WO2018074878A1 - 세라믹 강판의 제조방법 - Google Patents

세라믹 강판의 제조방법 Download PDF

Info

Publication number
WO2018074878A1
WO2018074878A1 PCT/KR2017/011635 KR2017011635W WO2018074878A1 WO 2018074878 A1 WO2018074878 A1 WO 2018074878A1 KR 2017011635 W KR2017011635 W KR 2017011635W WO 2018074878 A1 WO2018074878 A1 WO 2018074878A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
thermite
ceramic
reaction
mixture
Prior art date
Application number
PCT/KR2017/011635
Other languages
English (en)
French (fr)
Inventor
김양호
Original Assignee
주식회사 웨어솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웨어솔루션 filed Critical 주식회사 웨어솔루션
Priority to US16/343,876 priority Critical patent/US20190264335A1/en
Publication of WO2018074878A1 publication Critical patent/WO2018074878A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Definitions

  • the present invention relates to a method of coating a ceramic by inducing a half of thermite on one surface of a steel sheet.
  • Ceramic materials include excellent heat resistance, corrosion resistance, chemical resistance, and abrasion resistance, but they also have disadvantages such as low toughness, elongation, and brittleness, as well as difficult workability, bonding, and partial replacement facilities.
  • Metal double tubes are manufactured by centrifugal casting.
  • the centrifugal casting method when stainless steel is poured into a rotating metal tube in a molten state, it is applied to the inside of the metal tube by centrifugal force and adheres to and adheres to it.
  • the centrifugal casting process has many problems in the production process such as high efficiency of melting equipment and initial facilities, inefficient and complicated process, and high power consumption and additional cost to move molten metal to centrifuge. I have it.
  • metal-ceramic composite tubes are currently manufactured mainly by an insulator spraying method. It is a method of drying or sintering a ceramic slurry sprayed through a nozzle inside a rotating pipe.
  • an insulator spraying method It is a method of drying or sintering a ceramic slurry sprayed through a nozzle inside a rotating pipe.
  • the present applicant has proposed the Patent No. 10-1384301 in the field of composite pipe, the process is simple, economical, the coating layer is uniform and the bonding strength is strong to manufacture a metal-ceramic composite tube.
  • the patent proposed by the present applicant is an invention that can be used only in a closed space, such as forming a ceramic layer inside the tube. It still uses the existing method. In other words, when the thermite reaction is induced on the plate in the open space, the components are scattered by the reaction, and thus the thermite reaction cannot be induced. Therefore, the ceramic layer cannot be formed on the plate. It still uses the traditional complex and expensive methods.
  • the present invention was invented to solve the conventional problems as described above, by inducing a thermite reaction on the steel sheet in the open space to form a ceramic layer on one side of the steel sheet properties such as heat resistance, corrosion resistance, chemical resistance, wear resistance It is to provide a method of manufacturing this improved ceramic steel sheet.
  • the present invention is a method of coating a ceramic on one side of the steel sheet, (a) installing a formwork made of refractory material for thermite reaction on one side of the plate-shaped steel sheet, and (b) Injecting the reaction material thermite mixture (M) into the formwork to distribute evenly to a certain height on one surface of the steel sheet, (c) after the step (b) the ignition material (I) over the thermite mixture (M) Injecting the ignition material (I) after the injecting to induce the thermite reaction of the thermite mixture (M), and (d) after the step (c) step into the molten state of the thermite mixture (M) with a press machine Press to provide a method for producing a ceramic steel sheet, characterized in that consisting of a step of forming a ceramic layer of a predetermined shape on one surface of the steel sheet.
  • thermite reaction by forming an Al 2 O 3 structure on one surface of the steel sheet through the thermite reaction, properties such as heat resistance, corrosion resistance, chemical resistance, and wear resistance may be improved.
  • the thermite reaction on one side of the steel sheet in the open space is gradually progressed slowly from one side to the other side by titanium carbide, there is no scattering of the reactants, so the thermite reaction occurs stably and is superior to the ceramic layer by the conventional thermite reaction.
  • a ceramic layer can be formed.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a ceramic steel sheet according to the present invention.
  • FIGS. 2A to 2E are diagrams illustrating a manufacturing process of a ceramic steel sheet.
  • FIG. 3 is a cross-sectional view showing the type of press plate used in the present invention.
  • Figure 4 is a view showing the type of formwork used in the present invention.
  • FIGS. 2A to 2E are views illustrating a manufacturing process of the ceramic steel sheet.
  • Figure 3 is a cross-sectional view showing the type of press plate used in the present invention
  • Figure 4 is a view showing the type of formwork used in the present invention.
  • the present invention relates to a method of manufacturing a ceramic steel sheet in detail, in the method of coating a ceramic on one surface of the steel sheet, (a) the formwork made of a refractory material for the thermite reaction on one surface of the plate-shaped steel sheet 100 (200) And installing (b) thermite mixture (M) for the reaction raw material into the formwork 200 so as to distribute it evenly at a predetermined height on one surface of the steel sheet 100, and (c) the (b).
  • step (c) It is characterized by consisting of a step of forming a ceramic layer of a predetermined shape on one surface of the steel sheet 100 by pressing the press work machine 300 to the thermal mixture (M) in the molten state.
  • the present invention is composed of (a) to (d) step to form a ceramic layer on the one surface of the flat steel plate in the open space by thermite reaction to produce a ceramic steel sheet having excellent characteristics such as heat resistance, corrosion resistance, chemical resistance, wear resistance, etc. It relates to a manufacturing method.
  • Ceramic materials include excellent heat resistance, corrosion resistance, chemical resistance, and abrasion resistance, but they also have disadvantages such as low toughness, elongation, and brittleness, as well as difficult workability, bonding, and partial replacement facilities.
  • Metal double tubes are manufactured by centrifugal casting.
  • the centrifugal casting method when stainless steel is poured into a rotating metal tube in a molten state, it is applied to the inside of the metal tube by centrifugal force and adheres to and adheres to it.
  • the centrifugal casting process has many problems in the production process such as high efficiency of melting equipment and initial facilities, inefficient and complicated process, and high power consumption and additional cost to move molten metal to centrifuge. I have it.
