WO2018074844A1 - 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템 - Google Patents
야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템 Download PDFInfo
- Publication number
- WO2018074844A1 WO2018074844A1 PCT/KR2017/011535 KR2017011535W WO2018074844A1 WO 2018074844 A1 WO2018074844 A1 WO 2018074844A1 KR 2017011535 W KR2017011535 W KR 2017011535W WO 2018074844 A1 WO2018074844 A1 WO 2018074844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pitching
- ball
- sensing
- pitching device
- firing angle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/40—Stationarily-arranged devices for projecting balls or other bodies
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/0002—Training appliances or apparatus for special sports for baseball
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0087—Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/416—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/0002—Training appliances or apparatus for special sports for baseball
- A63B2069/0004—Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects
- A63B2069/0008—Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects for batting
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B71/0622—Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
- A63B2071/0638—Displaying moving images of recorded environment, e.g. virtual environment
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2102/00—Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
- A63B2102/18—Baseball, rounders or similar games
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/17—Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/18—Inclination, slope or curvature
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/20—Distances or displacements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/805—Optical or opto-electronic sensors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/807—Photo cameras
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/833—Sensors arranged on the exercise apparatus or sports implement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/40—Stationarily-arranged devices for projecting balls or other bodies
- A63B69/406—Stationarily-arranged devices for projecting balls or other bodies with rotating discs, wheels or pulleys gripping and propelling the balls or bodies by friction
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40021—Batting, to redirect a projectile
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30221—Sports video; Sports image
- G06T2207/30224—Ball; Puck
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S482/00—Exercise devices
- Y10S482/901—Exercise devices having computer circuitry
- Y10S482/902—Employing specific graphic or video display
Definitions
- the present invention is a baseball practice system in which a user hits a ball fired from the pitching device with a bat or a ball hit by the pitching device in the indoor space of a predetermined size with a bat and the sensing device senses the sensing
- the present invention relates to a ball pitching control method of a pitching device and a baseball practice system using the same in a baseball practice system such as a so-called screen baseball system for implementing a simulation image according to the result.
- baseball practice systems such as the so-called screen baseball system, which overcomes the limitations of playing real baseball in a large baseball stadium and allows virtual baseball play while feeling the presence of a baseball game in a narrow indoor space. This appeared.
- a screen baseball system installs a screen at which a user can bet on a room and displays a virtual baseball field, and a pitching device installed at the back of the screen pitches the ball toward the plate.
- the user who is preparing to hit the ball at the plate hits the pitched ball from the pitching device, where the sensing device senses the movement of the pitched ball and the ball hit by the user and strikes the ball based on the sensing result.
- a simulation image of the determination of the recognition and the trajectory of the ball hit by the screen is implemented.
- the pitching device used in a baseball practice system such as a screen baseball system as described above allows a user to enjoy a baseball game through batting practice or batting for pitching balls of various pitches by pitching balls at various firing angles.
- the pitching device should pitch the ball by setting the ball at various firing angles in the vertical direction and the horizontal direction as described above.
- the pitching device may be inclined depending on the environment in which the pitching device is installed. Since the pitching device is installed differently in each of the stores, there is a problem that the ball is pitched differently from the actually set firing condition even when pitching the ball with the same firing condition due to a large or fine tilting. There was a problem that was changed.
- the pitching device becomes distorted from its original position or corrected position due to external impact or incorrect posture correction by the manager. Pitching problems have occurred.
- Korean Patent Application No. 10-2015-004184 Korean Patent Application No. 10-2015-0041861, Korean Patent Application No. 10-2014-0054105, US Patent No. 5443260, Japan Patent Registration Reference may be made to the prior art documents such as No. 4743763.
- a pitching device and a sensing device using a sensing device for sensing a ball moving by pitching or striking without a separate sensor or measuring device may be tilted according to an environment in which a pitching device is installed in a baseball practice system.
- Ball pitching control method of the pitching device in the baseball practice system that allows the pitching device to accurately control the pitch according to the set firing angle by allowing the relative tilt to be automatically compensated based on the sensing result of the sensing device and using the same Provide a baseball practice system.
- the pitching device is gradually distorted at the original position or at the corrected position due to external impact or inaccurate posture correction by an administrator. Rather than correcting each person's work, it analyzes the result of the sensing device and the accumulated ball pitching information of the pitching device at preset intervals so that the self-correction of the pitching device can be automatically corrected.
- the baseball practice system to provide a ball pitching control method of the pitching device and baseball practice system using the same.
- Ball pitching control method of the pitching device in the baseball practice system in the baseball practice system having a sensing device for sensing the pitched ball pitched ball from the pitching device capable of adjusting the firing angle
- a ball pitching control method of the pitching device comprising: calculating a ball motion model using sensing data obtained by pitching a ball at a predetermined firing angle in the pitching device and sensing the pitched ball by the sensing device; Calculating a compensating factor for compensating the tilting angle of the pitching device by using the difference between the preset firing angle and the calculated ball motion model; And applying the calculated compensation element to the pitching device to perform ball pitching while the tilting degree of the pitching device is compensated according to the user's baseball practice or the progress of the baseball game.
- the ball pitching control method of the pitching device in the baseball practice system the pitching device pitching the ball from the pitching device capable of adjusting the firing angle and the baseball having a sensing device for sensing the pitched ball
- the pitching device pitching the ball from the pitching device capable of adjusting the firing angle and the baseball having a sensing device for sensing the pitched ball
- the sensing device uses the sensing data of sensing the pitched ball.
- Calculating and storing the ball motion model Calculating a correction element for correcting a difference between the set firing angle of the pitching device and the firing angle calculated according to the ball firing model by using the information on the set firing angle and the ball motion model; And applying the calculated correction element to the pitching device to perform ball pitching by self-correcting a positional shift that may occur in the pitching device by performing a user's baseball practice or a baseball game.
- the pitching device pitching the ball from the pitching device capable of adjusting the firing angle is provided with a sensing device for sensing the pitched ball
- a ball pitching control method of the pitching device in a baseball practice system using the ball motion model calculated by using the sensing data sensed by the sensing device when the pitching ball is pitched according to a set firing angle of the pitching device; Calculating a compensation element for compensating the degree of inclination of the pitching apparatus and applying the same to the pitching apparatus to perform a baseball practice or a baseball game of the user; Storing the firing angle information of the set ball and the ball motion model information calculated according to the ball sensing of the sensing device each time the pitching device pitches the ball according to the user's baseball practice or the progress of the baseball game during a predetermined period; Calculating a correction element for correcting a difference between the set firing angle of the pitching device and the firing angle calculated according to the ball
- a pitching device is configured to pitch the ball toward the batting batter made by the user and to adjust the firing angle;
- calculating the ball motion model of the ball moving by the pitching device receiving the sensing data from the sensing device, using the difference between the set firing angle when the pitching device pitches the ball and the calculated ball motion model.
- a pitching device is configured to pitch the ball toward the batter is hitting the user is configured to adjust the firing angle;
- a sensing device for sensing the ball pitched by the pitching device to generate sensing data;
- And calculating a ball motion model of a ball moving by the pitching device by receiving the sensing data from the sensing device, each time the ball pitching is performed in the pitching device, information on a set firing angle of the pitching device, and each time
- the calculated information about the ball motion model is stored in the storage unit, and the positional shift that may occur in the pitching device during the respective periods is obtained by using the information on the stored setting firing angle and the information on the ball motion model for each preset period.
- a controller for controlling the pitching device to self-correct by correcting.
- Ball pitching control method of the pitching device and baseball practice system using the same in the baseball practice system sensing the ball movement by pitching or hitting the inclination that may occur depending on the environment in which the pitching device is installed
- the sensing device By using the sensing device to automatically compensate for the relative tilt between the pitching device and the sensing device based on the sensing results of the sensing device, the pitching device without a separate correction operation using a separate sensor or measuring device
- the ball pitching control can be precisely controlled according to the automatically set firing angle, and the pitching of the pitching device is compensated for in the relative relationship between the sensing device and the pitching device so that the ball pitching can be performed with uniform accuracy in each store having a different installation environment. It is effective.
- the ball pitching control method of the pitching device and the baseball practice system using the same in the baseball practice system is external shock or incorrect posture correction of the manager over time
- the attitude shift of the pitching device is automatically detected.
- FIG. 1 shows an example in which a virtual baseball simulation system, that is, a so-called screen baseball system, is implemented as a baseball practice system according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing the configuration of the baseball practice system shown in FIG.
- 3 and 4 are flowcharts for explaining examples of the ball pitching control method of the pitching device in the baseball practice system according to the present invention.
- FIG. 5 is a diagram for describing a ball pitching control method according to FIGS. 3 and 4.
- the baseball practice system of the pitching machine pitches the ball so that the user can hit the pitched ball at the plate, so as to practice the hitting, as well as a room of a predetermined size in the room If a user installs a batting batter and a screen to display a virtual baseball field, and the pitching machine pitches the ball towards the batter, the user is preparing to hit the ball from the batter's batter. And a virtual baseball simulation system that senses the movement of the ball hit by the sensing device and the ball hit by the user, and implements a simulation image of the trajectory of the ball hit on the screen based on the sensing result. It is defined as a concept and will be described in detail below.
- FIGS. 1 and 2 show an example in which a virtual baseball simulation system, that is, a so-called screen baseball system, is implemented as a baseball practice system according to an embodiment of the present invention
- FIG. 2 is a block showing the configuration of the baseball practice system shown in FIG. It is also.
- the baseball practice system has a batter 30 and a screen portion 20 in a space formed by the side wall 11, the rear wall 12, and the like as a general screen baseball system.
- the batter is implemented to allow the user to swing and hit the ball while holding the bat.
- the space SP between the screen unit 20 and the rear wall 12 may include a control device 300 for processing information about a baseball simulation image to be projected on the screen unit 20 (control)
- the image processed by the apparatus 300 is projected onto the screen unit 20 through the image output unit 420, and a pitching apparatus 100 capable of pitching the ball 1 toward the turn at bat 30 may be installed.
- a pitching hole 23 may be formed to allow the ball 1 to pass through a position corresponding to a portion where the ball of the pitching device 100 is projected on the screen unit 20.
- control system of the baseball practice system includes a control device 300, pitching device 100, sensing device 200, etc. Can be.
- the pitching device 100 may be implemented in various forms and may include all types of pitching devices that are commonly used or disclosed, and basically include a ball supply part, a pitching drive part, and a pitching control part. Can be configured.
- the pitching control unit may be preset ball firing condition (manual input ball firing condition or set in the virtual baseball simulation game process).
- the pitching driving part to fire the ball supplied by the ball supply part toward the turn at bat.
- the pitching driving unit rotates two or more wheels, for example, by rotating one wheel and firing the ball with the rotational force of the wheel between the guide plate (for example, Japanese Patent Application Laid-Open No. 2014-217468, etc.). And by placing the ball between the wheels to launch the ball by the rotational force of the wheels (for example, Korean Patent Laid-Open Publication No. 2014-0100685, Korean Patent Registration No. 0411754, Korean Utility Model Registration No. 0269859, etc.), It may be implemented by various methods such as a method of throwing the ball by rotating the arm holding the ball (for example, Korea Patent No. 0919371, etc.).
- the pitching driving unit includes a firing angle adjusting unit to adjust the direction of the shot, that is, the firing angle by moving or tilting in the vertical direction and / or left and right directions, respectively;
- the pitching control unit may control the firing angle adjusting unit to launch the ball at the firing angle set by the pitching driving unit so that balls of various spheres may be pitched toward the turn at bat.
- At least one of the up and down firing angles ⁇ and the left and right firing angles ⁇ can be set based on the ijk coordinate system.
- the pitching can be achieved by adjusting the firing angle.
- the i-j-k coordinate system which is a coordinate system that is a reference of the launch angle for pitching the pitching device, will be referred to as a "pitching coordinate system".
- the sensing device 200 can also be implemented in a variety of ways, for example, a plurality of light sensor devices composed of a plurality of light emitting sensors and light receiving sensors in the way the pitched ball or hitting ball passes, and the ball is When passing through the light sensor device, the light emitted from the light emitting sensor and reflected by the ball is received to obtain the coordinate information of the ball in each of the plurality of light sensor devices, and based on this, parameters such as the speed and direction of the ball relative to the pitch or the batting ball. It may be a method of calculating the.
- the sensing device 200 is a method of sensing the object on the image by analyzing the photographed image, by acquiring and analyzing an image for a certain shooting range including the turn at bat for the ball pitched from the pitching device It is also possible to calculate the ball movement information, calculate the ball movement information on the ball hit by the user, etc.
- the above-described light sensing method and image sensing method may be used in combination.
- the sensing device is configured to calculate the sensing data about the position of the ball by sensing the ball being pitched and moved by the pitching device, and the control device to be described later or by the sensing device. It is preferable that the ball motion model for the ball trajectory moving based on the sensing data can be calculated.
- FIG. 1 In the baseball practice system according to an embodiment of the present invention shown in Figure 1 is shown for the image sensing method of the sensing device 200 including a camera unit and the sensing processing unit, such a sensing device of the image sensing method (The calculation of the motion model of the ball moving based on the sensing data sensed by the method 200 is disclosed in detail in Patent Application No. 10-2016-0004526 filed by the present applicant.
- the sensing device 200 of the image sensing method may be configured to include a camera unit and the sensing processing unit, the camera unit is a constant shooting including a turn at bat
- the image for the range is continuously acquired
- the sensing processing unit receives the image from the camera unit, performs image analysis according to a preset item, finds a ball, extracts three-dimensional coordinate data for each ball, and extracts the extracted three-dimensional image.
- the coordinate data is used to determine the motion model of the ball for the pitched ball or the ball being hit and exercise, and when the motion model of the ball is determined, various information necessary for baseball practice or baseball game using the baseball practice system is used. To calculate.
- the motion model of the ball means that it is represented by the equation of motion relating to the trajectory on the three-dimensional space of the ball being pitched or hitted, and the baseball by the baseball practice system according to the present invention as shown in FIG.
- the motion model of the ball may be determined according to the defined coordinate system by defining the three-dimensional coordinate system of the x-axis, the y-axis, and the z-axis with respect to the space where the practice or baseball game is made.
- the x-y-z coordinate system as shown in FIG. 1 is a coordinate system that serves as a reference for sensing a ball moving by the sensing device.
- the x-y-z coordinate system will be referred to as a "sensing coordinate system”.
