WO2018076135A1 - 控制方法、控制设备和无人机 - Google Patents

控制方法、控制设备和无人机 Download PDF

Info

Publication number
WO2018076135A1
WO2018076135A1 PCT/CN2016/103061 CN2016103061W WO2018076135A1 WO 2018076135 A1 WO2018076135 A1 WO 2018076135A1 CN 2016103061 W CN2016103061 W CN 2016103061W WO 2018076135 A1 WO2018076135 A1 WO 2018076135A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target component
drone
landing
protection operation
Prior art date
Application number
PCT/CN2016/103061
Other languages
English (en)
French (fr)
Inventor
应佳行
彭昭亮
耿畅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/103061 priority Critical patent/WO2018076135A1/zh
Priority to CN202011097442.4A priority patent/CN112256002B/zh
Priority to CN201680002788.7A priority patent/CN106716281B/zh
Publication of WO2018076135A1 publication Critical patent/WO2018076135A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0066Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for limitation of acceleration or stress
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/66Governor units providing for co-operation with control dependent upon a variable other than speed

Definitions

  • the present invention relates to the field of drones and, more particularly, to a control method, a control device and a drone.
  • UAV Unmanned Aerial Vehicle
  • UAV plant protection UAV plant protection
  • UAV aerial photography UAV aerial photography
  • UAV forest fire alarm monitoring etc.
  • civilization is also the future development trend of UAV.
  • the embodiment of the invention provides a control method, a device and a drone, which can realize reasonable protection of the drone.
  • a control method including: acquiring a current temperature of a target component in a drone; determining a protection operation to be performed according to a current temperature of the target component and a correspondence between a temperature range and a protection operation; Wherein, in the corresponding relationship between the temperature range and the protection operation, the protection operations corresponding to the at least two temperature ranges are different; and the protection operation to be performed is performed to facilitate protection of the target component.
  • a control method comprising: acquiring a current temperature of a target component in the drone; and performing a landing operation when a current temperature of the target component exceeds a temperature threshold.
  • a control device comprising: an acquisition unit configured to acquire a current temperature of a target component in the drone; a determining unit configured to determine a current temperature according to the target component, and Determining a relationship between a temperature range and a protection operation, determining a protection operation to be performed; wherein, in a correspondence between the temperature range and the protection operation, at least two temperature ranges are different in protection operation; and an execution unit is configured to execute the A protection operation that needs to be performed in order to protect the target component.
  • a fourth aspect provides a control device, comprising: an obtaining unit, configured to acquire a current temperature of a target component in the drone; and an executing unit, configured to perform a landing operation when a current temperature of the target component exceeds a temperature threshold .
  • a control device comprising at least one processor, wherein the at least one processor is used collectively or separately to: acquire a current temperature of a target component in the drone; according to the target component The current temperature, and the corresponding relationship between the temperature range and the protection operation, determining a protection operation to be performed; wherein, in the correspondence between the temperature range and the protection operation, at least two temperature ranges correspond to different protection operations; A protection operation is performed to protect the target component.
  • a control apparatus comprising at least one processor, wherein the at least one processor is used collectively or separately to: acquire a current temperature of a target component in the drone; at the target component The landing operation is performed when the current temperature exceeds the temperature threshold.
  • a drone including a temperature sensor, a processor, and a target component; wherein the temperature sensor is configured to detect a current temperature of the target component, and the processor is configured to: detect according to the sensor The current temperature of the target component, and the correspondence between the temperature range and the protection operation, determining a protection operation to be performed; wherein, in the correspondence between the temperature range and the protection operation, the protection operation corresponding to at least two temperature ranges Different; performing the protection operation that needs to be performed in order to protect the target component.
  • a drone including a temperature sensor, a processor, and a target component; wherein the temperature sensor is configured to detect a current temperature of the target component, and the processor is configured to: at the target component The landing operation is performed when the current temperature exceeds the temperature threshold.
  • a storage medium in a ninth aspect, storing instructions for performing the method of the first aspect or the second aspect.
  • the protection operation that needs to be performed may be determined according to the current temperature of the target component and the corresponding relationship between the temperature range and the protection operation, so that the current temperature may be determined to be matched from the at least two protection operations. Protection operation to achieve reasonable protection of the drone.
  • FIG. 1 is a schematic block diagram of an unmanned flight system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a control device in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a control device in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a control device in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a control device in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a drone according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a drone in accordance with an embodiment of the present application.
  • Embodiments of the present invention provide a solution for protecting components on a UAV.
  • Embodiments of the invention may be applied to various types of UAVs.
  • the UAV can be a small UAV.
  • the UAV may be a rotorcraft, such as a multi-rotor aircraft that is propelled by air by a plurality of propelling devices, embodiments of the invention are not limited thereto, and the UAV may be other types of UAVs or Mobile device.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system 100 in accordance with an embodiment of the present invention. Real The example is described by taking a rotorcraft as an example.
  • the unmanned flight system 100 can include a UAV 110, a carrier 120, a display device 130, and a handling device 140.
  • the UAV 110 may include a power system 150, a flight control system 160, a rack 170, and a battery 190.
  • the UAV 110 can communicate wirelessly with the manipulation device 140 and the display device 130.
  • Rack 170 can include a fuselage and a stand (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the stand is attached to the fuselage for supporting the landing of the UAV 110.
  • the powertrain 150 may include an electronic governor (referred to as ESC) 151, one or more propellers 153, and one or more motors 152 corresponding to one or more propellers 153, wherein the motor 152 is coupled to the electronic governor 151 and the propeller 153, the motor 152 and the propeller 153 are disposed on the corresponding arm; the electronic governor 151 is configured to receive the driving signal generated by the flight controller 160, and provide a driving current to the motor 152 according to the driving signal to control The rotational speed of the motor 152.
  • Motor 152 is used to drive propeller rotation to power the flight of UAV 110, which enables UAV 110 to achieve one or more degrees of freedom of motion. It should be understood that the motor 152 can be a DC motor or an AC motor. In addition, the motor 152 may be a brushless motor or a brush motor.
  • Flight control system 160 may include flight controller 161 and sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the UAV.
  • the sensing system 162 may include, for example, at least one of a gyroscope, an electronic compass, an IMU (Inertial Measurement Unit), a vision sensor, a GPS (Global Positioning System), and a barometer.
  • the flight controller 161 is used to control the flight of the UAV 110, for example, the flight of the UAV 110 can be controlled based on the attitude information measured by the sensing system 162.
  • Carrier 120 can be used to carry load 180.
  • the load 180 may be a photographing device (for example, a camera, a camera, etc.), and embodiments of the present invention are not limited thereto.
  • the carrier may also be used to carry a weapon or other load. Carrying device.
  • Display device 130 is located at the ground end of unmanned flight system 100 and can communicate with UAV 110 wirelessly and can be used to display gesture information for UAV 110.
  • the load 123 is a photographing device
  • an image photographed by the photographing device can also be displayed on the display device 130.
  • the display device 130 may be a stand-alone device or may be disposed in the manipulation device 140.
  • the handling device 140 is located at the ground end of the unmanned flight system 100 and can be wirelessly
  • the UAV 110 communicates for remote manipulation of the UAV 110.
  • the manipulation device may be, for example, a remote controller or a terminal device equipped with an APP (Application) that controls the UAV, for example, a smartphone, a tablet, or the like.
  • APP Application
  • receiving the user's input through the manipulation device may refer to manipulating the UAV through an input device such as a pull wheel, a button, a button, a rocker, or a user interface (UI) on the terminal device on the remote controller.
  • UI user interface
  • FIG. 2 is a schematic flow chart of a control method 200 in accordance with an embodiment of the present invention.
  • the method may be performed by the flight controller 161 as shown in FIG. 1, or may be performed by other devices, such as a remote control device or server.
  • the method 200 includes the following.
  • the current temperature of the target component in the drone is obtained.
  • the target component mentioned herein may be a component of the drone itself, for example, may be a battery possessed by the drone, may be a processor, a memory, and a transceiver included in the flight controller.
  • the device may be a gyroscope, an electronic compass, an IMU, a visual sensor, a GPS, a barometer, or the like included in the sensing system, and may be a motor, an ESC, or the like included in the power system.
  • the target component mentioned here may also be a component mounted in the drone, in particular, a carrier, and a load disposed in the carrier, for example, a pan/tilt head and a photographing device.
  • the current temperature of the target component detected by the temperature sensor can be obtained.
  • the temperature sensor can be implemented by a thermistor.
