WO2018074577A1 - Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device - Google Patents

Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device Download PDF

Info

Publication number
WO2018074577A1
WO2018074577A1 PCT/JP2017/037953 JP2017037953W WO2018074577A1 WO 2018074577 A1 WO2018074577 A1 WO 2018074577A1 JP 2017037953 W JP2017037953 W JP 2017037953W WO 2018074577 A1 WO2018074577 A1 WO 2018074577A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated wire
insulating film
conductor
electrode
longitudinal direction
Prior art date
Application number
PCT/JP2017/037953
Other languages
French (fr)
Japanese (ja)
Inventor
槙弥 太田
雅晃 山内
菅原 潤
田村 康
吉田 健吾
井上 貴雄
裕示 杉本
Original Assignee
住友電気工業株式会社
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017069198A external-priority patent/JP2018170260A/en
Priority claimed from JP2017069200A external-priority patent/JP2018170261A/en
Priority claimed from JP2017149486A external-priority patent/JP6908462B2/en
Application filed by 住友電気工業株式会社, 住友電工ウインテック株式会社 filed Critical 住友電気工業株式会社
Priority to US16/339,933 priority Critical patent/US10962498B2/en
Priority to CN201780064900.4A priority patent/CN109844872A/en
Publication of WO2018074577A1 publication Critical patent/WO2018074577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

A production method for an insulated electric wire, the production method including: a step for preparing a linearly-shaped conductor; a step for forming an insulating coating film over the outer circumferential surface of the conductor so as to obtain an insulated electric wire that includes the conductor and the insulating coating film that coats the conductor; and a step for measuring, while the insulated electric wire is transported in the long direction of the conductor, a first electrostatic capacity that is between the insulated electric wire and a first electrode that is arranged on the radial-direction outside of the insulated electric wire so as to face the outer circumferential surface of the insulated electric wire and for inspecting the formation state of the insulating coating film, including the formation state of defects in the insulating coating film, on the basis of shifts in the first electrostatic capacity.

Description

絶縁電線の製造方法、絶縁電線の検査方法および絶縁電線製造装置Insulated wire manufacturing method, insulated wire inspection method, and insulated wire manufacturing apparatus
 本発明は、絶縁電線の製造方法、絶縁電線の検査方法および絶縁電線製造装置に関する。 The present invention relates to an insulated wire manufacturing method, an insulated wire inspection method, and an insulated wire manufacturing apparatus.
 本出願は、2016年10月20日出願の日本出願第2016-206330号、2017年3月30日出願の日本出願第2017-69198号、2017年3月30日出願の日本出願第2017-69200号、2017年3月30日出願の日本出願第2017-69202号、2017年8月1日出願の日本出願第2017-149486号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present application includes Japanese application No. 2016-206330 filed on October 20, 2016, Japanese application No. 2017-69198 filed on March 30, 2017, and Japanese Application No. 2017-69200 filed on March 30, 2017. No., Japanese application No. 2017-69202 filed on Mar. 30, 2017, Japanese application No. 2017-149486 filed on Aug. 1, 2017, and all those described in the above Japanese application The description is incorporated.
 特開平8-220184号公報(特許文献1)には、絶縁電線の絶縁皮膜の状態を光学的に検査し、絶縁皮膜上に発生した亀裂を検知する方法が開示されている。 Japanese Patent Application Laid-Open No. 8-220184 (Patent Document 1) discloses a method of optically inspecting the state of an insulating film of an insulated wire and detecting a crack generated on the insulating film.
 特開平8-249958号公報(特許文献2)には、溶融した熱可塑性樹脂中に発泡用のガスを注入し、導体上に発泡樹脂絶縁体を押出被覆することにより発泡絶縁電線を形成し、形成された発泡絶縁電線を移動可能な移動水槽を有する水槽内に導入し、この水槽内で冷却された発泡絶縁電線の静電容量を静電容量計で監視する一連の工程を含む発泡絶縁電線の製造方法が開示されている。 In JP-A-8-249958 (Patent Document 2), a foaming insulated wire is formed by injecting a foaming gas into a molten thermoplastic resin and extrusion-coating a foamed resin insulator on the conductor. Foam insulated wire including a series of steps of introducing the formed foam insulated wire into a water tank having a movable water tank and monitoring the capacitance of the foam insulated wire cooled in the water tank with a capacitance meter A manufacturing method is disclosed.
 特開2016-81563号公報(特許文献3)には、誘電率の低い絶縁皮膜を有する絶縁電線として、空孔を有する絶縁皮膜を導体上に備えた絶縁電線が提案されている。 Japanese Unexamined Patent Application Publication No. 2016-81563 (Patent Document 3) proposes an insulated wire having an insulating coating having pores on a conductor as an insulated wire having an insulating coating with a low dielectric constant.
 特開2016-81563号公報(特許文献4)には、誘電率の低い絶縁皮膜を有する絶縁電線として、空孔を有する絶縁皮膜を導体上に備えた絶縁電線が提案されている。 Japanese Unexamined Patent Application Publication No. 2016-81563 (Patent Document 4) proposes an insulated wire having an insulating coating having pores on a conductor as an insulated wire having an insulating coating with a low dielectric constant.
特開平8-220184号公報JP-A-8-220184 特開平8-249958号公報JP-A-8-249958 特開2016-81563号公報JP 2016-81563 A 特開2016-110847号公報JP 2016-110847 A
 本開示の絶縁電線の製造方法は、線状の形状を有する導体を準備する工程と、導体の外周側の面を覆うように、絶縁体からなる絶縁皮膜を形成することにより、導体と、導体を被覆する絶縁皮膜とを有する絶縁電線を得る工程と、絶縁電線を導体の長手方向に搬送しながら、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置される第1の電極と絶縁電線との間の第1の静電容量を測定し、第1の静電容量の推移に基づいて、絶縁皮膜内の欠陥部の形成状態を含む絶縁皮膜の形成状態を検査する工程と、を含む。 The method of manufacturing an insulated wire according to the present disclosure includes a step of preparing a conductor having a linear shape, and forming an insulating film made of an insulator so as to cover a surface on the outer peripheral side of the conductor. A step of obtaining an insulated wire having an insulating film covering the first wire, and a first wire disposed radially outside the insulated wire so as to face the outer peripheral surface of the insulated wire while conveying the insulated wire in the longitudinal direction of the conductor. A step of measuring a first capacitance between the electrode and the insulated wire and inspecting a formation state of the insulating film including a formation state of a defective portion in the insulating film based on a transition of the first capacitance. And including.
図1は、実施の形態1において検査される絶縁電線の一例を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an example of an insulated wire inspected in the first embodiment. 図2は、絶縁電線の製造方法および検査方法が実施される絶縁電線の製造工程を説明するためのブロック図である。FIG. 2 is a block diagram for explaining an insulated wire manufacturing process in which the insulated wire manufacturing method and the inspection method are performed. 図3は、絶縁皮膜形成部を説明するためのブロック図である。FIG. 3 is a block diagram for explaining the insulating film forming portion. 図4は、絶縁電線の検査方法の手順を示すフローチャートである。FIG. 4 is a flowchart showing the procedure of the method for inspecting an insulated wire. 図5は、絶縁電線の製造方法の手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a procedure of a method for manufacturing an insulated wire. 図6は、実施の形態1における検査電極の構造の一例を示す概略平面図である。FIG. 6 is a schematic plan view showing an example of the structure of the inspection electrode in the first embodiment. 図7は、図6の線分VII-VIIに沿う断面を矢印の向きに見た状態に対応する概略断面図である。FIG. 7 is a schematic cross-sectional view corresponding to a state in which a cross section taken along line VII-VII in FIG. 6 is viewed in the direction of the arrow. 図8は、絶縁皮膜内の低気孔率部の状態を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a state of a low porosity portion in the insulating film. 図9は、図8の矢印Dの向きに見た低気孔率部の状態を示す概略図である。Figure 9 is a schematic view showing a state of a low porosity portion, as viewed in the direction of arrow D 2 in FIG. 8. 図10は、絶縁皮膜の肉薄部の状態を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing a state of a thin portion of the insulating film. 図11は、図10の矢印Dの向きに見た肉薄部の状態を示す概略図である。Figure 11 is a schematic diagram showing a state of the thin portion, as viewed in the direction of arrow D 3 in FIG. 10. 図12は、絶縁皮膜表面の傷欠陥の状態を示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing a state of a flaw defect on the surface of the insulating film. 図13は、絶縁皮膜の穴欠陥の状態を示す概略断面図である。FIG. 13 is a schematic cross-sectional view showing a state of hole defects in the insulating film. 図14は、実施の形態2において検査される絶縁電線の一例を示す断面模式図である。FIG. 14 is a schematic cross-sectional view showing an example of an insulated wire inspected in the second embodiment. 図15は、実施の形態3における検査電極の構造の一例を示す概略平面図である。FIG. 15 is a schematic plan view showing an example of the structure of the inspection electrode in the third embodiment. 図16は、実施の形態4における検査電極の構造の一例を示す概略平面図である。FIG. 16 is a schematic plan view showing an example of the structure of the inspection electrode in the fourth embodiment. 図17は、実施の形態5における検査電極の構造の一例を示す概略平面図である。FIG. 17 is a schematic plan view showing an example of the structure of the inspection electrode in the fifth embodiment. 図18は、実施の形態6における検査電極の構造の一例を示す概略平面図である。FIG. 18 is a schematic plan view showing an example of the structure of the inspection electrode in the sixth embodiment. 図19は、実施の形態7における検査電極の構造の一例を示す概略平面図である。FIG. 19 is a schematic plan view showing an example of the structure of the inspection electrode in the seventh embodiment. 図20は、実施の形態8における検査電極の構造の一例を示す概略平面図である。FIG. 20 is a schematic plan view showing an example of the structure of the inspection electrode in the eighth embodiment. 図21は、絶縁電線の一例を示す断面模式図である。FIG. 21 is a schematic cross-sectional view showing an example of an insulated wire. 図22は、絶縁電線の一例を示す断面模式図である。FIG. 22 is a schematic cross-sectional view showing an example of an insulated wire. 図23は、実施の形態9における絶縁電線の製造工程を説明するためのブロック図である。FIG. 23 is a block diagram for explaining a process for manufacturing an insulated wire in the ninth embodiment. 図24は、実施の形態9における絶縁皮膜形成部を説明するためのブロック図である。FIG. 24 is a block diagram for illustrating an insulating film forming unit in the ninth embodiment. 図25は、実施の形態9における絶縁電線の製造方法の手順を示すフローチャートである。FIG. 25 is a flowchart showing a procedure of a method for manufacturing an insulated wire in the ninth embodiment. 図26は、気孔率と静電容量との関係を示すグラフである。FIG. 26 is a graph showing the relationship between porosity and capacitance.
 [本開示が解決しようとする課題]
 絶縁電線の製造方法又は検査方法においては、絶縁電線の絶縁特性に影響を与え得る欠陥部、なかでも特に目視では正確な検知が難しい微小な欠陥部を適切に検出することが求められている。また検査効率を考慮して、絶縁電線を搬送しながら非破壊で欠陥部を検知することが求められている。
[Problems to be solved by the present disclosure]
In the manufacturing method or the inspection method of an insulated wire, it is required to appropriately detect a defective portion that can affect the insulation characteristics of the insulated wire, particularly a minute defective portion that is difficult to detect accurately by visual observation. Further, in consideration of inspection efficiency, it is required to detect a defective portion non-destructively while conveying an insulated wire.
 そこで、絶縁電線の絶縁特性に影響を与え得る欠陥部、特に微小な欠陥部を、絶縁電線を搬送しながら非破壊で適切に検出することができ、それにより安定した品質の絶縁電線を製造することを可能とする絶縁電線の製造方法およびその方法を実施するための製造装置、並びにそのような欠陥部を適切に検出可能な絶縁電線の検査方法を提供することを目的の1つとする。
 [本開示の効果]
Therefore, defective parts that can affect the insulation characteristics of insulated wires, in particular minute defects, can be detected appropriately while non-destructive while conveying insulated wires, thereby producing stable quality insulated wires. An object of the present invention is to provide a method of manufacturing an insulated wire that enables this, a manufacturing apparatus for carrying out the method, and a method for inspecting an insulated wire that can appropriately detect such a defective portion.
[Effects of the present disclosure]
 本開示によれば、絶縁電線の絶縁特性に影響を与え得る欠陥部、特に微小な欠陥部を、絶縁電線を搬送しながら非破壊で適切に検出することができ、それにより安定した品質の絶縁電線を製造することが可能となる。 According to the present disclosure, it is possible to appropriately detect non-destructive defects, particularly minute defects, that can affect the insulation characteristics of an insulated wire while transporting the insulated wire, thereby ensuring stable quality insulation. An electric wire can be manufactured.
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。本願の絶縁電線の製造方法は、線状の形状を有する導体を準備する工程と、導体の外周側の面を覆うように、絶縁皮膜を形成することにより、導体と、導体を被覆する絶縁皮膜とを有する絶縁電線を得る工程と、絶縁電線を導体の長手方向に搬送しながら、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置される第1の電極と絶縁電線との間の第1の静電容量を測定し、第1の静電容量の推移に基づいて、絶縁皮膜内の欠陥部の形成状態を含む絶縁皮膜の形成状態を検査する工程と、を含む。
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described. The method of manufacturing an insulated wire of the present application includes a step of preparing a conductor having a linear shape, and an insulating film that covers the conductor and the conductor by forming an insulating film so as to cover the outer peripheral surface of the conductor. A first electrode disposed on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire while conveying the insulated wire in the longitudinal direction of the conductor, and the insulated wire; Measuring a first capacitance between the first and second electrodes, and inspecting a formation state of the insulating film including a formation state of a defective portion in the insulating film based on a transition of the first capacitance.