- the pitching coordinate system which is a coordinate system for ball pitching of the pitching device, has a relationship in which each coordinate axis is parallel to each other as it is rotated by 180 ° with respect to the z axis of the sensing coordinate system, which is a coordinate system for ball sensing of the sensing device.
- the "ball motion model” may be defined as a motion equation in the x-axis direction, a motion equation in the y-axis direction, and a motion equation in the z-axis direction, and a specific method for calculating the same is described in the above-described Patent Application No. 10-2016-0004526 It is disclosed in the call.
- control device 300 may include a storage 320, an image processor 330, and a controller 310.
- the storage unit 320 stores data for processing, such as a baseball simulation image made in the baseball practice system, information on the firing angle is set each time the pitching device pitches the ball and information about the calculated ball motion model This is the part that is saved.
- the storage unit 320 may be configured to serve as a storage for temporarily storing data received from a server (not shown).
- the image processor 330 may include a background image of a virtual baseball field, a background image of a player, a referee, an audience, and the like, an image of a virtual pitcher pitching a ball, and a simulation image of a trajectory of a ball hit by a user.
- the processed image is transmitted to the image output unit 420, the image output unit 420 is the user to view the received image It outputs an image, such as projecting on the screen unit 20 so that.
- the control unit 310 controls the respective components of the baseball practice system according to the present invention and based on various information transmitted from the sensing device 200 for various baseball simulation images, such as simulation of the trajectory of the hit ball Perform the operation.
- the "ball exercise model” may be configured to directly calculate the sensing device using the sensing data, or may be configured to receive and calculate the sensing data of the sensing device.
- the sensing apparatus 200 and the pitching apparatus 100 of the baseball practice system will be described with reference to the installed state.
- the pitching device 100 Since the pitching device 100 is impossible to be installed in a completely flat position with mathematical accuracy, the tilting occurs to some extent or small depending on the installation environment.
- the pitching device 100 pitches the ball 1 according to the set firing angle of the up and down firing angle ⁇ and the lateral firing angle ⁇ based on the ijk coordinate system, the pitching device 100 is actually inclined because of the inclination of the pitching apparatus as described above. The ball is not fired at the set firing angle of and ⁇ .
- the flowchart shown in FIG. 3 compensates the inclination of the pitching device as described above so that the pitching device can accurately launch the ball according to the set firing angle as described above so as to accurately implement the firing angle to be controlled when pitching the ball.
- An example of the method is shown.
- the pitching device pitches the ball at a predetermined firing angle (S100), and the sensing device senses the pitched ball to generate sensing data (S110), and the control device (or the sensing device itself)
- a ball motion model for the pitched ball is calculated using the sensing data (S120).
- the patent application No. 10-2016-0004526 describes a specific method of calculating the ball motion model by generating the sensing data by the sensing device and the control device.
- the ball motion model is calculated according to the xyz coordinate system and can be calculated as the equation of motion in the x-axis direction, the equation of motion in the y-axis direction and the equation of motion in the z-axis direction as shown below. to be.
- t is the time value
- g is the acceleration of gravity
- x, y, z are the coordinates in each axis direction
- ax and ay are the increments (tilts) of the x and y coordinates with respect to time t
- az is the z-direction velocity when time t is 0, and bz means the coordinate value (intercept) of z when time t is zero.
- the process of S100, S110 and S120 as described above is repeated a predetermined number of times, but the predetermined firing angle is repeated every time. For example, it can be repeated in three cases as follows.
- the upper and lower angles ⁇ 1, ⁇ 2, and ⁇ 3 are different values, and the left and right angles ⁇ 1, ⁇ 2 and ⁇ 3 are also different values.
- x1 ax1 * t + bx1
- x2 ax2 * t + bx2
- x3 ax3 * t + bx3
- the compensation element Since the compensation element is to compensate by rotating the pitching coordinate system based on the sensing coordinate system, it can be expressed as a rotation matrix that converts the pitching coordinate system into the sensing coordinate system, and each Euler angle ⁇ c based on the x, y and z axes of the sensing coordinate system It can be represented by a matrix having rotation components of, ⁇ c, and ⁇ c. Calculating the compensation factor is to calculate the rotation components ⁇ c, ⁇ c, ⁇ c.
- the ball firing position of the pitching device is calculated using the ball motion model calculated using the sensing data of the sensing device.
- the shooting range of the camera unit of the sensing device includes the ball firing portion of the pitching device
- the first time the ball appears on the image acquired by the sensing device will be the ball firing position and the position where time t is 0 in the ball motion model. Will be the ball firing position.
- the sensing device detects the ball after a predetermined time after the ball is released from the pitching device.
- the position where time t is zero in the motor model cannot be seen as the ball firing position.
- the calculation of the ball firing position is performed by a highly accurate method that can be applied to all cases regardless of the range of the photographing range of the camera unit of the sensing device.
- the ball firing position is not calculated by using the ball motion model based on the sensing coordinate system of the sensing device, and the ball firing position is measured in advance according to the sensing coordinate system and calculated in advance. It is also possible to use information about the launch position.
- the ball motion models based on the sensing data of the sensing device are all shot from the pitching device and thus have the same firing position.
- the position of the pitching device is referred to as (POx, POy, POz) for the x, y, and z axes.
- time tp means time value at ball firing position (POx, POy, POz).
- time values tp1, tp2, and tp3 denote the time values at which the ball reaches the ball firing positions (POx, POy, POz) in the ball motion model, respectively.
- the time values tp1, tp2, and tp3 are the same because they are the same model of motion that is decomposed in each axial direction with respect to the ball motion model.
- the unknowns are POx and POy
- the remaining ax, ay, bx and by are values of the ball motion model measured by the sensing device, respectively, so that the position POx and POy of the pitching device can be obtained by measuring at least two cases.
- the equation can be expressed as a matrix as follows.
- POz1, POz2, POz3,... . can be obtained.
- POz can be calculated by obtaining a representative value such as the average of these values or the average of the maximum and minimum values.
- the pitching angle of the pitching device is different from the pitching angle of the pitched ball, which means that the pitching angle of the pitching device and the ball motion model measured by the sensing device are different.
- the rotation matrix which is the compensation factor, can be calculated using the difference between the set firing angle of the pitching device and the ball motion model.
- the compensation factor for compensating the tilting degree of the pitching coordinate system based on the sensing coordinate system may be calculated using the difference between the preset firing angle of the pitching device and the ball motion model.
- the axial rotational components of the pitching coordinate system may be adjusted so that the pitching coordinate system is corrected based on the sensing coordinate system so that the ball pitching according to the motion model is a ball pitching according to a preset firing angle of the pitching device. It is calculated as Euler angles ⁇ c, ⁇ c, and ⁇ c on the z-axis basis, respectively.
- Rc a rotation matrix that is converted from the pitching coordinate system to the sensing coordinate system.
- Rc includes axial rotation components ⁇ c, ⁇ c, and ⁇ c, and Rc may be represented as follows.
- a transformation relationship of converting the pitching coordinate system into the sensing coordinate system using the rotation matrix Rc may be expressed as follows.
- the pitching device 100 launches the ball at the firing angles ⁇ and ⁇ is equivalent to firing the ball in the j 'axis direction in the (i', j ', k') coordinate system.
- the pitching device 100 launches the ball at a speed of vp in the j 'direction
- the j' direction is expressed in the (i, j, k) coordinate system as follows.
- ⁇ and ⁇ are known values because of the preset vertical and horizontal firing angle values of the pitching device
- vp is an unknown value
- ⁇ c, ⁇ c and ⁇ c of Rc are values to be calculated.
- the velocity vector VP can be obtained by converting it into a (x, y, z) coordinate system.
- C_x, C_y and C_z on the ball trajectory according to the ball motion model mean arbitrary positions
- VP (x), VP (y) and VP (z) are x and y of the velocity vector VP at the time of ball firing. and z-axis components respectively.
- the above equations are the equations for the motion of the ball at the pitching device position, that is, the ball firing positions POx, POy, and POz.
- the time value tb means the arrival time until the ball moving (bx, by, bz) position.
- Bx, by, and bz are intercepts of the equations of motion in each of the x, y, and z axial directions, that is, the axial position values when time t is 0 in the ⁇ ball motion model>. It corresponds to the position when.
- VP (x) as the x-axis component
- VP (y) as the y-axis component of the velocity vector VP mean velocity in the x- and y-axis directions, respectively, and perform constant velocity linear motion. Therefore, ax of the x-axis motion equation of the ⁇ ball motion model> and ay of the y-axis motion equation have the same values as VP (x) and VP (y), respectively.
- Rc may be obtained by setting Re, which is an arbitrary candidate rotation matrix, and using ⁇ Expression for bx> and Expression for ⁇ bz>.
- bx_esti and bz_esti are values corresponding to bx and bz respectively calculated when the arbitrary candidate matrix Re is applied to the ⁇ expression for bx> and ⁇ expression for bz>, respectively.
- the bx_esti and bz_esti also correspond to bx and bz, which are respectively calculated in ⁇ Expression for bx> and ⁇ Expression for bz>, respectively.
- ⁇ e and ⁇ e are 0 ° and ⁇ e is 180 °, so ⁇ e is -10 ° to 10 °, ⁇ e is -10 ° to 10 °, and ⁇ e is 170 ° to 190 °
- ⁇ e is 170 ° to 190 °
- E1, E2, and E3 represent error function values in ⁇ case 1>, ⁇ case 2>, and ⁇ case 3>, respectively.
- the finally determined rotation matrix Rc may be applied to the pitching device by using the compensation element to compensate for the inclination which may occur according to the installation environment of the pitching device (S150).
- the pitching device even if the pitching device to compensate for the inclination that can occur according to the installation environment of the pitching device, such as to ensure accurate ball control, the pitching device as the operating time of the baseball practice system
- the internal and external influences of external impacts, improper or inaccurate pitching devices, and internal error of the pitching device resulting from repeated operation of the pitching device may cause the pitching device to be Posture misalignment in the position (here "deformation" can be defined as a concept that includes not only the attitude misalignment of the pitching device itself, but also the occurrence of internal error of the device that occurs over time due to internal influences) This will also be a factor that makes accurate ball control of the pitching device difficult There.
- the compensation element may be calculated and applied to the pitching device.
- the pitching device self-corrects through calculation and application of a correction factor to the pitch of the pitching device generated over time so that the ball pitching can be performed with a substantially constant accuracy at all times.
- the pitching control method of the pitching device will be described.
- the correction factor is calculated to correct the attitude shift of the pitching apparatus, and the period (eg, 1 day, week, month, year, etc.) for calculating the correction element is determined.
- the baseball practice or the baseball game of the user is set in advance and the ball pitching is performed in the pitching device, information about the ball motion model calculated using the setting firing angle information and the sensing data of the sensing device at each time is provided. It is stored in the storage 320 (see FIG. 2) (S200).
- the setting firing angle information and the information about the ball motion model are stored and reach a preset period (S210).
- the pitching direction vector when the ball is fired is calculated (S220), and the set direction vector when the ball is fired by the pitching device is calculated from the set firing angle information of the pitching device stored for the period (S230).
- the pitching direction vector is a direction vector when the ball is fired by the pitching device calculated by the ball motion model
- the set direction vector is the direction vector when the ball is fired by the pitching device which is calculated according to the firing angle set by the pitching device. to be.
- a correction factor for correcting an angle difference between the calculated pitching direction vector and the set direction vector is calculated (S240), and the calculated correction element is applied to the pitching apparatus.
- Position shift of the pitching device as described above is corrected through the correction element (S250).
- the setting firing angle information and the ball movement model information stored during the period are deleted, and the setting firing angle information and the ball movement model information are stored each time the pitching device pitches the ball again while starting the next cycle (S260).
- the rotation matrix Rc for compensating the inclination according to the installation environment of the pitching device is calculated and applied to compensate the pitching coordinate system by Rc based on the sensing coordinate system.
- the basic relationship is as follows.
- the 'correction element' is a method of correcting posture misalignment by further rotating the pitching coordinate system based on the sensing coordinate system, and may be expressed as a correction matrix Rs. Therefore, applying the correction matrix Rs to the above equation can be expressed as follows.
- the pitching device may perform accurate ball control by obtaining a correction matrix Rs for correcting the attitude shift of the pitching device and applying it to the pitching device without applying the rotation matrix Rc to compensate the tilting of the pitching device.
- the data set of the setting firing angle information of the pitching device stored for one period is called Pit_Angle_Set
- Model_Set the data set of the ball motion model stored during the period
- the Pit_Angle_Set includes ⁇ (i) corresponding to the ball firing top and bottom angles of the pitching device and ⁇ (i) corresponding to the left and right angles, respectively, and the Model_Set includes ax (i) representing coefficients of the axial motion equations.
- bx (i), ay (i), by (i), az (i), bz (i) are included as elements.
- the elements marked with (i) below have the same meaning as above.
- xp, yp, and zp are the positions of the ball over time t, respectively, and g is the gravitational acceleration.
- a ball direction vector that is, a pitching direction vector when the ball is fired by the pitching apparatus is calculated using Model_Set, which is a data set according to the ball motion model.
- Model_Set which is a data set according to the ball motion model.
- POy which is the y-axis position of the pitching device
- VR (i) at the time when the ball is fired can be expressed by the following equation.
- tp (i) (POy-by (i)) / ay (i)
- vx (i), vy (i) and vz (i) are the x, y and z-axis components of the velocity vector VR (i), respectively, and tp (i) is POy where the ball is the y-axis position of the pitching device. The time it takes from the position to the by (i) position.
- the pitching direction vector VRn (i) can be obtained by normalizing the velocity vector VR (i).
- the direction vector of the ball when the ball is fired can be obtained by using the set firing angle information of the pitching device as follows.
- the up and down firing angle and the right and left firing angle of the ball are ⁇ (i) and ⁇ (i), respectively.
- the set direction vector VPn and the pitching direction vector VRn should be the same. However, if the pitching device is out of posture, the setting direction vector VPn and the pitching direction vector VRn have different values.
- first, x, y, and z-axis components of the set direction vector VPn (i) are referred to as plx (i), ply (i), and plz (i), respectively, and the pitching direction vector VRn (i
- the x, y, and z-axis components of) are rlx (i), rly (i), and rlz (i), respectively
- the difference ⁇ (i) and the left and right angles between the vertical angle between the set direction vector VPn and the pitching direction vector VRn The difference ⁇ (i) can be expressed by the following equation, respectively.
- Atan means arctangent
- the difference ⁇ (i) of the upper and lower angles and the difference ⁇ (i) of the left and right angles may be different each time the pitching device fires the ball, and thus the difference of the upper and lower angles ⁇ (i) from the accumulated and stored data. It is preferable to extract the representative value for each value of the difference ⁇ (i) of the left and right angles.