  • the temperature sensor can be placed inside the target component, and the current temperature of the target component can be the internal temperature of the target component; or the temperature sensor can be placed on the surface of the target component, then the current temperature sensor The temperature may refer to the surface temperature of the target component.
  • the temperature sensor can also be placed around the target component without contacting the target component.
  • the protection operation corresponding to the same temperature range may be different when the temperature sensor is placed at different positions of the target component.
  • a protection operation that needs to be performed is determined based on the current temperature of the target component and the correspondence of the temperature range to the protection operation.
  • the protection operation after obtaining the current temperature of the target component, if according to the correspondence between the temperature range and the protection operation, when it is determined that the protection operation needs to be performed, the protection operation can be performed.
  • the protection operations mentioned in the embodiments of the present invention may include controlling the shutdown through a parachute landing, returning to landing, changing the speed and/or acceleration of the drone, or an alarm operation.
  • controlling the shutdown through the parachute landing may be to land directly at the current location without the need to return or land at the destination.
  • At least two types of protection operations may be used simultaneously, for example, performing an alarm operation while returning to the operation, or performing an alarm operation while changing the speed and/or acceleration of the drone.
  • the alarm operation may notify the user through the user presentation end.
  • Different alarm modes are available for different thresholds. For example, when the temperature exceeds the first threshold, the warning light that appears yellow on the presentation end, when the second threshold is exceeded, may present a red alarm light on the presentation end, wherein the second threshold is greater than the first threshold.
  • the protection operations corresponding to the at least two temperature ranges are different.
  • the at least two temperature ranges may include at least two high temperature ranges.
  • an alarm operation can be performed when the temperature of the IMU is higher than 55 degrees Celsius.
  • the operation by parachute landing or the return landing can be performed.
  • the at least two temperature ranges may include at least two low temperature ranges.
  • an alarm operation can be performed when the temperature of the IMU is lower than -5 degrees Celsius.
  • an alarm operation can be performed when the temperature of the IMU is lower than -15 degrees Celsius.
  • a return flight operation or landing by a parachute can be performed when the temperature of the IMU is lower than -5 degrees Celsius.
  • the at least two temperature ranges may include at least one low temperature range and at least one high temperature range.
  • the returning and landing operation can be performed, and when the temperature of the IMU is higher than 65 degrees Celsius, the operation of landing by parachute can be performed.
  • the high temperature range mentioned above includes a temperature higher than the safe operating temperature of the target component
  • the low temperature range includes a temperature lower than the safe operating temperature of the target component.
  • the drone or component may malfunction when it is higher than the safe working temperature or lower than the safe working temperature.
  • the following protection operations are sequentially ordered from high to low according to the temperature of the corresponding high temperature range: controlling the shutdown by the parachute landing, returning to the landing, and changing the speed and/or acceleration of the drone, Alarm operation.
  • the following protection operations are sequentially ordered from low to high according to the temperature of the corresponding low temperature range: controlling the shutdown by the parachute landing, returning to the landing, changing the speed and/or acceleration of the drone, Alarm operation.
  • the above sorting does not represent the correspondence between each protection operation and temperature in the pre-set sorting.
  • the temperature can be set according to the sort.
  • the at least two temperature ranges correspond to different speeds and/or accelerations when the protection operation includes changing the speed and/or acceleration of the drone.
  • the required speed and/or acceleration is directly obtained.
  • the speed change rates and/or the acceleration change rates corresponding to the at least two temperature ranges are different.
  • the change rate of the speed of the drone and/or the rate of change of the acceleration can be found, according to the change rate of the speed and/or the change of the acceleration.
  • how to change the speed and/or acceleration of the drone may be determined according to circumstances, for example, if the current temperature of the target component is higher but the drone is closer to the target position, The speed and/or acceleration of the drone can be increased so that the drone can reach the destination as soon as possible to fall. For example, if the current temperature of the target component is higher but the drone is farther away from the target position, then the UAV can be lowered. The speed and/or acceleration of the human machine causes the temperature of the target component in the drone to first decrease.
  • the current value of the environmental parameter of the UAV can be obtained; and the corresponding relationship between the temperature range and the protection operation is determined according to the current value of the environmental parameter; wherein different values of the environmental parameter The corresponding temperature range of the range is different from the protection operation.
  • the temperature range differs from the protection operation in different ambient temperature ranges.
  • the high temperature threshold of the corresponding IMU and barometer at which the drone needs to return to the corner.
  • the temperature threshold of each component can be obtained by means of a calibration experiment.
  • the temperature of the component can be obtained by a temperature sensor.
  • the temperature sensor can be in contact with the component that is required to obtain the temperature.
  • different components may have different correspondences between temperature ranges and protection operations.
  • sensors such as gyroscopes, electronic compasses, IMUs, vision sensors, GPS, and barometers return to the ground when the temperature exceeds the first threshold, and for other modules, such as pan/tilt, camera, etc.
  • the user is notified by means of an alarm.
  • the protection operation that needs to be performed is performed to facilitate protection of the target component.
  • the current temperature of the target component and the corresponding relationship between the temperature range and the protection operation may be determined, and the protection operation to be performed may be determined, so that the current temperature may be determined to be matched from the at least two protection operations. Protection operation to achieve better protection of the drone.
  • FIG. 3 is a schematic flowchart of a control method 300 according to an embodiment of the present invention.
  • the method may be performed by the flight controller 161 as shown in FIG. 1, or may be performed by other devices, such as a remote control device or server.
  • the method includes the following.
  • the current temperature of the target component in the drone is obtained.
  • the temperature sensor can be placed inside the target component, and the current temperature of the target component can be the internal temperature of the target component; or the temperature sensor can be placed on the surface of the target component, then the current temperature sensor The temperature may refer to the surface temperature of the target component.
  • the temperature sensor can also be placed around the target component without contacting the target component.
  • the protection operation corresponding to the same temperature range may be different when the temperature sensor is placed at different positions of the target component.
  • the current value of the environment parameter of the UAV is obtained; and the temperature threshold is obtained according to the current value of the environment parameter and the corresponding relationship between the value range of the environment parameter and the threshold, where The different numerical ranges of the environmental parameters correspond to different temperature thresholds.
  • the environmental parameter includes an ambient temperature.
  • the temperature range differs from the protection operation in different ambient temperature ranges.
  • a drop operation is performed when the current temperature of the target component exceeds a temperature threshold.
  • the landing operation comprises a return landing or a controlled shutdown through a parachute landing.
  • the landing operation can be performed, so that the behavior of the drone caused by the higher or lower temperature of the drone can be avoided.
  • control device 400 can include:
  • the obtaining unit 410 is configured to acquire a current temperature of the target component in the drone;
  • a determining unit 420 configured to determine, according to a current temperature of the target component, and a corresponding relationship between the temperature range and the protection operation, a protection operation to be performed; wherein, in a correspondence between the temperature range and the protection operation, at least two temperature ranges correspond to Different protection operations;
  • the executing unit 430 is configured to perform the protection operation that needs to be performed in order to protect the target component.
  • the correspondence between the temperature range and the protection operation is used to indicate:
  • the high temperature range includes a temperature higher than a safe operating temperature of the target component
  • the low temperature range includes a temperature lower than a safe operating temperature of the target component
  • the protection operation is: controlling the shutdown by landing with a parachute, returning to landing, changing the speed and/or acceleration of the drone, or alarming operation.
  • protection operations are sorted according to the temperature of the corresponding high temperature range from high to low: control shutdown by parachute landing, returning to landing, changing the speed and/or acceleration of the drone, and alarm operation; or
  • control shutdown through parachute landing, return to landing, change the speed and / or acceleration of the drone, alarm operation.
  • the protection operation includes changing the speed and/or acceleration of the drone
  • the at least two temperature ranges correspond to different speeds and/or accelerations.
  • the speed change rates corresponding to at least two temperature ranges are different and/or the acceleration change rates are different.
  • the obtaining unit 410 is further configured to: obtain a current value of the environment parameter of the drone;
  • the determining unit 420 is further configured to: determine, according to a current value of the environment parameter, a correspondence between the temperature range and a protection operation;