  • metal-ceramic composite tubes are currently manufactured mainly by an insulator spraying method. It is a method of drying or sintering a ceramic slurry sprayed through a nozzle inside a rotating pipe.
  • an insulator spraying method It is a method of drying or sintering a ceramic slurry sprayed through a nozzle inside a rotating pipe.
  • the present applicant has proposed the Patent No. 10-1384301 in the field of composite pipe, the process is simple, economical, the coating layer is uniform and the bonding strength is strong to manufacture a metal-ceramic composite tube.
  • the patent proposed by the present applicant is an invention that can be used only in a closed space, such as forming a ceramic layer inside a tube, and therefore cannot be used in an open space, and thus is applied to a flat plate which is essential in the chemical, construction, metal, urinary, and plant industries. It still uses the existing method. In other words, when the thermite reaction is induced on the plate in the open space, the components are scattered by the reaction, and thus the thermite reaction cannot be induced. Therefore, the ceramic layer cannot be formed on the plate. It still uses the traditional complex and expensive methods.
  • the present invention was invented to solve the conventional problems as described above, by inducing a thermite reaction on the steel sheet in the open space to form a ceramic layer on one side of the steel sheet properties such as heat resistance, corrosion resistance, chemical resistance, wear resistance It is to provide a method of manufacturing this improved ceramic steel sheet.
  • thermite reaction by forming an Al 2 O 3 structure on one surface of the steel sheet through the thermite reaction, properties such as heat resistance, corrosion resistance, chemical resistance, and wear resistance may be improved.
  • the thermite reaction on one side of the steel sheet in the open space is gradually progressed slowly from one side to the other side by titanium carbide, there is no scattering of the reactants, so the thermite reaction occurs stably and is superior to the ceramic layer by the conventional thermite reaction.
  • a ceramic layer can be formed.
  • Step (a) is a step of installing the formwork 200 on the steel sheet 100 to be processed. That is, step (a) is a step of installing the formwork 200 made of a refractory material for the thermite reaction on one surface of the plate-shaped steel sheet 100.
  • Steel plate 100 may have a variety of shapes to be used as a plate used in the chemical, construction, metal, urinary, plant industry.
  • the formwork 200 is configured to be installed on one surface of the steel sheet 100 so that reactants (powder and molten state) do not leave the steel sheet 100 so as to induce a thermite reaction on one surface of the steel sheet 100 to make a ceramic layer. to be.
  • Formwork 200 is made of a refractory material to withstand high heat due to thermite reaction can be formed to be closed along the outer surface of the steel sheet 100 of various shapes, for example, formwork rectangular ring shape along the outer surface of the rectangular steel sheet 100 It can be produced as.
  • the formwork 200 may be formed on one surface of the steel sheet 100, the formwork 200 formed in a predetermined shape to make a ceramic layer of a predetermined shape on one surface of the steel sheet (100).
  • Step (b) is a step of injecting the thermite mixture (M) into the formwork installed on the steel sheet (100). That is, step (b) is to inject the thermite mixture (M) for the reaction raw material into the formwork 200 to distribute evenly to a certain height on one surface of the steel sheet (100).
  • Thermite mixture (M) for the reaction raw material consists of iron oxide (Fe 2 O 3 ), aluminum (Al) and titanium carbide (TiC), the mixing ratio of Fe 2 O 3 , Al and TiC may be 9: 1. .
  • the mixing ratio of Fe 2 O 3 and Al may be 3: 1.
  • iron oxide is a powder having an average particle size of 10 to 30 mesh
  • aluminum is a powder having an average particle size of 30 to 80 mesh
  • titanium carbide is a powder having an average particle size of 5 to 40 mesh.
  • Step (c) is a step in which the thermite mixture M is melted on one surface of the steel sheet by thermite reaction of the thermite mixture M by an ignition material. That is, in step (c), after the step (b), the ignition material (I) is introduced onto the thermite mixture (M), and then the ignition material (I) is ignited to induce a thermite reaction of the thermite mixture (M). to be.
  • Ignition material (I) is a powder injected to be evenly distributed over the whole or part of the thermite mixture (M).
  • the ignition material (I) may be a magnesium (Mg) powder that is injected onto the thermite mixture (M).
  • an ignition tool for example, a gas torch
  • T ignition tool
  • thermite mixture M is ignited through the ignition material I and thermite.
  • the reaction proceeds.
  • the thermite reaction proceeds from one side of the one surface of the steel sheet 100 to the other side by the heat of reaction of the thermite mixture M, so that the thermite mixture M gradually burns naturally.
  • the reaction product In the thermite reaction process, the reaction product is ejected with a certain direction and speed. In this case, when irregularly ejected in all directions, the ceramic layer (C), which will be described later, cannot be uniformly formed on the steel sheet, but the titanium carbide (TiC) is reacted. By limiting the scattering of the reaction product during the reaction, the rate at which the thermite reaction proceeds may be slowed to induce the reaction of the thermite mixture with sufficient reaction time.
  • Step (d) is a step of forming a ceramic layer having a predetermined shape on one surface of the steel sheet 100 by pressing the thermal mixture (M) in the molten state. That is, step (d) is a step in which a ceramic layer having a predetermined shape is formed on one surface of the steel sheet 100 by pressing the press working machine 300 on the thermite mixture M in the molten state after the step (c).
  • the press working machine 300 is a device for forming a ceramic layer formed on one surface of a steel sheet, and is a device generally used in an industrial site.
  • the press working machine 300 may be configured to further include a portion of the lower surface of the press plate 310 pressing the thermite mixture (M) in a molten state to protrude in various shapes. That is, a portion of the lower surface of the press plate 310 is protruded, and thus, in step (d), the ceramic is molded to the protruded shape of the press plate 310 on one surface of the steel plate 100 by the press plate 310. Layers may be formed. Therefore, it is possible to manufacture a ceramic sheet of various shapes required in the chemical, construction, metal, urinary, plant industry.
  • the present invention provides a method of manufacturing a ceramic steel sheet having improved properties such as heat resistance, corrosion resistance, chemical resistance, and abrasion resistance by inducing a thermite reaction on the steel sheet in an open space to form a ceramic layer on one surface of the steel sheet. Available.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

