波压控振荡器,其特征在于,工作频率为302.7GHz~317.2GHz。
CN202110528799.1A 2021-05-14 2021-05-14 一种基于65nm CMOS工艺的二次谐波压控振荡器 Active CN113381697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110528799.1A CN113381697B (zh) 2021-05-14 2021-05-14 一种基于65nm CMOS工艺的二次谐波压控振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110528799.1A CN113381697B (zh) 2021-05-14 2021-05-14 一种基于65nm CMOS工艺的二次谐波压控振荡器

Publications (2)

Publication Number Publication Date
CN113381697A CN113381697A (zh) 2021-09-10
CN113381697B true CN113381697B (zh) 2022-05-10

Family

ID=77570941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110528799.1A Active CN113381697B (zh) 2021-05-14 2021-05-14 一种基于65nm CMOS工艺的二次谐波压控振荡器

Country Status (1)

Country Link
CN (1) CN113381697B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240220A (zh) * 2023-11-13 2023-12-15 成都明夷电子科技有限公司 一种射频压控振荡器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835979B1 (ko) * 2007-04-30 2008-06-09 한국전자통신연구원 스위칭 바이어스를 갖는 전압 제어 발진기
CN106411264A (zh) * 2016-10-31 2017-02-15 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器
CN110401442A (zh) * 2019-07-17 2019-11-01 华南理工大学 一种包含变压器耦合除三分频的宽带注入锁定除四分频器
CN111181489A (zh) * 2020-01-21 2020-05-19 广州全盛威信息技术有限公司 一种压控振荡器及温漂补偿方法
CN211296713U (zh) * 2019-07-17 2020-08-18 华南理工大学 一种包含变压器耦合除三分频的宽带注入锁定除四分频器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835979B1 (ko) * 2007-04-30 2008-06-09 한국전자통신연구원 스위칭 바이어스를 갖는 전압 제어 발진기
CN106411264A (zh) * 2016-10-31 2017-02-15 深圳市华讯方舟微电子科技有限公司 一种毫米波基频振荡电路及毫米波振荡器
CN110401442A (zh) * 2019-07-17 2019-11-01 华南理工大学 一种包含变压器耦合除三分频的宽带注入锁定除四分频器
CN211296713U (zh) * 2019-07-17 2020-08-18 华南理工大学 一种包含变压器耦合除三分频的宽带注入锁定除四分频器
CN111181489A (zh) * 2020-01-21 2020-05-19 广州全盛威信息技术有限公司 一种压控振荡器及温漂补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于频率-电压变换器的高精度时钟振荡器;易翔 等;《微电子学》;20090630;第39卷(第3期);第344-351页 *

Also Published As

Publication number Publication date
CN113381697A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
Yun et al. 300-GHz InP HBT oscillators based on common-base cross-coupled topology
Ahmed et al. 0.3-THz SiGe-based high-efficiency push–push VCOs with> 1-mW peak output power employing common-mode impedance enhancement
CN102104362B (zh) 一种毫米波倍频器及级联倍频器
Long et al. Passive circuit technologies for mm-wave wireless systems on silicon
Sharma et al. 216-and 316-GHz 45-nm SOI CMOS signal sources based on a maximum-gain ring oscillator topology
Khatibi et al. An Efficient High-Power Fundamental Oscillator Above $ f_ {\max}/2$: A Systematic Design
Hsieh et al. A 15/30-GHz Dual-Band Multiphase Voltage-Controlled Oscillator in 0.18-$\mu $ m CMOS
Khatibi et al. A 195 GHz single-transistor fundamental VCO with 15.3% DC-to-RF efficiency, 4.5 mW output power, phase noise FoM of− 197 dBc/Hz and 1.1% tuning range in a 55 nm SiGe process
Khamaisi et al. A 159–169 GHz frequency source with 1.26 mW peak output power in 65 nm CMOS
CN113381697B (zh) 一种基于65nm CMOS工艺的二次谐波压控振荡器
Khiyabani et al. A compact 275 GHz harmonic VCO with-2.6 dBm output power in a 130 nm SiGe process
Ghorbani-Nejad et al. Optimum conditions for efficient second-harmonic power generation in mm-wave harmonic oscillators
Gomes et al. 77.3-GHz standing-wave oscillator based on an asymmetrical tunable slow-wave coplanar stripline resonator
Aidoo et al. A 70 GHz rotary traveling wave oscillator (RTWO) in 65-nm CMOS
Bhattacharyya Tunable distributed harmonic voltage controlled oscillator for generating second and third harmonic microwave signals in 180nm CMOS
Jalili et al. A 219-to-238-GHz coupled standing-wave VCO with 3.4-dBm peak output power in 65nm CMOS
Bhattacharya et al. A 28GHz, 7mW, 32dB Gain and 3.3 dB NF, G m-Boosted CG-CS LNA for 5G RF Beamformers
Guo et al. Analysis and design of a 0.3-THz signal generator using an oscillator-doubler architecture in 40-nm CMOS
Nguyen et al. High power and high frequency CMOS oscillator with source-to-drain coupling and capacitive load reduction circuit
Kim et al. InP HBT oscillators operating up to 682 GHz with coupled-line load for improved efficiency and output power
CN113507266B (zh) 一种基于多振荡核心的太赫兹压控振荡器
Yi et al. A 310-GHz Area and Power Efficient Oscillator in 65-nm CMOS Technology
Sharma et al. 80 GHz VCO with slow-wave coplanar stripline synthesized differential inductor
Wang et al. A 212-GHz differential VCO with 5.3% dc-to-RF efficiency in 65-nm CMOS technology
Meng et al. A 293-to-303 GHz Fundamental VCO with-4dBm Peak Output Power in 40nm CMOS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant