WO2018076511A1 - 一种油门控制方法及装置 - Google Patents
一种油门控制方法及装置 Download PDFInfo
- Publication number
- WO2018076511A1 WO2018076511A1 PCT/CN2016/111436 CN2016111436W WO2018076511A1 WO 2018076511 A1 WO2018076511 A1 WO 2018076511A1 CN 2016111436 W CN2016111436 W CN 2016111436W WO 2018076511 A1 WO2018076511 A1 WO 2018076511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving state
- state information
- throttle
- preset
- operation signal
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D11/106—Detection of demand or actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D11/107—Safety-related aspects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/50—Input parameters for engine control said parameters being related to the vehicle or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/60—Input parameters for engine control said parameters being related to the driver demands or status
- F02D2200/602—Pedal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
- F02D2200/702—Road conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/045—Detection of accelerating or decelerating state
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a throttle control method and apparatus.
- the technical problem to be solved by the embodiments of the present invention is to provide a throttle control method and device, which can control the throttle when the throttle misoperation signal is detected, thereby improving the safety of driving.
- an embodiment of the present invention provides a throttle control method, where the method includes:
- an embodiment of the present invention further provides a throttle control device, including:
- an information obtaining module configured to: obtain a current driving state information when detecting the accelerator operating signal ;
- a signal confirming module configured to: if the current driving state information matches the preset driving state information, Determining that the stepping accelerator operation signal is an erroneous operation signal;
- a throttle control module configured to generate a throttle control command according to the erroneous operation signal to control the throttle.
- Embodiments of the present invention have the following beneficial effects: when the throttle operation signal ⁇ is detected, the current driving state information is acquired, and then the current driving state information is matched with the preset driving state information, and After the matching is successful, it is determined that the accelerator operating signal is an erroneous operation signal, and a throttle control command is generated to control the throttle. Control the throttle by detecting the throttle misoperation signal ( (such as locking, limited oil supply, etc.)
- the throttle misoperation signal (such as locking, limited oil supply, etc.)
- FIG. 1 is a schematic flow chart of a throttle control method according to an embodiment of the present invention.
- FIG. 2 is a schematic flow chart of a throttle control method in another embodiment of the present invention.
- FIG. 3 is a schematic structural view of a throttle control device according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a signal confirmation module of a throttle control device according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of another throttle control device according to an embodiment of the present invention.
- FIG. 6 is a schematic structural view of another throttle control device in an embodiment of the present invention.
- the smart terminal in the embodiment of the present invention may include a portable device such as a mobile phone, a notebook computer, a tablet computer, a personal computer, a vehicle-mounted computer, etc., and may be connected to the smart wearable device in this embodiment through Bluetooth or the Internet.
- the smart wearable device can be a smart bracelet, a smart watch, or the like.
- FIG. 1 is a schematic flow chart of a throttle control method according to an embodiment of the present invention, as shown in the figure.
- Can include:
- Step S101 when the accelerator operation signal ⁇ is detected, obtaining current driving state information
- the vehicle detects the accelerator operation signal, and then collects the current driving status information of the vehicle, such as the normal driving state, the reverse state, the mountain driving state, the night driving state, and the rain driving state. Wait.
- the collecting current driving state information may be collected by a sensor, and the sensor includes at least one of a temperature sensor, a humidity sensor, a light sensor, a smoke detector, an air quality detector, and a visibility tester, respectively, for collecting Current parameters such as temperature, humidity, light intensity, PM2.5 index, visibility, and air quality are excellent, and the current driving status is determined by these parameters.
- the processing state shows that the current driving state is summer evening, air drying and low visibility, thus Determine the current driving status as driving on rainy days with low visibility at night.
- the collection manner may be real; or may be periodic, such as once every 20 minutes, which is not specifically limited herein.
- Step S102 If the current driving state information matches the preset driving state information, determining that the accelerator operating signal is an erroneous operation signal;
- the preset driving state information may be a reverse driving state, a mountain driving state, a night driving state, a rainy driving state, and a state in which a sudden vehicle or a pedestrian state is prohibited from stepping on the accelerator. If the current driving state matches the preset driving state, it indicates that the user accidentally steps on the accelerator, and then the throttle is determined to be a malfunction.
- the feasible manner of determining that the current driving state matches the preset driving state is traversing a preset driving state information set, and searching for the current driving state information in the preset driving state information set, if If yes, it is determined that the current driving state information matches the preset driving state information.
- Table 1 is a list of preset driving state information, including four driving states including a reverse state, a mountain driving state, a night driving state, and a rain driving state, and sequentially traversing the four driving states. Match the current driving state with the traversed driving state. If the current driving state is the reverse state, when traversing to the reverse state, determining the match, the traversal is ended, otherwise the traversal is continued until all the preset driving states are traversed. . I down: ⁇ state I
- Step S103 generating a throttle control command according to the erroneous operation signal to control the throttle.
- a throttle control command such as a throttle command, a limit oil supply command, an acceleration speed limit command, etc., is generated to control the safe driving of the vehicle to avoid danger.
- the accelerator operation signal ⁇ when the accelerator operation signal ⁇ is detected, the current driving state information is acquired, and then the current driving state information is matched with the preset driving state information, and after the matching is successful, the accelerator operating signal is determined.
- a throttle control command is generated to control the throttle.
- the throttle is controlled (such as locking, limited oil supply, etc.), which improves the safety of driving.
- FIG. 2 is a schematic flow chart of a throttle control method according to another embodiment of the present invention, and the method may include:
- Step S201 When detecting the accelerator operation signal ⁇ , acquiring current driving state information
- the vehicle detects the accelerator operation signal, and then collects the current driving status information of the vehicle, such as the normal driving state, the reverse state, the mountain driving state, the night driving state, and the rain driving state. Wait.