본원발명은 세라믹 강판의 제조방법에 관한 것으로 상세하게는 강판의 일면에 세라믹을 코팅하는 방법에 있어서, (a) 판 형상의 강판의 일면에 테르밋 반응을 위한 내화재로 만든 거푸집을 설치하는 단계와, (b) 상기 거푸집 안으로 반응원료용 테르밋 혼합물(M)을 투입하되 상기 강판의 일면에 일정높이로 고르게 분포하도록 하는 단계와, (c) 상기 (b) 단계 후 상기 테르밋 혼합물(M) 위로 점화재(I)가 투입된 후 상기 점화재(I)를 점화하여 상기 테르밋 혼합물(M)의 테르밋 반응을 유도하는 단계 및, (d) 상기 (c) 단계 후 용융된 상태의 상기 테르밋 혼합물(M)에 프레스 가공기로 눌러 상기 강판의 일면에 일정 모양의 세라믹층이 형성되는 단계로 구성되는 것을 특징으로 한다.

Description

세라믹 강판의 제조방법
본 발명은 강판의 일면에 테르밋 반을 유도하여 세라믹을 코팅하는 방법에 관한 것이다.
일반적으로, 화학, 건설, 금속, 요로, 플랜트산업분야에서는 수송용, 열교환용 파이프 또는 강판을 포함한 설비의 내열, 내부식, 내화학성, 내마모성 등의 특성이 높은 수준으로 요구된다. 내열, 내부식, 내화학, 내마모성이 우수한 소재로는 세라믹재료를 들 수 있으나, 낮은 인성, 신율, 취성 등의 재료 자체의 단점과 어려운 가공성, 접합성, 부분교체의 설비상의 문제점도 지니고 있다.
이와 같은 문제점을 보완하고자 금속2중관(판), 금속-세라믹복합관(판)이 활발히 연구되어 왔고 일부 상용화되고 있다.
금속2중관은 원심주조법을 이용하여 제조한다. 원심주조법은 스테인레스강을 용융상태로 회전중인 금속튜브에 부으면 원심력에 의해서 금속튜브 내부에 도포되고 밀착, 접착하게 된다. 하지만, 이러한 원심주조법에 의한 공정은 용융장비와 초기시설비가 높아 비효율적이며 공정이 복잡하며 또한 용융금속을 원심장치로 이동시키기 위해 높은 전력소비 및 추가비용이 요구되는 등의 생산 공정상에 많은 문제점을 지니고 있다. 또한, 금속-세라믹 복합관은 현재 주로 절연체 용사방법으로 제조되고 있다. 회전하고 있는 파이프 내부에 세라믹 슬러리를 노즐을 통해 용사(spraying)하면서 건조 혹은 소결시키는 방식이다. 하지만, 이 공정의 경우, 내부 후막 세라믹층의 생성이 어렵고, 제조공정 시간이 느릴 뿐 아니라 코팅 후 접합부의 균열, 탈리 현상이 쉽게 발생하는 단점을 지니고 있다.
이러한 문제점을 극복하고자 본 출원인은 등록특허 제10-1384301호를 제안하여 복합관 분야에서는 공정이 간단하고, 경제적이며 코팅층이 균일하고 접합력이 강력한 금속-세라믹 복합관을 제조할 수 있는 길이 열렸다. 그러나 본 출원인이 제안한 상기 특허는 관의 내부에 세라믹층을 형성시키는 것 같이 폐쇄적 공간에서만 가능한 발명으로 오픈된 공간에서는 사용할 수 없어 화학, 건설, 금속, 요로, 플랜트산업분야에서 필수적으로 사용되는 평판에 대해서는 여전히 기존 방법을 사용하고 있는 실정이다. 즉, 오픈된 공간에서 평판 위에 테르밋 반응을 유도하면 상기 반응에 의해서 각 구성들이 비산되어 원활한 테르밋 반응을 유도할 수 없어 평판 위에 세라믹층을 형성시킬 수 없는 문제가 있어 평판에 세라믹층을 코팅하기 위해서는 여전히 기존의 복잡하면서 비용이 많이 드는 방법을 사용하고 있다.
따라서 본 출원인이 제안한 발명과 같이 평판에서도 공정이 간단하고, 경제적이며 코팅층이 균일하고 접합력이 강력한 금속-세라믹 복합판 제조 공정이 절실하다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 발명된 것으로서, 오픈된 공간에서 강판 위에 테르밋 반응을 유도하여 강판의 일면에 세라믹층이 형성되도록 하여 내열성, 내부식성, 내화학성, 내마모성 등의 특성이 개선된 세라믹 강판을 제조하는 방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위하여 본원발명은 강판의 일면에 세라믹을 코팅하는 방법에 있어서, (a) 판 형상의 강판의 일면에 테르밋 반응을 위한 내화재로 만든 거푸집을 설치하는 단계와, (b) 상기 거푸집 안으로 반응원료용 테르밋 혼합물(M)을 투입하되 상기 강판의 일면에 일정높이로 고르게 분포하도록 하는 단계와, (c) 상기 (b) 단계 후 상기 테르밋 혼합물(M) 위로 점화재(I)가 투입된 후 상기 점화재(I)를 점화하여 상기 테르밋 혼합물(M)의 테르밋 반응을 유도하는 단계 및, (d) 상기 (c) 단계 후 용융된 상태의 상기 테르밋 혼합물(M)에 프레스 가공기로 눌러 상기 강판의 일면에 일정 모양의 세라믹층이 형성되는 단계로 구성되는 것을 특징으로 하는 세라믹 강판의 제조방법을 제공한다.