 本願の絶縁電線の製造方法は、絶縁皮膜の形成状態を検査する工程を含む。この絶縁皮膜の形成状態を検査する工程においては、絶縁電線と、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置された電極との間の静電容量が、絶縁皮膜の形成状態によって変動することを利用して絶縁皮膜の形成状態を検査する。特に絶縁皮膜に欠陥部が存在する場合にその欠陥部を検出する。この検査においては、絶縁皮膜の厚みや誘電率の変化に伴って絶縁電線と電極との間の静電容量が変動することを利用する。絶縁皮膜に欠陥部が存在すると絶縁電線の実質的な厚みや誘電率に変化が生じることから、電極と絶縁皮膜との間の静電容量の値が定常時と比べて変化する。そのため、導体の長手方向に搬送される絶縁電線と電極との間の静電容量の推移に基づいて、絶縁皮膜の形成状態が検査され、絶縁皮膜内に欠陥部が存在した場合にその存在を検知することができる。 The manufacturing method of the insulated wire of this application includes the process of inspecting the formation state of an insulating film. In the step of inspecting the formation state of the insulating film, the electrostatic capacitance between the insulated wire and the electrode disposed on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire is The formation state of the insulating film is inspected by utilizing the variation depending on the formation state. In particular, when a defective part exists in the insulating film, the defective part is detected. In this inspection, the fact that the capacitance between the insulated wire and the electrode fluctuates with changes in the thickness of the insulating film and the dielectric constant is utilized. If there is a defect in the insulating film, the substantial thickness and dielectric constant of the insulated wire change, so that the value of the capacitance between the electrode and the insulating film changes compared to the steady state. Therefore, the formation state of the insulation film is inspected based on the transition of the capacitance between the insulated wire and the electrode conveyed in the longitudinal direction of the conductor, and if there is a defect in the insulation film, the presence is confirmed. Can be detected.
 具体的には、線状の導体と、その導体の外周側に掲載された絶縁皮膜とを有する絶縁電線に対し、絶縁電線の外周面に対向するように絶縁電線の径方向外側に電極を配置し、絶縁電線の長手方向に搬送しながら絶縁電線と電極との間の静電容量(キャパシタンス)を測定する。このとき、欠陥のない正常部においては静電容量は定常状態を示す。これに対し、絶縁皮膜に傷や穴、肉薄部(絶縁皮膜の平均厚みと比較して、局所的に厚みが有意に小さい部分)、内部に空孔を有する絶縁皮膜においては低気孔率部(局所的に空孔が存在しない領域又は絶縁皮膜の平均気孔率と比較して気孔率が局所的に有意に低い領域)などの欠陥部が存在すると静電容量は変化する。例えば導体の盛り上がりにより絶縁皮膜が相対的に薄くなる肉薄部が存在すると絶縁電線と電極との間の静電容量は増加する。また絶縁皮膜上に傷や穴が存在すると、その傷や穴の状況に応じて静電容量が変化する。絶縁電線を導体の長手方向に搬送しながら、電極と絶縁電線との間の静電容量を検出し、得られる静電容量の推移に基づいて絶縁皮膜の形成状態を検査することで、絶縁皮膜の形成状態を検査し、欠陥部が存在する場合にその欠陥部を精度良く検出することができる。 Specifically, for an insulated wire having a linear conductor and an insulating film posted on the outer periphery of the conductor, an electrode is arranged on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire. And the electrostatic capacitance (capacitance) between an insulated wire and an electrode is measured, conveying in the longitudinal direction of an insulated wire. At this time, in the normal part having no defect, the capacitance shows a steady state. On the other hand, in the insulating film having scratches, holes, thin parts (parts where the thickness is locally significantly smaller than the average thickness of the insulating film), and in the insulating film having pores inside, the low porosity part ( The capacitance changes when there is a defect portion such as a region where no void exists locally or a region where the porosity is locally significantly lower than the average porosity of the insulating film. For example, if there is a thin portion where the insulating film becomes relatively thin due to the rise of the conductor, the capacitance between the insulated wire and the electrode increases. Further, if there are scratches or holes on the insulating film, the capacitance changes depending on the state of the scratches or holes. By detecting the electrostatic capacitance between the electrode and the insulated wire while transporting the insulated wire in the longitudinal direction of the conductor, the insulation film is inspected based on the transition of the obtained capacitance. The formation state of the film is inspected, and when a defective portion exists, the defective portion can be detected with high accuracy.
 上記絶縁皮膜の形成状態を検査する工程においては、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部を検出するようにしてもよい。このような微小な欠陥部は、絶縁電線の長手方向に搬送しながら行う検査において目視では見落とすおそれがある。上記製造方法において、検査工程で用いられる電極を適切に選定することで、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部を精度良く検出することができる。その結果、欠陥部の未検出の頻度が低下する。 In the step of inspecting the formation state of the insulating film, a defect portion in the insulating film having a length of 4 mm or less along the longitudinal direction of the conductor may be detected. Such a minute defect portion may be overlooked visually in an inspection performed while being conveyed in the longitudinal direction of the insulated wire. In the said manufacturing method, the defect part in the insulating film whose length along the longitudinal direction of a conductor is 4 mm or less can be detected accurately by selecting appropriately the electrode used at a test process. As a result, the frequency of non-detection of defective portions decreases.
 第1の電極は、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部が検出可能となるように、長手方向に沿った長さが調整されているのが好ましい。このような構成を備えた電極を有することで、絶縁皮膜の形成状態を検査する工程において、導体の長手方向に沿った長さが小さい絶縁皮膜内の欠陥部をより確実に検出することが可能となる。具体的には導体の長手方向に沿った上記電極の長さは10mm以下とするのが好ましい。 The length of the first electrode along the longitudinal direction is preferably adjusted so that a defect in the insulating film having a length of 4 mm or less along the longitudinal direction of the conductor can be detected. By having an electrode with such a configuration, it is possible to more reliably detect defects in the insulating film having a small length along the longitudinal direction of the conductor in the step of inspecting the formation state of the insulating film. It becomes. Specifically, the length of the electrode along the longitudinal direction of the conductor is preferably 10 mm or less.
 絶縁皮膜の形成状態を検査する工程において、導体の長手方向に沿った長さが2mm以下の絶縁皮膜内の欠陥部を検出するようにしてもよい。このような構成を有することにより、より微細な欠陥部をより精度よく検出することが可能となる。 In the step of inspecting the formation state of the insulating film, a defect portion in the insulating film having a length of 2 mm or less along the longitudinal direction of the conductor may be detected. By having such a configuration, it becomes possible to detect a finer defect portion with higher accuracy.
 絶縁電線を得る工程において、絶縁皮膜は、導体の外周側の面を覆うように塗工液を塗工して塗膜を形成し、塗膜を加熱することにより形成されるようにしてもよい。本願の絶縁電線の製造方法は、このような絶縁皮膜を有する絶縁電線を製造するのに特に適している。 In the step of obtaining an insulated wire, the insulating film may be formed by applying a coating liquid so as to cover the outer peripheral surface of the conductor to form a coating film and heating the coating film. . The method for producing an insulated wire of the present application is particularly suitable for producing an insulated wire having such an insulating film.
 絶縁電線の絶縁皮膜は、内部に空孔を有していてもよい。この場合、絶縁皮膜の形成状態を検査する工程において、さらに静電容量と気孔率との関係に基づいて絶縁皮膜の形成状態を検査してもよい。 The insulating film of the insulated wire may have pores inside. In this case, in the step of inspecting the formation state of the insulating film, the formation state of the insulating film may be further inspected based on the relationship between the capacitance and the porosity.
 空気の誘電率は約1.0である。これに対し、絶縁皮膜を構成する材料は空気とは異なった誘電率を有する。したがって、絶縁皮膜内に空孔が存在すると、絶縁皮膜全体としての誘電率は絶縁皮膜内の空孔の存在割合(気孔率)に応じて変化する。本発明者らによる検討の結果、電極と絶縁電線との間の静電容量(キャパシタンス)と絶縁皮膜の気孔率との間には相関関係があることが確認された。そのため本願の絶縁電線の製造方法においては、絶縁皮膜の内部に空孔がする場合、気孔率が変化している部分を欠陥部として検知することができる。また静電容量の推移とともに、さらに静電容量と気孔率との関係に基づいて絶縁皮膜の形成状態を検査することで、気孔率が変化している部分の気孔率を導出することができる。 The dielectric constant of air is about 1.0. In contrast, the material constituting the insulating film has a dielectric constant different from that of air. Accordingly, when there are holes in the insulating film, the dielectric constant of the insulating film as a whole changes according to the existence ratio (porosity) of the holes in the insulating film. As a result of studies by the present inventors, it has been confirmed that there is a correlation between the capacitance between the electrode and the insulated wire and the porosity of the insulating film. Therefore, in the manufacturing method of the insulated wire of this application, when a void | hole exists in the inside of an insulating film, the part from which the porosity has changed can be detected as a defect part. Further, along with the transition of the capacitance, the porosity of the portion where the porosity is changed can be derived by inspecting the formation state of the insulating film based on the relationship between the capacitance and the porosity.
 絶縁皮膜内の欠陥部は、内部に空孔を有する絶縁皮膜内に存在する低気孔率部であってもよい。本願の絶縁電線の製造方法は、内部に空孔を有する絶縁皮膜内に存在しうる、目視では検出しにくい低気孔率部の検出を的確に行うための方法としても好適である。低気孔率部が存在する箇所においては絶縁皮膜の誘電率が変化する。そのため低気孔率部が存在する箇所においては絶縁電線と上記電極との間の静電容量が変動する。この現象を利用し、上記絶縁電線の製造方法において、低気孔率部をより効率よく検出することができる。なお上述の通り、低気孔率部とは、局所的に空孔が存在しない領域又は絶縁皮膜の平均気孔率と比較して気孔率が局所的に有意に低い領域をいう。低気孔率部のなかでも局所的に空孔が存在しない領域を特に無空孔部という。 The defective part in the insulating film may be a low porosity part existing in the insulating film having pores therein. The method for manufacturing an insulated wire of the present application is also suitable as a method for accurately detecting a low porosity portion that is present in an insulating film having pores and is difficult to detect visually. The dielectric constant of the insulating film changes at locations where the low porosity portion exists. Therefore, the electrostatic capacity between the insulated wire and the electrode fluctuates at a location where the low porosity portion exists. By utilizing this phenomenon, the low porosity portion can be detected more efficiently in the method for manufacturing an insulated wire. Note that, as described above, the low porosity portion refers to a region where pores do not exist locally or a region where the porosity is significantly lower than the average porosity of the insulating coating. Among the low porosity portions, a region where no pores exist locally is particularly referred to as a non-porous portion.
 絶縁皮膜内の上記欠陥部は肉薄部であってもよい。本願の絶縁電線の製造方法は、目視では検出しにくい肉薄部の検出を的確に行うための方法として好適である。上述の通り、肉薄部とは絶縁皮膜の平均厚みと比較して、局所的に厚みが有意に小さい部分をいう。静電容量は絶縁電線の厚みに反比例するため、肉薄部が存在すると、絶縁電線と上記電極との間の静電容量は大きくなる。この現象を利用し、上記絶縁電線の製造方法において、肉薄部を効率よく検出することができる。 The defective part in the insulating film may be a thin part. The manufacturing method of the insulated wire of this application is suitable as a method for performing the detection of the thin part which is hard to detect visually. As described above, the thin portion refers to a portion where the thickness is locally significantly smaller than the average thickness of the insulating film. Since the capacitance is inversely proportional to the thickness of the insulated wire, the presence of a thin portion increases the capacitance between the insulated wire and the electrode. By utilizing this phenomenon, the thin portion can be efficiently detected in the above-described method for manufacturing an insulated wire.
 上記肉薄部は、膜厚減少量が1μm以上50μm以下であってもよい。このような肉薄部を欠陥部として適切に検知できることにより、欠陥の少ない絶縁電線の製造により効果的に寄与することができる。 The thin part may have a thickness reduction of 1 μm or more and 50 μm or less. By appropriately detecting such a thin portion as a defective portion, it is possible to effectively contribute to the manufacture of an insulated wire with few defects.
 上記絶縁電線の製造方法において、絶縁皮膜の厚み方向から平面視した平面形状における欠陥部の長手方向最大長さと幅方向最大長さとの積が、0.1mm以上20mm以下であってもよい。このような大きさを有する欠陥部を適切に検知できることにより、欠陥の少ない絶縁電線の製造により効果的に寄与することができる。なお、以下において、「絶縁皮膜の厚み方向から平面視した平面形状における欠陥部の長手方向最大長さ」および「絶縁皮膜の厚み方向から平面視した平面形状における欠陥部の幅方向最大長さ」をそれぞれ、「長手方向最大長さ」及び「幅方向最大長さ」と呼ぶ。 In the above method for manufacturing an insulated wire, the product of the maximum length in the longitudinal direction and the maximum length in the width direction of the defect in the planar shape viewed from the thickness direction of the insulating film may be 0.1 mm 2 or more and 20 mm 2 or less. . By appropriately detecting a defective portion having such a size, it is possible to effectively contribute to the manufacture of an insulated wire with few defects. In the following, “the maximum length in the longitudinal direction of the defect portion in the planar shape when viewed in plan from the thickness direction of the insulating coating” and “the maximum length in the width direction of the defect portion in the planar shape when viewed in plan from the thickness direction of the insulating coating” Are called “maximum length in the longitudinal direction” and “maximum length in the width direction”, respectively.