- the method of extracting the representative value may use an average value of all values, an average value in a preset range from all values (for example, an average value of remaining values except for the upper 30% and the lower 30%), or the distribution of all values.
- the average value of the values occupying the largest cluster for example, a method of taking an average value from a data cluster in which each data is most gathered within a certain distance using a variance or standard deviation value may be used.
- ⁇ _mean and ⁇ _mean representative values for the difference between the upper and lower angles and the difference between the left and right angles.
- the correction matrix Rs for correcting the posture of the pitching device, etc. can be represented by using the difference between the upper and lower angles and the left and right angles as follows.
- the speed vr (i) at the time of foot firing from the speed vector VR (i) is obtained by using the equation of the velocity vector VR (i) for calculating the pitching direction vector. You can get it.
- the speed vectors V_old (i) and V_new (i) each have the same speed vr (i) and have different directions, and can be expressed by the following equation.
- the time it takes for the ball to reach by (i) from the POy position, which is the y-axis position of the pitching device, is tp, and it is fired from the pitching device at the speeds of V_old (i) and V_new (i) and
- the position of the x-axis and the z-axis when reaching to can be expressed by the following equation using the " ball motion model relating to the data set "
- xp_v_old (i) POx + V_old_x (i) * tp (i)
- zp_v_old (i) POz + V_old_z (i) * tp (i)-0.5 * g * tp (i) ⁇ 2
- xp_v_new (i) POx + V_new_x (i) * tp (i)
- zp_v_new (i) POz + V_new_z (i) * tp (i)-0.5 * g * tp (i) ⁇ 2
- POx and POz are the x-axis and z-axis positions of the pitching device, respectively, and xp_v_old (i) and zp_v_old (i) are fired from the pitching device at the speed of V_old and reach the by (i) position on the y-axis.
- V_old_x (i) and V_old_z (i) represent the x-axis and z-axis velocity vector components of V_old
- V_new_x (i) and V_new_z (i) represent the x-axis and z-axis velocity vector components of V_new, respectively.
- the x-axis and z-axis positions when the ball is positioned by (i) by the ball motion model obtained by the sensing data of the actual sensing device are respectively bx (i And bz (i), xp_v_old (i) and zp_v_old (i), and xp_v_new (i) and zp_v_new (i) are smaller in error as they approach bx (i) and bz (i).
- the value of Error_new is compared by comparing the result value according to the error function below. If it is smaller than the value of Error_old, it may be determined that the error is reduced.
- the error may be further reduced by applying the newly obtained correction matrix Rs_new, which may be supported by the result of the error function calculation. It is possible to obtain reliability by applying the correction matrix Rs_new.
- Correcting posture misalignment and the like of the pitching apparatus by calculating and applying the correction matrix may be made in addition to applying the above-described compensation factor or may be applied alone.
- the data is stored at each preset period and analyzed, and the correction matrix is calculated and applied to the pitching device as a correction factor for correcting posture misalignment of the pitching device. Since the pitching device can self-calibrate using the sensing device without the hassle of additional correction work, there is a feature that can improve the reliability of accurate ball control.
- the ball pitching control method of the pitching device and the baseball practice system using the same in the baseball practice system according to the present invention the user hits the ball fired by the ball pitching device in the indoor space of a predetermined size with a bat and the sensing device senses this
- the simulation image through the front screen has the industrial applicability in the technical field that enables the user's baseball practice or virtual baseball game.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
본 발명은 야구 연습 시스템에서 피칭장치가 설치되는 환경에 따라 발생할 수 있는 기울어짐을 별도의 센서나 측정장치 없이 피칭 또는 타격에 의해 운동하는 볼을 센싱하는 센싱장치를 이용하여 피칭장치와 센싱장치 사이의 상대적인 기울어짐을 상기 센싱장치의 센싱 결과를 기준으로 하여 자동으로 보상할 수 있도록 하고, 또한 시간이 지남에 따라 피칭장치가 외부의 충격이나 관리자의 정확하지 못한 자세 보정 등으로 원래의 위치에서 또는 보정이 된 위치에서 점점 틀어짐이 발생하는 것을, 별도의 센서나 측정장치로 일일이 사람의 작업을 통해 바로 잡아 주는 것이 아니라 미리 설정된 주기 마다 센싱장치에서 센싱된 결과와 피칭장치의 설정된 볼 피칭 정보의 누적된 결과를 분석하여 상기 피칭장치의 자세 틀어짐을 자동으로 자가 보정할 수 있도록 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템을 제공한다.
Description
본 발명은 피칭장치에서 발사되는 볼을 사용자가 배트로 타격하는 방식의 야구 연습 시스템 또는 소정 크기의 실내 공간에서 피칭장치에 의해 발사되는 볼을 사용자가 배트로 타격하고 이를 센싱장치가 센싱하여 그 센싱 결과에 따른 시뮬레이션 영상을 구현하는 소위 스크린 야구 시스템과 같은 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템에 관한 것이다.
최근 야구 인구가 증가하면서, 넓은 야구 경기장에서 실제 야구 플레이를 하기 어려운 한계를 극복하고 좁은 실내 공간에서도 야구 경기의 현장감을 느끼면서 가상으로 야구 플레이를 할 수 있도록 하는 소위 스크린 야구 시스템과 같은 야구 연습 시스템이 등장하게 되었다.
통상적으로 스크린 야구 시스템은 실내에 소정 크기의 공간에서 사용자가 배팅을 할 수 있는 타석과 가상의 야구장을 디스플레이할 수 있는 스크린을 설치하고, 그 스크린 뒷면에 설치되는 피칭장치가 타석 쪽으로 볼을 피칭하면 타석에서 볼을 타격할 준비를 하고 있는 사용자는 피칭장치로부터 피칭된 볼을 타격하고, 이때 센싱장치가 피칭된 볼 및 사용자에 의해 타격된 볼의 움직임을 센싱하여 그 센싱 결과에 기초하여 스트라이크인지 볼인지 여부의 판정과 상기 스크린 상에 타격된 볼의 궤적에 대한 시뮬레이션 영상을 구현한다.
상기한 바와 같은 스크린 야구 시스템 등의 야구 연습 시스템에 이용되는 피칭장치는 다양한 발사각으로 볼을 피칭함으로써 사용자로서는 다양한 구위의 볼이 피칭되는 것에 대해 타격 연습 또는 타격을 통한 야구 게임을 즐길 수 있다.
그러나, 야구 연습 시스템에서 피칭장치는 상기한 바와 같이 볼을 상하방향 및 좌우방향으로 다양한 발사각으로 설정하여 볼을 피칭하여야 하지만, 피칭장치가 설치된 환경에 따라 기울어짐이 발생할 수 있으므로, 즉 야구 연습 시스템이 설치된 매장마다 피칭장치가 설치된 환경이 다르기 때문에 크게 또는 미세하게 기울어짐이 발생하여 동일한 발사 조건으로 볼을 피칭하더라도 실제로 설정된 발사 조건과 다르게 볼이 피칭되는 문제점이 있었으며, 매장마다 동일한 발사 조건에서 발사각이 달라지게 되는 문제점이 있었다.
또한, 시간이 지남에 따라 피칭장치가 외부의 충격이나 관리자의 정확하지 못한 자세 보정 등으로 원래의 위치에서 또는 보정이 된 위치에서 점점 틀어짐이 발생하게 되어 피칭장치에서 설정한 발사 조건과 다르게 볼이 피칭되는 문제점이 발생하였었다.
종래의 기술과 관련하여, 한국특허출원 제10-2015-0041844호, 한국특허출원 제10-2015-0041861호, 한국특허출원 제10-2014-0054105호, 미국등록특허 제5443260호, 일본등록특허 제4743763호 등의 선행기술문헌을 참고할 수 있다.
본 발명은 야구 연습 시스템에서 피칭장치가 설치되는 환경에 따라 발생할 수 있는 기울어짐을 별도의 센서나 측정장치 없이 피칭 또는 타격에 의해 운동하는 볼을 센싱하는 센싱장치를 이용하여 피칭장치와 센싱장치 사이의 상대적인 기울어짐을 상기 센싱장치의 센싱 결과를 기준으로 하여 자동으로 보상할 수 있도록 함으로써 피칭장치가 설정된 발사각에 따라 정확하게 볼 피칭 제어를 할 수 있도록 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템을 제공한다.
또한, 본 발명은 시간이 지남에 따라 피칭장치가 외부의 충격이나 관리자의 정확하지 못한 자세 보정 등으로 원래의 위치에서 또는 보정이 된 위치에서 점점 틀어짐이 발생하는 것을, 별도의 센서나 측정장치로 일일이 사람의 작업을 통해 바로 잡아 주는 것이 아니라 미리 설정된 주기 마다 센싱장치에서 센싱된 결과와 피칭장치의 설정된 볼 피칭 정보의 누적된 결과를 분석하여 상기 피칭장치의 자세 틀어짐을 자동으로 자가 보정할 수 있도록 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템을 제공한다.
본 발명의 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법은, 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서, 상기 피칭장치에서 미리 설정한 발사각으로 볼이 피칭되고 상기 센싱장치가 상기 피칭된 볼을 센싱한 센싱데이터를 이용하여 볼 운동 모델을 산출하는 단계; 상기 미리 설정한 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 피칭장치가 기울어진 정도를 보상하는 보상요소를 산출하는 단계; 및 상기 산출된 보상요소를 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치의 기울어진 정도가 보상된 상태에서 볼 피칭이 이루어지는 단계를 포함한다.
한편, 본 발명의 다른 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법은, 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서, 야구 연습 또는 야구 게임의 진행에 따라 상기 피칭장치에서 미리 설정한 발사각으로 볼이 피칭되고 상기 센싱장치가 상기 피칭된 볼을 센싱한 센싱데이터를 이용하여 볼 운동 모델을 산출하여 저장하는 단계; 상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하는 단계; 및 상기 산출된 보정요소를 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행이 이루어짐으로써 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 자가 보정하여 볼 피칭하도록 하는 단계를 포함한다.
한편, 본 발명의 또 다른 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법은, 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서, 상기 피칭장치의 설정된 발사각에 따른 볼 피칭시 상기 피칭된 볼을 상기 센싱장치가 센싱한 센싱데이터를 이용하여 산출한 볼 운동 모델을 이용하여 상기 피칭장치가 기울어진 정도를 보상하는 보상요소를 산출하여 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행이 이루어지는 단계; 미리 설정된 주기 동안 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치가 볼을 피칭할 때마다 설정된 볼의 발사각 정보와 상기 센싱장치의 볼 센싱에 따라 산출되는 볼 운동 모델 정보를 저장하는 단계; 상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하는 단계; 및 상기 미리 설정된 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 상기 산출된 보정요소를 적용함으로써 상기 피칭장치가 자가 보정하여 볼 피칭하도록 하는 단계를 포함한다.
한편, 본 발명의 일 실시예에 따른 야구 연습 시스템은, 사용자의 타격이 이루어지는 타석을 향하여 볼을 피칭하며 발사각 조절이 가능하도록 구성되는 피칭장치; 상기 피칭장치에서 피칭된 볼을 센싱하여 그 센싱데이터를 생성하는 센싱장치; 및 상기 센싱장치로부터 상기 센싱데이터를 전송받아 상기 피칭에 의해 운동하는 볼에 대한 볼 운동 모델을 산출하며, 상기 피칭장치가 볼을 피칭할 때의 설정 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 피칭장치의 기울어진 정도를 보상하는 보상요소를 산출하여 상기 피칭장치에 적용함으로써 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치의 기울어진 정도가 보상된 상태에서 볼 피칭이 이루어지도록 제어하는 제어장치를 포함한다.
한편, 본 발명의 다른 일 실시예에 따른 야구 연습 시스템은, 사용자의 타격이 이루어지는 타석을 향하여 볼을 피칭하며 발사각 조절이 가능하도록 구성되는 피칭장치; 상기 피칭장치에서 피칭된 볼을 센싱하여 그 센싱데이터를 생성하는 센싱장치; 및 상기 센싱장치로부터 상기 센싱데이터를 전송받아 상기 피칭에 의해 운동하는 볼에 대한 볼 운동 모델을 산출하며, 상기 피칭장치에서 볼 피칭이 이루어질 때마다 상기 피칭장치의 설정된 발사각에 대한 정보 및 그때마다 상기 산출된 볼 운동 모델에 대한 정보를 저장부에 저장하며, 미리 설정된 주기마다 상기 저장된 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 각 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 보정함으로써 상기 피칭장치가 자가 보정하도록 제어하는 제어장치를 포함한다.
본 발명의 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템은, 피칭장치가 설치되는 환경에 따라 발생할 수 있는 기울어짐을 피칭 또는 타격에 의해 운동하는 볼을 센싱하는 센싱장치를 이용하여 피칭장치와 센싱장치 사이의 상대적인 기울어짐을 상기 센싱장치의 센싱 결과를 기준으로 하여 자동으로 보상할 수 있도록 함으로써, 별도의 센서나 측정 장치를 이용한 별도의 보정 작업 없이 피칭장치가 자동으로 설정된 발사각에 따라 정확하게 볼 피칭 제어를 할 수 있도록 하며, 센싱장치와 피칭장치의 상대적인 관계에서 피칭장치의 기울어짐이 보상되므로 설치 환경이 다른 각 매장마다 균일한 정확도로 볼 피칭이 이루어질 수 있도록 하는 효과가 있다.
또한, 본 발명의 다른 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템은, 시간이 지남에 따라 피칭장치가 외부의 충격이나 관리자의 정확하지 못한 자세 보정 등으로 원래의 위치에서 또는 보정이 된 위치에서 점점 틀어짐이 발생하는 것을 미리 설정된 주기 마다 센싱장치에서 센싱된 결과와 피칭장치의 설정된 볼 피칭 정보의 누적된 결과를 분석하여 상기 피칭장치의 자세 틀어짐을 자동으로 보정할 수 있도록 함으로써, 별도의 센서나 측정장치로 운영자가 수시로 피칭장치에 대한 보정 작업을 할 필요가 없어 야구 연습 시스템에 대한 더욱 효율적인 운영이 가능하도록 할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 야구 연습 시스템으로서 가상 야구 시뮬레이션 시스템, 즉 소위 스크린 야구 시스템이 구현된 예를 나타낸 것이다.
도 2는 도 1에 도시된 야구 연습 시스템의 구성에 관하여 나타낸 블록도이다.