본 발명의 실시예에 의하면 테르밋 반응을 통해 강판의 일면에 Al2O3 조직을 형성함으로써 내열성, 내부식성, 내화학성, 내마모성 등의 특성을 개선할 수 있다. 또한, 오픈된 공간에서 강판의 일면에 테르밋 반응이 티타늄카바이드에 의해서 일측에서 타측을 향해 점진적으로 천천히 진행됨으로 반응물들의 비산이 없어 안정적으로 테르밋 반응이 일어나고 기존의 테르밋 반응에 의한 세라믹층보다 좀 더 우수한 세라믹층을 형성할 수 있다.
도1은 본원발명인 세라믹 강판의 제조방법에 관한 순서도이다.
도2a 내지 도2e는 세라믹 강판의 제조 공정을 나타내는 도면이다.
도3은 본원발명에서 사용되는 프레스판의 종류를 나타내는 단면도이다.
도4는 본원발명에서 사용되는 거푸집의 종류를 나타내는 도면이다.
이하 첨부된 도면들을 참조하여 본 발명에 따른 세라믹 강판의 제조방법의 구체적인 내용을 상세히 설명하기로 한다.
도1은 본원발명인 세라믹 강판의 제조방법에 관한 순서도이고, 도2a 내지 도2e는 세라믹 강판의 제조 공정을 나타내는 도면이다.
도3은 본원발명에서 사용되는 프레스판의 종류를 나타내는 단면도이고, 도4는 본원발명에서 사용되는 거푸집의 종류를 나타내는 도면이다.
본원발명은 세라믹 강판의 제조방법에 관한 것으로 상세하게는 강판의 일면에 세라믹을 코팅하는 방법에 있어서, (a) 판 형상의 강판(100)의 일면에 테르밋 반응을 위한 내화재로 만든 거푸집(200)을 설치하는 단계와, (b) 상기 거푸집(200) 안으로 반응원료용 테르밋 혼합물(M)을 투입하되 상기 강판(100)의 일면에 일정높이로 고르게 분포하도록 하는 단계와, (c) 상기 (b) 단계 후 상기 테르밋 혼합물(M) 위로 점화재(I)가 투입된 후 상기 점화재(I)를 점화하여 상기 테르밋 혼합물(M)의 테르밋 반응을 유도하는 단계 및, (d) 상기 (c) 단계 후 용융된 상태의 상기 테르밋 혼합물(M)에 프레스 가공기(300)로 눌러 상기 강판(100)의 일면에 일정 모양의 세라믹층이 형성되는 단계로 구성되는 것을 특징으로 한다.
본원발명은 (a)단계 내지 (d)단계로 구성되는 것으로 오픈된 공간에서 평평한 강판의 일면에 세라믹층을 테르밋 반응으로 형성시켜 내열, 내부식, 내화학성, 내마모성 등의 특성이 우수한 세라믹 강판을 제조하는 방법에 관한 것이다.
일반적으로, 화학, 건설, 금속, 요로, 플랜트산업분야에서는 수송용, 열교환용 파이프 또는 강판을 포함한 설비의 내열, 내부식, 내화학성, 내마모성 등의 특성이 높은 수준으로 요구된다. 내열, 내부식, 내화학, 내마모성이 우수한 소재로는 세라믹재료를 들 수 있으나, 낮은 인성, 신율, 취성 등의 재료 자체의 단점과 어려운 가공성, 접합성, 부분교체의 설비상의 문제점도 지니고 있다.
이와 같은 문제점을 보완하고자 금속2중관(판), 금속-세라믹복합관(판)이 활발히 연구되어 왔고 일부 상용화되고 있다.
금속2중관은 원심주조법을 이용하여 제조한다. 원심주조법은 스테인레스강을 용융상태로 회전중인 금속튜브에 부으면 원심력에 의해서 금속튜브 내부에 도포되고 밀착, 접착하게 된다. 하지만, 이러한 원심주조법에 의한 공정은 용융장비와 초기시설비가 높아 비효율적이며 공정이 복잡하며 또한 용융금속을 원심장치로 이동시키기 위해 높은 전력소비 및 추가비용이 요구되는 등의 생산 공정상에 많은 문제점을 지니고 있다. 또한, 금속-세라믹 복합관은 현재 주로 절연체 용사방법으로 제조되고 있다. 회전하고 있는 파이프 내부에 세라믹 슬러리를 노즐을 통해 용사(spraying)하면서 건조 혹은 소결시키는 방식이다. 하지만, 이 공정의 경우, 내부 후막 세라믹층의 생성이 어렵고, 제조공정 시간이 느릴 뿐 아니라 코팅 후 접합부의 균열, 탈리 현상이 쉽게 발생하는 단점을 지니고 있다.