- the collecting current driving state information may be collected by a sensor, and the sensor includes at least one of a temperature sensor, a humidity sensor, a light sensor, a smoke detector, an air quality detector, and a visibility tester, respectively, for collecting Current parameters such as temperature, humidity, light intensity, PM2.5 index, visibility, and air quality are excellent, and the current driving status is determined by these parameters.
- the collected parameters are: temperature is 300C, humidity is 90%, visibility is 100 ⁇ 200m, through the processing analysis, it can be seen that the current driving state is summer evening, the air is dry and the visibility is low, so that the current driving state is determined to be rainy day driving with low visibility at night.
- the collection mode may be real; or may be periodic, such as once every 20 minutes, which is not specifically limited herein.
- step S202 traversing a preset driving state information set
- the so-called traversal refers to performing a visit once and only once for each node in the tree along a certain search route.
- the search route is a line segment in which each driving state in the preset driving state information set is connected from the back to the rear, wherein each driving state is a node.
- the preset driving state information list as shown in Table 1 includes four driving states including a reverse state, a mountain driving state, a night driving state, and a rainy driving state, and is sequentially accessed in the order of the list.
- Step S203 Searching, in the preset driving state information set, whether the current driving state f ⁇ is present;
- the current driving state is matched with the traversed driving state. If the current driving state is the reverse state, when traversing to the reverse state, the matching is determined, the traversal is ended, otherwise the traversal is continued. Until all the preset driving conditions have been traversed.
- Step S204 if yes, determining that the current driving state information matches the preset driving state information, determining that the accelerator operating signal is an erroneous operation signal, and the erroneous operation signal includes a false acceleration signal;
- the stepping operation signal includes a pedaling force
- the determining that the accelerator operating signal is an erroneous operation signal comprises:
- the method further includes: [0057] If the pedaling force is less than the preset pedaling force threshold, a limited oil supply is performed.
- the current driving state information matches the preset driving state information, it indicates that the driving state is a non-accelerating state, and if the pedaling force of the accelerator pedal is less than the preset pedaling force threshold, The acceleration state is slowly accelerated. It can be considered that the user needs to speed up the speed limit, for example, the highway on the rainy or dark night is too slow.
- Step S205 generating a throttle lock command according to the erroneous acceleration signal to lock the throttle.
- a throttle lock command is generated to control the safe driving of the vehicle.
- the accelerator operation signal ⁇ when the accelerator operation signal ⁇ is detected, the current driving state information is acquired, and then the current driving state information is matched with the preset driving state information, and after the matching is successful, the accelerator operating signal is determined.
- a throttle control command is generated to control the throttle.
- the throttle is controlled (such as locking, limited oil supply, etc.), which improves the safety of driving.
- FIG. 3 is a schematic structural diagram of a throttle control device according to an embodiment of the present invention. As shown in the figure, the device may include:
- the information obtaining module 10 is configured to acquire current driving state information when detecting the accelerator operating signal ;
- the vehicle detects the accelerator operation signal, and then collects the current driving status information of the vehicle, such as the normal driving state, the reverse state, the mountain driving state, the night driving state, and the rain driving state. Wait.
- the collecting current driving state information may be collected by a sensor, and the sensor includes at least one of a temperature sensor, a humidity sensor, a light sensor, a smoke detector, an air quality detector, and a visibility tester, respectively, for collecting Current parameters such as temperature, humidity, light intensity, PM2.5 index, visibility, and air quality are excellent, and the current driving status is determined by these parameters.
- the current driving state is summer evening, air drying, and low visibility. Determine the current driving status as driving on rainy days with low visibility at night.
- the collecting manner may be real; or may be periodic, such as collecting every 20 minutes. Once, it is not specifically limited here.
- the signal confirmation module 20 is configured to: if the current driving state information matches the preset driving state information, determine that the accelerator operating signal is an erroneous operation signal;
- the preset driving state information may be a reverse driving state, a mountain driving state, a night driving state, a rainy driving state, and a state in which a sudden vehicle or a pedestrian state is prohibited from stepping on the accelerator. If the current driving state matches the preset driving state, it indicates that the user accidentally steps on the accelerator, and then the throttle is determined to be a malfunction.
- the signal confirmation module 20 includes:
- the information traversal unit 21 is configured to traverse the preset driving state information set if the current driving state information matches the preset driving state information;
- the information searching unit 22 is configured to search, in the preset driving state information set, whether the current driving state information exists;
- the information determining unit 23 is configured to: in the preset driving state information set, the current driving state information ⁇ , determining that the current driving state information matches the preset driving state information.
- Table 1 is a list of preset driving state information, including four driving states including a reverse state, a mountain driving state, a night driving state, and a rain driving state, and sequentially traversing the four driving states. Match the current driving state with the traversed driving state. If the current driving state is the reverse state, when traversing to the reverse state, determining the match, the traversal is ended, otherwise the traversal is continued until all the preset driving states are traversed. .
- the stepping operation signal includes a pedaling force
- the signal determining module 20 is specifically configured to:
- the device further includes:
- the oil supply module 40 is configured to perform limited oil supply when the pedaling force is less than the preset pedaling force threshold.
- the acceleration state is slowly accelerated. It can be considered that the user needs to speed up the speed limit, for example, the highway on the rainy or dark night is too slow.
- a throttle control module 30 configured to generate a throttle control command according to the erroneous operation signal to control the throttle
- the error operation signal includes a false acceleration signal
- the throttle control module 30 is specifically configured to:
- a throttle control command such as a throttle command, a limit oil supply command, an acceleration speed limit command, etc., is generated to control the safe driving of the vehicle to avoid danger.