도 3 및 도 4는 본 발명에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법에 관한 예들을 설명하기 위한 플로우차트이다.
도 5는 도 3 및 도 4에 따른 볼 피칭 제어방법을 설명하는데 참고하기 위한 도면이다.
본 발명에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템에 관한 좀 더 구체적인 내용을 도면을 참조하여 설명하도록 한다.
본 발명에 따른 "야구 연습 시스템"은, 단순히 타격 연습을 할 수 있도록 피칭머신이 볼을 피칭하고 타석에서 사용자가 그 피칭된 볼을 타격하는 방식의 야구 연습 시스템은 물론, 실내에 소정 크기의 공간에서 사용자가 배팅을 할 수 있는 타석과 가상의 야구장을 디스플레이할 수 있는 스크린을 설치하고 피칭머신이 타석 쪽으로 볼을 피칭하면 타석에서 볼을 타격할 준비를 하고 있는 사용자는 피칭머신으로부터 피칭된 볼을 타격하며 센싱장치가 피칭된 볼 및 사용자에 의해 타격된 볼의 움직임을 센싱하여 그 센싱 결과에 기초하여 스크린 상에 타격된 볼의 궤적에 대한 시뮬레이션 영상을 구현하는 가상 야구 시뮬레이션 시스템 등을 모두 포함하는 개념으로 정의하고 이하 본 발명에 대한 구체적인 설명을 하도록 한다.
먼저, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 야구 연습 시스템에 관하여 설명한다. 도 1은 본 발명의 일 실시예에 따른 야구 연습 시스템으로서 가상 야구 시뮬레이션 시스템, 즉 소위 스크린 야구 시스템이 구현된 예를 나타낸 것이고, 도 2는 도 1에 도시된 야구 연습 시스템의 구성에 관하여 나타낸 블록도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 야구 연습 시스템은 일반적인 스크린 야구 시스템과 마찬가지로 측벽(11)과 후벽(12) 등에 의해 형성되는 공간에 타석(30)과 스크린부(20)를 마련하여, 상기 타석에서 사용자가 배트를 들고 스윙 및 볼 타격을 할 수 있도록 구현된다.
상기 스크린부(20)와 후벽(12) 사이의 공간부(SP)에는 상기 스크린부(20) 상에 투영될 야구 시뮬레이션 영상에 관한 정보 처리를 위한 제어장치(300)가 구비될 수 있고(제어장치(300)에서 처리된 영상은 영상출력부(420)를 통해 스크린부(20)에 투영된다), 타석(30) 쪽으로 볼(1)을 피칭할 수 있는 피칭장치(100)가 설치될 수 있으며, 상기 스크린부(20) 상의 상기 피칭장치(100)의 볼이 발사되는 부분과 대응되는 위치에 볼(1)이 통과할 수 있도록 피칭홀(23)이 형성될 수 있다.
본 발명의 일 실시예에 따른 야구 연습 시스템의 제어계통을 살펴보면, 도 1 및 도 2에 도시된 바와 같이 제어장치(300), 피칭장치(100), 센싱장치(200) 등을 포함하여 구성될 수 있다.
상기 피칭장치(100)는 다양한 형태로 구현될 수 있으며 통상적으로 사용되고 있는 또는 개시되어 있는 여하한 형태의 피칭장치를 모두 포함할 수 있는데, 기본적으로 볼 공급부와, 피칭 구동부와, 피칭 제어부를 포함하여 구성될 수 있다.
즉, 볼 공급부가 다수의 볼이 보관된 보관함에서 볼을 하나씩 이송하여 피칭 구동부로 공급하면, 피칭 제어부가 미리 설정된 볼 발사조건(수동으로 입력된 볼 발사조건일 수도 있고 가상 야구 시뮬레이션 게임 과정에서 설정되는 볼 발사조건일 수도 있다)으로 피칭 구동부를 제어하여 상기 피칭 구동부가 상기 볼 공급부에 의해 공급되는 볼을 타석 쪽으로 발사하게 되는 구성이다.
상기한 피칭 구동부는, 예컨대 하나의 휠을 회전시키고 가이드판과의 사이에서 상기 휠의 회전력으로 볼을 발사하는 방식(예컨대, 일본공개특허공보 제2014-217468호 등), 두 개 이상의 휠을 회전시키고 그 휠들 사이에 볼을 위치시켜 상기 휠들의 회전력에 의해 볼을 발사하는 방식(예컨대, 한국공개특허공보 제2014-0100685호, 한국등록특허 제0411754호, 한국등록실용신안 제0269859호 등), 볼을 파지한 암을 회전시켜 볼을 투척하는 방식(예컨대, 한국등록특허 제0919371호 등) 등 다양한 방식에 의해 구현될 수 있다.
본 발명의 일 실시예에 따른 피칭장치는, 상기 피칭 구동부를 상하 방향 및/또는 좌우 방향으로 각각 이동 또는 틸팅(tilting)시켜 발사되는 볼의 방향, 즉 발사각을 조절할 수 있도록 하는 발사각 조절부를 포함하며, 상기 피칭 제어부는 상기 발사각 조절부를 제어하여 상기 피칭 구동부가 설정된 발사각으로 볼을 발사하여 타석 쪽으로 다양한 구위의 볼이 피칭될 수 있도록 할 수 있다.
즉, 본 발명의 일 실시예에 따른 피칭장치는, 도 1에 도시된 바와 같이 i-j-k 좌표계를 기준으로 상하 방향의 발사각 α와 좌우 방향의 발사각 θ 중 적어도 하나의 발사각에 대한 설정이 가능하고 그 설정한 대로 발사각을 조절하여 볼 피칭이 이루어질 수 있는 구성이다. 여기서 상기한 피칭장치의 볼 피칭을 위한 발사각의 기준이 되는 좌표계인 i-j-k 좌표계를 "피칭 좌표계"라 하기로 한다.
한편, 상기 센싱장치(200) 역시 다양한 방식으로 구현이 가능한데, 그 일 예로 피칭된 볼 또는 타격된 볼이 지나가는 길목에 다수의 발광센서 및 수광센서에 의해 구성되는 광센서 장치 복수개를 설치하고 볼이 그 광센서 장치를 지나갈 때 발광센서에서 조사되어 볼에 의해 반사된 광을 수광함으로써 복수개의 광센서 장치 각각에서 볼의 좌표 정보를 얻어서 이를 기초로 투구 또는 타구에 대한 볼의 속도, 방향 등의 파라미터를 산출하는 방식을 들 수 있다.
또한, 상기 센싱장치(200)는, 촬영한 이미지를 분석하여 이미지상의 객체에 대한 센싱을 하는 방식으로서, 타석을 포함하는 일정 촬영 범위에 대한 이미지를 취득하여 분석함으로써 피칭장치로부터 피칭되는 볼에 대한 볼 운동 정보의 산출, 사용자에 의해 타격된 볼에 대한 볼 운동 정보의 산출 등을 하는 방식도 가능하며, 상기한 광센싱 방식과 이미지 센싱 방식을 복합적으로 사용할 수 있다.
즉, 본 발명의 일 실시예에 따른 센싱장치는 피칭장치에 의해 피칭되어 운동하는 볼을 센싱하여 볼의 위치 등에 대한 센싱 데이터를 산출할 수 있도록 구성되며, 상기 센싱장치에 의해 또는 후술할 제어장치에 의해 상기 센싱 데이터에 기초하여 운동하는 볼 궤적에 대한 볼 운동 모델이 산출될 수 있으면 바람직하다.
도 1에 도시된 본 발명의 일 실시예에 따른 야구 연습 시스템에서는 카메라유닛과 센싱처리유닛을 포함하는 이미지 센싱 방식의 센싱장치(200)에 대해 도시하고 있으며, 이와 같은 이미지 센싱 방식의 센싱장치(200)에 의해 센싱된 센싱 데이터에 기초하여 운동하는 볼의 운동 모델을 산출하는 것에 대해서는, 본 출원인에 의해 출원된 특허출원 제10-2016-0004526호 등에서 구체적으로 개시하고 있다.
상기한 특허출원 제10-2016-0004526호에서도 개시하고 있듯이, 이미지 센싱 방식의 센싱장치(200)는 카메라유닛과, 센싱처리유닛을 포함하여 구성될 수 있으며, 카메라유닛은 타석을 포함하는 일정 촬영 범위에 대한 이미지를 연속적으로 취득하고, 센싱처리유닛은 카메라유닛으로부터 이미지를 전달받아 미리 설정된 사항에 따른 이미지 분석을 수행하여 볼을 찾아 각 볼에 대한 3차원 좌표 데이터를 추출하고 그 추출된 3차원 좌표 데이터를 이용하여 피칭되어 운동하는 볼 또는 타격되어 운동하는 볼에 대한 볼의 운동 모델을 결정하며, 볼의 운동 모델이 결정되면 이를 이용하여 상기 야구 연습 시스템를 이용한 야구 연습 또는 야구 게임에 필요한 각종 정보를 산출한다.
여기서, 볼의 운동 모델은 피칭되어 또는 타격되어 운동하는 볼의 3차원 공간 상에서의 궤적에 관한 운동 방정식으로 표현되는 것을 의미하며, 도 1에 도시된 바와 같이 본 발명에 따른 야구 연습 시스템에 의한 야구 연습 또는 야구 게임이 이루어지는 공간에 대해 x축, y축 및 z축의 3차원 좌표계로 정의하여 그 정의된 좌표계에 따라 상기 볼의 운동 모델이 결정될 수 있다.
도 1에 도시된 바와 같은 x-y-z 좌표계는 센싱장치가 운동하는 볼에 대한 센싱을 하는 기준이 되는 좌표계로서 이하에서는 "센싱좌표계"라 하기로 한다.
상기한 피칭장치의 볼 피칭에 대한 좌표계인 피칭좌표계는 상기 센싱장치의 볼 센싱에 대한 좌표계인 센싱좌표계의 z축에 대해 180°회전함에 따라 각 좌표축이 서로 평행하게 되는 관계이다.
상기한 "볼 운동 모델"은 x축 방향의 운동 방정식, y축 방향의 운동 방정식 및 z축 방향의 운동 방정식으로 정의될 수 있으며, 이를 산출하는 구체적인 방법은 상기한 특허출원 제10-2016-0004526호에서 개시하고 있다.
한편, 상기 제어장치(300)는, 도 2에 도시된 바와 같이 저장부(320), 영상처리부(330) 및 제어부(310)를 포함하여 구성될 수 있다.
상기 저장부(320)는 야구 연습 시스템에서 이루어지는 야구 시뮬레이션 영상 등의 처리를 위한 데이터가 저장되며, 피칭장치에서 볼을 피칭할 때마다 설정되는 발사각에 대한 정보와 산출되는 볼 운동 모델에 대한 정보가 저장되는 부분이다. 상기 저장부(320)는 서버(미도시)로부터 전송받은 데이터를 일시적으로 저장하는 저장소 역할을 하는 것으로 구성될 수도 있다.
상기 영상처리부(330)는 가상의 야구장에 관한 영상, 선수와 심판, 관객 등에 관한 영상 등의 백그라운드 영상과 가상의 투수가 볼을 피칭하는 영상, 사용자가 타격한 볼의 궤적에 대한 시뮬레이션 영상 등 각종 야구 시뮬레이션 관련 영상을 생성하기 위하여 영상 데이터에 대한 미리 설정된 프로그램에 따른 처리를 수행하며, 처리된 영상은 영상출력부(420)로 전송하고 상기 영상출력부(420)는 전송받은 영상을 사용자가 볼 수 있도록 스크린부(20)에 투영하는 등 영상의 출력을 수행한다.
상기 제어부(310)는 본 발명에 따른 야구 연습 시스템의 각 구성요소들을 제어하며 상기 센싱장치(200)로부터 전송되는 각종 정보에 기초하여 타격된 볼의 궤적에 대한 시뮬레이션 등 야구 시뮬레이션 영상 구현을 위한 각종 연산을 수행한다.
상기한 "볼 운동 모델"은 센싱장치가 센싱 데이터를 이용하여 직접 산출하도록 구성될 수도 있고, 상기한 센싱장치의 센싱 데이터를 상기 제어부(310)가 받아서 산출하도록 구성될 수도 있다.
한편, 도 3 및 도 4에 도시된 플로우차트를 참조하여 본 발명에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법에 관하여 설명하도록 한다.
먼저, 도 3을 참조하여 본 발명의 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법에 관하여 설명한다.
도 1에 도시된 바와 같이 본 발명의 일 실시예에 따른 야구 연습 시스템의 센싱장치(200)와 피칭장치(100)가 설치된 상태를 기준으로 설명한다.
상기 피칭장치(100)가 수학적 정확도로 완전히 평편한 위치에 설치된다는 것을 불가능하므로 설치 환경에 따라 어느 정도 크게 또는 작게 기울어짐이 발생하게 된다.
따라서, 상기 피칭장치(100)가 i-j-k 좌표계를 기준으로 상하방향 발사각 α와 좌우방향 발사각 θ의 설정 발사각에 따라 볼(1)을 피칭할 때, 상기한 바와 같은 피칭장치의 기울어짐 때문에 실제로는 α와 θ의 설정 발사각으로 볼이 발사되지 않는다.
도 3에 도시된 플로우차트는 상기한 바와 같이 피칭장치가 설정 발사각에 따라 정확하게 볼을 발사할 수 있도록 상기한 바와 같은 피칭장치의 기울어짐을 보상하여 볼 피칭시 제어하고자 하는 발사각을 정확하게 구현할 수 있도록 하기 위한 방법의 일 예에 관하여 나타내고 있다.
이를 위해 먼저, 피칭장치에서 미리 설정한 발사각으로 볼을 피칭하고(S100), 이때 센싱장치가 상기 피칭된 볼을 센싱하여 센싱데이터를 생성하며(S110), 제어장치가(또는 센싱장치 자체가) 상기 센싱데이터를 이용하여 피칭된 볼에 대한 볼 운동 모델을 산출한다(S120). 여기서 상기 센싱장치 및 제어장치가 센싱데이터를 생성하여 볼 운동 모델을 산출하는 구체적인 방법에 대해 특허출원 제10-2016-0004526호에서 설명하고 있다는 점은 이미 설명한 바 있다.
이에 따르면, 볼 운동 모델은 x-y-z 좌표계에 따라 산출되며 아래와 같이 x축 방향의 운동방정식, y축 방향의 운동방정식 및 z축 방향의 운동방정식으로 산출할 수 있으며, 아래 각 운동방정식은 시간에 대한 함수이다.