 第1の電極は、導体の長手方向に垂直な断面において導体の周方向に互いに離間するように分割された複数のユニットを含み、各ユニットは導体の長手方向に沿って延在してもよい。第1の電極がこのような形状を有することで、絶縁電線の周方向における欠陥の存在位置についても細かく特定することが可能となる。 The first electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each unit may extend along the longitudinal direction of the conductor. . When the first electrode has such a shape, it is possible to finely specify the existence position of the defect in the circumferential direction of the insulated wire.
 絶縁皮膜の形成状態を検査する工程において、第1の電極と絶縁電線との間の第1の静電容量を検出するとともに、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置された第2の電極と絶縁電線との間の第2の静電容量をさらに検出し、第1の静電容量の推移および第2の静電容量の推移の少なくともいずれか一方に基づいて絶縁皮膜の形成状態を検査するようにしてもよい。このように第1の電極および第2の電極を含む複数の電極を用いて検査を行うことにより、欠陥の誤検出を低減し、より精度良く欠陥を検出することができる。 In the step of inspecting the formation state of the insulating film, the first electrostatic capacitance between the first electrode and the insulated wire is detected, and at the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire. A second capacitance between the arranged second electrode and the insulated wire is further detected, and based on at least one of the transition of the first capacitance and the transition of the second capacitance You may make it test | inspect the formation state of an insulating film. As described above, by performing inspection using a plurality of electrodes including the first electrode and the second electrode, it is possible to reduce erroneous detection of defects and detect defects more accurately.
 上記絶縁電線の製造方法において、第2の電極の、導体の長手方向に沿った長さが第1の電極とは異なっていてもよい。このようにすることで、第1の電極と絶縁電線との間の第1の静電容量と、第2の電極と絶縁電線との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、より高い精度での欠陥の検出が可能となる。 In the method for manufacturing an insulated wire, the length of the second electrode along the longitudinal direction of the conductor may be different from that of the first electrode. By doing in this way, the 1st electrostatic capacity between the 1st electrode and an insulated wire and the 2nd electrostatic capacity between the 2nd electrode and an insulated wire are calculated, and based on them By comparing the inspection results (by taking the difference between the two), it becomes possible to detect defects with higher accuracy.
 第2の電極は、導体の長手方向に垂直な断面において導体の周方向に互いに離間するように分割された複数のユニットを含み、各ユニットは導体の長手方向に沿って延在してもよい。第2の電極がこのような形状を有することで、絶縁電線の周方向における欠陥の存在位置についてもさらに細かく特定することが可能となる。 The second electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each unit may extend along the longitudinal direction of the conductor. . Since the second electrode has such a shape, it is possible to further finely specify the position of the defect in the circumferential direction of the insulated wire.
 上記絶縁皮膜は、ポリイミドを含んでもよい。ポリイミドを含む絶縁皮膜は、絶縁性および耐熱性に優れる。そのため、ポリイミドは絶縁皮膜を構成する材料として好適である。またポリイミドは上記絶縁電線の製造方法において欠陥を検出するのに適度な誘電率を有する。そのため、上記絶縁電線の製造方法は、ポリイミドを含む絶縁皮膜を備えた絶縁電線を、欠陥部が発生しても適切に検出可能な状態で製造するのに適している。また、絶縁皮膜は、ポリアミドイミドを含んでも良い。ポリアミドイミドを含む絶縁皮膜は、ポリイミドを含む絶縁皮膜同様、絶縁性及び耐久性に優れるため、ポリイミドと同様のメリットを有する。 The insulating film may contain polyimide. An insulating film containing polyimide is excellent in insulation and heat resistance. Therefore, polyimide is suitable as a material constituting the insulating film. Polyimide has an appropriate dielectric constant for detecting defects in the above-described method for manufacturing an insulated wire. Therefore, the above-described method for manufacturing an insulated wire is suitable for manufacturing an insulated wire having an insulating film containing polyimide in a state where it can be appropriately detected even if a defect occurs. The insulating film may contain polyamideimide. The insulating film containing polyamideimide has the same merit as polyimide because it is excellent in insulation and durability like the insulating film containing polyimide.
 絶縁皮膜の形成状態を検査する工程は、オンラインで行われるのが好ましい。絶縁皮膜の形成状態を検査する工程をオンラインで検査を行うことにより、連続して絶縁電線の製造を行うことができ、高い生産効率で絶縁電線を得ることができる。なおオンラインで検査を行う状態とは、一連の製造工程内において、絶縁電線を得る工程に引き続き連続して絶縁皮膜の形成状態を検査する状態を意味する。 The step of inspecting the formation state of the insulating film is preferably performed online. By performing an on-line inspection of the step of inspecting the formation state of the insulating film, the insulated wire can be continuously manufactured, and the insulated wire can be obtained with high production efficiency. The state in which the inspection is performed online means a state in which the formation state of the insulating film is inspected continuously after the step of obtaining the insulated wire in a series of manufacturing processes.
 本願の絶縁電線の検査方法は、線状の形状を有する導体と、導体の外周側に形成された絶縁皮膜とを有する絶縁電線を準備する工程と、絶縁電線を導体の長手方向に搬送しながら、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置される電極と絶縁電線との間の静電容量を測定し、静電容量の推移に基づいて絶縁皮膜の形成状態を検査する工程とを含む。上記検査方法は、絶縁皮膜の形成状態を検査する工程において、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部を検出可能である。 The method for inspecting an insulated wire of the present application includes a step of preparing an insulated wire having a conductor having a linear shape and an insulating film formed on the outer peripheral side of the conductor, while conveying the insulated wire in the longitudinal direction of the conductor. , Measure the capacitance between the insulated wire and the electrode arranged radially outside the insulated wire so as to face the outer peripheral surface of the insulated wire, and determine the formation state of the insulation film based on the transition of the capacitance Inspecting. The inspection method can detect a defective portion in the insulating film having a length of 4 mm or less along the longitudinal direction of the conductor in the step of inspecting the formation state of the insulating film.
 本願の絶縁電線の検査方法においては、絶縁電線と、絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置された電極との間の静電容量が、絶縁皮膜の形成状態によって変動することを利用して欠陥部を検出する。上記検査方法においては、絶縁皮膜の厚みや誘電率の変化に伴って絶縁電線と電極との間の静電容量が変動することを利用する。絶縁皮膜に欠陥部が存在すると絶縁電線の実質的な厚みや誘電率に変化が生じることから、電極と絶縁皮膜との間の静電容量の値が定常時と比べて変化する。そのため、導体の長手方向に搬送される絶縁電線と電極との間の静電容量の推移に基づいて、絶縁皮膜内に欠陥部が存在した場合にその存在を検知することができる。 In the insulated wire inspection method of the present application, the electrostatic capacitance between the insulated wire and the electrode arranged on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire depends on the formation state of the insulation film. The defect portion is detected by utilizing the fluctuation. The inspection method utilizes the fact that the capacitance between the insulated wire and the electrode varies with changes in the thickness of the insulating film and the dielectric constant. If there is a defect in the insulating film, the substantial thickness and dielectric constant of the insulated wire change, so that the value of the capacitance between the electrode and the insulating film changes compared to the steady state. Therefore, based on the transition of the electrostatic capacitance between the insulated wire and the electrode conveyed in the longitudinal direction of the conductor, the presence of the defective portion can be detected in the insulating film.
 具体的には、線状の導体と、その導体の外周側に掲載された絶縁皮膜とを有する絶縁電線に対し、絶縁電線の外周面に対向するように絶縁電線の径方向外側に電極を配置し、絶縁電線の長手方向に搬送しながら絶縁電線と電極との間の静電容量(キャパシタンス)を測定すると、欠陥のない正常部においては定常状態を示す。これに対し、絶縁皮膜に傷や穴、肉薄部(絶縁皮膜の平均厚みと比較して、局所的に厚みが有意に小さい部分)、内部に空孔を有する絶縁皮膜においては低気孔率部(局所的に空孔が存在しない領域又は絶縁皮膜の平均気孔率と比較して気孔率が局所的に有意に低い領域)などの欠陥部が存在すると静電容量は変化する。例えば導体の盛り上がりにより絶縁皮膜が相対的に薄くなる肉薄部が存在すると絶縁電線と電極との間の静電容量は増加する。また絶縁皮膜上に傷や穴が存在すると、その傷や穴の状況に応じて静電容量が変化する。絶縁電線を導体の長手方向に搬送しながら、電極と絶縁電線との間の静電容量を検出し、得られる静電容量の推移に基づいて絶縁皮膜の形成状態を検査することで、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部を精度良く検出することができる。 Specifically, for an insulated wire having a linear conductor and an insulating film posted on the outer periphery of the conductor, an electrode is arranged on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire. And when the electrostatic capacitance (capacitance) between an insulated wire and an electrode is measured, conveying in the longitudinal direction of an insulated wire, in a normal part without a defect, a steady state is shown. On the other hand, in the insulating film having scratches, holes, thin parts (parts where the thickness is locally significantly smaller than the average thickness of the insulating film), and in the insulating film having pores inside, the low porosity part ( The capacitance changes when there is a defect portion such as a region where no void exists locally or a region where the porosity is locally significantly lower than the average porosity of the insulating film. For example, if there is a thin portion where the insulating film becomes relatively thin due to the rise of the conductor, the capacitance between the insulated wire and the electrode increases. Further, if there are scratches or holes on the insulating film, the capacitance changes depending on the state of the scratches or holes. By detecting the capacitance between the electrode and the insulated wire while transporting the insulated wire in the longitudinal direction of the conductor, and examining the formation state of the insulating film based on the transition of the obtained capacitance, It is possible to accurately detect a defect in the insulating film having a length of 4 mm or less along the longitudinal direction.
 上記電極は、導体の長手方向に沿った長さが4mm以下の絶縁皮膜内の欠陥部が検出可能となるように、長手方向に沿った長さが調整されていてもよい。このような構成を備えた電極を有することで、絶縁皮膜の形成状態を検査する工程において、導体の長手方向に沿った長さが小さい絶縁皮膜内の欠陥部を検出することが可能となる。具体的には導体の長手方向に沿った上記電極の長さは10mm以下とするのが好ましい。 The length along the longitudinal direction of the electrode may be adjusted so that a defect in the insulating film having a length along the longitudinal direction of the conductor of 4 mm or less can be detected. By having an electrode having such a configuration, it is possible to detect a defective portion in the insulating film having a small length along the longitudinal direction of the conductor in the step of inspecting the formation state of the insulating film. Specifically, the length of the electrode along the longitudinal direction of the conductor is preferably 10 mm or less.
 絶縁皮膜の形成状態を検査する工程においては、導体の長手方向に沿った長さが2mm以下の絶縁皮膜内の欠陥部を検出可能であるのが好ましい。このような構成を有することにより、より微細な欠陥部をより精度よく検出することが可能となる。 In the step of inspecting the formation state of the insulating film, it is preferable that a defect in the insulating film having a length of 2 mm or less along the longitudinal direction of the conductor can be detected. By having such a configuration, it becomes possible to detect a finer defect portion with higher accuracy.
 上記絶縁電線を準備する工程において準備される絶縁電線の絶縁皮膜は、内部に空孔を有していてもよい。この場合、絶縁皮膜の形成状態を検査する工程において、さらに静電容量と気孔率との関係に基づいて絶縁皮膜の形成状態を検査してもよい。 The insulating film of the insulated wire prepared in the step of preparing the insulated wire may have a hole inside. In this case, in the step of inspecting the formation state of the insulating film, the formation state of the insulating film may be further inspected based on the relationship between the capacitance and the porosity.
 上記の通り電極と絶縁電線との間の静電容量(キャパシタンス)と絶縁皮膜の気孔率との間には相関関係があることが確認された。そのため本願の絶縁電線の検査方法は、絶縁皮膜の内部に空孔がする場合、気孔率が変化している部分を欠陥部として検知することができる。また静電容量の推移とともに、さらに静電容量と気孔率との関係に基づいて絶縁皮膜の形成状態を検査することで、気孔率が変化している部分の気孔率を導出することができる。 As described above, it was confirmed that there is a correlation between the capacitance between the electrode and the insulated wire and the porosity of the insulating film. Therefore, the insulated wire inspection method of the present application can detect a portion where the porosity is changed as a defective portion when a void is formed inside the insulating film. Further, along with the transition of the capacitance, the porosity of the portion where the porosity is changed can be derived by inspecting the formation state of the insulating film based on the relationship between the capacitance and the porosity.