- the accelerator operation signal ⁇ when the accelerator operation signal ⁇ is detected, the current driving state information is acquired, and then the current driving state information is matched with the preset driving state information, and after the matching is successful, the throttle operating signal is determined. In order to mis-operate the signal, a throttle control command is generated to control the throttle. By detecting the throttle misoperation signal ⁇ , the throttle is controlled (such as locking, limited oil supply, etc.), which improves the safety of driving.
- the throttle control apparatus 1000 may include: at least one processor 1001, such as a CPU, at least one network interface 1004, a user interface 1003, a memory 1005, and at least one communication bus 1002.
- the communication bus 1002 is used to implement connection communication between these components.
- the user interface 1003 can include a display and a keyboard.
- the optional user interface 1003 can also include a standard wired interface and a wireless interface.
- the network interface 1004 can optionally include a standard wired interface, Wireless interface (such as WI-FI interface).
- the memory 1005 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
- the memory 1005 can also optionally be at least one storage device located remotely from the aforementioned processor 1001. As shown in FIG. 6, an operating system, a network communication module, a user interface module, and a throttle control application may be included in the memory 1005 as a computer storage medium.
- the user interface 1003 is mainly used to provide an input interface for the user to acquire data input by the user;
- the network interface 1004 is mainly used for data communication with the user terminal;
- the processor 1001 can be used to call the throttle control application stored in the memory 1005, and specifically perform the following operations:
- the processor 1001 performs the following operations after the current driving state information matches the preset driving state information:
- the stepping accelerator operation signal includes a pedaling force
- the processor 1001 performs the following steps by performing the determining that the stepping accelerator operation signal is an erroneous operation signal:
- the processor 1001 further performs the following operations:
- the erroneous operation signal includes a false acceleration signal
- the processor 1001 generates a throttle control command according to the erroneous operation signal to control the throttle ⁇ , and specifically performs the following steps: [0104] generating a throttle lock command according to the mis-acceleration signal to lock the throttle.