  • the corresponding range of the temperature range corresponding to the different numerical ranges of the environmental parameters is different from the protection operation.
  • the environmental parameter includes an ambient temperature.
  • the target component comprises at least one of the following:
  • Gyros electronic compass, IMU, vision sensor, GPS, barometer, pan/tilt, shooting equipment, battery, processor, memory, transceiver, motor and ESC.
  • control device 400 can implement corresponding operations in the method 200.
  • control device 400 can implement corresponding operations in the method 200.
  • details are not described herein again.
  • FIG. 5 is a schematic block diagram of a control device 500 in accordance with an embodiment of the present invention. As shown in FIG. 5, the control device 500 includes an acquisition unit 510 and an execution unit 520.
  • the obtaining unit 510 is configured to acquire a current temperature of the target component in the drone
  • the executing unit 520 is configured to perform a falling operation when the current temperature of the target component exceeds a temperature threshold.
  • the obtaining unit 510 is further configured to:
  • the obtaining unit 510 is further configured to:
  • the temperature threshold is obtained according to the current value of the environment parameter and the corresponding relationship between the value range of the environment parameter and the threshold, wherein the different value ranges of the environment parameter correspond to different temperature thresholds.
  • the environmental parameter includes an ambient temperature.
  • the landing operation comprises a return landing or a controlled shutdown through a parachute landing.
  • the target component comprises at least one of the following:
  • Gyros electronic compass, IMU, vision sensor, GPS, barometer, pan/tilt, shooting equipment, battery, processor, memory, transceiver, motor and ESC.
  • control device 500 can implement corresponding operations in the method 300.
  • details are not described herein again.
  • FIG. 6 is a schematic block diagram of a control device 600 in accordance with an embodiment of the present invention.
  • the control device 600 includes at least one processor 610.
  • control device 600 can also include a memory 620 that can execute instructions stored in the memory 620.
  • control device may further include a bus 630, and the processor 610 and the memory 620 may be connected by a bus 630.
  • control device may further include a transceiver 640, the transceiver may communicate with other devices, for example, may communicate with the operating device, and the user may send the temperature range and the protection operation to the controller through the operating device.
  • the control device may further include a transceiver 640, the transceiver may communicate with other devices, for example, may communicate with the operating device, and the user may send the temperature range and the protection operation to the controller through the operating device.
  • Correspondence for example, can be communicated with a temperature sensor for obtaining the current temperature of the target component.
  • the at least one processor 610 is used collectively or separately for:
  • the correspondence between the temperature range and the protection operation is used to indicate:
  • the high temperature range includes a temperature higher than a safe operating temperature of the target component
  • the low temperature range includes a temperature lower than a safe operating temperature of the target component
  • the protection operation is: controlling the shutdown by landing with a parachute, returning to landing, changing the speed and/or acceleration of the drone, or alarming operation.
  • protection operations are sorted according to the temperature of the corresponding high temperature range from high to low: control shutdown by parachute landing, returning to landing, changing the speed and/or acceleration of the drone, and alarm operation; or
  • control shutdown through parachute landing, return to landing, change the speed and / or acceleration of the drone, alarm operation.
  • the protection operation includes changing the speed and/or acceleration of the drone
  • the at least two temperature ranges correspond to different speeds and/or accelerations.
  • the at least two temperature ranges correspond to different speed change rates and/or acceleration change rates.
  • the at least one processor 610 is used collectively or separately for:
  • the corresponding range of the temperature range corresponding to the different numerical ranges of the environmental parameters is different from the protection operation.
  • the environmental parameter includes an ambient temperature.
  • the target component comprises at least one of the following:
  • Gyros electronic compass, IMU, vision sensor, GPS, barometer, pan/tilt, shooting equipment, battery, processor, memory, transceiver, motor and ESC.
  • control device 600 can implement corresponding operations in the method 200.
  • the control device 600 can implement corresponding operations in the method 200.
  • details are not described herein again.
  • FIG. 7 is a schematic block diagram of a control device 700 in accordance with an embodiment of the present invention.
  • the control device 700 includes at least one processor 710.
  • control device 700 can also include a memory 720 that can execute instructions stored in the memory 720.
  • control device may further include a bus 730, and the processor 710 and the memory 720 may be connected by a bus 730.
  • control device may further include a transceiver 740, the transceiver may communicate with other devices, for example, may communicate with the operating device, and the user may send a correspondence between the temperature range and the protection operation to the controller through the operating device.
  • the relationship for example, can be communicated with a temperature sensor for obtaining the current temperature of the target component.
  • the at least one processor 710 is used collectively or separately for:
  • a drop operation is performed when the current temperature of the target component exceeds a temperature threshold.
  • the processor is configured to invoke an instruction in the memory to further perform the following operations:
  • the at least one processor 710 is used collectively or separately for:
  • the acquisition is performed before the landing operation is performed.
  • the temperature threshold is obtained according to the current value of the environment parameter and the corresponding relationship between the value range of the environment parameter and the threshold, wherein the different value ranges of the environment parameter correspond to different temperature thresholds.
  • the environmental parameter includes an ambient temperature.
  • the landing operation comprises a return landing or a controlled shutdown through a parachute landing.
  • the target component comprises at least one of the following:
  • Gyros electronic compass, IMU, vision sensor, GPS, barometer, pan/tilt, shooting equipment, battery, processor, memory, transceiver, motor and ESC.
  • control device 700 can implement corresponding operations in the method 300.
  • the control device 700 can implement corresponding operations in the method 300.
  • details are not described herein again.
  • the embodiment of the invention further provides a drone, which may include the control device shown in FIG. 4-7.
  • FIG. 8 is a schematic block diagram of a drone 800 in accordance with an embodiment of the present invention. As shown in FIG. 8, the drone 800 includes a temperature sensor 810, a processor 820, and a target component 830.
  • the temperature sensor 810 is configured to detect a current temperature of the target component 830.
  • the processor 820 is configured to: according to a current temperature of the target component detected by the sensor, and a correspondence between a temperature range and a protection operation, determine a protection operation to be performed; wherein, in a correspondence between the temperature range and the protection operation, The protection operations corresponding to at least two temperature ranges are different; performing the protection operation that needs to be performed in order to protect the target component.
  • the correspondence between the temperature range and the protection operation is used to indicate:
  • the high temperature range includes a temperature higher than a safe operating temperature of the target component
  • the low temperature range includes a temperature lower than a safe operating temperature of the target component
  • the protection operation is: controlling the shutdown by a parachute landing, returning to landing, changing the speed and/or acceleration of the drone, or alarming operation.
  • protection operations are sorted according to the temperature of the corresponding high temperature range from high to low: control shutdown by parachute landing, returning to landing, changing the speed and/or acceleration of the drone, and alarm operation; or
  • control stop The aircraft landed by a parachute, returned to land, changed the speed and / or acceleration of the drone, and alarmed the operation.
  • the protection operation includes changing the speed and/or acceleration of the drone
  • the temperature range corresponds to a different speed and/or acceleration
  • the temperature range corresponds to a different speed change rate and/or an acceleration change rate.
  • the processor is further configured to:
  • the corresponding range of the temperature range corresponding to the different numerical ranges of the environmental parameters is different from the protection operation.
  • the environmental parameter includes an ambient temperature.
  • the target component comprises at least one of the following:
  • Gyros electronic compass, inertial measurement unit IMU, vision sensor, GPS, barometer, pan/tilt, camera, battery, processor, memory, transceiver, motor and ESC.
  • the drone 900 includes a temperature sensor 910, a processor 920, and a target component 930.
  • the temperature sensor 910 is configured to detect a current temperature of the target component 930.
  • the processor 920 is configured to perform a drop operation when the current temperature of the target component exceeds a temperature threshold.
  • processor 920 is further configured to:
  • processor 920 is further configured to:
  • the temperature threshold is obtained according to the current value of the environment parameter and the corresponding relationship between the value range of the environment parameter and the threshold, wherein the different value ranges of the environment parameter correspond to different temperature thresholds.
  • the environmental parameter includes an ambient temperature.
  • the landing operation comprises a return landing or a controlled shutdown through a parachute landing.
  • the target component comprises at least one of the following:
  • Gyroscope electronic compass, inertial measurement unit IMU, vision sensor, global positioning system GPS, barometer, pan/tilt, shooting equipment, battery, processor, memory, transceiver, motor and ESC.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), A variety of media that can store program code, such as random access memory (RAM), disk, or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Gyroscopes (AREA)