 絶縁皮膜内の欠陥部は、内部に空孔を有する絶縁皮膜内に存在する低気孔率部であってもよい。本願の絶縁電線の検査方法は、内部に空孔を有する絶縁皮膜内に存在しうる、目視では検出しにくい低気孔率部の検出を的確に行うための方法としても好適である。低気孔率部が存在する箇所においては絶縁皮膜の誘電率が変化する。そのため低気孔率部が存在する箇所においては絶縁電線と上記電極との間の静電容量が変動する。この現象を利用し、上記絶縁電線の検査方法において、低気孔率部をより効率よく検出することができる。 The defective part in the insulating film may be a low porosity part existing in the insulating film having pores therein. The method for inspecting an insulated wire of the present application is also suitable as a method for accurately detecting a low-porosity portion that can be present in an insulating film having pores therein and is difficult to detect visually. The dielectric constant of the insulating film changes at locations where the low porosity portion exists. Therefore, the electrostatic capacity between the insulated wire and the electrode fluctuates at a location where the low porosity portion exists. By utilizing this phenomenon, the low porosity portion can be detected more efficiently in the above-described insulated wire inspection method.
 絶縁皮膜内の上記欠陥部は肉薄部であってもよい。本願の絶縁電線の検査方法は、目視では検出しにくい肉薄部の検出を的確に行うための方法として好適である。上述の通り、肉薄部とは絶縁皮膜の平均厚みと比較して、局所的に厚みが有意に小さい部分をいう。静電容量は絶縁電線の厚みに反比例するため、肉薄部が存在すると、絶縁電線と上記電極との間の静電容量は大きくなる。この現象を利用し、上記絶縁電線の検査方法において、肉薄部を効率よく検出することができる。 The defective part in the insulating film may be a thin part. The insulated wire inspection method of the present application is suitable as a method for accurately detecting a thin portion that is difficult to detect visually. As described above, the thin portion refers to a portion where the thickness is locally significantly smaller than the average thickness of the insulating film. Since the capacitance is inversely proportional to the thickness of the insulated wire, the presence of a thin portion increases the capacitance between the insulated wire and the electrode. By utilizing this phenomenon, a thin portion can be efficiently detected in the above-described method for inspecting an insulated wire.
 上記肉薄部は、膜厚減少量が1μm以上50μm以下であってもよい。このような肉薄部を欠陥部として適切に検知できることにより、欠陥の少ない絶縁電線の製造により効果的に寄与することができる。 The thin part may have a thickness reduction of 1 μm or more and 50 μm or less. By appropriately detecting such a thin portion as a defective portion, it is possible to effectively contribute to the manufacture of an insulated wire with few defects.
 上記絶縁電線の検査方法において、絶縁皮膜の厚み方向から平面視した平面形状における欠陥部の長手方向最大長さと幅方向最大長さとの積が、0.1mm以上20mm以下であってもよい。このような大きさを有する欠陥部を適切に検知できることにより、欠陥の少ない絶縁電線の製造により効果的に寄与することができる。 In the above-described method for inspecting an insulated wire, the product of the maximum length in the longitudinal direction and the maximum length in the width direction of the defect in the planar shape viewed in plan from the thickness direction of the insulating film may be 0.1 mm 2 or more and 20 mm 2 or less. . By appropriately detecting a defective portion having such a size, it is possible to effectively contribute to the manufacture of an insulated wire with few defects.
 上記絶縁皮膜は、ポリイミドを含んでもよい。ポリイミドを含む絶縁皮膜は、絶縁性および耐熱性に優れる。そのため、ポリイミドは絶縁皮膜を構成する材料として好適である。またポリイミドは上記絶縁電線の検査方法において欠陥を検出するのに適度な誘電率を有することから、上記絶縁電線の検査方法は、ポリイミドを含む絶縁皮膜を備えた絶縁電線の欠陥部を検出するのに適している。また、絶縁皮膜は、ポリアミドイミドを含んでも良い。ポリアミドイミドを含む絶縁皮膜は、ポリイミドを含む絶縁皮膜同様、絶縁性及び耐久性に優れるため、ポリイミドと同様のメリットを有する。 The insulating film may contain polyimide. An insulating film containing polyimide is excellent in insulation and heat resistance. Therefore, polyimide is suitable as a material constituting the insulating film. In addition, since polyimide has an appropriate dielectric constant for detecting defects in the above-described insulated wire inspection method, the above-described insulated wire inspection method detects a defective portion of an insulated wire having an insulating film containing polyimide. Suitable for The insulating film may contain polyamideimide. The insulating film containing polyamideimide has the same merit as polyimide because it is excellent in insulation and durability like the insulating film containing polyimide.
 絶縁皮膜の形成状態を検査する工程は、オンラインで行われるのが好ましい。絶縁皮膜の形成状態を検査する工程をオンラインで検査を行うことにより、連続して絶縁電線の製造を行うことができ、高い生産効率で絶縁電線を得ることができる。なおオンラインで検査を行う状態とは、一連の製造工程内において、絶縁電線を得る工程に引き続き連続して絶縁皮膜の形成状態を検査する状態を意味する。 The step of inspecting the formation state of the insulating film is preferably performed online. By performing an on-line inspection of the step of inspecting the formation state of the insulating film, the insulated wire can be continuously manufactured, and the insulated wire can be obtained with high production efficiency. The state in which the inspection is performed online means a state in which the formation state of the insulating film is inspected continuously after the step of obtaining the insulated wire in a series of manufacturing processes.
 本願の絶縁電線製造装置は、線状の形状を有する導体を準備する導線準備部と、導体の外周側を覆うように絶縁皮膜を形成する絶縁皮膜形成部と、導体および絶縁皮膜を有する絶縁電線の、絶縁皮膜の形成状態を検査する検査部と、を備える。絶縁皮膜形成部は、絶縁皮膜の原料となるワニス(塗工液)を導体の外周側を覆うように塗工する塗工装置と、塗工装置により塗工された塗膜を加熱する加熱部と、を含む。検査部は、導体の長手方向に搬送されながら検査される絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置される第1の電極を有し、導体の長手方向に搬送される絶縁電線と第1の電極との間の第1の静電容量を測定するキャパシタンスセンサを含む。 The insulated wire manufacturing apparatus of the present application includes a conductor preparation unit that prepares a conductor having a linear shape, an insulating film forming unit that forms an insulating film so as to cover the outer peripheral side of the conductor, and an insulated wire that includes the conductor and the insulating film. And an inspection part for inspecting the formation state of the insulating film. The insulating film forming unit includes a coating device that coats the varnish (coating liquid) that is a raw material of the insulating coating so as to cover the outer peripheral side of the conductor, and a heating unit that heats the coating film coated by the coating device. And including. The inspection unit has a first electrode disposed on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire to be inspected while being conveyed in the longitudinal direction of the conductor, and is conveyed in the longitudinal direction of the conductor. A capacitance sensor that measures a first capacitance between the insulated wire and the first electrode.
 このような絶縁電線製造装置により絶縁電線を製造する場合、導体の長手方向に搬送される絶縁電線と電極との間の静電容量の推移に基づいて、絶縁皮膜の形成状態が検査され、絶縁皮膜内に欠陥部が存在した場合にその存在を検知することができる。その結果、欠陥部が発生しても高い頻度で検出が可能な状態で絶縁電線を製造することができる。 When manufacturing an insulated wire with such an insulated wire manufacturing apparatus, the formation state of the insulation film is inspected based on the transition of the capacitance between the insulated wire and the electrode conveyed in the longitudinal direction of the conductor, and the insulation When a defect exists in the film, the presence can be detected. As a result, it is possible to manufacture an insulated wire in a state where detection can be performed with high frequency even if a defective portion occurs.
 上記絶縁電線製造装置において、第1の電極の、導体の長手方向の長さが0.1mm以上10mm以下であってもよい。上記製造装置のキャパシタンスセンサによって測定される第1の静電容量の値は電極の長手方向に沿って平均化した値となる。導体の長手方向に沿って長い電極を使用した場合、広い範囲を検出することが可能となるが、静電容量の値が電極の長手方向に渡って平均化されるため、微細な欠陥を感度良く検出することが難しい。これに対し、導体の長手方向に沿った上記電極の長さを10mm以下とすることで、長手方向に長い電極では検知しにくい微細な欠陥をも検知することができる。一方、導体の長手方向に沿った上記電極の長さが短すぎると、測定範囲が狭くなり、絶縁皮膜の局所的な状態の差に応じて静電容量の変動が大きくなることから、正確な欠陥の検出が難しくなる。導体の長手方向に沿った上記第1の電極の長さを0.1mm以上とすることにより、より高い精度での欠陥の検出を行うことができる。 In the insulated wire manufacturing apparatus, the length of the first electrode in the longitudinal direction of the conductor may be 0.1 mm or more and 10 mm or less. The value of the first capacitance measured by the capacitance sensor of the manufacturing apparatus is a value averaged along the longitudinal direction of the electrode. When a long electrode is used along the longitudinal direction of the conductor, it is possible to detect a wide range, but since the capacitance value is averaged over the longitudinal direction of the electrode, it is sensitive to fine defects. It is difficult to detect well. On the other hand, by setting the length of the electrode along the longitudinal direction of the conductor to 10 mm or less, it is possible to detect minute defects that are difficult to detect with an electrode that is long in the longitudinal direction. On the other hand, if the length of the electrode along the longitudinal direction of the conductor is too short, the measurement range becomes narrow, and the variation in capacitance increases with the difference in the local state of the insulating film. Defect detection becomes difficult. By setting the length of the first electrode along the longitudinal direction of the conductor to 0.1 mm or more, it is possible to detect defects with higher accuracy.
 上記絶縁電線製造装置において、第1の電極は、導体の長手方向に垂直な断面において導体の周方向に互いに離間するように分割された複数のユニットを含み、各ユニットは導体の長手方向に沿って延在してもよい。第1の電極がこのような形状を有することで、絶縁電線の周方向における欠陥の存在位置についても細かく特定することが可能となる。 In the insulated wire manufacturing apparatus, the first electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each unit extends along the longitudinal direction of the conductor. May extend. When the first electrode has such a shape, it is possible to finely specify the existence position of the defect in the circumferential direction of the insulated wire.
 上記絶縁電線製造装置において、キャパシタンスセンサは、導体の長手方向に搬送されながら検査される絶縁電線の外周面に対向するように絶縁電線の径方向外側に配置される、第1の電極とは異なる第2の電極をさらに有していてもよい。このときキャパシタンスセンサは、導体の長手方向に搬送される絶縁電線と第2の電極との間の第2の静電容量をさらに測定するようにしてもよい。このように第1の電極および第2の電極を含む複数の電極を用いて検査を行うことにより、欠陥の誤検出を低減し、より精度良く欠陥を検出することができる。 In the insulated wire manufacturing apparatus, the capacitance sensor is different from the first electrode disposed on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire being inspected while being conveyed in the longitudinal direction of the conductor. A second electrode may be further included. At this time, the capacitance sensor may further measure a second capacitance between the insulated wire conveyed in the longitudinal direction of the conductor and the second electrode. As described above, by performing inspection using a plurality of electrodes including the first electrode and the second electrode, it is possible to reduce erroneous detection of defects and detect defects more accurately.
 上記絶縁電線製造装置において、第1の電極の、導体の長手方向の長さが0.1mm以上10mm以下であってもよい。導体の長手方向に沿った上記電極の長さを10mm以下とすることで、長手方向に長い電極では検知しにくい微細な欠陥をも検知することができる。また導体の長手方向に沿った上記第1の電極の長さを0.1mm以上とすることにより、より高い精度での欠陥の検出を行うことができる。 In the insulated wire manufacturing apparatus, the length of the first electrode in the longitudinal direction of the conductor may be 0.1 mm or more and 10 mm or less. By setting the length of the electrode along the longitudinal direction of the conductor to 10 mm or less, it is possible to detect minute defects that are difficult to detect with an electrode that is long in the longitudinal direction. Moreover, the defect can be detected with higher accuracy by setting the length of the first electrode along the longitudinal direction of the conductor to 0.1 mm or more.
 上記絶縁電線製造装置が第2の電極を有する場合、第2の電極の、導体の長手方向に沿った長さが第1の電極とは異なるようにしてもよい。このようにすることで、第1の電極と絶縁電線との間の第1の静電容量と、第2の電極と絶縁電線との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、より高い精度での欠陥の検出が可能となる。 When the insulated wire manufacturing apparatus has the second electrode, the length of the second electrode along the longitudinal direction of the conductor may be different from that of the first electrode. By doing in this way, the 1st electrostatic capacity between the 1st electrode and an insulated wire and the 2nd electrostatic capacity between the 2nd electrode and an insulated wire are calculated, and based on them By comparing the inspection results (by taking the difference between the two), it becomes possible to detect defects with higher accuracy.
 上記絶縁電線製造装置において、第2の電極は、導体の長手方向に垂直な断面において導体の周方向に互いに離間するように分割された複数のユニットを含み、各ユニットは導体の長手方向に沿って延在してもよい。第2の電極がこのような形状を有することで、絶縁電線の周方向における欠陥の存在位置についても細かく特定することが可能となる。 In the insulated wire manufacturing apparatus, the second electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each unit extends along the longitudinal direction of the conductor. May extend. Since the second electrode has such a shape, it is possible to finely specify the position of the defect in the circumferential direction of the insulated wire.