- the accelerator operation signal ⁇ when the accelerator operation signal ⁇ is detected, the current driving state information is acquired, and then the current driving state information is matched with the preset driving state information, and after the matching is successful, the throttle operating signal is determined. In order to mis-operate the signal, a throttle control command is generated to control the throttle. By detecting the throttle misoperation signal ⁇ , the throttle is controlled (such as locking, limited oil supply, etc.), which improves the safety of driving.
- the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only)
- ROM Read Only Memory
- RAM Random Access Memory
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
公开了一种油门控制方法,包括:当检测到踩油门操作信号时,获取当前行车状态信息(S101);若该当前新车状态信息与预设的行车状态信息相匹配,则确定所述踩油门操作信号为误操作信号(S102);根据所述误操作信号生成油门控制指令以控制所述油门(S103)。采用该控制方法,可以在驾驶员踩油门为误操作时,控制油门,提高驾驶的安全性。还公开了一种油门控制装置。
Description
一种油门控制方法及装置
[0001] 技术领域
[0002] 本发明涉及通信技术领域, 尤其涉及一种油门控制方法及装置。
[0003] 背景技术
[0004] 目前, 随着人们生活水平的不断提高和机动车整车制造技术的不断发展, 机动 车已成为一种不可缺少的交通工具, 给人们的日常工作和生活带来了极大的便 禾 ij, 但是道路交通事故也呈逐年增长趋势。 据统计, 在各种交通事故中, 驾驶 员的失误是引发交通事故的主要原因, 如在倒车或者雨夜天等恶劣环境中行车 吋, 驾驶员不经意误将油门视为刹车则将导致危险事故的发生, 从而降低了驾 驶的安全性。
[0005] 发明内容
[0006] 本发明实施例所要解决的技术问题在于, 提供一种油门控制方法及装置, 在检 测到油门误操作信号吋, 对油门进行控制, 从而提高了驾驶的安全性。
[0007] 为了解决上述技术问题, 本发明实施例提供了一种油门控制方法, 所述方法包 括:
[0008] 当检测到踩油门操作信号吋, 获取当前行车状态信息;
[0009] 若所述当前行车状态信息与预设行车状态信息相匹配, 则确定所述踩油门操作 信号为误操作信号;
[0010] 根据所述误操作信号生成油门控制指令以控制所述油门。
[0011] 相应地, 本发明实施例还提供了一种油门控制装置, 包括:
[0012] 信息获取模块, 用于当检测到踩油门操作信号吋, 获取当前行车状态信息; [0013] 信号确认模块, 用于若所述当前行车状态信息与预设行车状态信息相匹配, 则 确定所述踩油门操作信号为误操作信号;
[0014] 油门控制模块, 用于根据所述误操作信号生成油门控制指令以控制所述油门。
[0015] 实施本发明实施例, 具有如下有益效果: 当检测到踩油门操作信号吋, 获取当 前行车状态信息, 然后将当前行车状态信息与预设行车状态信息进行匹配, 且
在匹配成功吋确定踩油门操作信号为误操作信号, 并生成油门控制指令以控制 油门。 通过检测到油门误操作信号吋, 对油门进行控制 (如锁定、 限量供油等
[0016] 附图说明
[0017] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0018] 图 1是本发明实施例中的一种油门控制方法的流程示意图;
[0019] 图 2是本发明另一实施例中的油门控制方法的流程示意图;
[0020] 图 3是本发明实施例中的一种油门控制装置的结构示意图;
[0021] 图 4是本发明实施例中油门控制装置的信号确认模块的结构示意图;
[0022] 图 5是本发明实施例中的另一种油门控制装置的结构示意图;
[0023] 图 6是本发明实施例中的另一种油门控制装置的结构示意图。
[0024] 具体实施方式
[0025] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0026] 本发明实施例中的智能终端, 可以包括手机、 笔记本电脑、 平板电脑、 个人电 脑、 车载电脑等便携式设备, 其可以通过蓝牙或者互联网与本实施例中的智能 穿戴设备进行连接, 而所述智能穿戴设备可以为智能手环、 智能手表等。
[0027] 需要说明的是, 在本发明实施例中使用的术语是仅仅出于描述特定实施例的目 的, 而非旨在限制本发明。 在本发明实施例和所附权利要求书中所使用的单数 形式的 "一种"、 "所述 "和"该"也旨在包括多数形式, 除非上下文清楚地表示其他 含义。 还应当理解, 本文中使用的术语"和 /或"是指并包含一个或多个相关联的 列出项目的任何或所有可能组合。
[0028] 图 1是本发明实施例中的一种油门控制方法的流程示意图, 如图所示所述方法
可以包括:
[0029] 步骤 S101, 当检测到踩油门操作信号吋, 获取当前行车状态信息;
[0030] 具体的, 当用户踩踏车辆油门吋, 车辆检测到踩油门操作信号, 此吋采集车辆 当前的行车状态信息, 如正常行车状态、 倒车状态、 山路行车状态、 夜间行车 状态以及雨天行车状态等。 其中, 所述采集当前行车状态信息可以为通过传感 器采集, 所述传感器包括温度传感器、 湿度传感器、 光传感器、 烟雾探测器、 空气质量检测器、 可见度测试仪中的至少一种, 分别用于采集当前的温度、 湿 度、 光线强度、 PM2.5指数、 可见度以及空气质量的优良程度等参数, 并通过这 些参数确定当前行车状态。
[0031] 例如, 若采集到的各个参数分别为: 温度为 300C, 湿度为 90%, 可见度为 100~ 200m, 通过处理分析可知当前所处的行车状态为夏季晚上、 空气干燥且可见度 低, 从而确定当前的行车状态为在晚上可见度低的雨天行车。
[0032] 可选的, 所述采集方式可以为实吋性的; 也可以为周期性的, 如每 20分钟采集 一次, 此处不作具体限定。
[0033] 步骤 S102, 若所述当前行车状态信息与预设行车状态信息相匹配, 则确定所述 踩油门操作信号为误操作信号;
[0034] 具体的, 所述预设行车状态信息可以为倒车状态、 山路行车状态、 夜间行车状 态、 雨天行车状态以及前方有突发车辆或者行人状态等禁止踩油门状态。 若当 前行车状态与预设行车状态相匹配, 表明用户误踩油门, 此吋判定该踩油门操 作为误操作。 其中, 所述确定当前行车状态与预设行车状态相匹配的可行方式 为遍历预设的行车状态信息集合, 在所述预设的行车状态信息集合中査找是否 存在所述当前行车状态信息, 若存在, 则确定所述当前行车状态信息与预设行 车状态信息相匹配。