Abstract

一种控制方法、设备和无人机。该方法包括:获取无人机中目标部件的当前温度(210);根据所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作(220);其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行所述需要执行的保护操作,以便于保护所述目标部件。该方法能够实现对无人机的合理保护。

Description

控制方法、控制设备和无人机
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本发明涉及无人机领域,并且更具体地,涉及一种控制方法、控制设备和无人机。
背景技术
随着飞行技术的发展,飞行器,例如,UAV(Unmanned Aerial Vehicle,无人飞行器),也称为无人机,已经从军用发展到越来越广泛的民用,例如,UAV植物保护、UAV航空拍摄、UAV森林火警监控等等,而民用化也是UAV未来发展的趋势。
随着无人机的迅速发展,如何合理的进行无人机的自动保护是一项亟待解决的问题。
发明内容
本发明实施例提供一种控制方法、设备和无人机,能够实现对无人机的合理保护。
第一方面,提供了一种控制方法,包括:获取无人机中目标部件的当前温度;根据所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行所述需要执行的保护操作,以便于保护所述目标部件。
第二方面,提供了一种控制方法,包括:获取无人机中目标部件的当前温度;在所述目标部件的当前温度超出温度阈值时,执行降落操作。
第三方面,提供了一种控制设备,包括:获取单元,用于获取无人机中目标部件的当前温度;确定单元,用于根据所述目标部件的当前温度,以及 温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行单元,用于执行所述需要执行的保护操作,以便于保护所述目标部件。
第四方面,提供了一种控制设备,包括:获取单元,用于获取无人机中目标部件的当前温度;执行单元,用于在所述目标部件的当前温度超出温度阈值时,执行降落操作。
第五方面,提供了一种控制设备,包括至少一个处理器,其中,所述至少一个处理器共同地或单独地用于:获取无人机中目标部件的当前温度;根据所述目标部件的当期温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行所述需要执行的保护操作,以便于保护所述目标部件。
第六方面,提供了一种控制设备,包括至少一个处理器,其中,所述至少一个处理器共同地或单独地用于:获取无人机中目标部件的当前温度;在所述目标部件的当前温度超出温度阈值时,执行降落操作。
第七方面,提供了一种无人机,包括温度传感器、处理器和目标部件;其中,所述温度传感器用于检测所述目标部件的当前温度,所述处理器用于:根据所述传感器检测的所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行所述需要执行的保护操作,以便于保护所述目标部件。
第八方面,提供了一种无人机,包括温度传感器、处理器和目标部件;其中,所述温度传感器用于检测所述目标部件的当前温度,所述处理器用于:在所述目标部件的当前温度超出温度阈值时,执行降落操作。
第九方面,提供了一种存储介质,该存储介质存储指令,该指令用于执行第一方面或第二方面中的方法。
因此,在本发明实施例中,可以根据目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作,从而可以从至少两种保护操作中确定出与该当前温度匹配的保护操作,从而实现对无人机的合理保护。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例无人飞行系统的示意性框图。
图2是根据本发明实施例的控制方法示意性流程图。
图3是根据本发明实施例的控制方法的示意性流程图。
图4是根据本发明实施例的控制设备的示意性框图。
图5是根据本发明实施例的控制设备的示意性框图。
图6是根据本发明实施例的控制设备的示意性框图。
图7是根据本发明实施例的控制设备的示意性框图。
图8是根据本申请实施例的无人机的示意性框图。
图9是根据本申请实施例的无人机的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的实施例提供了对UAV上的部件进行保护的方案。本发明的实施例可以应用于各种类型的UAV。例如,UAV可以是小型的UAV。在某些实施例中,UAV可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此,UAV也可以是其它类型的UAV或可移动装置。
图1是根据本发明的实施例的无人飞行系统100的示意性架构图。本实 施例以旋翼飞行器为例进行说明。
无人飞行系统100可以包括UAV 110、载体120、显示设备130和操纵设备140。其中,UAV 110可以包括动力系统150、飞行控制系统160、机架170和电池190。UAV 110可以与操纵设备140和显示设备130进行无线通信。
机架170可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在UAV 110着陆时起支撑作用。
动力系统150可以包括电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在对应的机臂上;电子调速器151用于接收飞行控制器160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为UAV 110的飞行提供动力,该动力使得UAV 110能够实现一个或多个自由度的运动。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以有刷电机。
飞行控制系统160可以包括飞行控制器161和传感系统162。传感系统162用于测量UAV的姿态信息。传感系统162例如可以包括陀螺仪、电子罗盘、IMU(惯性测量单元,Inertial Measurement Unit)、视觉传感器、GPS(全球定位系统,Global Positioning System)和气压计等传感器中的至少一种。飞行控制器161用于控制UAV 110的飞行,例如,可以根据传感系统162测量的姿态信息控制UAV 110的飞行。
载体120可以用来承载负载180。例如,当载体120为云台设备时,负载180可以为拍摄设备(例如,照机、摄像机等),本发明的实施例并不限于此,例如,载体也可以是用于承载武器或其它负载的承载设备。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与UAV 110进行通信,并且可以用于显示UAV 110的姿态信息。另外,当负载123为拍摄设备时,还可以在显示设备130上显示拍摄设备拍摄的图像。应理解,显示设备130可以是独立的设备,也可以设置在操纵设备140中。
操纵设备140位于无人飞行系统100的地面端,可以通过无线方式与 UAV 110进行通信,用于对UAV 110进行远程操纵。操纵设备例如可以是遥控器或者安装有控制UAV的APP(应用程序,Application)的终端设备,例如,智能手机、平板电脑等。本发明的实施例中,通过操纵设备接收用户的输入,可以指通过遥控器上的拔轮、按钮、按键、摇杆等输入装置或者终端设备上的用户界面(UI)对UAV进行操控。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
应理解,以上已经介绍了无人飞行系统,在无人机的飞行过程中,如何对无人机中的各个部件进行保护一项亟待解决的问题。
图2是根据本发明实施例的控制方法200的示意性流程图。可选地,该方法可以由如图1所示的飞行控制器161执行,也可以有其他设备执行,例如远程控制设备或服务器等。如图2所示,该方法200包括以下内容。
在210中,获取无人机中目标部件的当前温度。
可选地,此处提到的目标部件可以是该无人机中本身所具有的部件,例如,可以是无人机所具有的电池,可以是飞行控制器所包括的处理器、存储器和收发器,可以是传感系统所包括的陀螺仪、电子罗盘、IMU、视觉传感器、GPS和气压计等传感器等,可以是动力系统所包括的电机、电调等。
可选地,此处提到的目标部件还可以是安装于该无人机中的部件,具体地可以是载体,以及设置于该载体中的负载,例如,可以为云台和拍摄设备等。
可选地,可以获取温度传感器检测的目标部件的当前温度。可选地,该温度传感器可以通过热敏电阻实现。
可选地,该温度传感器可以置于目标部件的内部,则该目标部件的当前温度可以是该目标部件的内部温度;或者,该温度传感器可以置于目标部件的表面,则该温度传感器的当前温度可以是指该目标部件的表面温度。当然,该温度传感器也可以置于该目标部件的周围而不接触该目标部件。
可选地,在本发明实施例中,在温度传感器置于目标部件的不同位置时,相同的温度范围对应的保护操作可以不同。