 上記絶縁電線製造装置において、導線準備部は、金属素線を保持し、供給する素線供給部と、金属素線を加工する導体加工部と、を含んでいてもよい。導線準備部が素線供給部と導体加工部とを別途有することで、素線から所望の形状の導線に加工することができる。 In the insulated wire manufacturing apparatus, the conducting wire preparation unit may include a strand supplying unit that holds and supplies a metal strand and a conductor processing unit that processes the metal strand. Since the conducting wire preparation unit has the strand supplying unit and the conductor processing unit separately, the conducting wire can be processed into a conductor having a desired shape.
 絶縁皮膜形成部において、塗工装置は、ポリイミド前駆体を含むワニス(塗工液)を導体に塗工してもよく、加熱部は、塗工された塗膜を加熱し、ポリイミド前駆体からポリイミド皮膜を形成する焼付炉であってもよい。ポリイミドを含む絶縁皮膜は、絶縁性および耐熱性に優れる。そのため、ポリイミドは絶縁皮膜を構成する材料として好適である。またポリイミドは上記絶縁電線の検査方法において欠陥を検出するのに適度な誘電率を有する。絶縁皮膜形成部がこのような構成を有することで、ポリイミドを含む絶縁皮膜を効率よく製造することができる。 In the insulating film forming part, the coating device may apply a varnish (coating liquid) containing a polyimide precursor to the conductor, and the heating part heats the applied coating film, from the polyimide precursor. The baking furnace which forms a polyimide membrane | film | coat may be sufficient. An insulating film containing polyimide is excellent in insulation and heat resistance. Therefore, polyimide is suitable as a material constituting the insulating film. Polyimide has an appropriate dielectric constant for detecting defects in the above-described insulated wire inspection method. When the insulating film forming portion has such a configuration, an insulating film containing polyimide can be efficiently manufactured.
 上記絶縁電線製造装置は、検査部において検査された絶縁電線を巻き取る巻取り部をさらに備えていてもよい。また絶縁電線が切断されないように導線準備部から巻取り部までが並べて配置されていてもよい。上記絶縁電線製造装置を構成する各構成要素が並べて配置されていることにより、絶縁電線の製造途中で中断することなく連続して絶縁電線の製造を行うことができる。その結果、高い生産効率で絶縁電線を得ることができる。また絶縁皮膜の形成状態を検査する工程をオンラインで検査を行うことができる。 The insulated wire manufacturing apparatus may further include a winding unit that winds up the insulated wire inspected in the inspection unit. Moreover, the conductor preparation part to the winding part may be arranged side by side so that the insulated wire is not cut. By arranging the constituent elements constituting the insulated wire manufacturing apparatus side by side, the insulated wire can be continuously manufactured without interruption during the manufacturing of the insulated wire. As a result, an insulated wire can be obtained with high production efficiency. In addition, the process for inspecting the formation state of the insulating film can be inspected online.
 [本願発明の実施形態の詳細]
 次に、本願の絶縁電線の製造方法、絶縁電線の検査方法および絶縁電線製造装置の実施の形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
[Details of the embodiment of the present invention]
Next, an insulated wire manufacturing method, an insulated wire inspection method, and an insulated wire manufacturing apparatus according to embodiments of the present application will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 [絶縁電線の構造]
 まず、図1~図13を参照して実施の形態1を説明する。図1は実施の形態1において検査される絶縁電線の一例の断面模式図である。図1を参照して、絶縁電線1は、線状の形状を有する導体10の長手方向に垂直な断面において円形の断面形状を有する。絶縁電線1は、円形の断面形状を有する線状の導体10と、この導体10の外周側に形成された絶縁皮膜20とを備える。絶縁皮膜20は、有機材料を含む絶縁体からなる。また絶縁皮膜20は内部に空孔15を含む。具体的には、絶縁皮膜20は、その内部に複数(多数)の空孔15が分散された状態で形成される。
(Embodiment 1)
[Insulated wire structure]
First, Embodiment 1 will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of an example of an insulated wire inspected in the first embodiment. With reference to FIG. 1, the insulated wire 1 has a circular cross-sectional shape in a cross section perpendicular to the longitudinal direction of a conductor 10 having a linear shape. The insulated wire 1 includes a linear conductor 10 having a circular cross-sectional shape and an insulating film 20 formed on the outer peripheral side of the conductor 10. The insulating film 20 is made of an insulator containing an organic material. Further, the insulating film 20 includes pores 15 inside. Specifically, the insulating film 20 is formed in a state where a plurality (large number) of holes 15 are dispersed therein.
 絶縁体に含まれる上記有機材料としては特に限定されないが、例えば熱硬化性樹脂であればポリイミド(PI)やポリアミドイミド(PAI)、熱可塑性樹脂であればポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)などが挙げられる。なかでも絶縁性および耐熱性に優れることから、絶縁皮膜20を構成する絶縁体はポリイミドまたはポリアミドイミドを含むのが好ましく、ポリイミドを含むものがより好ましい。絶縁皮膜20を構成する絶縁体の50質量%以上がポリイミドであるのがより好ましく、ポリイミドと不可避的不純物とからなるのが特に好ましい。例えば、本実施の形態における絶縁皮膜20の空孔15以外の部分はポリイミドおよび不可避的不純物からなるポリイミド皮膜である。図1を参照して、本実施の形態における絶縁皮膜20はその内部に空孔15を含む。絶縁皮膜20の全体積に占める空孔15の総体積の割合(気孔率)は、たとえば5体積%以上80体積%以下であり、好ましくは10体積%以上70体積%以下、より好ましくは25体積%以上65体積%以下である。ポリイミドなどの絶縁皮膜20を構成する材料と空気とでは誘電率が異なることから、絶縁皮膜20が空孔15を有することにより絶縁皮膜20全体としての誘電率が変化する。例えばポリイミドは、空気よりも誘電率(比誘電率)が高い。したがって、絶縁皮膜20がポリイミドからなる場合、絶縁皮膜20が空孔15を有することで、空孔15を有しない絶縁皮膜20に比べて誘電率の低い絶縁皮膜20を得ることができる。 Although it does not specifically limit as said organic material contained in an insulator, For example, if it is a thermosetting resin, polyimide (PI) or polyamideimide (PAI), if it is a thermoplastic resin, polyethersulfone (PES), polyether And ether ketone (PEEK). Especially, since it is excellent in insulation and heat resistance, it is preferable that the insulator which comprises the insulating film 20 contains a polyimide or a polyamideimide, and the thing containing a polyimide is more preferable. It is more preferable that 50% by mass or more of the insulator constituting the insulating film 20 is polyimide, and it is particularly preferable that the insulating film 20 is composed of polyimide and inevitable impurities. For example, the portions other than the holes 15 of the insulating film 20 in the present embodiment are polyimide films made of polyimide and inevitable impurities. Referring to FIG. 1, insulating film 20 in the present embodiment includes voids 15 therein. The ratio of the total volume of the pores 15 (porosity) to the total volume of the insulating film 20 is, for example, 5% by volume to 80% by volume, preferably 10% by volume to 70% by volume, more preferably 25% by volume. % To 65% by volume. Since the dielectric constant is different between air and the material constituting the insulating film 20 such as polyimide, the dielectric constant of the insulating film 20 as a whole changes when the insulating film 20 has the holes 15. For example, polyimide has a higher dielectric constant (relative dielectric constant) than air. Therefore, when the insulating film 20 is made of polyimide, the insulating film 20 having the holes 15 makes it possible to obtain the insulating film 20 having a lower dielectric constant than the insulating film 20 having no holes 15.
 絶縁電線1は、図1に示すように絶縁皮膜20内に分散された状態で空孔15を有していてもよい。また図示していないが、絶縁皮膜20が、中実層と、空孔15を有する多孔質層とが互いに積層された多層構造を有していてもよい。この場合、中実層の厚みと多孔質層の厚みとは、必要な特性に応じて任意に設定できる。 The insulated wire 1 may have holes 15 in a state of being dispersed in the insulating film 20 as shown in FIG. Although not shown, the insulating film 20 may have a multilayer structure in which a solid layer and a porous layer having pores 15 are stacked on each other. In this case, the thickness of the solid layer and the thickness of the porous layer can be arbitrarily set according to necessary characteristics.
 次に、本実施の形態に係る絶縁電線1の製造方法および検査方法の流れを、図2~図7を参照して説明する。図2は、絶縁電線1の製造方法および検査方法が実施される絶縁電線1の製造工程を説明するためのブロック図である。図3は絶縁皮膜形成部54を説明するためのブロック図である。図4は絶縁電線1の検査方法の手順を示すフローチャートである。図5は絶縁電線1の製造方法の手順を示すフローチャートである。図6は実施の形態1における検査電極の構造の一例を示す概略平面図である。図7は図6の線分VII-VIIに沿う断面を矢印の向きに見た状態に対応する概略断面図である。 Next, the flow of the manufacturing method and the inspection method of the insulated wire 1 according to the present embodiment will be described with reference to FIGS. FIG. 2 is a block diagram for explaining a manufacturing process of the insulated wire 1 in which the manufacturing method and the inspection method of the insulated wire 1 are performed. FIG. 3 is a block diagram for explaining the insulating film forming portion 54. FIG. 4 is a flowchart showing the procedure of the inspection method for the insulated wire 1. FIG. 5 is a flowchart showing the procedure of the method for manufacturing the insulated wire 1. FIG. 6 is a schematic plan view showing an example of the structure of the inspection electrode in the first embodiment. FIG. 7 is a schematic cross-sectional view corresponding to a state in which a cross section taken along line VII-VII in FIG. 6 is viewed in the direction of the arrow.
 [絶縁電線の検査装置および製造装置の構成]
 図2および図3を参照して、絶縁電線1の製造装置30は、導線準備部50と、絶縁皮膜形成部54と、検査部53と、巻取り部56とを備える。導線準備部50から巻取り部56までは並べて配置されている。絶縁電線1の検査は検査部53において行われる。導線準備部50は、素線供給部51と導体加工部52とを含む。素線供給部51は、導体10の原料となる素銅線などの金属素線を保持し、その金属素線を導体加工部52に供給する。導体加工部52は、素線供給部51の下流側に配置され、素線供給部51から供給された金属素線を所望の形状およびサイズに加工する。導体加工部52は、例えば引き抜き加工(伸線加工)に使用されるダイスなどの金属加工用金型を備える。
[Configuration of Insulated Wire Inspection Equipment and Manufacturing Equipment]
With reference to FIG. 2 and FIG. 3, the insulated wire 1 manufacturing apparatus 30 includes a conducting wire preparation unit 50, an insulating film forming unit 54, an inspection unit 53, and a winding unit 56. The lead wire preparation unit 50 to the winding unit 56 are arranged side by side. The inspection of the insulated wire 1 is performed in the inspection unit 53. The conducting wire preparation unit 50 includes a strand supply unit 51 and a conductor processing unit 52. The strand supply unit 51 holds a metal strand such as a strand of copper that is a raw material of the conductor 10 and supplies the metal strand to the conductor processing unit 52. The conductor processing unit 52 is disposed downstream of the strand supply unit 51 and processes the metal strand supplied from the strand supply unit 51 into a desired shape and size. The conductor processing portion 52 includes a metal processing mold such as a die used for drawing (drawing), for example.
 絶縁皮膜形成部54は、導体加工部52の下流側に配置される。絶縁皮膜形成部54は、例えば絶縁皮膜20の原料となるワニス(塗工液)を導体10に塗工する塗工装置52aと、塗工装置52aにより塗工された塗膜を加熱し、ポリイミド皮膜を形成する、加熱部としての焼付炉52bとを備える。 The insulating film forming portion 54 is disposed on the downstream side of the conductor processing portion 52. The insulating film forming unit 54 heats the coating film applied by the coating apparatus 52a and the coating apparatus 52a for coating the conductor 10 with a varnish (coating liquid) that is a raw material of the insulating film 20, for example, and polyimide And a baking furnace 52b as a heating unit for forming a film.
 検査部53は、絶縁皮膜形成部54の下流側に配置される。検査部53においては、絶縁電線1が導体10の長手方向に搬送される状態で、第1の電極としての第1主電極40と絶縁電線1との間の第1の静電容量が測定される。その第1の静電容量の推移、および第1の静電容量と絶縁皮膜20の気孔率との関係に基づいて、絶縁皮膜20の形成状態を検査する。さらに、絶縁電線1を導体10の長手方向に搬送しながら、第2の電極としての第2主電極41と絶縁電線1との間の第2の静電容量を測定し、第1の静電容量および第2の静電容量のうち一方または両方の推移、並びに第1の静電容量および第2の静電容量と、絶縁皮膜20の気孔率との関係に基づいて、絶縁皮膜20の形成状態を検査してもよい。検査部53は、キャパシタンスセンサ2と、キャパシタンスモニタ58とを備える。キャパシタンスセンサ2は、検査電極55と、筐体44と、検査電極55内の各電極に接続された配線とを備える。絶縁電線1を導体10の長手方向に搬送する際、キャパシタンスセンサ2内を絶縁電線1が通過することにより、第1主電極40または第2主電極41と、絶縁電線1との間の第1の静電容量および第2の静電容量が測定される。 The inspection unit 53 is disposed on the downstream side of the insulating film forming unit 54. In the inspection unit 53, the first capacitance between the first main electrode 40 as the first electrode and the insulated wire 1 is measured in a state where the insulated wire 1 is conveyed in the longitudinal direction of the conductor 10. The Based on the transition of the first capacitance and the relationship between the first capacitance and the porosity of the insulating film 20, the formation state of the insulating film 20 is inspected. Furthermore, while conveying the insulated wire 1 in the longitudinal direction of the conductor 10, the second capacitance between the second main electrode 41 as the second electrode and the insulated wire 1 is measured, and the first electrostatic capacitance is measured. Formation of the insulating film 20 based on the transition of one or both of the capacitance and the second capacitance, and the relationship between the first capacitance and the second capacitance, and the porosity of the insulating film 20 The condition may be checked. The inspection unit 53 includes a capacitance sensor 2 and a capacitance monitor 58. The capacitance sensor 2 includes a test electrode 55, a housing 44, and wiring connected to each electrode in the test electrode 55. When the insulated wire 1 is conveyed in the longitudinal direction of the conductor 10, the insulated wire 1 passes through the capacitance sensor 2, so that the first main electrode 40 or the second main electrode 41 and the first wire between the insulated wire 1 are used. And the second capacitance are measured.