이러한 문제점을 극복하고자 본 출원인은 등록특허 제10-1384301호를 제안하여 복합관 분야에서는 공정이 간단하고, 경제적이며 코팅층이 균일하고 접합력이 강력한 금속-세라믹 복합관을 제조할 수 있는 길이 열렸다. 그러나 본 출원인이 제안한 상기 특허는 관의 내부에 세라믹층을 형성시키는 것 같이 폐쇄적 공간에서만 가능한 발명으로 오픈된 공간에서는 사용할 수 없어 화학, 건설, 금속, 요로, 플랜트산업분야에서 필수적으로 사용되는 평판에 대해서는 여전히 기존 방법을 사용하고 있는 실정이다. 즉, 오픈된 공간에서 평판 위에 테르밋 반응을 유도하면 상기 반응에 의해서 각 구성들이 비산되어 원활한 테르밋 반응을 유도할 수 없어 평판 위에 세라믹층을 형성시킬 수 없는 문제가 있어 평판에 세라믹층을 코팅하기 위해서는 여전히 기존의 복잡하면서 비용이 많이 드는 방법을 사용하고 있다.
따라서 본 출원인이 제안한 발명과 같이 평판에서도 공정이 간단하고, 경제적이며 코팅층이 균일하고 접합력이 강력한 금속-세라믹 복합판 제조 공정이 절실하다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 발명된 것으로서, 오픈된 공간에서 강판 위에 테르밋 반응을 유도하여 강판의 일면에 세라믹층이 형성되도록 하여 내열성, 내부식성, 내화학성, 내마모성 등의 특성이 개선된 세라믹 강판을 제조하는 방법을 제공하는 데 있다.
즉, 본 발명의 실시예에 의하면 테르밋 반응을 통해 강판의 일면에 Al2O3 조직을 형성함으로써 내열성, 내부식성, 내화학성, 내마모성 등의 특성을 개선할 수 있다. 또한, 오픈된 공간에서 강판의 일면에 테르밋 반응이 티타늄카바이드에 의해서 일측에서 타측을 향해 점진적으로 천천히 진행됨으로 반응물들의 비산이 없어 안정적으로 테르밋 반응이 일어나고 기존의 테르밋 반응에 의한 세라믹층보다 좀 더 우수한 세라믹층을 형성할 수 있다.
(a)단계는 가공할 강판(100) 위에 거푸집(200)을 설치하는 단계이다. 즉, (a)단계는 판 형상의 강판(100)의 일면에 테르밋 반응을 위한 내화재로 만든 거푸집(200)을 설치하는 단계이다. 강판(100)은 화학, 건설, 금속, 요로, 플랜트 산업분야에서 사용되는 판으로 활용되는 곳에 맞게 다양한 형상을 할 수 있다. 거푸집(200)은 강판(100)의 일면에 테르밋 반응을 유도하여 세라믹층을 만들기 위하여 반응물들(분말 및 용융된 상태)이 강판(100)에서 이탈되지 않도록 강판(100)의 일면에 설치되는 구성이다. 거푸집(200)은 테르밋 반응에 의한 고열을 견디기 위하여 내화재로 만드는 것으로 다양한 형상의 강판(100) 외면을 따라 폐합되게 형성될 수 있는데 일례로 거푸집이 사각형 강판(100)의 외면을 따라 사각형의 링 형상으로 제작될 수 있다. 또한, 거푸집(200)은 강판(100)의 일면에 일정모양의 세라믹층을 만들기 위하여 일정모양으로 형성된 거푸집(200)이 강판(100) 일면에 형성되어 있을 수 있다.
(b)단계는 강판(100) 위에 설치된 거푸집 안으로 테르밋 혼합물(M)을 투입하는 단계이다. 즉, (b)단계는 상기 거푸집(200) 안으로 반응원료용 테르밋 혼합물(M)을 투입하되 상기 강판(100)의 일면에 일정높이로 고르게 분포하도록 하는 단계이다. 반응원료용 테르밋 혼합물(M)은 산화철(Fe2O3), 알루미늄(Al) 및 티타늄카바이드(TiC)으로 이루어지며, Fe2O3, Al의 혼합물과 TiC의 혼합비는 9 : 1일 수 있다. 여기서 Fe2O3와 Al의 혼합비는 3:1일 수 있다. 이때, 산화철은 평균 입도가 10~30 메쉬(mesh)인 분말이며, 알루미늄은 평균 입도가 30~80 메쉬(mesh)인 분말이고, 티타늄카바이드는 평균 입도가 5~40 메쉬(mesh)인 분말이다. 분말의 평균 입도가 위에 제시한 기준보다 작을 경우 테르밋 반응이 순간적으로 일어나 폭발 양상이 나타나며, 이로 인해 반응시간이 매우 짧아 치밀한 구조의 세라믹층을 형성할 수 없다. 또한, 상기 반응에서 티타늄카바이드(TiC)가 없으면 상대적으로 테르밋 반응이 빠르게 일어나 각 반응물 들이 비산되어 원활한 테르밋 반응이 일어날 수 없다. 즉, 상기 티타늄카바이드(TiC)가 없으면 오픈된 공간에서 평평한 강판 위에 세라믹층을 형성시킬 수 없다.