[0035] 例如, 如表 1所示, 表 1为预设行车状态信息列表, 其中包括倒车状态、 山路行 车状态、 夜间行车状态以及雨天行车状态四个行车状态, 依次遍历这四个行车 状态, 将当前的行车状态与遍历到的行车状态进行匹配, 若当前行车状态为倒 车状态, 当遍历到倒车状态吋, 确定匹配, 则结束遍历, 否则继续遍历, 直到 遍历完所有的预设行车状态为止。
I 倒:牟状态 I
I 夜;闻行率状悉 1
I 雨天行牟状态 I
表 I
[0036] 步骤 S 103, 根据所述误操作信号生成油门控制指令以控制所述油门。
[0037] 具体的, 当确定为误操作信号吋, 生成油门控制指令, 如锁定油门指令、 发动 机限量供油指令、 加速限速指令等, 以此控制车辆安全驾驶, 以免造成危险。
[0038] 例如, 当确定此吋车辆在倒库吋, 若误踩油门, 则对油门进行锁定; 又例如, 当确定此吋车辆在夜间雨夜行驶吋, 若踩油门加速, 则加速后的速度小于或者 等于预设速度, 等等。
[0039] 在本发明实施例中, 当检测到踩油门操作信号吋, 获取当前行车状态信息, 然 后将当前行车状态信息与预设行车状态信息进行匹配, 且在匹配成功吋确定踩 油门操作信号为误操作信号, 并生成油门控制指令以控制油门。 通过检测到油 门误操作信号吋, 对油门进行控制 (如锁定、 限量供油等) , 从而提高了驾驶 的安全性。
[0040] 图 2是本发明另一实施例中的油门控制方法的流程示意图, 如图所示所述方法 可以包括:
[0041] 步骤 S201 , 当检测到踩油门操作信号吋, 获取当前行车状态信息;
[0042] 具体的, 当用户踩踏车辆油门吋, 车辆检测到踩油门操作信号, 此吋采集车辆 当前的行车状态信息, 如正常行车状态、 倒车状态、 山路行车状态、 夜间行车 状态以及雨天行车状态等。 其中, 所述采集当前行车状态信息可以为通过传感 器采集, 所述传感器包括温度传感器、 湿度传感器、 光传感器、 烟雾探测器、 空气质量检测器、 可见度测试仪中的至少一种, 分别用于采集当前的温度、 湿 度、 光线强度、 PM2.5指数、 可见度以及空气质量的优良程度等参数, 并通过这 些参数确定当前行车状态。
[0043] 例如, 若采集到的各个参数分别为: 温度为 300C, 湿度为 90%, 可见度为 100~
200m, 通过处理分析可知当前所处的行车状态为夏季晚上、 空气干燥且可见度 低, 从而确定当前的行车状态为在晚上可见度低的雨天行车。
[0044] 可选的, 所述采集方式可以为实吋性的; 也可以为周期性的, 如每 20分钟采集 一次, 此处不作具体限定。
[0045] 步骤 S202, 遍历预设的行车状态信息集合;
[0046] 具体的, 所谓遍历, 是指沿着某条搜索路线, 依次对树中每个结点均做一次且 仅做一次访问。 在本实施例中, 搜索路线为预设的行车状态信息集合中各行车 状态从前往后连接而成的线段, 其中各个行车状态为结点。
[0047] 例如, 如表 1所示的预设的行车状态信息列表, 其中包括倒车状态、 山路行车 状态、 夜间行车状态以及雨天行车状态四个行车状态, 按照列表的排列顺序依 次进行访问。
[0048] 步骤 S203 , 在所述预设的行车状态信息集合中査找是否存在所述当前行车状态 f π息;
[0049] 例如, 如表 1所示, 将当前的行车状态与遍历到的行车状态进行匹配, 若当前 行车状态为倒车状态, 当遍历到倒车状态吋, 确定匹配, 则结束遍历, 否则继 续遍历, 直到遍历完所有的预设行车状态为止。
[0050] 步骤 S204, 若存在, 则确定所述当前行车状态信息与预设行车状态信息相匹配 , 确定所述踩油门操作信号为误操作信号, 所述误操作信号包括误加速信号;
[0051] 可选的, 所述踩油门操作信号包括踩踏力度;
[0052] 所述确定所述踩油门操作信号为误操作信号, 包括:
[0053] 判断所述踩踏力度是否大于或者等于预设踩踏力度阈值;
[0054] 若所述踩踏力度大于或者等于所述预设踩踏力度阈值, 则确定所述踩油门操作 信号为误操作信号。
[0055] 具体的, 在确定当前行车状态信息与预设行车状态信息相匹配后, 表明此吋行 车状态为非加速状态, 若踩油门的踩踏力度大于或者等于预设踩踏力度阈值, 则说明在非加速状态进行快速加速, 可认为此吋用户误踩油门, 例如将重踩油 门当作急刹车等。
[0056] 进一步的, 所述方法还包括:
[0057] 若所述踩踏力度小于所述预设踩踏力度阈值, 则进行限量供油。
[0058] 具体的, 在确定当前行车状态信息与预设行车状态信息相匹配后, 表明此吋行 车状态为非加速状态, 若踩油门的踩踏力度小于预设踩踏力度阈值, 则说明在 非急加速状态进行缓慢加速, 可认为此吋用户需进行限速提速, 例如在雨天或 黑夜的高速公路上行车过缓。
[0059] 步骤 S205, 根据所述误加速信号生成油门锁定指令以锁定所述油门。
[0060] 具体的, 当确定为误加速信号吋, 生成油门锁定指令, 以此控制车辆安全驾驶
, 以免造成危险。 例如, 当确定此吋车辆在倒库吋, 若误踩油门, 则对油门进 行锁定。
[0061] 在本发明实施例中, 当检测到踩油门操作信号吋, 获取当前行车状态信息, 然 后将当前行车状态信息与预设行车状态信息进行匹配, 且在匹配成功吋确定踩 油门操作信号为误操作信号, 并生成油门控制指令以控制油门。 通过检测到油 门误操作信号吋, 对油门进行控制 (如锁定、 限量供油等) , 从而提高了驾驶 的安全性。
[0062] 图 3是本发明实施例中的一种油门控制装置的结构示意图, 如图所示所述装置 可以包括:
[0063] 信息获取模块 10, 用于当检测到踩油门操作信号吋, 获取当前行车状态信息;
[0064] 具体的, 当用户踩踏车辆油门吋, 车辆检测到踩油门操作信号, 此吋采集车辆 当前的行车状态信息, 如正常行车状态、 倒车状态、 山路行车状态、 夜间行车 状态以及雨天行车状态等。 其中, 所述采集当前行车状态信息可以为通过传感 器采集, 所述传感器包括温度传感器、 湿度传感器、 光传感器、 烟雾探测器、 空气质量检测器、 可见度测试仪中的至少一种, 分别用于采集当前的温度、 湿 度、 光线强度、 PM2.5指数、 可见度以及空气质量的优良程度等参数, 并通过这 些参数确定当前行车状态。
[0065] 例如, 若采集到的各个参数分别为: 温度为 300C, 湿度为 90%, 可见度为 100~ 200m, 通过处理分析可知当前所处的行车状态为夏季晚上、 空气干燥且可见度 低, 从而确定当前的行车状态为在晚上可见度低的雨天行车。