 図2、図6および図7を参照して、キャパシタンスセンサ2の構造について説明する。キャパシタンスセンサ2は、検査電極55と、筐体44とを備える。本実施の形態1に係るキャパシタンスセンサ2の検査電極55は、第1の電極としての上記第1主電極40と、第2の電極としての上記第2主電極41と、第1ガード電極42aと、第2ガード電極42bと、第3ガード電極42cとを含む。筐体44は、第1主電極40と、第2主電極41と、第1ガード電極42aと、第2ガード電極42bと、第3ガード電極42cと、各電極に接続された配線とを収容できる形状を有する。 The structure of the capacitance sensor 2 will be described with reference to FIG. 2, FIG. 6, and FIG. The capacitance sensor 2 includes a test electrode 55 and a housing 44. The inspection electrode 55 of the capacitance sensor 2 according to the first embodiment includes the first main electrode 40 as a first electrode, the second main electrode 41 as a second electrode, and a first guard electrode 42a. , Second guard electrode 42b and third guard electrode 42c. The housing 44 accommodates the first main electrode 40, the second main electrode 41, the first guard electrode 42a, the second guard electrode 42b, the third guard electrode 42c, and the wiring connected to each electrode. It has a shape that can be made.
 図7を参照して、検査電極55の構造についてさらに説明する。第1主電極40は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割された円弧状の形状を有し、それぞれが導体10の長手方向に沿って延在する4つの電極ユニット40a,40b,40c,40dから構成されている。第2主電極41も、同様の断面形状を有し、それぞれが導体10の長手方向に沿って延在する4つの電極ユニット41a,41b,41c,41d(電極ユニット41dは、電極ユニット40dと同様に、絶縁電線1を挟んで電極ユニット41bの対面側に位置し、図示は省略)から構成される。また第1主電極40および第2主電極41の各電極ユニットは、図2に示すように、それぞれ配線を介してキャパシタンスモニタ58と接続されている。説明の便宜のため、図6以降においては、各電極に接続された配線については図示を省略する。 The structure of the inspection electrode 55 will be further described with reference to FIG. The first main electrode 40 has an arc shape that is divided into four parts so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10. The four electrode units 40a, 40b, 40c, and 40d are extended. The second main electrode 41 also has the same cross-sectional shape, and each of the four electrode units 41a, 41b, 41c, 41d extending along the longitudinal direction of the conductor 10 (the electrode unit 41d is the same as the electrode unit 40d). In addition, it is located on the opposite side of the electrode unit 41b across the insulated wire 1 and is not shown). Each electrode unit of the first main electrode 40 and the second main electrode 41 is connected to a capacitance monitor 58 via wiring as shown in FIG. For convenience of explanation, in FIG. 6 and subsequent figures, illustration of wiring connected to each electrode is omitted.
 導体10の長手方向に沿った第1主電極40の長さL40は、同方向の第2主電極41の長さL41とは異なる。図6においては、第2主電極41の長さL41は、第1主電極40の長さL40よりも大きい。また特に限定されないが、本実施形態においては、第1主電極40の長さL40および第2主電極41の長さL41は、0.1mm以上であって、かつ好ましくは10mm以下、より好ましくは5mm以下に設定される。長さL40および長さL41がこのような範囲にあれば、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜内の欠陥部、特に低気孔率部や肉薄部を効率よく検出することができる。 The length L 40 of the first main electrode 40 along the longitudinal direction of the conductor 10 is different from the length L 41 of the second main electrode 41 in the same direction. In FIG. 6, the length L 41 of the second main electrode 41 is larger than the length L 40 of the first main electrode 40. Although not particularly limited, in the present embodiment, the length L 40 of the first main electrode 40 and the length L 41 of the second main electrode 41 are not less than 0.1 mm, and preferably not more than 10 mm. Preferably, it is set to 5 mm or less. If the length L 40 and the length L 41 are within such a range, the length along the longitudinal direction of the conductor 10 is 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less, In particular, a low porosity part and a thin part can be detected efficiently.
 第1ガード電極42aは、第1主電極40から見て導体10の長手方向において上流側に配置される。第2ガード電極42bは、導体10の長手方向に沿って第1主電極40と第2主電極41との間に配置される。第3ガード電極42cは、第2主電極41から見て導体10の長手方向において下流側に配置される。第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cは、第1主電極40および第2主電極41の端部における電界の集中を緩和し、絶縁電線1と第1主電極40および第2主電極41との間に生じる第1の静電容量および第2の静電容量の数値を安定的に計測するために設置される。第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cは配線を介して互いに接続されている。また第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cは、キャパシタンスモニタ58および巻取り部56と接続され、巻取り部56と、第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cとの間の経路において接地されている。すなわち、第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cは接地電極である。 The first guard electrode 42a is arranged on the upstream side in the longitudinal direction of the conductor 10 when viewed from the first main electrode 40. The second guard electrode 42 b is disposed between the first main electrode 40 and the second main electrode 41 along the longitudinal direction of the conductor 10. The third guard electrode 42 c is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the second main electrode 41. The first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c alleviate the concentration of the electric field at the ends of the first main electrode 40 and the second main electrode 41, and the insulated wire 1 and the first main electrode 40. The first electrostatic capacity and the second electrostatic capacity generated between the second main electrode 41 and the second main electrode 41 are stably measured. The first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c are connected to each other through a wiring. The first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c are connected to the capacitance monitor 58 and the winding unit 56, and the winding unit 56, the first guard electrode 42a, the second guard electrode 42b, and It is grounded in the path between the third guard electrode 42c. That is, the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c are ground electrodes.
 本実施の形態において、第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cは同一の構造を有する。すなわち、それぞれ中空円筒状の形状を有し、導体10の長手方向に沿った各ガード電極の長さL42a、L42b、L42cは同一である。各主電極40,41と、各ガード電極42a,42b,42cとは間隔Gをおいて配置される。絶縁電線1と各主電極40,41との間隔は、測定される第1の静電容量および第2の静電容量が安定する範囲に適宜設定される。 In the present embodiment, the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c have the same structure. That is, each guard electrode has a hollow cylindrical shape, and the lengths L 42a , L 42b , and L 42c of the guard electrodes along the longitudinal direction of the conductor 10 are the same. The main electrodes 40, 41 and the guard electrodes 42a, 42b, 42c are arranged with a gap G. The distance between the insulated wire 1 and each of the main electrodes 40 and 41 is appropriately set within a range in which the measured first capacitance and second capacitance are stable.
 キャパシタンスモニタ58は、キャパシタンスセンサ2の検査電極55を構成する各電極ユニットと接続されている。またキャパシタンスモニタ58は、配線を通じて第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cと共に接地されている。キャパシタンスモニタ58は、キャパシタンスセンサ2において測定された静電容量を表示し、記録時間または絶縁電線1の検査対象位置と関係づけてその静電容量を記録する。キャパシタンスモニタ58に表示又は記録される静電容量の変動から、絶縁電線1内の正常部と欠陥部とを区別することができる。 The capacitance monitor 58 is connected to each electrode unit constituting the inspection electrode 55 of the capacitance sensor 2. The capacitance monitor 58 is grounded together with the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c through wiring. The capacitance monitor 58 displays the capacitance measured by the capacitance sensor 2 and records the capacitance in relation to the recording time or the inspection target position of the insulated wire 1. The normal part and the defective part in the insulated wire 1 can be distinguished from the fluctuation of the capacitance displayed or recorded on the capacitance monitor 58.
 巻取り部56は、検査部53の下流側に配置される。巻取り部56は、着脱可能な巻取りリールを配置することができる巻取りリール装着部を備え、検査部53において検査された絶縁電線1を巻き取る。絶縁電線1が巻き取られた巻取りリールを巻取りリール装着部から脱着することにより、絶縁電線1を巻き取られた状態で得ることができる。 The winding unit 56 is arranged on the downstream side of the inspection unit 53. The take-up unit 56 includes a take-up reel mounting unit on which a detachable take-up reel can be arranged, and takes up the insulated wire 1 inspected by the inspection unit 53. The insulated wire 1 can be obtained in a wound state by detaching the take-up reel on which the insulated wire 1 is wound from the take-up reel mounting portion.
 [絶縁電線1の検査方法および製造方法の手順]
 次に図1~図13を参照して、絶縁電線1の検査方法および製造方法の手順を説明する。図8は、絶縁皮膜20内の低気孔率部の状態を示す概略断面図である。図9は図8の矢印Dの向きに見た低気孔率部の状態を示す概略図である。図10は絶縁皮膜20の肉薄部の状態を示す概略断面図である。図11は、図10の矢印Dの向きに見た肉薄部の状態を示す概略図である。図12は、絶縁皮膜20表面の傷欠陥の状態を示す概略断面図である。図13は、絶縁皮膜20の穴欠陥の状態を示す概略断面図である。
[Inspection method and manufacturing method of insulated wire 1]
Next, the procedure of the inspection method and the manufacturing method of the insulated wire 1 will be described with reference to FIGS. FIG. 8 is a schematic cross-sectional view showing a state of a low porosity portion in the insulating film 20. Figure 9 is a schematic view showing a state of a low porosity portion, as viewed in the direction of arrow D 2 in FIG. 8. FIG. 10 is a schematic cross-sectional view showing the state of the thin portion of the insulating film 20. Figure 11 is a schematic diagram showing a state of the thin portion, as viewed in the direction of arrow D 3 in FIG. 10. FIG. 12 is a schematic cross-sectional view showing a state of a flaw defect on the surface of the insulating film 20. FIG. 13 is a schematic cross-sectional view showing a state of a hole defect in the insulating film 20.
 本実施の形態に係る絶縁電線1の検査方法においては、図4に示すS10~S20のステップが実施される。また本実施の形態に係る絶縁電線1の製造方法においては、ステップS10において、導体10を準備する工程(ステップS11)と、絶縁皮膜20を形成する工程(ステップS12)とが実施される。このように本実施の形態に係る絶縁電線1の製造方法には、本実施の形態に係る絶縁電線1の検査方法が含まれる。 In the inspection method of the insulated wire 1 according to the present embodiment, steps S10 to S20 shown in FIG. 4 are performed. Moreover, in the manufacturing method of the insulated wire 1 which concerns on this Embodiment, the process (step S11) which prepares the conductor 10 and the process (step S12) which forms the insulating film 20 are implemented in step S10. Thus, the manufacturing method of the insulated wire 1 which concerns on this Embodiment includes the inspection method of the insulated wire 1 which concerns on this Embodiment.
 図2~図4を参照して、検査する絶縁電線1を準備する(S10)。絶縁電線1の準備は、例えば次のようにして行う。まず導線準備部50において、円形の断面形状を有する線状の導体10を準備する(S11)。具体的には、素線供給部51に保持された、素銅線などの金属素線が引き出される。素線は矢印Dの方向に送られ、導体加工部52に供給される。素線供給部51から供給された金属素線は、ダイスによる引き抜き加工(伸線加工)により、所望の形状およびサイズを有する導体10に加工される。導体加工部52において素線から加工された導体10は、絶縁皮膜形成部54に送られる。 With reference to FIGS. 2 to 4, an insulated wire 1 to be inspected is prepared (S10). The insulated wire 1 is prepared as follows, for example. First, in the conducting wire preparation unit 50, a linear conductor 10 having a circular cross-sectional shape is prepared (S11). Specifically, a metal strand such as a strand of copper held by the strand supply unit 51 is drawn out. Wire is fed in the direction of arrow D 1, is supplied to the conductor processing unit 52. The metal strand supplied from the strand supply section 51 is processed into a conductor 10 having a desired shape and size by drawing (drawing) using a die. The conductor 10 processed from the strand in the conductor processing portion 52 is sent to the insulating film forming portion 54.
 次に、導体10の外周側に絶縁皮膜20が形成される(S12)。絶縁皮膜20は、図1に示すように、線状の形状を有する導体10の外周側の面を覆うように形成される。絶縁皮膜20は絶縁体からなり、内部に空孔15を含む。 Next, the insulating film 20 is formed on the outer peripheral side of the conductor 10 (S12). As shown in FIG. 1, the insulating film 20 is formed so as to cover the outer peripheral surface of the conductor 10 having a linear shape. The insulating film 20 is made of an insulator and includes pores 15 inside.