<볼 운동 모델>
x = ax*t + bx (x축 방향의 운동방정식)
y = ay*t + by (y축 방향의 운동방정식)
z = az*t + bz - 0.5*g*t2 (z축 방향의 운동방정식)
여기서, t는 시간값, g는 중력가속도, x, y, z는 각 축 방향의 좌표, ax 및 ay는 시간 t에 대한 x 및 y좌표의 증가량(기울기)이고, bx 및 by는 시간 t가 0 일 때 각각 x 및 y의 좌표값(절편)을 의미한다.
az는 시간 t가 0일 때의 z 방향 속도, bz는 시간 t가 0일 때의 z의 좌표값(절편)을 의미한다.
상기한 바와 같은 S100, S110 및 S120의 과정을 미리 설정한 횟수만큼 반복하되, 미리 설정한 발사각을 매회 다르게 하여 반복한다. 예컨대, 아래와 같이 3가지 경우로 반복할 수 있다.
경우 1 → 피칭장치의 설정 상하각 α1 및 좌우각 θ1으로 볼 피칭하는 경우
경우 2 → 피칭장치의 설정 상하각 α2 및 좌우각 θ2으로 볼 피칭하는 경우
경우 3 → 피칭장치의 설정 상하각 α3 및 좌우각 θ3으로 볼 피칭하는 경우
여기서, 상하각 α1, α2, α3는 서로 다른 값이며, 좌우각 θ1, θ2, θ3도 서로 다른 값이다.
위 각 경우의 설정 발사각 정보를 상기한 볼 운동 모델에 적용하면, 아래와 같이 나타낼 수 있다.
<경우 1>
x1 = ax1 * t + bx1
y1 = ay1 * t + by1
z1 = az1 * t + bz1 - 0.5*g* t2
<경우 2>
x2 = ax2 * t + bx2
y2 = ay2 * t + by2
z2 = az2 * t + bz2 - 0.5*g* t2
<경우 3>
x3 = ax3 * t + bx3
y3 = ay3 * t + by3
z3 = az3 * t + bz3 - 0.5*g* t2
한편, 상기한 바와 같이 S100, S110 및 S120 단계를 3번 반복하여 결과를 얻은 후에 이를 이용하여, 볼 운동 모델에 따른 볼 피칭이 설정 발사각에 따른 볼 피칭이 되도록, 설정 발사각 정보와 볼 운동 모델을 이용하여 센싱장치의 센싱좌표계를 기초로 피칭장치의 피칭좌표계의 각 축 방향 회전성분을 특정하여 피칭장치의 기울어짐을 보상할 수 있는 보상요소를 산출한다(S140).
상기 보상요소는 센싱좌표계를 기초로하여 피칭좌표계를 회전시켜 보상하는 것이므로, 피칭좌표계를 센싱좌표계로 변환하는 회전행렬로서 표현될 수 있고, 센싱좌표계의 x, y 및 z 축 기준으로 각각 오일러각 Ψc, δc, Φc의 회전성분을 갖는 행렬로 나타낼 수 있다. 상기 보상요소를 산출한다는 것은 결국 상기 회전성분인 Φc, Ψc, δc를 산출하는 것이다.
상기 보상요소를 산출하기 위해, 먼저 상기 센싱장치의 센싱데이터를 이용하여 산출한 볼 운동 모델로 피칭장치의 볼 발사 위치를 산출한다.
상기 센싱장치의 카메라유닛의 촬영범위가 상기 피칭장치의 볼 발사 부분까지 포함한다면 상기 센싱장치가 취득한 이미지 상에서 최초로 볼이 등장하는 시점이 볼 발사 위치가 될 것이고 볼 운동 모델에서 시간 t가 0인 위치가 볼 발사 위치가 될 것이다.
그러나, 센싱장치의 카메라유닛의 촬영범위가 상기 피칭장치의 볼 발사 지점으로부터 소정 거리 떨어진 위치부터 형성된다면, 센싱장치는 피칭장치로부터 볼이 발사된 후 소정 시간이 지난 후부터 볼을 감지하게 되기때문에 볼 운동 모델에서 시간 t가 0인 위치를 볼 발사 위치로 볼 수 없다.
따라서, 상기한 센싱장치의 카메라유닛의 촬영범위가 어떤 범위를 갖든지 모든 경우에 적용될 수 있는 정확도 높은 방법에 의해 볼 발사 위치의 산출이 이루어지는 것이 바람직하다.
물론, 상기한 바와 같이 센싱장치의 센싱좌표계를 기준으로 하여 볼의 발사 위치를 볼 운동 모델을 이용하여 산출하지 않고, 미리 볼 발사 위치를 센싱좌표계에 따라 측정하여 미리 산출해 놓고 그 미리 산출한 볼 발사 위치에 대한 정보를 이용하는 것도 가능하다.
여기서는 상기 볼 운동 모델을 이용하여 볼 발사 위치에 대한 정보를 산출하는 방법에 관하여 설명하도록 한다.
센싱장치의 센싱데이터에 기초한 볼 운동 모델은 모두 피칭장치에서 발사된 것이므로 동일한 발사 위치를 갖는다. 이를 피칭장치의 위치로 하여 x, y, z축에 대해 (POx, POy, POz)라 하기로 한다.
상기 볼 발사 위치 (POx, POy, POz)를 볼 운동 모델에 적용하면 아래와 같은 식이 성립한다. 아래 식에서 시간 tp는 볼 발사 위치 (POx, POy, POz)에서의 시간값을 의미한다.
<볼 발사 위치에서의 볼 운동 모델>
POx = ax * tp + bx
POy = ay * tp + by
POz = az * tp + bz - 0.5*g* tp2
상기 볼 발사 위치 (POx, POy, POz)를 상기한 경우 1, 경우 2 및 경우 3에 각각 적용하면 아래와 같은 결과를 얻을 수 있다.
<경우 1>
POx = ax1 * tp1 + bx1
POy = ay1 * tp1 + by1
POz = az1 * tp1 + bz1 - 0.5*g* tp12
<경우 2>
POx = ax2 * tp2 + bx2
POy = ay2 * tp2 + by2
POz = az2 * tp2 + bz2 - 0.5*g* tp22
<경우 3>
POx = ax3 * tp3 + bx3
POy = ay3 * tp3 + by3
POz = az3 * tp3 + bz3 - 0.5*g* tp32
여기서, 시간값 tp1, tp2, tp3는 각각 볼 운동 모델에서 볼 발사 위치인 (POx, POy, POz)에 볼이 도달하는 시간값을 의미하며, 각 경우에 대하여 각 축 운동방정식은 하나의 볼에 대한 볼 운동 모델에 대해 각 축 방향으로 분해한 동일한 운동 모델이므로(시간에 대해 매개화된 방정식이므로), 시간값 tp1, tp2, tp3는 같은 값이다.
따라서, 위 3가지 경우에서 POx 및 POy 방정식에 대해 시간을 소거하면 아래와 같은 결과를 얻을 수 있다.
<경우 1>
POx - bx1 = (ax1/ay1) * (POy - by1)
<경우 2>
POx - bx2 = (ax2/ay2) * (POy - by2)
<경우 3>
POx - bx3 = (ax3/ay3) * (POy - by3)
이때, 미지수는 POx, POy 이고, 나머지 ax, ay, bx, by는 각각 센싱장치에서 측정된 볼 운동 모델의 값이므로 최소 2가지 이상의 경우만 측정하면 피칭장치의 위치 POx, POy를 구할 수 있다.
또한, 정확성을 좀 더 높이기 위해 상기한 바와 같이 3 가지 이상으로 경우를 더 늘리면, 방정식의 개수가 해의 개수보다 더 많으므로 최소좌승법(LSM) 등을 통해 오차가 최소화된 위치 POx, POy를 구할 수 있다.
상기한 바와 같은 3가지 경우에 대해, 식을 행렬로 나타내면 아래와 같이 나타낼 수 있다.
이 경우 행렬 식은 A*X = B의 형태가 되므로 슈도-인버스(pseudo inverse)를 통해 에러가 최소화 된 해를 다음의 식을 통해 구할 수 있다.
X = (A
T
A)-1
A
T
B
이렇게 구한 POx, POy를 이용하면 각각의 경우에 대한 시간 tp1, tp2, tp3을 구할 수 있고, 이를 각 경우의 z축 운동방정식 POz = az * tp + bz - 0.5 * g * tp2 에 대입하면 각각의 경우에 대해 POz1, POz2, POz3, …. 을 구할 수 있다. 이런 값들의 평균, 혹은 최대 최소값을 제거한 평균 등 대표값을 구하는 방법으로 POz를 산출할 수 있다.
한편, 앞서 설명한 바와 같이 피칭장치의 설정 발사각이 실제 피칭된 볼의 발사각과 차이가 나는데, 이는 피칭장치의 설정 발사각과 센싱장치로 측정한 볼 운동 모델이 차이가 난다는 것을 의미한다.
따라서 피칭장치의 설정 발사각과 볼 운동 모델의 차이를 이용하여 상기한 보상요소인 회전행렬을 산출할 수 있다.
즉, 상기 피칭장치의 미리 설정한 발사각과 상기 볼 운동 모델의 차이를 이용하여 센싱좌표계를 기초로 피칭좌표계가 기울어진 정도를 보상하도록 하는 보상요소를 산출할 수 있으며, 이는 앞서 설명한 바와 같이 상기 볼 운동 모델에 따른 볼 피칭이 상기 피칭장치의 미리 설정한 발사각에 따른 볼 피칭이 되도록 센싱좌표계를 기초로 피칭좌표계를 보정할 수 있도록 상기 피칭좌표계의 각 축 방향 회전성분을 센싱좌표계의 x, y 및 z 축 기준으로 각각 오일러각 Ψc, δc, Φc로서 산출하는 것이다.
우선 피칭좌표계에서 센싱좌표계로 변환하는 회전행렬을 Rc라고 하기로 한다. 상기 Rc는 각 축방향 회전성분인 Ψc, δc, Φc를 포함하며 Rc는 아래와 같이 나타낼 수 있다.
<회전행렬 Rc에 관한 식>
그리고, 상기 회전행렬 Rc를 이용하여 피칭좌표계에서 센싱좌표계로 변환하는 변환관계는 아래와 같이 나타낼 수 있다.
[x, y, z] = Rc * [i, j, k]
한편, 도 5에 도시된 바와 같이, 피칭좌표계 (i, j, k)에서 각각 상하 방향 및 좌우 방향으로 α 및 θ만큼 회전하였을 때의 좌표계를 (i', j', k')이라고 정의하면, 피칭장치(100)가 발사각 α 및 θ로 볼을 발사한다는 것은 결국 (i', j', k') 좌표계에서 j'축 방향으로 볼을 발사하는 것과 같다. 피칭장치(100)가 j' 방향으로 vp의 속력으로 볼을 발사한다고 했을 때, j' 방향을 (i, j, k) 좌표계로 표현하면 아래와 같다.
여기서, α 및 θ는 피칭장치의 미리 설정된 상하 및 좌우 방향 발사각 값이므로 이미 알려진 값이고, vp는 모르는 값, 그리고 Rc의 Ψc, δc, Φc는 산출하여야 할 값이다. 이를 산출하기 위하여 피칭장치가 도 5에서 j' 방향으로 vp의 속력으로 볼을 발사할 때, 이를 (x, y, z) 좌표계로 변환하면 속도벡터 VP를 아래와 같이 얻을 수 있다.
<볼 발사시의 속도벡터에 관한 식>
앞서 피칭장치의 위치 POx, POy, POz를 산출하였으므로 이를 이용하거나, 또는 별도로 피칭장치의 볼 발사 위치를 측정한 값을 이용하여 아래와 같은 식을 세울 수 있다.
<볼 발사 위치에서의 속도벡터에 관한 볼 운동 모델>
C_x = VP(x) * t + POx
C_y = VP(y) * t + POy
C_z = VP(z) * t + POz - 0.5 * g * t2
여기서, 볼 운동 모델에 따른 볼의 궤적 상의 C_x, C_y, C_z는 임의의 위치를 의미하고, VP(x), VP(y), VP(z)는 볼 발사시의 속도벡터 VP의 x, y, z 축 방향 성분을 각각 의미한다.
위 식들은 피칭장치의 위치, 즉 볼 발사 위치인 POx, POy, POz 위치에서의 볼 운동 모델을 나타낸 운동방정식이다.
앞서 나타낸 <볼 운동 모델>에서 볼의 x축, y축, z축 방향 절편, 즉 bx, by, bz를 상기 <볼 발사 위치에서의 속도벡터에 관한 볼 운동 모델>에 대입하면 아래와 같이 볼 발사 위치에서 bx, by, bz 위치까지의 볼 운동 모델의 x, y, z 각 축 방향 방정식을 얻을 수 있다.
<볼 발사 위치에서 bx, by, bz 위치까지의 볼 운동 모델>
bx = VP(x) * tb + POx
by = VP(y) * tb + POy
bz = VP(z) * tb + POz - 0.5 * g * t2
여기서, 시간값 tb는 운동하는 볼이 (bx, by, bz) 위치까지의 도달시간을 의미한다.
상기 bx, by, bz는 상기한 <볼 운동 모델>에서 x, y, z 각 축 방향의 운동방정식의 절편, 즉 시간 t가 0일 때의 각 축 방향 위치값으로서 센싱장치가 최초로 볼을 감지할 때의 위치에 해당한다.
상기 <볼 발사 위치에서 bx, by, bz 위치까지의 볼 운동 모델>의 식들에 상기한 <볼 발사시의 속도벡터에 관한 식>을 적용하여 나타내면 아래와 같은 결과를 얻을 수 있다.
여기서 bx와 by를 정리하여 두 식을 나누면 아래와 같은 식을 얻을 수 있다.
위 식을 bx에 대해 정리하면 아래와 같은 식을 얻을 수 있다.
<bx에 대한 식>
또한, 상기한 바와 동일한 과정으로 bz에 by를 정리하여 나누면 아래와 같다.
위 식을 bz에 대해 정리하면 아래와 같은 식을 얻을 수 있다.
<bz에 대한 식>
상기 속도벡터 VP의 x축 방향 성분인 VP(x) 및 y축 방향 성분인 VP(y)는 각각 x축 및 y축 방향의 속도를 의미하며 등속 직선 운동을 한다. 따라서 상기한 <볼 운동 모델>의 x축 방향 운동방정식의 ax 및 y축 방향 운동방정식의 ay는 각각 상기 VP(x) 및 VP(y)와 같은 값을 가진다.