[0066] 可选的, 所述采集方式可以为实吋性的; 也可以为周期性的, 如每 20分钟采集
一次, 此处不作具体限定。
[0067] 信号确认模块 20, 用于若所述当前行车状态信息与预设行车状态信息相匹配, 则确定所述踩油门操作信号为误操作信号;
[0068] 具体的, 所述预设行车状态信息可以为倒车状态、 山路行车状态、 夜间行车状 态、 雨天行车状态以及前方有突发车辆或者行人状态等禁止踩油门状态。 若当 前行车状态与预设行车状态相匹配, 表明用户误踩油门, 此吋判定该踩油门操 作为误操作。
[0069] 可选的, 如图 4所示, 所述信号确认模块 20, 包括:
[0070] 信息遍历单元 21, 用于若所述当前行车状态信息与预设行车状态信息相匹配, 则遍历预设的行车状态信息集合;
[0071] 信息査找单元 22, 用于在所述预设的行车状态信息集合中査找是否存在所述当 前行车状态信息;
[0072] 信息确定单元 23, 用于在所述预设的行车状态信息集合中存在所述当前行车状 态信息吋, 确定所述当前行车状态信息与预设行车状态信息相匹配。
[0073] 例如, 如表 1所示, 表 1为预设行车状态信息列表, 其中包括倒车状态、 山路行 车状态、 夜间行车状态以及雨天行车状态四个行车状态, 依次遍历这四个行车 状态, 将当前的行车状态与遍历到的行车状态进行匹配, 若当前行车状态为倒 车状态, 当遍历到倒车状态吋, 确定匹配, 则结束遍历, 否则继续遍历, 直到 遍历完所有的预设行车状态为止。
[0074] 可选的, 所述踩油门操作信号包括踩踏力度;
[0075] 所述信号确定模块 20具体用于:
[0076] 若所述当前行车状态信息与预设行车状态信息相匹配, 则判断所述踩踏力度是 否大于或者等于预设踩踏力度阈值, 在所述踩踏力度大于或者等于所述预设踩 踏力度阈值吋, 确定所述踩油门操作信号为误操作信号。
[0077] 具体的, 在确定当前行车状态信息与预设行车状态信息相匹配后, 表明此吋行 车状态为非加速状态, 若踩油门的踩踏力度大于或者等于预设踩踏力度阈值, 则说明在非加速状态进行快速加速, 可认为此吋用户误踩油门, 例如将重踩油 门当作急刹车等。
[0078] 可选的, 如图 5所示, 所述装置还包括:
[0079] 供油模块 40, 用于在所述踩踏力度小于所述预设踩踏力度阈值吋, 进行限量供 油。
[0080] 具体的, 在确定当前行车状态信息与预设行车状态信息相匹配后, 表明此吋行 车状态为非加速状态, 若踩油门的踩踏力度小于预设踩踏力度阈值, 则说明在 非急加速状态进行缓慢加速, 可认为此吋用户需进行限速提速, 例如在雨天或 黑夜的高速公路上行车过缓。
[0081] 油门控制模块 30, 用于根据所述误操作信号生成油门控制指令以控制所述油门
[0082] 可选的, 所述误操作信号包括误加速信号;
[0083] 所述油门控制模块 30具体用于:
[0084] 根据所述误加速信号生成油门锁定指令以锁定所述油门。
[0085] 具体的, 当确定为误操作信号吋, 生成油门控制指令, 如锁定油门指令、 发动 机限量供油指令、 加速限速指令等, 以此控制车辆安全驾驶, 以免造成危险。
[0086] 例如, 当确定此吋车辆在倒库吋, 若误踩油门, 则对油门进行锁定; 又例如, 当确定此吋车辆在夜间雨夜行驶吋, 若踩油门加速, 则加速后的速度小于或者 等于预设速度, 等等。
[0087] 在本发明实施例中, 当检测到踩油门操作信号吋, 获取当前行车状态信息, 然 后将当前行车状态信息与预设行车状态信息进行匹配, 且在匹配成功吋确定踩 油门操作信号为误操作信号, 并生成油门控制指令以控制油门。 通过检测到油 门误操作信号吋, 对油门进行控制 (如锁定、 限量供油等) , 从而提高了驾驶 的安全性。
[0088] 请参见图 6, 为本发明实施例提供了另一种油门控制装置的结构示意图。 如图 6 所示, 所述油门控制装置 1000可以包括: 至少一个处理器 1001, 例如 CPU , 至少 一个网络接口 1004, 用户接口 1003, 存储器 1005, 至少一个通信总线 1002。 其 中, 通信总线 1002用于实现这些组件之间的连接通信。 其中, 用户接口 1003可 以包括显示屏 (Display) 、 键盘 (Keyboard) , 可选用户接口 1003还可以包括 标准的有线接口、 无线接口。 网络接口 1004可选的可以包括标准的有线接口、
无线接口 (如 WI-FI接口) 。 存储器 1005可以是高速 RAM存储器, 也可以是非不 稳定的存储器 (non-volatile memory) , 例如至少一个磁盘存储器。 存储器 1005 可选的还可以是至少一个位于远离前述处理器 1001的存储装置。 如图 6所示, 作 为一种计算机存储介质的存储器 1005中可以包括操作系统、 网络通信模块、 用 户接口模块以及油门控制应用程序。
[0089] 在图 6所示的油门控制装置 1000中, 用户接口 1003主要用于为用户提供输入的 接口, 获取用户输入的数据; 网络接口 1004主要用于与用户终端进行数据通信 ; 而处理器 1001可以用于调用存储器 1005中存储的油门控制应用程序, 并具体 执行以下操作:
[0090] 当检测到踩油门操作信号吋, 获取当前行车状态信息;
[0091] 若所述当前行车状态信息与预设行车状态信息相匹配, 则确定所述踩油门操作 信号为误操作信号;
[0092] 根据所述误操作信号生成油门控制指令以控制所述油门。
[0093] 在一个实施例中, 所述处理器 1001在执行若所述当前行车状态信息与预设行车 状态信息相匹配吋, 具体执行以下操作:
[0094] 遍历预设的行车状态信息集合;
[0095] 在所述预设的行车状态信息集合中査找是否存在所述当前行车状态信息;
[0096] 若存在, 则确定所述当前行车状态信息与预设行车状态信息相匹配。
[0097] 在一个实施例中, 踩油门操作信号包括踩踏力度, 所述处理器 1001在执行确定 所述踩油门操作信号为误操作信号吋, 具体执行以下步骤:
[0098] 判断所述踩踏力度是否大于或者等于预设踩踏力度阈值;
[0099] 若所述踩踏力度大于或者等于所述预设踩踏力度阈值, 则确定所述踩油门操作 信号为误操作信号。
[0100] 在一个实施例中, 所述处理器 1001还执行以下操作:
[0101] 若所述踩踏力度小于所述预设踩踏力度阈值, 则进行限量供油。
[0102] 基于所述图像控制指令对所述目标立体图像进行控制操作。
[0103] 在一个实施例中, 所述误操作信号包括误加速信号, 所述处理器 1001在执行根 据所述误操作信号生成油门控制指令以控制所述油门吋, 具体执行以下步骤:
[0104] 根据所述误加速信号生成油门锁定指令以锁定所述油门。