 図3を参照して、絶縁皮膜形成部54は、ワニス(塗工液)の塗工装置54aと、加熱部としての焼付炉54bとを備える。絶縁皮膜形成部54では、以下のような手順により導体10の外周側の面を覆うように絶縁皮膜20が形成される。 Referring to FIG. 3, the insulating film forming unit 54 includes a varnish (coating liquid) coating device 54a and a baking furnace 54b as a heating unit. In the insulating film forming portion 54, the insulating film 20 is formed so as to cover the outer peripheral surface of the conductor 10 by the following procedure.
 まず塗工装置54a内に保持されたワニス内を、導体加工部52において加工された導体10が通過することにより、導体10の外周側の面を覆うようにワニスが塗工される。本実施の形態において塗工されるワニスは、有機溶剤中にポリイミドの前駆体を含む。次に加熱部としての焼付炉54bにおいて、塗工された塗膜を加熱すると、ポリイミドの前駆体からポリイミドへの反応が促進される。ポリイミドは熱硬化性であるため、加熱により塗膜が硬化する。このようにして、導体10の外周側の面を覆うように、絶縁体であるポリイミドからなる絶縁皮膜20が形成される。 First, when the conductor 10 processed in the conductor processing section 52 passes through the varnish held in the coating apparatus 54a, the varnish is applied so as to cover the outer peripheral surface of the conductor 10. The varnish to be applied in the present embodiment contains a polyimide precursor in an organic solvent. Next, when the coated coating film is heated in the baking furnace 54b as a heating unit, the reaction from the polyimide precursor to the polyimide is promoted. Since polyimide is thermosetting, the coating is cured by heating. Thus, the insulating film 20 made of polyimide as an insulator is formed so as to cover the outer peripheral surface of the conductor 10.
 また必要に応じて上記ワニスの塗工および加熱のサイクルを繰り返すことにより、所望の厚みの絶縁皮膜20を形成することができる。このようにして絶縁電線1が準備される。 Further, the insulating coating 20 having a desired thickness can be formed by repeating the coating and heating cycles of the varnish as necessary. In this way, the insulated wire 1 is prepared.
 次に準備された絶縁電線1を検査する(S20)。絶縁皮膜形成部54において絶縁皮膜20が形成された絶縁電線1は、さらに導体10の長手方向である矢印Dの向きに搬送されながら、検査部53において絶縁皮膜20の形成状態が検査される。 Next, the prepared insulated wire 1 is inspected (S20). Insulated wire 1 in which the insulating film 20 is formed in the insulating film forming section 54, while being conveyed further in the direction of arrow D 1 in the longitudinal direction of the conductor 10, the state of formation of the insulating coating 20 is inspected in the inspection section 53 .
 検査は、図2に示すようなキャパシタンスセンサ2およびキャパシタンスモニタ58を用い、キャパシタンスセンサ2を水に浸漬した状態で行われる。キャパシタンスセンサ2の検査電極55によって測定された静電容量のデータは、キャパシタンスモニタ58に送信される。キャパシタンスモニタ58に表示される静電容量の推移に基づいて、絶縁皮膜20の形成状態が検査される。 The inspection is performed using the capacitance sensor 2 and the capacitance monitor 58 as shown in FIG. 2 and immersing the capacitance sensor 2 in water. The capacitance data measured by the inspection electrode 55 of the capacitance sensor 2 is transmitted to the capacitance monitor 58. Based on the transition of the electrostatic capacity displayed on the capacitance monitor 58, the formation state of the insulating film 20 is inspected.
 検査部53は、第1の電極としての第1主電極40と、絶縁電線1との間の第1の静電容量を測定し、その第1の静電容量の推移に基づいて、絶縁皮膜20の形成状態を検査する。さらに、第2の電極としての第2主電極41と、絶縁電線1との間の第2の静電容量を測定し、第1の静電容量の推移および第2の静電容量の推移の両方に基づいて、絶縁皮膜20の形成状態を検査してもよい。本実施の形態においては、第2主電極41と、絶縁電線1との間の第2の静電容量を測定し、第1の静電容量の推移および第2の静電容量の推移の両方に基づいて、絶縁皮膜20の形成状態が検査される。このように第1の静電容量および第2の静電容量を測定し、その両方の静電容量の推移に基づいて検査することにより、より精度良く欠陥部を検出することができる。 The inspection unit 53 measures the first capacitance between the first main electrode 40 as the first electrode and the insulated wire 1, and based on the transition of the first capacitance, the insulating film The formation state of 20 is inspected. Further, the second capacitance between the second main electrode 41 as the second electrode and the insulated wire 1 is measured, and the transition of the first capacitance and the transition of the second capacitance The formation state of the insulating film 20 may be inspected based on both. In the present embodiment, the second capacitance between the second main electrode 41 and the insulated wire 1 is measured, and both the transition of the first capacitance and the transition of the second capacitance are measured. Based on the above, the formation state of the insulating film 20 is inspected. In this way, by measuring the first capacitance and the second capacitance and inspecting based on the transition of both capacitances, it is possible to detect the defective portion with higher accuracy.
 具体的には、以下のように検査が行われる。まず第1主電極40の各電極ユニット40a,40b,40c,40dおよび第2主電極41の各電極ユニット41a,41b,41c,41dに電圧を印加し、第1主電極40と絶縁電線1との間の第1の静電容量、および第2主電極41と絶縁電線1との間の第2の静電容量を測定する。 Specifically, the inspection is performed as follows. First, a voltage is applied to each electrode unit 40a, 40b, 40c, 40d of the first main electrode 40 and each electrode unit 41a, 41b, 41c, 41d of the second main electrode 41, and the first main electrode 40, the insulated wire 1 and The first capacitance between the second main electrode 41 and the insulated wire 1 is measured.
 次に測定される上記第1の静電容量の推移および第2の静電容量の推移のうち少なくとも一方に基づいて、絶縁皮膜20の形成状態を検査する。例えば、絶縁皮膜20に欠陥部が存在しない正常な状態においては、測定される静電容量は定常値を示す。一方、絶縁皮膜20に欠陥部が存在する場合、静電容量が変化する。その静電容量の推移に基づいて欠陥部の位置を特定し、記録する。このようにして安定した品質の絶縁電線1を製造することができる。 Next, the formation state of the insulating film 20 is inspected based on at least one of the transition of the first capacitance and the transition of the second capacitance measured. For example, in a normal state where there is no defect in the insulating film 20, the measured capacitance shows a steady value. On the other hand, when a defective part exists in the insulating film 20, the capacitance changes. Based on the transition of the capacitance, the position of the defective portion is specified and recorded. In this way, the insulated wire 1 with stable quality can be manufactured.
 キャパシタンスセンサ2において絶縁皮膜20の形成状態が検査された絶縁電線1は、その後巻取り部56において巻き取られる。巻き取られた絶縁電線1は、欠陥部の位置が記録された状態で製品としてもよいし、欠陥部を含む絶縁電線1については製品とせずに廃棄してもよい。また記録された位置に基づいて欠陥部を含む箇所のみを削除し、残部を製品としてもよい。 The insulated wire 1 in which the formation state of the insulating film 20 is inspected in the capacitance sensor 2 is then wound up in the winding unit 56. The wound insulated wire 1 may be a product in a state where the position of the defective portion is recorded, and the insulated wire 1 including the defective portion may be discarded without being a product. Further, only the portion including the defective portion may be deleted based on the recorded position, and the remaining portion may be the product.
 本実施の形態において、上記検査はオンラインで行われる。オンラインで行う検査では、ステップS10~S20までの一連の工程において、上記ステップS10に引き続き連続して、ステップS10で得られた絶縁皮膜20の形成状態の検査を行う。また検査をオンラインで行う場合、図2に示す素線供給部51から巻取り部56に至るまでの一連の流れが、絶縁電線1を切断することなく一体的に行われる。 In the present embodiment, the above inspection is performed online. In the inspection performed online, in the series of steps from Step S10 to S20, the formation state of the insulating film 20 obtained in Step S10 is inspected subsequent to Step S10. When the inspection is performed on-line, a series of flows from the element supply unit 51 to the winding unit 56 shown in FIG. 2 are performed integrally without cutting the insulated wire 1.
 絶縁皮膜20の形成状態を検査する工程では、検査電極55を水(図示せず)に浸漬した状態で第1主電極40の各電極ユニット40a,40b,40c,40dおよび第2主電極41の各電極ユニット41a,41b,41c,41dに電圧を印加して、第1主電極40または第2主電極41と、絶縁電線1との間の第1の静電容量および第2の静電容量の推移をキャパシタンスモニタ58において監視する。第1の静電容量の推移および第2の静電容量の推移のうち、少なくとも一方に基づいて絶縁皮膜20の形成状態を検査する。 In the step of inspecting the formation state of the insulating film 20, the electrode units 40 a, 40 b, 40 c, 40 d of the first main electrode 40 and the second main electrode 41 are in a state where the inspection electrode 55 is immersed in water (not shown). A first electrostatic capacity and a second electrostatic capacity between the first main electrode 40 or the second main electrode 41 and the insulated wire 1 by applying a voltage to each electrode unit 41a, 41b, 41c, 41d. Is monitored by the capacitance monitor 58. The formation state of the insulating film 20 is inspected based on at least one of the transition of the first capacitance and the transition of the second capacitance.
 本実施の形態1においては、第1主電極40は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット41a,41b,41c,41dから構成されている。第2主電極41も同様に周方向に4分割された4つの電極ユニットから構成されている。このように周方向に分割された複数の電極ユニットから構成される第1主電極40および第2主電極41を用いることにより、絶縁電線1の周方向における欠陥部の存在位置についても細かく特定することが可能となる。なお、主電極の周方向における複数の電極ユニットの数は特に4つに限定されない。例えば周方向に2分割された電極ユニットを有する主電極などの、周方向において2以上の任意の数の電極ユニットを有する主電極を必要に応じて選択することができる。 In the first embodiment, the first main electrode 40 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10, and each unit has an arc shape. Each unit is composed of four electrode units 41 a, 41 b, 41 c, 41 d extending along the longitudinal direction of the conductor 10. Similarly, the second main electrode 41 is composed of four electrode units divided into four in the circumferential direction. In this way, by using the first main electrode 40 and the second main electrode 41 configured by the plurality of electrode units divided in the circumferential direction, the position of the defective portion in the circumferential direction of the insulated wire 1 is also specified in detail. It becomes possible. Note that the number of the plurality of electrode units in the circumferential direction of the main electrode is not particularly limited to four. For example, a main electrode having an arbitrary number of electrode units of two or more in the circumferential direction, such as a main electrode having an electrode unit divided into two in the circumferential direction, can be selected as necessary.
 本実施の形態1に係る絶縁電線1の検査方法においては、図8および図9に示すような絶縁皮膜20内の低気孔率部21を検出することが可能である。低気孔率部21は、絶縁皮膜20において、絶縁皮膜20全体の平均の気孔率に比べて有意に気孔率が低く空孔15の割合が少ない部分である。低気孔率部21の中でも特に空孔15が全く存在しない部分を無空孔部と呼ぶ。このような低気孔率部21、特に無空孔部は部分放電の発生の原因となり得る。安定した品質の絶縁電線1を製造するためには、このような低気孔率部21の存在を適切に検出し、絶縁皮膜20の品質を管理することが好ましい。 In the inspection method of the insulated wire 1 according to the first embodiment, it is possible to detect the low porosity portion 21 in the insulating film 20 as shown in FIGS. The low porosity portion 21 is a portion of the insulating film 20 that has a significantly lower porosity and a lower proportion of the holes 15 than the average porosity of the insulating film 20 as a whole. In the low porosity portion 21, a portion where no pores 15 are present at all is called a non-porous portion. Such a low porosity portion 21, particularly a non-porous portion, can cause partial discharge. In order to manufacture the insulated wire 1 having stable quality, it is preferable to appropriately detect the presence of such a low porosity portion 21 and manage the quality of the insulating film 20.
 また図8および図9を参照して、本実施の形態1に係る絶縁電線1の検査方法は、導体10の長手方向に沿った長さLD1が4mm以下、好ましくは2mm以下、より好ましくは1mm以下である低気孔率部21を検出可能である。また図2および図6に示すように、第1主電極40および第2主電極41は、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜20内の低気孔率部21が検出可能となるように、導体10の長手方向に沿った長さが調整されている。例えば第1主電極40および第2主電極41の導体10の長手方向に沿った長さは、それぞれ0.1mm以上10mm以下である。このような微小な低気孔率部21を検出可能であることにより、実質的に有害な欠陥部を有効に検出することができる。 8 and 9, in the method for inspecting insulated wire 1 according to the first embodiment, length L D1 along the longitudinal direction of conductor 10 is 4 mm or less, preferably 2 mm or less, more preferably The low porosity part 21 which is 1 mm or less is detectable. As shown in FIGS. 2 and 6, the first main electrode 40 and the second main electrode 41 have an insulation length of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less along the longitudinal direction of the conductor 10. The length along the longitudinal direction of the conductor 10 is adjusted so that the low porosity portion 21 in the coating 20 can be detected. For example, the lengths of the first main electrode 40 and the second main electrode 41 along the longitudinal direction of the conductor 10 are 0.1 mm or more and 10 mm or less, respectively. By being able to detect such a small low-porosity portion 21, it is possible to effectively detect a substantially harmful defect portion.