따라서, 상기한 <볼 발사 위치에서 bx, by, bz 위치까지의 볼 운동 모델>에서 by = VP(y) * tb + POy = ay * tb + POy의 관계가 성립하며 이를 정리하면 아래와 같이 볼 발사 위치에서 bx, by, bz까지의 도달시간인 tb를 산출할 수 있다.
<tb에 대한 식>
tb = (by - POy) / ay
상기한 바와 같이 볼 발사 위치 정보와 볼 운동 모델을 이용하여 tb를 산출할 수 있으므로, 상기 <bx에 대한 식> 및 <bz에 대한 식>에서 미지수는 회전행렬인 Rc만 남게된다.
상기 회전행렬 Rc를 구하기 위해 임의의 후보 회전행렬인 Re를 설정하여 상기 <bx에 대한 식> 및 <bz에 대한 식>을 이용함으로써 구하고자 하는 상기 Rc를 구할 수 있다.
상기 후보 회전행렬인 Re가 오일러각 Ψe, δe, Φe를 갖는다고 할 때, 아래와 같은 식으로 표현될 수 있다.
상기 Re를 상기한 <bx에 대한 식> 및 <bz에 대한 식>에 적용하면 아래와 같은 식을 얻을 수 있다.
여기서, bx_esti 및 bz_esti는 상기 임의의 후보 행렬인 Re를 상기 <bx에 대한 식> 및 <bz에 대한 식>에 각각 적용하였을 때 산출되는 bx 및 bz에 각각 대응되는 값들이다.
임의의 행렬인 Re가 구하고자 하는 회전행렬 Rc와 일치한다면, 상기 bx_esti 및 bz_esti는 앞서 <bx에 대한 식> 및 <bz에 대한 식>에서 각각 산출된 bx 및 bz와도 일치하게 된다.
따라서, 상기 Re에 대해 임의의 후보군 Ψe, δe, Φe에서 적절한 값을 추출하여 상기한 각 식에 적용해가면서 산출되는 bx_esti 및 bz_esti의 값들이 상기 bx 및 bz의 값들에 가장 근접할 때, 즉 (bx_esti, bz_esti) 세트와 (bx, bz) 세트의 오차가 최소화될 때의 임의 행렬 Re를 보상요소로서의 회전행렬 Rc로서 선정함으로써 보상요소를 산출할 수 있게 되는 것이다.
상기한 바와 같은 Re를 이용한 Rc의 산출을 효과적으로 하고 신뢰성 있게 하기 위하여 임의의 후보군 Ψe, δe, Φe에 각각 적용할 임의의 각도에 대한 범위를 적절히 설정하고 (bx_esti, bz_esti) 세트와 (bx, bz) 세트의 오차가 최소화될 때의 값을 효과적으로 설정하기 위한 오차함수의 적용이 가능하다.
예컨대, 피칭장치의 설치 환경이 이상적인 경우 Ψe 및 δe는 0°이고 Φe는 180°가 되므로, Ψe 는 -10° ~ 10°, δe 는 -10° ~ 10°, 그리고 Φe는 170°~ 190°으로 적용할 임의의 각도 범위를 미리 설정하고, 각각 미리 설정된 단위로(예컨대 0.1°단위로) 후보군 Ψe (1,2,3,….,m,…) , δe (1,2,3,….,n,…) , Φe (1,2,3,….,p,…) 을 선정할 수 있다.
그리고 선정한 Ψe(m), δe(n), Φe(p)를 변경해가면서 상기한 <bx에 대한 식> 및 <bz에 대한 식>에 대입하여 각각 Re(m, n, p)를 구하여, 상기한 <경우 1>, <경우 2> 및 <경우 3>에 각각 해당하는 bx-esti1, bz_esti1, bx_esti2, bz_esti2, bx-esti3, bz_esti3을 산출할 수 있다 (물론 상기 각 경우에 대해 bx1, bz1, bx2, bz2, bx3, bz3를 각각 구할 수 있음도 물론이다).
이와 같이 bx1, bz1, bx2, bz2, bx3, bz3 및 bx-esti1, bz_esti1, bx_esti2, bz_esti2, bx-esti3, bz_esti3를 구한다면, 아래 정의된 오차함수에 적용할 수 있다.
<각 경우에 대한 오차함수에 관한 식>
여기서, E1, E2 및 E3는 각각 <경우 1>, <경우 2> 및 <경우 3>에 있어서의 오차함수값을 나타낸 것이다.
상기한 오차함수에 후보군 Ψe(m), δe(n), Φe(p)를 순차적으로 적용하면서 E1+E2+E3의 값이 최소가 될 때에 해당 Ψe, δe, Φe의 값을 회전행렬 Rc의 Ψc, δc, Φc로서 선정하여 최종적으로 Rc를 결정한다.
상기 최종적으로 결정된 회전행렬 Rc를 보상요소로 하여 피칭장치에 적용하여 피칭장치의 설치 환경 등에 따라 발생할 수 있는 기울어짐을 보상할 수 있다(S150).
예컨대 상하각 α와 좌우각 θ로 볼 피칭의 발사각을 제어하고자 할 때 실제로 피칭장치에 α와 θ로 발사각을 설정하면 기울어짐 때문에 그와 다른 발사각으로 볼이 피칭되므로, 상기 회전행렬 Rc로 피칭좌표계 i, j, k를 회전시킴으로써 기울어짐으로 말미암은 오차를 보정한 후에 상기 설정 발사각 α와 θ로 볼을 피칭하게 되면 정확한 볼의 발사각 컨트롤이 가능하게 되는 것이다.
한편, 도 3에 도시된 바와 같이 피칭장치의 설치 환경 등에 따라 발생할 수 있는 기울어짐을 보상요소로써 보상하여 피칭장치가 정확한 볼 컨트롤을 할 수 있도록 하더라도, 야구 연습 시스템의 운영 시간이 지남에 따라 피칭장치에 대한 외부의 충격이나 부적절한 또는 부정확한 피칭장치에 대한 보정, 그리고 피칭장치의 반복적인 가동으로 인하여 발생하는 피칭장치의 내부적 오차 발생 등의 내적, 외적 영향으로 말미암아 피칭장치가 원래 위치에서 또는 보정된 위치에서 자세 틀어짐(여기서 "틀어짐"은 피칭장치 자체의 자세 틀어짐은 물론 내적 영향에 의해 시간이 지남에 따라 발생하는 장치 내부적 오차 발생의 경우도 모두 포함하는 개념으로 정의하기로 한다)이 발생할 수 있으며, 이 또한 피칭장치의 정확한 볼 컨트롤을 어렵게하는 요인이 될 수 있다.
이 경우, 앞서 도 3을 통해 설명한 바 있는 보상요소를 다시 산출하여 피칭장치에 적용함으로써 상기한 자세 틀어짐 등의 문제를 해결할 수도 있지만, 도 4에 도시된 바와 같은 본 발명의 다른 일 실시예에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법을 이용하여 상기 보상요소에 추가하여 "보정요소"를 산출하여 피칭장치에 적용함으로써 상기한 피칭장치의 자세 틀어짐 등의 문제를 해결할 수도 있다.
이하에서는 도 4 및 도 5를 참조하여, 시간이 지남에 따라 발생하는 피칭장치의 자세 틀어짐을 보정요소의 산출 및 적용을 통해 피칭장치가 자가 보정하여 항상 실질적으로 일정한 정확도로 볼 피칭을 할 수 있도록 하는 피칭장치의 볼 피칭 제어방법에 관하여 설명하도록 한다.
도 4에 도시된 바와 같은 제어방법에 의할 경우, 보정요소를 산출하여 피칭장치의 자세 틀어짐을 보정해 주는 것인데, 상기 보정요소를 산출할 주기(예컨대 1일, 일주일, 한달, 일년 등)를 미리 설정해 놓고 하나의 주기 동안 사용자의 야구 연습 또는 야구 게임이 진행됨에 따라 피칭장치에서 볼 피칭이 이루어질 때마다 설정 발사각 정보 및 그때마다 센싱장치의 센싱데이터를 이용하여 산출되는 볼 운동 모델에 대한 정보가 저장부(320, 도 2 참조)에 저장된다(S200).
상기한 바와 같이 볼 피칭이 이루어질 때마다 설정 발사각 정보 및 볼 운동 모델에 대한 정보를 저장하다가 미리 설정된 주기에 도달한 경우(S210), 제어장치는 해당 주기 동안 저장된 볼 운동 모델 정보로부터 피칭장치에서 볼이 발사될 때의 피칭 방향벡터를 산출하고(S220), 해당 주기 동안 저장된 피칭장치의 설정 발사각 정보로부터 피칭장치에서 볼이 발사될 때의 설정 방향벡터를 산출한다(S230).
상기 피칭 방향벡터는 볼 운동 모델에 의해 산출되는 피칭장치에서의 볼 발사시의 방향벡터이며, 상기 설정 방향벡터는 상기 피칭장치에서 설정한 발사각에 따라 산출되는 피칭장치에서의 볼 발사시의 방향벡터이다.
상기 피칭 방향벡터 및 설정 방향벡터가 각각 산출되면, 각 산출된 피칭 방향벡터와 설정 방향벡터의 각도 차이를 보정하도록 하는 보정요소를 산출하고(S240), 그 산출된 보정요소를 피칭장치에 적용하여 앞서 설명한 바 있는 피칭장치의 위치 틀어짐을 상기 보정요소를 통해 보정한다(S250).
그리고 해당 주기 동안 저장된 설정 발사각 정보 및 볼 운동 모델 정보를 삭제하고 다음 주기를 시작하면서 다시 피칭장치가 볼을 피칭할 때마다 설정 발사각 정보 및 볼 운동 모델 정보를 저장한다(S260).
상기한 바와 같은 방향벡터의 산출 및 보정요소의 산출에 대해 좀 더 구체적으로 설명한다.
앞서 '보상요소'를 산출하는 과정에서 기본적으로 피칭장치의 설치 환경에 따른 기울어짐을 보상하기 위한 회전행렬 Rc를 산출하여 적용함으로써 센싱좌표계를 기준으로 피칭좌표계를 Rc에 의해 보상하도록 하는 것에 대해 설명한 바 있으며, 그 기본적인 관계는 아래와 같다.
[x, y, z] = Rc * [i, j, k]
본 실시예에서 '보정요소'는 상기한 센싱좌표계 기준으로 피칭좌표계를 추가로 더 회전시켜 자세 틀어짐을 보정하는 것으로서, 보정행렬 Rs로서 표현할 수 있다. 따라서, 보정행렬 Rs를 위 식에 적용하면 아래와 같은 식으로 표현할 수 있다.
[x, y, z] = Rs * Rc * [i, j, k]
즉, 상기 Rs를 미리 설정된 주기마다 누적된 데이터를 이용하여 새롭게 산출하여 업데이트를 해줌으로써 시간이 지남에 따라 발생할 수 있는 피칭장치의 자세 틀어짐을 별도로 보정 작업을 해 줄 필요없이 매 주기마다 자가 보정할 수 있도록 한 것이다.
상기 식에서 Rc에 Rs를 추가하는 것도 가능하지만, Rc를 Rs로 대체하는 것도 가능하다. 즉, 피칭장치의 기울어짐을 보상하는 회전행렬 Rc를 적용하지 않고 곧바로 피칭장치의 자세 틀어짐을 보정하는 보정행렬 Rs를 구하여 피칭장치에 적용함으로써 피칭장치가 정확한 볼 컨트롤을 하도록 할 수도 있다.
한편, 상기한 보정행렬 Rs를 산출하기 위하여 하나의 주기 동안 저장된 피칭장치의 설정 발사각 정보의 데이터 세트를 Pit_Angle_Set라 하고, 해당 주기 동안 저장된 볼 운동 모델의 데이터 세트를 Model_Set라 하기로 한다.
상기 Pit_Angle_Set에는 피칭장치의 볼 발사 상하각에 해당하는 α(i) 및 좌우각에 해당하는 θ(i)가 각각 원소로 포함되며, 상기 Model_Set에는 각 축 방향 운동방정식의 계수를 나타내는 ax(i), bx(i), ay(i), by(i), az(i), bz(i)가 각각 원소로 포함된다. 여기서 각 요소에 (i)를 붙인 것은 해당 요소의 데이터가 다수 존재한다는 것을 나타낸 것이다. 즉, i = 1, 2, 3... 이며, 예컨대 α(1)= 3°, α(2)= 2.5°, α(3)= 3.5°... 등으로 나타낼 수 있다. 이하 (i)가 붙은 요소들은 모두 위와 같은 의미이다.
상기한 바와 같은 요소들을 <볼 운동 모델>에 적용하면 아래와 같다.
<데이터 세트에 관한 볼 운동 모델>
xp = ax(i) * t + bx(i)
yp = ay(i) * t + by(i)
zp = az(i) * t + bz(i) - 0.5 * g * t2
여기서 xp, yp, zp는 각각 시간 t에 따른 볼의 위치를 의미하며, g는 중력 가속도이다.
먼저, 상기한 볼 운동 모델에 따른 데이터 세트인 Model_Set를 이용하여 피칭장치에서 볼이 발사될 때의 볼의 방향벡터, 즉 피칭 방향벡터를 구한다. 이를 위해 피칭장치의 y축 위치인 POy와 볼이 발사되는 시점의 속도벡터 VR(i)을 아래 식으로 나타낼 수 있다.
<시간 tp와 속도벡터 VR에 관한 식>
tp(i) = (POy - by(i)) / ay(i)
VR(i) = [ a_vx(i) a_vy(i) a_vz(i) - g * tp(i) ]
여기서, vx(i), vy(i) 및 vz(i)는 각각 속도벡터 VR(i)의 x, y 및 z축 방향 성분이며, tp(i)는 볼이 피칭장치의 y축 위치인 POy 위치에서 by(i) 위치까지 가는데 걸리는 시간을 의미한다. 상기 식에서 속도벡터 VR(i)을 정규화하여 피칭 방향벡터 VRn(i)를 구할 수 있다.
또한, 피칭장치의 설정 발사각 정보로 볼이 발사될 때의 볼의 방향벡터, 즉 설정 방향벡터 VPn(i)을 아래와 같이 구할 수 있다. 이때 볼의 상하방향 발사각 및 좌우방향 발사각은 각각 α(i) 및 θ(i)이다.
피칭장치에 이전 주기 때 이미 적용된 보정행렬이 존재한다면, 이를 Rs_old라고 하기로 하고, 상기 설정 방향벡터 VPn(i)을 아래와 같이 나타낼 수 있다.