[0105] 在本发明实施例中, 当检测到踩油门操作信号吋, 获取当前行车状态信息, 然 后将当前行车状态信息与预设行车状态信息进行匹配, 且在匹配成功吋确定踩 油门操作信号为误操作信号, 并生成油门控制指令以控制油门。 通过检测到油 门误操作信号吋, 对油门进行控制 (如锁定、 限量供油等) , 从而提高了驾驶 的安全性。
[0106] 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可 以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可 读取存储介质中, 该程序在执行吋, 可包括如上述各方法的实施例的流程。 其 中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only
Memory , ROM) 或随机存储记忆体 (Random Access Memory , RAM) 等。
[0107] 以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之权利 范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。 技术问题
问题的解决方案
发明的有益效果
Claims
[权利要求 1] 一种油门控制方法, 其特征在于, 包括:
当检测到踩油门操作信号吋, 获取当前行车状态信息;
若所述当前行车状态信息与预设行车状态信息相匹配, 则确定所述踩 油门操作信号为误操作信号;
根据所述误操作信号生成油门控制指令以控制所述油门。
[权利要求 2] 如权利要求 1所述的方法, 其特征在于, 所述若所述当前行车状态信 息与预设行车状态信息相匹配, 包括:
遍历预设的行车状态信息集合;
在所述预设的行车状态信息集合中査找是否存在所述当前行车状态信 息;
若存在, 则确定所述当前行车状态信息与预设行车状态信息相匹配。
[权利要求 3] 如权利要求 1所述的方法, 其特征在于, 所述踩油门操作信号包括踩 踏力度;
所述确定所述踩油门操作信号为误操作信号, 包括:
判断所述踩踏力度是否大于或者等于预设踩踏力度阈值;
若所述踩踏力度大于或者等于所述预设踩踏力度阈值, 则确定所述踩 油门操作信号为误操作信号。
[权利要求 4] 如权利要求 3所述的方法, 其特征在于, 所述方法还包括:
若所述踩踏力度小于所述预设踩踏力度阈值, 则进行限量供油。
[权利要求 5] 如权利要求 1所述的方法, 其特征在于, 所述误操作信号包括误加速 信号;
所述根据所述误操作信号生成油门控制指令以控制所述油门, 包括: 根据所述误加速信号生成油门锁定指令以锁定所述油门。
[权利要求 6] —种油门控制装置, 其特征在于, 包括:
信息获取模块, 用于当检测到踩油门操作信号吋, 获取当前行车状态 f π息;
信号确认模块, 用于若所述当前行车状态信息与预设行车状态信息相 匹配, 则确定所述踩油门操作信号为误操作信号; 油门控制模块, 用于根据所述误操作信号生成油门控制指令以控制所 述油门。
[权利要求 7] 如权利要求 6所述的装置, 其特征在于, 所述信号确认模块, 包括: 信息遍历单元, 用于若所述当前行车状态信息与预设行车状态信息相 匹配, 则遍历预设的行车状态信息集合;
信息査找单元, 用于在所述预设的行车状态信息集合中査找是否存在 所述当前行车状态信息;
信息确定单元, 用于在所述预设的行车状态信息集合中存在所述当前 行车状态信息吋, 确定所述当前行车状态信息与预设行车状态信息相 匹配。
[权利要求 8] 如权利要求 6所述的装置, 其特征在于, 所述踩油门操作信号包括踩 踏力度;
所述信号确定模块具体用于:
若所述当前行车状态信息与预设行车状态信息相匹配, 则判断所述踩 踏力度是否大于或者等于预设踩踏力度阈值, 在所述踩踏力度大于或 者等于所述预设踩踏力度阈值吋, 确定所述踩油门操作信号为误操作 信号。
[权利要求 9] 如权利要求 8所述的装置, 其特征在于, 所述装置还包括:
供油模块, 用于在所述踩踏力度小于所述预设踩踏力度阈值吋, 进行
限量供油。
[权利要求 10] 如权利要求 6所述的装置, 其特征在于, 所述误操作信号包括误加速 信号;
所述油门控制模块具体用于:
根据所述误加速信号生成油门锁定指令以锁定所述油门。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610939921.3 | 2016-10-24 | ||
CN201610939921.3A CN106567783A (zh) | 2016-10-24 | 2016-10-24 | 一种油门控制方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018076511A1 true WO2018076511A1 (zh) | 2018-05-03 |
Family
ID=58536350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/111436 WO2018076511A1 (zh) | 2016-10-24 | 2016-12-22 | 一种油门控制方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106567783A (zh) |
WO (1) | WO2018076511A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110834537A (zh) * | 2019-07-31 | 2020-02-25 | 中国第一汽车股份有限公司 | 一种车辆油门控制方法、系统、车辆及存储介质 |
CN112356665B (zh) * | 2020-10-19 | 2022-02-18 | 山东派蒙机电技术有限公司 | 一种油门防误踩的方法及系统 |
CN113335285B (zh) * | 2021-06-29 | 2022-09-27 | 东风汽车集团股份有限公司 | 基于电动车倒车场景的防止油门误操作控制方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585317A (zh) * | 2009-06-24 | 2009-11-25 | 重庆理工大学 | 刹车误踩油门的判断和自动刹车的方法 |
CN104760503A (zh) * | 2015-04-10 | 2015-07-08 | 高强 | 一种汽车安全系统 |
CN204506563U (zh) * | 2015-01-14 | 2015-07-29 | 山东理工大学 | 一种新型智能防误踩油门紧急制动装置 |
CN205365248U (zh) * | 2016-01-11 | 2016-07-06 | 贵州大学 | 一种防止误踩油门踏板智能控制装置 |