在220中,根据该目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作。
可选地,在本发明实施例中,在获取到目标部件的当前温度之后,如果 根据温度范围与保护操作的对应关系,确定需要执行保护操作时,可以执行保护操作。
可选地,本发明实施例中提到的保护操作可以包括控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,或报警操作。
可选地,在本发明实施例中,控制停机通过降落伞降落可以是直接在当前地点降落,而不需要返航或者在目的地降落。
应理解,在本发明实施例中,至少两种保护操作可以同时使用,例如,在返航操作的同时执行报警操作,或者,在改变无人机的速度和/或加速度的同时,执行报警操作。
可选地,在本发明实施例中,报警操作可以通过用户呈现端通知用户。针对不同的阈值,可以有不同的报警方式。例如,温度超过第一阈值时,通在呈现端呈现黄色的报警灯,超过第二阈值时,可在呈现端呈现红色的报警灯,其中,第二阈值大于第一阈值。
可选地,在本发明实施例中,在该温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同。
可选地,该至少两个温度范围可以包括至少两个高温范围。
例如,在IMU的温度高于55摄氏度时,则可以执行报警操作,在IMU的温度高于65摄氏度时,则可以执行通过降落伞降落的操作或返航降落等。
可选地,该至少两个温度范围可以包括至少两个低温范围。
例如,在IMU的温度低于-5摄氏度时,则可以执行报警操作,在IMU的温度低于-15摄氏度时,则可以执行返航降落操作或通过降落伞降落等。
可选地,该至少两个温度范围可以包括至少一个低温范围和至少一个高温范围。
例如,在IMU的温度低于-15摄氏度时,则可以执行返航降落操作,在IMU的温度高于65摄氏度时,可以执行通过降落伞降落的操作。
应理解,以上提到的高温范围包括的温度高于该目标部件的安全工作温度,以及低温范围包括的温度低于该目标部件的安全工作温度。其中,在高于安全工作温度或低于安全工作温度时,无人机或部件可能会发生故障。
可选地,在本发明实施例中,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作。
可选地,在本发明实施例中,以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作。
应理解,上述排序并不代表肯定预设有排序中的每种保护操作与温度的对应关系,在存在任意两种保护操作时,可以按照该排序设定温度。
可选地,在该保护操作包括改变该无人机的速度和/或加速度时,该至少两个温度范围对应的速度不同和/或加速度不同。在该种情况下,根据当前温度,通过查找该对应关系,以直接得到需要的速度和/或加速度。
可选地,在本发明实施例,至少两个温度范围对应的速度改变率不同和/或加速度改变率不同。在该种情况下,根据目标部件的当前温度,通过查找该对应关系,可以查找得到无人机的速度的改变率和/或加速度的改变率,根据该速度的改变率和/或加速度的改变率,以及当前的速度和/或加速度,得到需要的速度和/或加速度。
应理解,在本发明实施例中,如何改变该无人机的速度和/或加速度可以根据情况而定,例如,假设目标部件的当前温度较高但是无人机离目标位置较近,此时可以加大无人机的速度和/或加速度,使得无人机尽快达到目的地以降落,再例如,假设目标部件的当前温度较高但是无人机离目标位置较远,此时可以降低无人机的速度和/或加速度,使得无人机中的目标部件的温度先降低。
可选地,在本发明实施例中,可以获取该无人机的环境参数的当前值;根据该环境参数的当前值,确定该温度范围与保护操作的对应关系;其中,环境参数的不同数值范围对应的温度范围与保护操作的对应关系不同。
例如,在不同的环境温度范围下,温度范围与保护操作的对应关系不同。
例如,如下表1所示,在不同的环境温度下,对应的IMU和气压计的高温阈值,在该高温阈值下,无人机需要返航角落。
表1
Figure PCTCN2016103061-appb-000001
可选地,在本发明实施例中,各个部件的温度阈值可以通过标定实验的方式进行获取。
可选地,在本发明实施例中,部件的温度可以通过温度传感器获取。该温度传感器可以接触于所需获取温度的部件。
因此,可以进一步结合环境因素,实现对无人机更为合理的保护。
可选地,在本发明实施例中,针对不同的部件可以具有不同的温度范围与保护操作的对应关系。
例如,对于核心模块,例如陀螺仪、电子罗盘、IMU、视觉传感器、GPS和气压计等传感器,在温度超过第一阈值时,则返航降落,而对于其他模块,例如,云台、相机等,在温度超过该第一阈值时,则通过报警的方式通知用户。
在230中,执行该需要执行的保护操作,以便于保护该目标部件。
因此,在本发明实施例中,可以该目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作,从而可以从至少两种保护操作中确定出与该当前温度匹配的保护操作,从而实现对无人机的较好的保护。
图3是根据本发明实施例的控制方法300的示意性流程图。可选地,该方法可以由如图1所示的飞行控制器161执行,也可以有其他设备执行,例如远程控制设备或服务器等。如图3所示,该方法包括以下内容。
在310中,获取无人机中目标部件的当前温度。
在该目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
在该目标部件的当前温度低于高温阈值时,执行降落操作;
可选地,该温度传感器可以置于目标部件的内部,则该目标部件的当前温度可以是该目标部件的内部温度;或者,该温度传感器可以置于目标部件的表面,则该温度传感器的当前温度可以是指该目标部件的表面温度。当然,该温度传感器也可以置于该目标部件的周围而不接触该目标部件。
可选地,在本发明实施例中,在温度传感器置于目标部件的不同位置时,相同的温度范围对应的保护操作可以不同。
可选地,在本发明实施例中,获取无人机的环境参数的当前值;根据该环境参数的当前值,以及该环境参数的数值范围与阈值的对应关系,获取该温度阈值,其中,该环境参数的不同数值范围对应不同的温度阈值。
可选地,该环境参数包括环境温度。
例如,在不同的环境温度范围下,温度范围与保护操作的对应关系不同。
在320中,在该目标部件的当前温度超出温度阈值时,执行降落操作。
可选地,该降落操作包括返航降落,或控制停机通过降落伞降落。
因此,在本发明实施例中,在无人机中目标部件的当前温度超出温度范围时,可以执行降落操作,从而可以避免无人机因温度较高或较低所造成的炸机行为。
图4是根据本发明实施例的控制设备400的示意性框图。如图4所示,该控制设备400可以包括:
获取单元410,用于获取无人机中目标部件的当前温度;
确定单元420,用于根据目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在该温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;
执行单元430,用于执行该需要执行的保护操作,以便于保护该目标部件。
可选地,该温度范围与保护操作的对应关系用于指示:
至少两个高温范围中每个范围对应的保护操作;或
至少两个低温范围中每个范围对应的保护操作;或
至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
其中,该高温范围包括的温度高于该目标部件的安全工作温度,以及该低温范围包括的温度低于该目标部件的安全工作温度。
可选地,保护操作为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,或报警操作。
可选地,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作;或,
以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作。
可选地,在该保护操作包括改变该无人机的速度和/或加速度时,
该至少两个温度范围对应的速度不同和/或加速度不同;或,
至少两个温度范围对应的速度改变率不同和/或加速度改变率不同。
可选地,该获取单元410还用于:获取该无人机的环境参数的当前值;
该确定单元420还用于:根据该环境参数的当前值,确定该温度范围与保护操作的对应关系;
其中,环境参数的不同数值范围对应的该温度范围与保护操作的对应关系不同。
可选地,该环境参数包括环境温度。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、IMU、视觉传感器、GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
可选地,该控制设备400可以实现方法200中的相应操作,为了简洁,在此不再赘述。
图5是根据本发明实施例的控制设备500的示意性框图。如图5所示,该控制设备500包括获取单元510和执行单元520。
其中,获取单元510,用于获取无人机中目标部件的当前温度;
执行单元520,用于在该目标部件的当前温度超出温度阈值时,执行降落操作。
可选地,该获取单元510进一步用于:
在该目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
在该目标部件的当前温度低于高温阈值时,执行降落操作;
可选地,该获取单元510进一步用于:
获取无人机的环境参数的当前值;
根据该环境参数的当前值,以及该环境参数的数值范围与阈值的对应关系,获取该温度阈值,其中,该环境参数的不同数值范围对应不同的温度阈值。
可选地,该环境参数包括环境温度。
可选地,该降落操作包括返航降落,或控制停机通过降落伞降落。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、IMU、视觉传感器、GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
可选地,该控制设备500可以实现方法300中的相应操作,为了简洁,在此不再赘述。
图6是根据本发明实施例的控制设备600的示意性框图。该控制设备600包括至少一个处理器610。
可选地,该控制设备600还可以包括存储器620,处理器610可以执行存储器620中存储的指令。
可选地,该控制设备还可以包括总线630,该处理器610和存储器620可以通过总线630相连。
可选地,该控制设备还可以包括收发器640,该收发器可以与其他设备进行通信,例如,可以与操纵设备进行通信,用户可以通过该操纵设备向控制器发送该温度范围与保护操作的对应关系,例如,可以与温度传感器进行通信,用于获取目标部件的当前温度。
可选地,该至少一个处理器610共同地或单独地用于:
获取无人机中目标部件的当前温度;
根据该目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在该温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;
执行该需要执行的保护操作,以便于保护该目标部件。
可选地,该温度范围与保护操作的对应关系用于指示:
至少两个高温范围中每个范围对应的保护操作;或
至少两个低温范围中每个范围对应的保护操作;或
至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
其中,该高温范围包括的温度高于该目标部件的安全工作温度,以及该低温范围包括的温度低于该目标部件的安全工作温度。
可选地,保护操作为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,或报警操作。
可选地,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作;或,
以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作。
可选地,在该保护操作包括改变该无人机的速度和/或加速度时,
该至少两个温度范围对应的速度不同和/或加速度不同;或,
该至少两个温度范围对应的速度改变率不同和/或加速度改变率不同。
可选地,该至少一个处理器610共同地或单独地用于:
在根据该目标部件的当前温度,以及该温度范围与保护操作的对应关系,确定需要执行的保护操作之前,获取该无人机的环境参数的当前值;
根据该环境参数的当前值,确定该温度范围与保护操作的对应关系;
其中,环境参数的不同数值范围对应的该温度范围与保护操作的对应关系不同。
可选地,该环境参数包括环境温度。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、IMU、视觉传感器、GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
可选地,该控制设备600可以实现方法200中的相应操作,为了简洁,在此不再赘述。
图7是根据本发明实施例的控制设备700的示意性框图。该控制设备700包括至少一个处理器710。
可选地,该控制设备700还可以包括存储器720,处理器710可以执行存储器720中存储的指令。
可选地,该控制设备还可以包括总线730,该处理器710和存储器720可以通过总线730相连。
可选地,该控制设备还可以包括收发器740,该收发器可以与其他设备进行通信,例如,可以与操纵设备进行通信,用户可以通过该操纵设备向控制器发送温度范围与保护操作的对应关系,例如,可以与温度传感器进行通信,用于获取目标部件的当前温度。
可选地,该至少一个处理器710共同地或单独地用于:
获取无人机中目标部件的当前温度;
在该目标部件的当前温度超出温度阈值时,执行降落操作。
可选地,该处理器用于调用该存储器中的指令进一步执行以下操作:
在该目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
在该目标部件的当前温度低于高温阈值时,执行降落操作;
可选地,该至少一个处理器710共同地或单独地用于:
在该目标部件的当前温度超出温度阈值时,执行降落操作之前,获取无 人机的环境参数的当前值;
根据该环境参数的当前值,以及该环境参数的数值范围与阈值的对应关系,获取该温度阈值,其中,该环境参数的不同数值范围对应不同的温度阈值。
可选地,该环境参数包括环境温度。
可选地,该降落操作包括返航降落,或控制停机通过降落伞降落。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、IMU、视觉传感器、GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
可选地,该控制设备700可以实现方法300中的相应操作,为了简洁,在此不再赘述。
本发明实施例还提供了一种无人机,可以包括图4-图7所示的控制设备。
图8是根据本发明实施例无人机800的示意性框图。如图8所示,该无人机800包括温度传感器810、处理器820和目标部件830。
该温度传感器810用于检测该目标部件830的当前温度,
该处理器820用于:根据该传感器检测的该目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在该温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行该需要执行的保护操作,以便于保护该目标部件。
可选地,该温度范围与保护操作的对应关系用于指示:
至少两个高温范围中每个范围对应的保护操作;或
至少两个低温范围中每个范围对应的保护操作;或
至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
其中,该高温范围包括的温度高于该目标部件的安全工作温度,以及该低温范围包括的温度低于该目标部件的安全工作温度。
可选地,该保护操作为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,或报警操作。
可选地,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作;或,
以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停 机通过降落伞降落,返航降落,改变该无人机的速度和/或加速度,报警操作。
可选地,在该保护操作包括改变该无人机的速度和/或加速度时,
该温度范围对应的速度不同和/或加速度不同;或,
该温度范围对应的速度改变率不同和/或加速度改变率不同。
可选地,该处理器还用于:
获取该无人机的环境参数的当前值;
根据该环境参数的当前值,确定该温度范围与保护操作的对应关系;
其中,环境参数的不同数值范围对应的该温度范围与保护操作的对应关系不同。
可选地,该环境参数包括环境温度。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
图9是根据本发明实施例无人机900的示意性框图。如图9所示,该无人机900包括温度传感器910、处理器920和目标部件930。
可选地,该温度传感器910用于检测该目标部件930的当前温度,
该处理器920用于:在该目标部件的当前温度超出温度阈值时,执行降落操作。
可选地,该处理器920进一步用于:
在该目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
在该目标部件的当前温度低于高温阈值时,执行降落操作;
可选地,该处理器920进一步用于:
获取无人机的环境参数的当前值;
根据该环境参数的当前值,以及该环境参数的数值范围与阈值的对应关系,获取该温度阈值,其中,该环境参数的不同数值范围对应不同的温度阈值。
可选地,该环境参数包括环境温度。
可选地,该降落操作包括返航降落,或控制停机通过降落伞降落。
可选地,该目标部件包括以下中的至少一种:
陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统 GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、 随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (57)