<설정 방향벡터 VPn(i)에 관한 식>
만약 피칭장치가 자세 틀어짐 등이 발생하지 않았다면, 설정 방향벡터 VPn과 피칭 방향벡터 VRn은 서로 동일하여야 한다. 그러나 피칭장치가 자세 틀어짐 등이 발생하였다면 설정 방향벡터 VPn과 피칭 방향벡터 VRn은 서로 다른 값을 갖게 된다.
여기서 설정 방향벡터 VPn과 피칭 방향벡터 VRn이 서로 같아지도록 보정행렬Rs을 적용해주면 상기 피칭장치의 자세 틀어짐을 보정하는 결과가 된다.
상기 보정행렬 Rs를 산출하기 위하여 먼저, 설정 방향벡터 VPn(i)의 x, y, z축 성분을 각각 plx(i), ply(i), plz(i)라 하고, 피칭 방향벡터 VRn(i)의 x, y, z축 성분을 각각 rlx(i), rly(i), rlz(i)라 한다면, 상기 설정 방향벡터 VPn과 피칭 방향벡터 VRn의 상하각의 차이 Δα(i) 및 좌우각의 차이 Δθ(i)는 각각 아래와 같은 식으로 나타낼 수 있다.
<두 방향벡터의 상하각의 차이 Δα(i)에 관한 식>
<두 방향벡터의 좌우각의 차이 Δθ(i)에 관한 식>
여기서, Atan는 arctangent를 의미한다.
상기 상하각의 차이 Δα(i) 및 좌우각의 차이 Δθ(i)는 피칭장치가 볼을 발사하는 매회마다 각각 다르게 나타날 수 있기 때문에 누적 저장된 각 데이터들로부터 상기 상하각의 차이 Δα(i) 및 좌우각의 차이 Δθ(i) 각각의 값에 대한 대표값을 추출함이 바람직하다.
상기 대표값을 추출하는 방법은 전체 값의 평균값을 이용하거나, 전체 값에서 미리 설정된 범위에서의 평균값(예컨대 상위 30% 및 하위 30%를 제외한 나머지 값들의 평균값)을 이용하거나, 전체 값의 분포에서 가장 큰 군집을 차지하는 값들의 평균값(예컨대, 분산이나 표준편차값을 이용하여 각 데이터가 일정 거리 내에 가장 많이 모여 있는 데이터 군집에서 평균값을 취하는 등의 방법) 등을 이용할 수 있다.
상기한 바와 같이 상하각의 차이 및 좌우각의 차이에 대한 대표값을 각각 Δα_mean 및 Δθ_mean이라 하기로 한다.
한편, 상기 피칭장치의 자세 틀어짐 등을 보정하기 위한 보정행렬 Rs는 아래와 같이 상하각의 차이 및 좌우각의 차이를 이용하여 나타낼 수 있다.
<보정행렬 Rs에 관한 식>
이전 주기 때 적용된 보정행렬을 Rs_old라 하고, 현재 주기 때 산출된 보정행렬을 Rs_new라 할 때, 자세 틀어짐에 관한 식 [x, y, z] = Rs * Rc * [i, j, k]에서 Rs_old * Rc가 적용되었을 때의 방향벡터의 오차와 Rs_new * Rc가 적용되었을 때의 방향벡터의 오차를 비교하여 오차가 더 줄어든 경우에 상기 Rs_old를 Rs_new로 대체하도록 함이 바람직하다.
여기서 상기한 방향벡터의 오차를 구하기 위하여 상기 <피칭 방향벡터 산출을 위한 속도벡터 VR(i)에 관한 식>을 이용하여 속도벡터 VR(i)로부터 발 발사시의 속력 vr(i)를 아래와 같이 구할 수 있다.
<볼 발사시의 속력 vr(i)에 관한 식>
상기 속력 vr(i)에 보정행렬을 곱하여 속도벡터 V_old(i) 및 V_new(i)는 각각 동일한 속력 vr(i)을 가지며 방향이 서로 다르므로 아래와 같은 식에 의해 표현될 수 있다.
볼 운동 모델에서 위치 데이터에 해당하는 bx(i), by(i), bz(i)의 값과 상기 속도벡터로 위치 데이터를 구하여 비교하였을 때 오차가 더 적은 경우가 더 정확한 속도벡터라 할 수 있다.
앞서 설명한 바와 같이, 볼이 피칭장치의 y축 위치인 POy 위치에서 by(i)까지 가는데 걸리는 시간은 tp이며, V_old(i)와 V_new(i)의 속도로 피칭장치에서 발사되어 by(i)에 도달할 때의 x축 및 z축의 위치는 상기한 <데이터 세트에 관한 볼 운동 모델>을 이용하여 각각 아래 식으로 표현될 수 있다.
<볼이 V_old(i)의 속도로 POy에서 by(i)까지 도달할 때의 x 및 z축 위치에 관한 식>
xp_v_old(i) = POx + V_old_x(i) * tp(i)
zp_v_old(i) = POz + V_old_z(i) * tp(i) - 0.5 * g * tp(i)^2
<볼이 V_new(i)의 속도로 POy에서 by(i)까지 도달할 때의 x 및 z축 위치에 관한 식>
xp_v_new(i) = POx + V_new_x(i) * tp(i)
zp_v_new(i) = POz + V_new_z(i) * tp(i) - 0.5 * g * tp(i)^2
여기서, POx 및 POz는 각각 피칭장치의 x축 및 z축 위치이고, xp_v_old(i) 및 zp_v_old(i)는 V_old의 속도로 피칭장치에서 발사되어 y축으로 by(i) 위치에 도달했을 때 위치하게 되는 x축 및 z축의 위치이며, xp_v_new(i) 및 zp_v_new(i)는 V_new의 속도로 피칭장치에서 발사되어 y축으로 by(i) 위치에 도달했을 때 위치하게 되는 x축 및 z축의 위치이다.
그리고, V_old_x(i) 및 V_old_z(i)는 각각 V_old의 x축 및 z축 속도벡터 성분을 나타내며, V_new_x(i) 및 V_new_z(i)는 각각 V_new의 x축 및 z축 속도벡터 성분을 나타낸다.
상기한 <데이터 세트에 관한 볼 운동 모델>에 따르면, 실제 센싱장치의 센싱데이터에 의해 구해진 볼 운동 모델에 의해 볼이 by(i)에 위치할 때의 x축 및 z축 위치는 각각 bx(i) 및 bz(i)이므로, 상기한 xp_v_old(i) 및 zp_v_old(i), 그리고 xp_v_new(i) 및 zp_v_new(i)는 bx(i) 및 bz(i)에 근접할수록 오차가 작은 것이다.
V_old(i)로 볼이 발사되었을 때의 위치 오차를 Error_old라 하고, V_new(i)로 볼이 발사되었을 때의 위치 오차를 Error_new라고 한다면, 아래 오차함수에 따른 결과값을 비교하여 Error_new의 값이 Error_old의 값보다 더 작은 경우에 오차가 줄어든 것으로 판단할 수 있다.
<위치 오차 함수>
만약, 상기 오차함수 Error_new의 값이 Error_old의 값보다 작은 경우에는 새로 구한 보정행렬 Rs_new를 적용함으로써 오차가 더 줄어들게 된다는 것이 상기 오차함수 계산의 결과에 의해 뒷받침 될 수 있으므로 기존의 보정행렬 Rs_old를 새로 구한 보정행렬 Rs_new로 대체하여 적용하는 것에 대한 신뢰성을 얻을 수 있다.
상기한 바와 같이 보정행렬 Rs의 산출이 완료되면, 다음 주기에 따른 프로세스를 다시 반복하기 위하여 종전의 저장된 데이터 세트인 Pit_Angle_Set 및 Modle_Set를 제거하는 것이 바람직하다.
상기한 보정행렬을 산출하여 적용함으로써 피칭장치의 자세 틀어짐 등을 보정하는 것은 앞서 설명한 보상요소를 적용하는 것에 추가로 이루어질 수도 있고 단독으로 적용될 수도 있다.
이와 같이 미리 설정한 주기마다 데이터를 저장하였다가 이를 분석하여 피칭장치의 자세 틀어짐 등을 보정하기 위한 보정요소로서 보정행렬을 산출하여 피칭장치에 적용함으로써 시간이 지남에 따라 피칭장치에 대해 수시로 관리자가 별도로 보정 작업을 해주는 등의 번거로움 없이 센싱장치를 이용하여 피칭장치가 자가 보정을 할 수 있으므로 정확한 볼 컨트롤에 대한 신뢰성을 향상시킬 수 있는 특장점이 있다.
본 발명에 따른 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템은, 소정 크기의 실내 공간에서 볼 피칭장치에 의해 발사되는 볼을 사용자가 배트로 타격하고 이를 센싱장치가 센싱하여 전방의 스크린을 통해 시뮬레이션 영상을 구현함으로써 사용자의 야구 연습 또는 가상의 야구 경기를 가능하게 하는 기술 분야에서 산업상 이용가능성을 갖는다.
Claims (16)
- 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서,상기 피칭장치에서 미리 설정한 발사각으로 볼이 피칭되고 상기 센싱장치가 상기 피칭된 볼을 센싱한 센싱데이터를 이용하여 볼 운동 모델을 산출하는 단계;상기 미리 설정한 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 피칭장치가 기울어진 정도를 보상하는 보상요소를 산출하는 단계; 및상기 산출된 보상요소를 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치의 기울어진 정도가 보상된 상태에서 볼 피칭이 이루어지는 단계;를 포함하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제1항에 있어서, 상기 보상요소를 산출하는 단계는,상기 미리 설정한 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 센싱장치의 볼 센싱에 대한 좌표계인 센싱좌표계를 기초로 상기 피칭장치의 볼 피칭에 대한 좌표계인 피칭좌표계가 기울어진 정도를 보상하도록 하는 상기 보상요소를 산출하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제1항에 있어서, 상기 보상요소를 산출하는 단계는,상기 산출된 볼 운동 모델에 따른 볼 피칭이 상기 미리 설정한 발사각에 따른 볼 피칭이 되도록 상기 센싱장치의 볼 센싱에 대한 좌표계인 센싱좌표계를 기초로 상기 피칭장치의 볼 피칭에 대한 좌표계인 피칭좌표계를 보정할 수 있도록 상기 피칭좌표계의 각 축 방향 회전성분을 산출함으로써 상기 보상요소를 산출하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제1항에 있어서,상기 센싱장치는 설정된 감시 영역 내에서 볼이 운동하는 것에 대한 이미지를 연속적으로 촬영하여 수집하고 그 수집된 이미지를 분석하여 볼을 추출하고 볼에 대한 3차원 공간상의 좌표 데이터를 추출하도록 구성되며,상기 보상요소를 산출하는 단계는,상기 센싱장치가 수집한 이미지를 분석하여 추출한 볼에 대해 상기 센싱장치의 센싱좌표계에 기초하여 특정 시점에서의 볼의 위치 정보를 산출하는 단계와,상기 특정 시점에서의 볼의 위치에 대해 도출된 함수에 상기 피칭장치의 볼 피칭에 대한 좌표계인 피칭좌표계의 각 축 방향 회전성분을 임의의 값으로 적용하여 상기 산출된 특정 시점에서의 볼의 위치에 가장 근접할 때의 각 축 방향 회전성분의 값들에 기초하여 상기 보상요소를 산출하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제1항에 있어서,상기 피칭장치에서 볼 피칭이 이루어질 때마다 상기 피칭장치의 설정된 발사각에 대한 정보 및 그때마다 상기 센싱장치에 의해 센싱되어 산출된 볼 운동 모델에 대한 정보를 각각 저장하는 단계와,미리 설정된 주기마다 상기 저장된 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 보정함으로써 미리 설정된 주기마다 상기 피칭장치를 자가 보정하도록 하는 단계를 더 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제5항에 있어서, 상기 자가 보정하도록 하는 단계는,미리 설정된 주기 동안 저장된 상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하여 상기 피칭장치에 적용하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제5항에 있어서, 상기 자가 보정하도록 하는 단계는,미리 설정된 주기 동안 저장된 상기 볼 운동 모델에 대한 정보로부터 상기 피칭장치에서 볼이 발사될 때의 방향벡터인 피칭 방향벡터를 산출하는 단계와,미리 설정된 주기 동안 저장된 상기 설정 발사각에 대한 정보로부터 상기 피칭장치에서 볼이 발사될 때의 방향벡터인 설정 방향벡터를 산출하는 단계와,상기 피칭 방향벡터와 상기 설정 방향벡터의 각도 차이를 보정하도록 하는 보정요소를 산출하여 상기 피칭장치에 적용하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서,야구 연습 또는 야구 게임의 진행에 따라 상기 피칭장치에서 미리 설정한 발사각으로 볼이 피칭되고 상기 센싱장치가 상기 피칭된 볼을 센싱한 센싱데이터를 이용하여 볼 운동 모델을 산출하여 저장하는 단계;상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하는 단계; 및상기 산출된 보정요소를 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행이 이루어짐으로써 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 자가 보정하여 볼 피칭하도록 하는 단계;를 포함하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제8항에 있어서,상기 볼 운동 모델을 산출하여 저장하는 단계는,미리 설정된 주기 동안 야구 연습 또는 야구 게임의 진행에 따라, 상기 피칭장치에서 미리 설정한 발사각으로 볼이 피칭되고 상기 센싱장치의 볼 센싱에 따라 볼 운동 모델이 산출될 때마다 상기 설정 발사각 정보 및 볼 운동 모델을 각각 저장하는 단계를 포함하며,상기 보정요소를 산출하는 단계는,상기 주기 동안 저장된 정보에 대해, 상기 설정 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이값을 각각 산출하는 단계와,상기 각 산출되는 차이값에 대해 전체 값의 평균값, 전체 값에서 미리 설정된 범위에서의 평균값, 전체 값의 분포에서 가장 큰 군집을 차지하는 값들의 평균값 중 어느 하나의 값을 상기 차이값의 대표값으로서 결정하는 단계와,상기 대표값으로 결정된 차이값을 보정하도록 하는 보정요소를 산출하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 제8항에 있어서,상기 볼 운동 모델을 산출하여 저장하는 단계, 상기 보정요소를 산출하는 단계 및 상기 자가 보정하여 볼 피칭하도록 하는 단계는 미리 설정된 주기마다 실행되며,상기 자가 보정하여 볼 피칭하도록 하는 단계는,이전 주기 때 산출되어 적용된 이전 보정요소에 따른 상기 피칭장치의 볼 피칭시의 볼의 방향벡터의 오차에 대해 미리 설정된 오차함수에 의해 산출되는 오차와, 현 주기 때 산출된 현재 보정요소에 따라 상기 방향벡터에 대한 미리 설정된 오차함수에 의해 산출되는 오차를 비교하여 현재 보정요소에 따른 방향벡터에 대한 오차가 더 작은 경우에 상기 현재 보정요소를 상기 피칭장치에 적용하는 단계를 포함하는 것을 특징으로 하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 발사각 조절이 가능한 피칭장치로부터 타석으로 볼이 피칭되고 상기 피칭된 볼을 센싱하는 센싱장치를 구비하는 야구 연습 시스템에서 상기 피칭장치의 볼 피칭 제어방법으로서,상기 피칭장치의 설정된 발사각에 따른 볼 피칭시 상기 피칭된 볼을 상기 센싱장치가 센싱한 센싱데이터를 이용하여 산출한 볼 운동 모델을 이용하여 상기 피칭장치가 기울어진 정도를 보상하는 보상요소를 산출하여 상기 피칭장치에 적용하여 사용자의 야구 연습 또는 야구 게임 진행이 이루어지는 단계;미리 설정된 주기 동안 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치가 볼을 피칭할 때마다 설정된 볼의 발사각 정보와 상기 센싱장치의 볼 센싱에 따라 산출되는 볼 운동 모델 정보를 저장하는 단계;상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하는 단계; 및상기 미리 설정된 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 상기 산출된 보정요소를 적용함으로써 상기 피칭장치가 자가 보정하여 볼 피칭하도록 하는 단계;를 포함하는 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법.