(c)단계는 점화재에 의해서 상기 테르밋 혼합물(M)의 테르밋 반응을 하여 상기 테르밋 혼합물(M)이 강판의 일면에서 용융된 상태로 만드는 단계이다. 즉, (c)단계는 상기 (b) 단계 후 상기 테르밋 혼합물(M) 위로 점화재(I)가 투입된 후 상기 점화재(I)를 점화하여 상기 테르밋 혼합물(M)의 테르밋 반응을 유도하는 단계이다.
점화재(I)는 테르밋 혼합물(M) 전체 또는 일부분 위에 고르게 분포되도록 투입되는 분말이다. 점화재(I)는 테르밋 혼합물(M) 위로 투입되는 분말로 마그네슘(Mg) 분말일 수 있다. 점화재(I)가 투입되면, 점화도구(예를 들어, 가스 토치)(T)를 이용하여 점화재(I)를 점화하며, 테르밋 혼합물(M)은 점화재(I)를 통해 점화되어 테르밋 반응이 진행된다. 테르밋 반응은 테르밋 혼합물(M)의 자체 반응열에 의해 강판(100) 일면의 일측에서 타측를 향해 진행되어 테르밋 혼합물(M)은 점진적으로 자연 연소된다.
테르밋 반응과정에서 반응생성물은 일정한 방향과 속도를 갖고 분출되는데 이때 불규칙하게 사방으로 분출될 경우, 후술하는 세라믹층(C)이 강판 위에 균일하게 형성될 수 없으나, 상기 티타늄카바이드(TiC)가 상기 반응시 반응생성물 등의 비산을 제한함으로써 테르밋 반응이 진행되는 속도를 늦춰 테르밋 혼합물이 충분한 반응시간을 갖고 반응이 일어날 수 있도록 유도할 수 있다.
(d)단계는 용융된 상태의 상기 테르밋 혼합물(M)을 눌러 강판(100)의 일면에 일정 모양의 세라믹층을 형성시키는 단계이다. 즉, (d)단계는 상기 (c) 단계 후 용융된 상태의 상기 테르밋 혼합물(M)에 프레스 가공기(300)로 눌러 상기 강판(100)의 일면에 일정 모양의 세라믹층이 형성되는 단계이다. 프레스 가공기(300)는 강판의 일면에 형성되는 세라믹층을 성형시키는 기계로 산업현장에서 일반적으로 사용하는 장치이다. 또한, 상기 프레스 가공기(300)는 용융된 상태의 상기 테르밋 혼합물(M)을 누르는 프레스판(310)의 하면 일부분이 다양한 모양으로 돌출되게 형상된 것을 더 포함하여 구성될 수 있다. 즉, 프레스판(310)의 하면 일부분이 돌출되어 있어 (d)단계에서 상기 프레스판(310)에 의해서 상기 강판(100)의 일면에 상기 프레스판(310)의 돌출된 형상에 맞게 성형된 세라믹층이 형성되도록 할 수 있다. 따라서 화학, 건설, 금속, 요로, 플랜트산업분야에서 요구하는 다양한 모양의 세라믹 강판을 제조할 수 있다.
이상으로 본 발명에 따른 세라믹 강판의 제조방법의 바람직한 실시 예를 설명하였으나 이는 적어도 하나의 실시예로서 설명되는 것이며, 이에 의하여 본 발명의 기술적 사상과 그 구성 및 작용이 제한되지는 아니하는 것으로, 본 발명의 기술적 사상의 범위가 도면 또는 도면을 참조한 설명에 의해 한정/제한되지는 아니하는 것이다. 또한, 본 발명에서 제시된 발명의 개념과 실시예가 본 발명의 동일 목적을 수행하기 위하여 다른 구조로 수정하거나 설계하기 위한 기초로써 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에 의해 사용되어질 수 있을 것인데, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에 의한 수정 또는 변경된 등가 구조는 특허청구범위에서 기술되는 본 발명의 기술적 범위에 구속되는 것으로서, 특허청구범위에서 기술한 발명의 사상이나 범위를 벗어나지 않는 한도 내에서 다양한 변화, 치환 및 변경이 가능한 것이다.
[부호의 설명]
I : 점화재
M : 테르밋 혼합물
C : 세라믹층
T : 점화도구
100 : 강판
200 : 거푸집
300 : 프레스 가공기
310 : 프레스판
본 발명은 오픈된 공간에서 강판 위에 테르밋 반응을 유도하여 강판의 일면에 세라믹층이 형성되도록 하여 내열성, 내부식성, 내화학성, 내마모성 등의 특성이 개선된 세라믹 강판을 제조하는 방법을 제공하여 산업상 이용가능하다.