  1. 一种控制方法,其特征在于,包括:
    获取无人机中目标部件的当前温度;
    根据所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;
    执行所述需要执行的保护操作,以便于保护所述目标部件。
  2. 根据权利要求1所述的方法,其特征在于,所述温度范围与保护操作的对应关系用于指示:
    至少两个高温范围中每个范围对应的保护操作;或
    至少两个低温范围中每个范围对应的保护操作;或
    至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
    其中,所述高温范围包括的温度高于所述目标部件的安全工作温度,以及所述低温范围包括的温度低于所述目标部件的安全工作温度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述保护操作为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,或报警操作。
  4. 根据权利要求3所述的方法,其特征在于,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作;或,
    以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作。
  5. 根据权利要求3或4所述的方法,其特征在于,在所述保护操作包括改变所述无人机的速度和/或加速度时,
    所述温度范围对应的速度不同和/或加速度不同;或,
    所述温度范围对应的速度改变率不同和/或加速度改变率不同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述根据所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作之前,所述方法还包括:
    获取所述无人机的环境参数的当前值;
    根据所述环境参数的当前值,确定所述温度范围与保护操作的对应关系;
    其中,环境参数的不同数值范围对应的所述温度范围与保护操作的对应关系不同。
  7. 根据权利要求6所述的方法,其特征在于,所述环境参数包括环境温度。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  9. 一种控制方法,其特征在于,包括:
    获取无人机中目标部件的当前温度;
    在所述目标部件的当前温度超出温度阈值时,执行降落操作。
  10. 根据权利要求9所述的方法,其特征在于,在所述目标部件的当前温度超出温度阈值时,执行降落操作,包括:
    在所述目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
    在所述目标部件的当前温度低于高温阈值时,执行降落操作;
  11. 根据权利要求9或10所述的方法,其特征在于,在所述目标部件的当前温度超出温度阈值时,执行降落操作之前,所述方法还包括:
    获取无人机的环境参数的当前值;
    根据所述环境参数的当前值,以及所述环境参数的数值范围与阈值的对应关系,获取所述温度阈值,其中,所述环境参数的不同数值范围对应不同的温度阈值。
  12. 根据权利要求11所述的方法,其特征在于,所述环境参数包括环境温度。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述降落操作包括返航降落,或控制停机通过降落伞降落。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统 GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  15. 一种控制设备,其特征在于,包括:
    获取单元,用于获取无人机中目标部件的当前温度;
    确定单元,用于根据所述当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;
    执行单元,用于执行所述需要执行的保护操作,以便于保护所述目标部件。
  16. 根据权利要求15所述的设备,其特征在于,所述温度范围与保护操作的对应关系用于指示:
    至少两个高温范围中每个范围对应的保护操作;或
    至少两个低温范围中每个范围对应的保护操作;或
    至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
    其中,所述高温范围包括的温度高于所述目标部件的安全工作温度,以及所述低温范围包括的温度低于所述目标部件的安全工作温度。
  17. 根据权利要求15或16所述的设备,其特征在于,所述保护操作为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,或报警操作。
  18. 根据权利要求17所述的设备,其特征在于,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作;或,
    以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作。
  19. 根据权利要求17或18所述的设备,其特征在于,在所述保护操作包括改变所述无人机的速度和/或加速度时,
    所述至少两个温度范围对应的速度不同和/或加速度不同;或,
    所述至少两个温度范围对应的速度改变率不同和/或加速度改变率不同。
  20. 根据权利要求15至19中任一项所述的设备,所述获取单元还用于:获取所述无人机的环境参数的当前值;
    所述确定单元还用于:根据所述环境参数的当前值,确定所述温度范围与保护操作的对应关系;
    其中,环境参数的不同数值范围对应的所述温度范围与保护操作的对应关系不同。
  21. 根据权利要求20所述的设备,其特征在于,所述环境参数包括环境温度。
  22. 根据权利要求15至21中任一项所述的设备,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  23. 一种控制设备,其特征在于,包括:
    获取单元,用于获取无人机中目标部件的当前温度;
    执行单元,用于在所述目标部件的当前温度超出温度阈值时,执行降落操作。
  24. 根据权利要求23所述的设备,其特征在于,所述执行单元进一步用于:
    在所述目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
    在所述目标部件的当前温度低于高温阈值时,执行降落操作;
  25. 根据权利要求23或24所述的设备,其特征在于,所述获取单元进一步用于:
    获取无人机的环境参数的当前值;
    根据所述环境参数的当前值,以及所述环境参数的数值范围与阈值的对应关系,获取所述温度阈值,其中,所述环境参数的不同数值范围对应不同的温度阈值。
  26. 根据权利要求25所述的设备,其特征在于,所述环境参数包括环境温度。
  27. 根据权利要求23至26中任一项所述的设备,其特征在于,所述降落操作包括返航降落,或控制停机通过降落伞降落。
  28. 根据权利要求23至27中任一项所述的设备,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  29. 一种控制设备,其特征在于,包括至少一个处理器,所述至少一个处理器单独地或共同地用于:
    获取无人机中目标部件的当前温度;
    根据所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;
    执行所述需要执行的保护操作,以便于保护所述目标部件。
  30. 根据权利要求29所述的设备,其特征在于,所述温度范围与保护操作的对应关系用于指示:
    至少两个高温范围中每个范围对应的保护操作;或
    至少两个低温范围中每个范围对应的保护操作;或
    至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
    其中,所述高温范围包括的温度高于所述目标部件的安全工作温度,以及所述低温范围包括的温度低于所述目标部件的安全工作温度。
  31. 根据权利要求29或30所述的设备,其特征在于,所述保护操作为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,或报警操作。
  32. 根据权利要求31所述的设备,其特征在于,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作;或,
    以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作。
  33. 根据权利要求31或32所述的设备,其特征在于,在所述保护操作包括改变所述无人机的速度和/或加速度时,
    所述至少两个温度范围对应的速度不同和/或加速度不同;或,
    所述至少两个温度范围对应的速度改变率不同和/或加速度改变率不同。
  34. 根据权利要求29至33中任一项所述的设备,其特征在于,所述至 少一个处理器单独地或共同地用于:
    根据所述环境参数的当前值,确定所述温度范围与保护操作的对应关系;
    其中,环境参数的不同数值范围对应的所述温度范围与保护操作的对应关系不同。
  35. 根据权利要求34所述的设备,其特征在于,所述环境参数包括环境温度。
  36. 根据权利要求29至35中任一项所述的设备,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  37. 一种控制设备,其特征在于,包括至少一个处理器,所述至少一个处理器单独地或共同地用于:
    获取无人机中目标部件的当前温度;
    在所述目标部件的当前温度超出温度阈值时,执行降落操作。
  38. 根据权利要求37所述的设备,其特征在于,所述至少一个处理器单独地或共同地用于:
    在所述目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
    在所述目标部件的当前温度低于高温阈值时,执行降落操作;
  39. 根据权利要求37或38所述的设备,其特征在于,所述至少一个处理器单独地或共同地用于:
    在所述目标部件的当前温度超出温度阈值时,执行降落操作之前,获取无人机的环境参数的当前值;
    根据所述环境参数的当前值,以及所述环境参数的数值范围与阈值的对应关系,获取所述温度阈值,其中,所述环境参数的不同数值范围对应不同的温度阈值。
  40. 根据权利要求39所述的设备,其特征在于,所述环境参数包括环境温度。
  41. 根据权利要求37至40中任一项所述的设备,其特征在于,所述降落操作包括返航降落,或控制停机通过降落伞降落。
  42. 根据权利要求37至41中任一项所述的设备,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  43. 一种无人机,其特征在于,包括温度传感器、处理器和目标部件;其中,
    所述温度传感器用于检测所述目标部件的当前温度,
    所述处理器用于:根据所述传感器检测的所述目标部件的当前温度,以及温度范围与保护操作的对应关系,确定需要执行的保护操作;其中,在所述温度范围与保护操作的对应关系中,至少两个温度范围对应的保护操作不同;执行所述需要执行的保护操作,以便于保护所述目标部件。
  44. 根据权利要求43所述的无人机,其特征在于,所述温度范围与保护操作的对应关系用于指示:
    至少两个高温范围中每个范围对应的保护操作;或
    至少两个低温范围中每个范围对应的保护操作;或
    至少一个低温范围和至少一个高温范围中每个范围对应的保护操作;
    其中,所述高温范围包括的温度高于所述目标部件的安全工作温度,以及所述低温范围包括的温度低于所述目标部件的安全工作温度。
  45. 根据权利要求43或44所述的无人机,其特征在于,所述保护操作为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,或报警操作。
  46. 根据权利要求45所述的无人机,其特征在于,以下保护操作按照对应的高温范围的温度从高到低依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作;或,
    以下保护操作按照对应的低温范围的温度从低到高依次排序为:控制停机通过降落伞降落,返航降落,改变所述无人机的速度和/或加速度,报警操作。
  47. 根据权利要求45或46所述的无人机,其特征在于,在所述保护操作包括改变所述无人机的速度和/或加速度时,
    所述温度范围对应的速度不同和/或加速度不同;或,
    所述温度范围对应的速度改变率不同和/或加速度改变率不同。
  48. 根据权利要求43至47中任一项所述的无人机,其特征在于,所述处理器还用于:
    获取所述无人机的环境参数的当前值;
    根据所述环境参数的当前值,确定所述温度范围与保护操作的对应关系;
    其中,环境参数的不同数值范围对应的所述温度范围与保护操作的对应关系不同。
  49. 根据权利要求48所述的无人机,其特征在于,所述环境参数包括环境温度。
  50. 根据权利要求43至49中任一项所述的无人机,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  51. 一种无人机,其特征在于,所述无人机包括温度传感器、处理器和目标部件;其中,
    所述温度传感器用于检测所述目标部件的当前温度,
    所述处理器用于:在所述目标部件的当前温度超出温度阈值时,执行降落操作。
  52. 根据权利要求51所述的无人机,其特征在于,所述处理器进一步用于:
    在所述目标部件的当前温度高于高温阈值时,执行降落操作;和/或,
    在所述目标部件的当前温度低于高温阈值时,执行降落操作;
  53. 根据权利要求51或52所述的无人机,其特征在于,所述处理器进一步用于:
    获取无人机的环境参数的当前值;
    根据所述环境参数的当前值,以及所述环境参数的数值范围与阈值的对应关系,获取所述温度阈值,其中,所述环境参数的不同数值范围对应不同的温度阈值。
  54. 根据权利要求53所述的无人机,其特征在于,所述环境参数包括 环境温度。
  55. 根据权利要求51至54中任一项所述的无人机,其特征在于,所述降落操作包括返航降落,或控制停机通过降落伞降落。
  56. 根据权利要求51至55中任一项所述的无人机,其特征在于,所述目标部件包括以下中的至少一种:
    陀螺仪、电子罗盘、惯性测量单元IMU、视觉传感器、全球定位系统GPS、气压计、云台、拍摄设备、电池、处理器、存储器、收发器、电机和电调。
  57. 一种存储介质,其特征在于,所述存储介质存储有指令,所述指令用于执行根据权利要求1至14中任一项所述的方法。
PCT/CN2016/103061 2016-10-24 2016-10-24 控制方法、控制设备和无人机 WO2018076135A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/103061 WO2018076135A1 (zh) 2016-10-24 2016-10-24 控制方法、控制设备和无人机
CN202011097442.4A CN112256002B (zh) 2016-10-24 2016-10-24 控制方法、控制设备和无人机
CN201680002788.7A CN106716281B (zh) 2016-10-24 2016-10-24 控制方法、控制设备和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103061 WO2018076135A1 (zh) 2016-10-24 2016-10-24 控制方法、控制设备和无人机