- 사용자의 타격이 이루어지는 타석을 향하여 볼을 피칭하며 발사각 조절이 가능하도록 구성되는 피칭장치;상기 피칭장치에서 피칭된 볼을 센싱하여 그 센싱데이터를 생성하는 센싱장치; 및상기 센싱장치로부터 상기 센싱데이터를 전송받아 상기 피칭에 의해 운동하는 볼에 대한 볼 운동 모델을 산출하며, 상기 피칭장치가 볼을 피칭할 때의 설정 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 피칭장치의 기울어진 정도를 보상하는 보상요소를 산출하여 상기 피칭장치에 적용함으로써 사용자의 야구 연습 또는 야구 게임 진행에 따라 상기 피칭장치의 기울어진 정도가 보상된 상태에서 볼 피칭이 이루어지도록 제어하는 제어장치;를 포함하는 야구 연습 시스템.
- 제12항에 있어서, 상기 제어장치는,상기 미리 설정한 발사각과 상기 산출된 볼 운동 모델의 차이를 이용하여 상기 센싱장치의 볼 센싱에 대한 좌표계인 센싱좌표계를 기초로 상기 피칭장치의 볼 피칭에 대한 좌표계인 피칭좌표계가 기울어진 정도를 보상하도록 하는 상기 보상요소를 산출하도록 구성되는것을 특징으로 하는 야구 연습 시스템.
- 제12항에 있어서, 상기 제어장치는,상기 피칭장치에서 볼 피칭이 이루어질 때마다 상기 피칭장치의 설정된 발사각에 대한 정보 및 그때마다 상기 산출된 볼 운동 모델에 대한 정보를 저장부에 저장하며,미리 설정된 주기마다 상기 저장된 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 각 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 보정함으로써 상기 피칭장치가 자가 보정하도록 제어하는 것을 특징으로 하는 야구 연습 시스템.
- 제14항에 있어서, 상기 제어장치는,미리 설정된 주기 동안 저장된 상기 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 피칭장치의 설정된 발사각과 볼 운동 모델에 따라 산출되는 발사각의 차이를 보정하도록 하는 보정요소를 산출하며, 상기 산출된 보정요소가 상기 피칭장치에 적용되어 볼 피칭이 이루어지도록 제어하는 것을 특징으로 하는 야구 연습 시스템.
- 사용자의 타격이 이루어지는 타석을 향하여 볼을 피칭하며 발사각 조절이 가능하도록 구성되는 피칭장치;상기 피칭장치에서 피칭된 볼을 센싱하여 그 센싱데이터를 생성하는 센싱장치; 및상기 센싱장치로부터 상기 센싱데이터를 전송받아 상기 피칭에 의해 운동하는 볼에 대한 볼 운동 모델을 산출하며, 상기 피칭장치에서 볼 피칭이 이루어질 때마다 상기 피칭장치의 설정된 발사각에 대한 정보 및 그때마다 상기 산출된 볼 운동 모델에 대한 정보를 저장부에 저장하며, 미리 설정된 주기마다 상기 저장된 설정 발사각에 대한 정보 및 볼 운동 모델에 대한 정보를 이용하여 상기 각 주기 동안 상기 피칭장치에서 발생할 수 있는 위치 틀어짐을 보정함으로써 상기 피칭장치가 자가 보정하도록 제어하는 제어장치;를 포함하는 야구 연습 시스템.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/342,206 US10795336B2 (en) | 2016-10-20 | 2017-10-18 | Ball-pitching control method of pitching machine in baseball practice system and baseball practice system using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160136693A KR101807006B1 (ko) | 2016-10-20 | 2016-10-20 | 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템 |
KR10-2016-0136693 | 2016-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074844A1 true WO2018074844A1 (ko) | 2018-04-26 |
Family
ID=60920093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011535 WO2018074844A1 (ko) | 2016-10-20 | 2017-10-18 | 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10795336B2 (ko) |
KR (1) | KR101807006B1 (ko) |
TW (1) | TWI626972B (ko) |
WO (1) | WO2018074844A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD882435S1 (en) | 2018-09-20 | 2020-04-28 | Catalyst Sports Llc | Movement measurement device housing |
US11491369B2 (en) * | 2018-09-20 | 2022-11-08 | Catalyst Sports Llc | Bat speed measuring device |
AU2020244765A1 (en) * | 2019-03-22 | 2021-10-14 | Home Run Dugout LLC | Pitching machine and batting bay systems |
TWI769915B (zh) | 2021-08-26 | 2022-07-01 | 財團法人工業技術研究院 | 投射系統及應用其之投射校準方法 |
TWI843251B (zh) * | 2022-10-25 | 2024-05-21 | 財團法人工業技術研究院 | 目標追蹤系統及應用其之目標追蹤方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200261518Y1 (ko) * | 2001-06-15 | 2002-01-24 | 조현만 | 자동변환 야구공 투구기 |
JP2002239052A (ja) * | 2001-02-22 | 2002-08-27 | Japan Science & Technology Corp | ピッチングマシーン、その制御システムおよび制御方法 |
JP4883516B2 (ja) * | 2004-08-25 | 2012-02-22 | 国立大学法人金沢大学 | ピッチングマシンおよびその変化球を制御する方法 |
KR101505931B1 (ko) * | 2014-05-07 | 2015-03-25 | (주)스크린게임연구소 | 실내 스크린 야구 시스템 및 이를 이용한 스크린 야구 서비스 방법 |
KR20150130791A (ko) * | 2014-05-14 | 2015-11-24 | 동아대학교 산학협력단 | 원격제어형 피칭머신 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4632088A (en) * | 1983-02-28 | 1986-12-30 | Bruce Norman R | Ball throwing apparatus |
JPS61263469A (ja) * | 1985-05-17 | 1986-11-21 | 美津濃株式会社 | 投球機 |
US4760835A (en) * | 1985-10-29 | 1988-08-02 | Paulson Kerry K | Ball throwing device |
HUT44444A (en) * | 1986-08-11 | 1988-03-28 | Ferenc Kovacs | Automatic programmable tennis-ball serving device controlled by microcomputer |
US4915384A (en) * | 1988-07-21 | 1990-04-10 | Bear Robert A | Player adaptive sports training system |
US5064194A (en) * | 1991-01-18 | 1991-11-12 | Bixler Dickie R | Apparatus for use in practicing pitching of baseballs |
US5195744A (en) * | 1991-11-13 | 1993-03-23 | Video Baseball, Inc. | Baseball batting practice apparatus with control means |
US5333855A (en) * | 1992-07-20 | 1994-08-02 | Connie J. Silin | Baseball pitching analyzer |
US5443260A (en) | 1994-05-23 | 1995-08-22 | Dynamic Sports Technology | Virtual reality baseball training and amusement system |
WO1996003184A1 (en) * | 1994-07-21 | 1996-02-08 | Sanders Barry L | Professional batting training system |
US5464208A (en) * | 1994-10-03 | 1995-11-07 | Wnan, Inc. | Programmable baseball pitching apparatus |
CA2363550C (en) * | 1999-03-01 | 2008-04-29 | Probatter Sports, Llc | Pitching system with video display means |
TWI283287B (en) * | 2004-10-27 | 2007-07-01 | Fungoman Inc | Programmable ball throwing apparatus |
AU2005326902A1 (en) * | 2005-02-07 | 2006-08-10 | Telefonaktiebolaget Lm Ericsson (Publ). | Plain old telephony equivalent services supported via unlicensed mobile access |
KR102408358B1 (ko) * | 2009-01-29 | 2022-06-14 | 트랙맨 에이/에스 | 레이더 및 촬상 요소를 포함하는 조립체 |
US9480900B2 (en) * | 2011-10-07 | 2016-11-01 | Jugs Sports, Inc. | Changeup controller for ball throwing machine |
US10471330B1 (en) * | 2014-12-31 | 2019-11-12 | Thomas Joseph Hart | Automatic ball pitching machine |
US9937400B2 (en) * | 2014-12-31 | 2018-04-10 | Thomas Hart | Automatic ball pitching machine |
KR101543371B1 (ko) | 2015-03-25 | 2015-08-21 | 주식회사 리얼야구존 | 스크린 야구 시스템 경기 방법 |
KR101546666B1 (ko) | 2015-03-25 | 2015-08-25 | 주식회사 리얼야구존 | 스크린 야구 시스템 운영 방법 |
-
2016
- 2016-10-20 KR KR1020160136693A patent/KR101807006B1/ko active IP Right Grant
-
2017
- 2017-09-28 TW TW106133295A patent/TWI626972B/zh not_active IP Right Cessation
- 2017-10-18 US US16/342,206 patent/US10795336B2/en active Active
- 2017-10-18 WO PCT/KR2017/011535 patent/WO2018074844A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002239052A (ja) * | 2001-02-22 | 2002-08-27 | Japan Science & Technology Corp | ピッチングマシーン、その制御システムおよび制御方法 |
KR200261518Y1 (ko) * | 2001-06-15 | 2002-01-24 | 조현만 | 자동변환 야구공 투구기 |
JP4883516B2 (ja) * | 2004-08-25 | 2012-02-22 | 国立大学法人金沢大学 | ピッチングマシンおよびその変化球を制御する方法 |
KR101505931B1 (ko) * | 2014-05-07 | 2015-03-25 | (주)스크린게임연구소 | 실내 스크린 야구 시스템 및 이를 이용한 스크린 야구 서비스 방법 |
KR20150130791A (ko) * | 2014-05-14 | 2015-11-24 | 동아대학교 산학협력단 | 원격제어형 피칭머신 |
Also Published As
Publication number | Publication date |
---|---|
US20190324423A1 (en) | 2019-10-24 |
US10795336B2 (en) | 2020-10-06 |
TWI626972B (zh) | 2018-06-21 |
KR101807006B1 (ko) | 2017-12-08 |
TW201815446A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018074844A1 (ko) | 야구 연습 시스템에서 피칭장치의 볼 피칭 제어방법 및 이를 이용한 야구 연습 시스템 | |
WO2015102391A1 (ko) | 뎁스 영상 분석을 통한 사용자의 골프 스윙 자세 분석을 위한 영상 생성 방법과 이를 이용한 골프 스윙 자세 분석 방법 및 장치 | |
WO2010151070A2 (ko) | 가상 세계 처리 장치 및 방법 | |
WO2018212608A1 (ko) | 구동형 마킹 시스템, 구동형 마킹 장치의 제어방법 및 컴퓨터 판독 가능한 기록매체 | |
WO2015183050A1 (ko) | 옵티컬 트래킹 시스템 및 옵티컬 트래킹 시스템의 마커부 자세 및 위치 산출방법 | |
WO2022050507A1 (ko) | 태양광 발전 모듈 모니터링 방법 및 시스템 | |
WO2015076593A1 (en) | Cleaning robot and method for controlling the same | |
WO2016018070A1 (en) | Wearable glasses and method of displaying image via the wearable glasses | |
WO2020141729A1 (ko) | 신체 측정 디바이스 및 그 제어 방법 | |
EP3241093A1 (en) | Electronic system with gesture calibration mechanism and method of operation thereof | |
WO2012070867A2 (ko) | 와이어를 이용한 자율이동장치 제어 시스템 및 방법 | |
WO2021187955A1 (ko) | 직진성 가이드 광의 출사가 가능한 퍼터 및 이를 갖는 골프 퍼팅 연습 장치 및 이를 사용한 골프 퍼팅 연습 시스템 | |
EP2451545A1 (en) | Method, apparatus and recording medium for game using touch input | |
WO2023059131A1 (ko) | 테니스 자율 훈련 시스템 | |
WO2021141364A1 (ko) | 격투 경기의 채점 시스템 및 방법 | |
WO2020209624A1 (en) | Head mounted display device and operating method thereof | |
WO2014178610A1 (ko) | 옵티컬 트랙킹 시스템 및 이를 이용한 트랙킹 방법 | |
WO2021040156A1 (ko) | 신체 측정 디바이스 및 그 제어 방법 | |
WO2023132413A1 (ko) | 제조 시의 위치 정밀도와 부착 시 편의성이 향상된 3d 보호필름의 제조 시스템 및 보호필름 부착방법 | |
WO2020032488A1 (en) | Method for receiving satellite signal by adjusting resonant frequency according to medium outside electronic device and electronic device supporting same | |
WO2022181922A1 (ko) | 신호 처리 장치, 및 이를 구비하는 차량용 디스플레이 장치 | |
WO2017084052A1 (zh) | 调参方法、调参装置、调参系统及调参存储器 | |
WO2021075910A1 (en) | Electronic device and method for operating screen capturing by electronic device | |
WO2021066375A1 (en) | Electronic apparatus and controlling method thereof | |
WO2016108502A1 (en) | Electronic system with gesture calibration mechanism and method of operation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17862391 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 27.08.19 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17862391 Country of ref document: EP Kind code of ref document: A1 |