Claims (5)

  1. 강판의 일면에 세라믹을 코팅하는 방법에 있어서,
    (a) 판 형상의 강판(100)의 일면에 테르밋 반응을 위한 내화재로 만든 거푸집(200)을 설치하는 단계;
    (b) 상기 거푸집(200) 안으로 반응원료용 테르밋 혼합물(M)을 투입하되 상기 강판(100)의 일면에 일정높이로 고르게 분포하도록 하는 단계;
    (c) 상기 (b) 단계 후 상기 테르밋 혼합물(M) 위로 점화재(I)가 투입된 후 상기 점화재(I)를 점화하여 상기 테르밋 혼합물(M)의 테르밋 반응을 유도하는 단계; 및,
    (d) 상기 (c) 단계 후 용융된 상태의 상기 테르밋 혼합물(M)에 프레스 가공기(300)로 눌러 상기 강판(100)의 일면에 일정 모양의 세라믹층이 형성되는 단계로 구성되는 것을 특징으로 하는 세라믹 강판의 제조방법.
  2. 제1항에 있어서,
    반응원료용 상기 테르밋 혼합물(M)은 10~30 메쉬인 산화철 분말, 30~80 메쉬인 알루미늄 분말 및 5~40 메쉬인 티타늄카바이드 분말을 포함하며, 상기 점화재(I)는 마그네슘 분말로 이루어지되,
    상기 (c) 단계에서 테르밋 반응시 상기 티타늄카바이드에 의해서 반응속도가 낮아지면서 반응에 의한 각 구성 분말의 비산을 막아 상기 테르밋 반응이 용이하게 일어나도록 하는 것을 특징으로 하는 세라믹 강판의 제조방법.
  3. 제1항에 있어서,
    상기 산화철 분말과 알루미늄 분말이 혼합된 중량과 상기 티타늄카바이드 분말의 중량 비가 9 : 1인 것을 특징으로 하는 세라믹 강판의 제조방법.
  4. 제1항에 있어서,
    상기 거푸집(200)은 다양한 강판의 형상에 맞게 제작되어 상기 강판(100)의 일면에 설치되는 것을 특징으로 하는 세라믹 강판의 제조방법.
  5. 제1항에 있어서,
    상기 프레스 가공기(300)는
    용융된 상태의 상기 테르밋 혼합물(M)을 누르는 프레스판(310)의 하면 일부분이 다양한 모양으로 돌출되게 형상되어 있는 것을 더 포함하여 구성되되,
    상기 (d)단계에서 상기 프레스판(310)에 의해서 상기 강판(100)의 일면에 상기 프레스판(310)의 돌출된 형상에 맞게 성형된 세라믹층이 형성되도록 하는 것을 특징으로 하는 세라믹 강판의 제조방법.
PCT/KR2017/011635 2016-10-21 2017-10-20 세라믹 강판의 제조방법 WO2018074878A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/343,876 US20190264335A1 (en) 2016-10-21 2017-10-20 Method for manufacturing ceramic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160137758A KR101762679B1 (ko) 2016-10-21 2016-10-21 세라믹으로 코팅된 강판의 제조방법
KR10-2016-0137758 2016-10-21