Publications (1)

Publication Number Publication Date
WO2018076135A1 true WO2018076135A1 (zh) 2018-05-03

Family

ID=58903819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103061 WO2018076135A1 (zh) 2016-10-24 2016-10-24 控制方法、控制设备和无人机

Country Status (2)

Country Link
CN (2) CN106716281B (zh)
WO (1) WO2018076135A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113849011A (zh) * 2021-09-03 2021-12-28 北京三快在线科技有限公司 一种温度控制方法、装置、存储介质及电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279708B (zh) * 2017-12-31 2021-08-27 深圳市越疆科技有限公司 一种云台自动校准方法、装置以及云台
CN111542793B (zh) * 2018-01-08 2023-12-08 经纬航太科技股份有限公司 无人机降落伞降落方法及系统
WO2019134713A1 (en) 2018-01-08 2019-07-11 Geosat Aerospace & Technology Inc. Unmanned aerial vehicle launch methods and systems
US11884406B2 (en) 2018-01-08 2024-01-30 GEOSAT Aerospace & Technology Parachute landing methods and systems for an unmanned aerial vehicle
CN110196606A (zh) * 2018-02-24 2019-09-03 北京京东尚科信息技术有限公司 无人配送车温度控制方法、装置和系统
CN108332867A (zh) * 2018-03-09 2018-07-27 广东翔龙航空技术有限公司 一种无人机电机温度检测方法
CN110832419A (zh) * 2018-07-25 2020-02-21 深圳市大疆创新科技有限公司 一种无人机控制方法、系统及无人机
CN111522354B (zh) 2019-02-01 2024-02-20 中强光电股份有限公司 无人飞行载具及其失效安全方法
CN109831144A (zh) * 2019-03-01 2019-05-31 深圳市道通智能航空技术有限公司 温度保护方法、装置和无人飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202499279U (zh) * 2011-12-27 2012-10-24 湖北易瓦特科技有限公司 无人机机载设备综合控制器
CN105118220A (zh) * 2015-09-17 2015-12-02 杨珊珊 一种无人飞行器温度预警系统及方法
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法
CN205121781U (zh) * 2015-09-17 2016-03-30 杨珊珊 一种无人飞行器温度预警系统及其无人飞行器和飞控台
US20160293015A1 (en) * 2013-12-14 2016-10-06 Oleksiy Bragin Projectile launched uav reconnaissance system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864228B1 (fr) * 2003-12-19 2006-04-28 Airbus France Dispositif de protection d'une sonde solidaire d'une paroi e xterne d'un avion
DE102005053692B3 (de) * 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Brandschutz mit Brennstoffzellenabluft
DE102009010546A1 (de) * 2009-02-25 2010-09-09 Airbus Deutschland Gmbh System und Verfahren zur Kühlung eines Flugzeugbereichs unter Einsatz eines flugzeugexternen Luftaggregats
US9624787B2 (en) * 2013-09-30 2017-04-18 Rosemount Aerospace Inc. Total air temperature sensors
CN103605369A (zh) * 2013-11-22 2014-02-26 航天科工深圳(集团)有限公司 一种基于无人机的太阳电池组件热斑监测系统及方法
CN104143248B (zh) * 2014-08-01 2016-09-14 江苏恒创软件有限公司 基于无人机的森林火灾探测及防控方法
CN104369868A (zh) * 2014-10-24 2015-02-25 苏州德鲁森自动化系统有限公司 一种自动检测破冰装置
CN105528000B (zh) * 2016-01-07 2018-04-27 北京航天发射技术研究所 一种用于飞行器的智能温控表
CN105799941B (zh) * 2016-03-25 2018-11-20 广州市香港科大霍英东研究院 一种适于无人机的小型油电混合动力系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202499279U (zh) * 2011-12-27 2012-10-24 湖北易瓦特科技有限公司 无人机机载设备综合控制器
US20160293015A1 (en) * 2013-12-14 2016-10-06 Oleksiy Bragin Projectile launched uav reconnaissance system and method
CN105118220A (zh) * 2015-09-17 2015-12-02 杨珊珊 一种无人飞行器温度预警系统及方法
CN205121781U (zh) * 2015-09-17 2016-03-30 杨珊珊 一种无人飞行器温度预警系统及其无人飞行器和飞控台
CN105302043A (zh) * 2015-11-17 2016-02-03 辽宁天行健航空科技有限公司 一种无人机的安全控制系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113849011A (zh) * 2021-09-03 2021-12-28 北京三快在线科技有限公司 一种温度控制方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN112256002A (zh) 2021-01-22
CN106716281B (zh) 2020-11-06
CN112256002B (zh) 2023-10-17
CN106716281A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018076135A1 (zh) 控制方法、控制设备和无人机
US10689112B2 (en) Unmanned flying object, control method, and non-transitory recording medium storing program that switch flight state upon capturing an object in the air
US20200202644A1 (en) System and method for data recording and analysis
JP6800217B2 (ja) 無人航空機を降下するための平坦表面を判断する方法
US20170336805A1 (en) Method an apparatus for controlling unmanned aerial vehicle to land on landing platform
WO2020156079A1 (zh) 一种飞行器电池监控方法、装置、电池及飞行器
WO2018098704A1 (zh) 控制方法、设备、系统、无人机和可移动平台
CN105118220B (zh) 一种无人飞行器温度预警系统及方法
EP3231704A1 (en) Method and apparatus for controlling unmanned aerial vehicle
WO2018072133A1 (zh) 控制移动设备的方法、控制系统和移动设备
US10659279B2 (en) Method and device for displaying video corresponding to physical object
US9031719B2 (en) Passive local wind estimator
EP2885676A2 (en) Flying camera with string assembly for localization and interaction
CN109254587B (zh) 在无线充电条件下稳定悬停的小型无人机及其控制方法
WO2017181513A1 (zh) 无人机的飞行控制方法和装置
JP6829513B1 (ja) 位置算出方法及び情報処理システム
JP2021511241A (ja) 無人航空機の発射方法およびシステム
JP2018027742A (ja) 移動体、移動体の制御方法、及びプログラム
CN110471442A (zh) 一种目标观察方法、相关设备及系统
WO2018068193A1 (zh) 控制方法、控制装置、飞行控制系统与多旋翼无人机
CN109154815A (zh) 最高温度点跟踪方法、装置和无人机
KR102612029B1 (ko) 무인 비행 장치 키트 및 시스템
CN116234751A (zh) 无人飞行器的系统和结构
CN109343556B (zh) 无人机水面翻转装置、系统及控制方法
Corrado et al. Data fusion and unmanned aerial vehicles (UAVs) for first responders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920293

Country of ref document: EP

Kind code of ref document: A1