CN105799683A (zh) * | 2016-02-28 | 2016-07-27 | 商洛学院 | 一种用于车辆的机械电子液压制动系统 |
EP3107785A1 (en) * | 2014-02-18 | 2016-12-28 | Jaguar Land Rover Limited | Control system and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101830224B (zh) * | 2009-03-13 | 2014-04-02 | 广东机电职业技术学院 | 一种提高机动车驾驶安全性能的方法及系统 |
CN102602390B (zh) * | 2012-03-23 | 2015-06-10 | 奇瑞汽车股份有限公司 | 误操作处理方法及装置 |
CN202641675U (zh) * | 2012-05-24 | 2013-01-02 | 浙江吉利汽车研究院有限公司杭州分公司 | 防误踩油门制动装置 |
CN202669799U (zh) * | 2012-06-29 | 2013-01-16 | 浙江吉利汽车研究院有限公司杭州分公司 | 一种车辆紧急刹车防误操作的控制装置 |
CN103171551A (zh) * | 2013-03-13 | 2013-06-26 | 苏州卡泰克电子科技有限公司 | 一种具有防汽车油门误操作功能的方向盘系统 |
CN105818685B (zh) * | 2015-01-07 | 2017-08-25 | 杨秀丽 | 一种油门当刹车识别保护的方法、装置及控制器和汽车 |
-
2016
- 2016-10-24 CN CN201610939921.3A patent/CN106567783A/zh active Pending
- 2016-12-22 WO PCT/CN2016/111436 patent/WO2018076511A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101585317A (zh) * | 2009-06-24 | 2009-11-25 | 重庆理工大学 | 刹车误踩油门的判断和自动刹车的方法 |
EP3107785A1 (en) * | 2014-02-18 | 2016-12-28 | Jaguar Land Rover Limited | Control system and method |
CN204506563U (zh) * | 2015-01-14 | 2015-07-29 | 山东理工大学 | 一种新型智能防误踩油门紧急制动装置 |
CN104760503A (zh) * | 2015-04-10 | 2015-07-08 | 高强 | 一种汽车安全系统 |
CN205365248U (zh) * | 2016-01-11 | 2016-07-06 | 贵州大学 | 一种防止误踩油门踏板智能控制装置 |
CN105799683A (zh) * | 2016-02-28 | 2016-07-27 | 商洛学院 | 一种用于车辆的机械电子液压制动系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106567783A (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3619602B1 (en) | Update courier for vehicular computing devices | |
US11724700B2 (en) | Intelligent driving method and intelligent driving system | |
US10733465B2 (en) | System and method for vehicle taillight state recognition | |
US10387736B2 (en) | System and method for detecting taillight signals of a vehicle | |
CN112835806B (zh) | 一种仿真测试平台、方法及存储介质 | |
JP2020021471A (ja) | 自動運転車(adv)のサブシステムによるパトロールカーのパトロール | |
KR20220047732A (ko) | 차량 감시 방법 및 장치, 전자 기기, 저장 매체 및 컴퓨터 프로그램, 클라우드 제어 플랫폼 및 차량 도로 협조 시스템 | |
CN108268033A (zh) | 使用基于图的车道变换指导来操作无人驾驶车辆的方法和系统 | |
WO2018076511A1 (zh) | 一种油门控制方法及装置 | |
CN105034979A (zh) | 车辆主动安全控制方法与系统 | |
WO2018045650A1 (zh) | 一种车速控制方法及装置 | |
CN112389151A (zh) | 车辆控制方法及系统和用户终端设备 | |
CN114358863A (zh) | 一种共享车辆的还车处理方法、装置及共享车辆 | |
CN113804460A (zh) | 车辆测评方法、车辆测评系统、车辆及存储介质 | |
CN115878343A (zh) | 一种进程间通信方法及相关装置 | |
CN110626303A (zh) | 基于车载终端的儿童乘车安全保护方法及系统、车载终端 | |
CN105034804A (zh) | 车辆主动安全控制方法与系统 | |
US11354516B2 (en) | Information processor and information processing program | |
JP2019125039A (ja) | 判定装置、判定方法及びプログラム | |
CN111824170B (zh) | 用于获得车辆性能信息的方法、系统、装置及电子设备 | |
CN113562108A (zh) | 电动自行车的骑行配置方法及电动自行车 | |
CN112721927A (zh) | 一种车辆智能限速方法、智能限速装置、汽车及存储介质 | |
CN117217029B (zh) | 一种车辆弯道行驶的仿真方法、装置、设备及存储介质 | |
CN114071350B (zh) | 车辆定位方法、装置及可读存储介质 | |
CN112383706B (zh) | 基于行车记录仪的碰撞拍照方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16919838 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16919838 Country of ref document: EP Kind code of ref document: A1 |