Publications (1)

Publication Number Publication Date
WO2018074878A1 true WO2018074878A1 (ko) 2018-04-26

Family

ID=60142226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011635 WO2018074878A1 (ko) 2016-10-21 2017-10-20 세라믹 강판의 제조방법

Country Status (3)

Country Link
US (1) US20190264335A1 (ko)
KR (1) KR101762679B1 (ko)
WO (1) WO2018074878A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409412A (zh) * 2020-10-28 2022-04-29 中国科学院理化技术研究所 一种SiB6的化学炉合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130390A (en) * 1979-03-29 1980-10-09 Sumitomo Metal Ind Ltd Production of clad steel plate
JPH01272770A (ja) * 1988-04-21 1989-10-31 Komatsu Ltd 金属体上へのセラミック層形成方法
JP2005240119A (ja) * 2004-02-26 2005-09-08 Mine Seisakusho:Kk 固形加熱材、固形加熱材の製造方法及び固形加熱材を使用した加熱方法
JP2010099660A (ja) * 2008-10-21 2010-05-06 Toshiba Corp 耐食性部材の製造方法およびその耐食性部材を用いた発電機器
KR101384301B1 (ko) * 2013-10-28 2014-05-08 윤애경 세라믹 라이닝 강관 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182078A (en) * 1980-07-28 1993-01-26 Alloy Surfaces Company, Inc. Metal treatment
US5141900A (en) * 1986-08-28 1992-08-25 Georgia Tech Research Corporation Shaped refractory products and method of making same
US4933241A (en) * 1987-05-29 1990-06-12 United States Department Of Energy Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
US20150211328A1 (en) * 2014-01-30 2015-07-30 Olympic Research, Inc. Well sealing via thermite reactions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130390A (en) * 1979-03-29 1980-10-09 Sumitomo Metal Ind Ltd Production of clad steel plate
JPH01272770A (ja) * 1988-04-21 1989-10-31 Komatsu Ltd 金属体上へのセラミック層形成方法
JP2005240119A (ja) * 2004-02-26 2005-09-08 Mine Seisakusho:Kk 固形加熱材、固形加熱材の製造方法及び固形加熱材を使用した加熱方法
JP2010099660A (ja) * 2008-10-21 2010-05-06 Toshiba Corp 耐食性部材の製造方法およびその耐食性部材を用いた発電機器
KR101384301B1 (ko) * 2013-10-28 2014-05-08 윤애경 세라믹 라이닝 강관 제조방법

Also Published As

Publication number Publication date
KR101762679B1 (ko) 2017-08-14
US20190264335A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
CN100537481C (zh) 刚玉-氮化硅-碳化硅复合浇注料
CN101139208A (zh) 一种低成本耐火浇注料及其制备方法
JP2001248972A (ja) 高耐用性断熱材及びその製造方法並びにその用途およびその施工方法
CN100410209C (zh) 鱼雷罐内衬修补浇注料
CN105859264A (zh) 一种致密刚玉质电炉顶盖及其制备方法
KR20190047485A (ko) 고내열성 세라믹 코팅 조성물
WO2018074878A1 (ko) 세라믹 강판의 제조방법
FI108790B (fi) Titaanipitoinen lisäaines ja sen käyttö uunin tulenkestävän muurauksen kestävyyden lisäämiseen
CN104556962A (zh) 一种黄色烧结景观砖及其生产方法
CN101386541A (zh) 一种抗酸(碱)浸蚀耐磨耐火浇注料
EP0794931B1 (en) Process and apparatus for making ceramic articles
Chandra et al. Refractories and failures
CN110642611A (zh) 一种硅铁电炉铁水包用耐火捣打料及其制备方法
RU2265780C2 (ru) Способ ремонта футеровки тепловых агрегатов жаростойким бетоном
Khlystov et al. Resource and energy saving technologies of refractory linings of thermal units
JPS63396B2 (ko)
CN217941840U (zh) 一种复合式透气砖
WO2015064919A1 (ko) 세라믹 라이닝 강관 제조방법
CN107176828A (zh) 一种防粘渣的耐火砖
JP4441056B2 (ja) 耐火物ブロック、その製造方法及び溶湯容器
JPH06321626A (ja) MgO−C質不焼成れんがの製造方法
JPS6234546B2 (ko)
JPH03204590A (ja) 窯炉内面のコーティング方法
KR20160077568A (ko) 경도 및 내식성이 우수한 슬래그 코팅 강판 및 그 제조 방법
RU2497779C1 (ru) Огнеупорный материал для монтажа и ремонта футеровки тепловых агрегатов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861390

Country of ref document: EP

Kind code of ref document: A1