 さらに図9を参照して、本実施の形態1にかかる絶縁電線1の検査方法においては、長手方向最大長さLD1と幅方向最大長さWとの積が、0.1mm以上20mm以下の低気孔率部21を欠陥部として検出可能である。このような範囲の低気孔率部21の形成状態を検査し、そのような低気孔率部21を検出可能であることにより、実質的に有害な欠陥部をさらに精度良く検出することができる。 Furthermore, referring to FIG. 9, in the method for inspecting insulated wire 1 according to the first embodiment, the product of longitudinal maximum length L D1 and width maximum length W 1 is 0.1 mm 2 or more and 20 mm. A low porosity portion 21 of 2 or less can be detected as a defective portion. By checking the formation state of the low porosity portion 21 in such a range and detecting such a low porosity portion 21, a substantially harmful defect portion can be detected with higher accuracy.
 また本実施の形態1に係る絶縁電線1の検査方法においては、図10に示すような絶縁皮膜20内の肉薄部22を検出することも可能である。肉薄部22とは、導体10の膨れ11により、絶縁皮膜20が局所的に肉薄になる部分をいう。このような肉薄部22が存在すると、その肉薄部22において絶縁性が低下する。そのため、安定した品質の絶縁電線1を製造するためには、このような肉薄部22の存在も適切に検出し、絶縁皮膜20の品質を管理することが好ましい。 Further, in the method for inspecting the insulated wire 1 according to the first embodiment, it is possible to detect the thin portion 22 in the insulating film 20 as shown in FIG. The thin portion 22 refers to a portion where the insulating film 20 is locally thin due to the swelling 11 of the conductor 10. When such a thin portion 22 exists, the insulating property is reduced in the thin portion 22. Therefore, in order to manufacture the insulated wire 1 with stable quality, it is preferable to appropriately detect the presence of such a thin portion 22 and manage the quality of the insulating film 20.
 また図10および図11を参照して、本実施の形態1に係る絶縁電線1の検査方法は、導体10の長手方向に沿った長さLD2が4mm以下、好ましくは2mm以下、より好ましくは1mm以下である肉薄部22を検出可能である。また図2および図6に示すように、第1主電極40および第2主電極41は、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜20内の肉薄部22が検出可能となるように、導体10の長手方向に沿った長さが調整されている。例えば第1主電極40および第2主電極41の導体10の長手方向に沿った長さは、それぞれ0.1mm以上10mm以下である。このような微小な肉薄部22の形成状態を検査し、そのような肉薄部22を検出可能であることにより、実質的に有害な欠陥部を有効に検出することができる。 10 and 11, in the method for inspecting insulated wire 1 according to the first embodiment, length L D2 along the longitudinal direction of conductor 10 is 4 mm or less, preferably 2 mm or less, more preferably The thin part 22 which is 1 mm or less can be detected. As shown in FIGS. 2 and 6, the first main electrode 40 and the second main electrode 41 have an insulation length of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less along the longitudinal direction of the conductor 10. The length along the longitudinal direction of the conductor 10 is adjusted so that the thin portion 22 in the film 20 can be detected. For example, the lengths of the first main electrode 40 and the second main electrode 41 along the longitudinal direction of the conductor 10 are 0.1 mm or more and 10 mm or less, respectively. By inspecting the formation state of such a small thin portion 22 and detecting such a thin portion 22, a substantially harmful defect portion can be effectively detected.
 さらに図11を参照して、本実施の形態1に係る絶縁電線1の検査方法においては、長手方向最大長さLD2と幅方向最大長さWとの積が、0.1mm以上20mm以下の肉薄部22を欠陥部として検出可能である。このような範囲の肉薄部22を検出可能であることにより、実質的に有害な欠陥部をさらに精度良く検出することができる。 Further, referring to FIG. 11, in the method for inspecting insulated wire 1 according to the first embodiment, the product of longitudinal maximum length L D2 and maximum width W 2 is 0.1 mm 2 or more and 20 mm. Two or less thin portions 22 can be detected as defective portions. By detecting the thin portion 22 in such a range, it is possible to detect a substantially harmful defect portion with higher accuracy.
 また図10を参照して、本実施の形態1に係る絶縁電線1の検査方法においては、膜厚減少量dが1μm以上50μm以下の肉薄部22を欠陥部として検出可能である。このような範囲の膜厚減少量dを有する肉薄部22をも検出可能なことにより、絶縁皮膜20の絶縁性の低下に影響を与えるような肉薄部22をより適切に検出することができる。 Referring to FIG. 10, in the method for inspecting insulated wire 1 according to the first embodiment, thin portion 22 having a film thickness reduction amount d of 1 μm or more and 50 μm or less can be detected as a defective portion. By being able to detect the thin portion 22 having the film thickness reduction amount d in such a range, it is possible to more appropriately detect the thin portion 22 that affects the lowering of the insulating property of the insulating film 20.
 本実施の形態1に係る絶縁電線1の検査方法では、図12に示すような、絶縁皮膜20表面に存在する、導体10の長手方向に沿った長さLD3が4mm以下、好ましくは2mm以下、より好ましくは1mm以下の傷23を検出することも可能である。また図13に示すような、導体10の長手方向に沿った長さLD4が4mm以下、好ましくは2mm以下、より好ましくは1mm以下の穴24についても検出可能である。なお傷23や穴24などの絶縁皮膜20の外観から特定可能な欠陥部については、画像分析などによる一般的な欠陥検査方法でも検出することができる。しかしながら、図8に示すような低気孔率部21や図10に示すような肉薄部22、特に導体10の長手方向に沿った長さが4mm以下の微細な低気孔率部21や肉薄部22については外観のみからは検出することが難しい。傷23および穴24とともに、導体10の長手方向に沿った長さLD1又は長さLD2が4mm以下、好ましくは2mm以下、より好ましくは1mm以下の低気孔率部21や肉薄部22を適切に検出することができれば、実質的に有害な欠陥部を有効に検出することができる。 In the inspection method for the insulated wire 1 according to the first embodiment, as shown in FIG. 12, the length LD3 along the longitudinal direction of the conductor 10 existing on the surface of the insulating film 20 is 4 mm or less, preferably 2 mm or less. More preferably, it is possible to detect a scratch 23 having a diameter of 1 mm or less. Further, as shown in FIG. 13, it is possible to detect a hole 24 having a length LD4 along the longitudinal direction of the conductor 10 of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less. In addition, the defect part which can be identified from the external appearance of the insulating film 20 such as the scratch 23 or the hole 24 can be detected by a general defect inspection method such as image analysis. However, the low porosity portion 21 as shown in FIG. 8 and the thin portion 22 as shown in FIG. 10, particularly the fine low porosity portion 21 and the thin portion 22 having a length along the longitudinal direction of the conductor 10 of 4 mm or less. Is difficult to detect from the appearance alone. Along with the scratch 23 and the hole 24, a low porosity portion 21 or a thin portion 22 having a length L D1 or a length L D2 along the longitudinal direction of the conductor 10 of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less is appropriate. If it can be detected, it is possible to effectively detect a substantially harmful defect.
 本実施の形態1においては、主電極として上述のような第1主電極40および第2主電極41を用いて、第1の静電容量および第2の静電容量と絶縁皮膜20の気孔率との関係に基づいて絶縁皮膜20の形成状態を検査することにより、傷23や穴24の形成状態だけでなく、このような低気孔率部21や肉薄部22の形成状態をも検査することができる。その結果、本願の絶縁電線1の検査方法によれば、種々の欠陥部を的確に検出することができ、安定した品質の絶縁電線1を製造することが可能となる。 In the first embodiment, the first main electrode 40 and the second main electrode 41 as described above are used as the main electrodes, and the first capacitance, the second capacitance, and the porosity of the insulating film 20 are used. Inspecting not only the formation state of the scratches 23 and the holes 24 but also the formation state of the low porosity portion 21 and the thin portion 22 by inspecting the formation state of the insulating film 20 based on the relationship between Can do. As a result, according to the inspection method of the insulated wire 1 of the present application, various defective portions can be accurately detected, and the insulated wire 1 having a stable quality can be manufactured.
 また本実施の形態1においては、導体10の長手方向に沿った長さL40,L41が好ましくは10mm以下、より好ましくは5mm以下である第1主電極40および第2主電極41が用いられる。測定される静電容量の値は、第1主電極40全体の平均値、または第2主電極41全体の平均値である。したがって、電極が導体10の長手方向に沿って長い場合、広い範囲を検出することが可能となるが、静電容量の値が長手方向に渡って平均化されるため、小さな欠陥部を感度良く検出することが難しい。これに対し、第1主電極40および第2主電極41の、導体10の長手方向に沿った長さL40,L41を充分に短く(好ましくは10mm以下)することで、長手方向に長い電極では検知できない小さな欠陥部、特に導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の欠陥部をもより適切に検知することができる。 In the first embodiment, the lengths L 40 and L 41 along the longitudinal direction of the conductor 10 are preferably 10 mm or less, more preferably 5 mm or less, and the first main electrode 40 and the second main electrode 41 are used. It is done. The measured capacitance value is the average value of the entire first main electrode 40 or the average value of the entire second main electrode 41. Therefore, when the electrode is long along the longitudinal direction of the conductor 10, it is possible to detect a wide range. However, since the capacitance value is averaged over the longitudinal direction, small defects can be detected with high sensitivity. It is difficult to detect. In contrast, by making the lengths L 40 and L 41 of the first main electrode 40 and the second main electrode 41 along the longitudinal direction of the conductor 10 sufficiently short (preferably 10 mm or less), they are long in the longitudinal direction. Small defect portions that cannot be detected by the electrodes, in particular, defect portions having a length along the longitudinal direction of the conductor 10 of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less can be detected more appropriately.
 さらに第1主電極40および第2主電極41の、導体10の長手方向に沿った長さL40,L41を充分に短く(好ましくは10mm以下)し、第1の静電容量および第2の静電容量と絶縁皮膜20の気孔率との関係に基づいて絶縁皮膜20の形成状態を検査することにより、傷23や穴24による欠陥部、あるいはサイズの大きな欠陥部のみならず、小さな欠陥部、特に導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の低気孔率部21や肉薄部22による欠陥部についても検出することが可能である。 Further, the lengths L 40 and L 41 of the first main electrode 40 and the second main electrode 41 along the longitudinal direction of the conductor 10 are sufficiently shortened (preferably 10 mm or less), and the first capacitance and the second capacitance are reduced. By inspecting the formation state of the insulating film 20 based on the relationship between the capacitance of the insulating film 20 and the porosity of the insulating film 20, not only a defective portion due to the scratch 23 or the hole 24, or a defective portion having a large size, It is also possible to detect a defect portion due to a low porosity portion 21 or a thin portion 22 having a length of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less, in particular, along the longitudinal direction of the conductor 10.
 また本実施の形態においては、複数の主電極、すなわち第1主電極40および第2主電極41とを有する検査電極55を備えたキャパシタンスセンサ2を用いて第1の静電容量および第2の静電容量の測定を行う。このように複数の主電極を用いて検査を行うことで、一方の主電極による検査結果に欠陥部の誤検出が含まれるか否かを、別の主電極の検査結果と対比して検証することができる。その結果、欠陥部の誤検出を低減し、より精度良く欠陥部を検出することができる。 In the present embodiment, the first electrostatic capacitance and the second capacitance are obtained by using the capacitance sensor 2 including the inspection electrode 55 having a plurality of main electrodes, that is, the first main electrode 40 and the second main electrode 41. Measure the capacitance. By performing inspection using a plurality of main electrodes in this manner, it is verified whether the inspection result of one main electrode includes a false detection of a defective portion in comparison with the inspection result of another main electrode. be able to. As a result, the erroneous detection of the defective portion can be reduced and the defective portion can be detected with higher accuracy.
 さらに第1主電極40および第2主電極41は、それぞれ長さが異なる。そのため2つの主電極を用いて測定される第1の静電容量および第2の静電容量とを求め、それらの推移に基づく検査結果を比較することにより(両者の差分をとることにより)、より狭小な範囲の絶縁皮膜20の形成状態を検査することができる。すなわち、長さL40を有する第1主電極40と絶縁電線1との間の第1の静電容量と、長さL40よりも大きい長さL41を有する第2主電極41と絶縁電線1との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、実質的に差(L41‐L40)(例えば10mm以下、具体例としては5mm)の範囲に相当する絶縁皮膜20の形成状態を検査することができる。 Further, the first main electrode 40 and the second main electrode 41 have different lengths. Therefore, by obtaining the first capacitance and the second capacitance measured using the two main electrodes, and comparing the inspection results based on their transition (by taking the difference between the two), The formation state of the insulating film 20 in a narrower range can be inspected. That is, the first capacitance between the first main electrode 40 having the length L 40 and the insulated wire 1 and the second main electrode 41 having the length L 41 larger than the length L 40 and the insulated wire. By calculating the second electrostatic capacity between the two and comparing the inspection results based on them (by taking the difference between the two), a substantial difference (L 41 -L 40 ) (for example, 10 mm or less) As a specific example, the formation state of the insulating film 20 corresponding to the range of 5 mm) can be inspected.
 このようにして測定された第1静電容量(および第2の静電容量)と、予め調査された絶縁皮膜20の気孔率との関係に基づいて、気孔率を導出することができる。具体的には、計算により求められる理論曲線や、標準物質を用いて求められる検量線と、検査工程において求められる絶縁電線1の静電容量の値とを比較することにより、絶縁電線1の気孔率を見積もることができる。予め欠陥として検出すべき気孔率から求められる、欠陥部が存在するものと判断すべき静電容量のしきい値を設定しておくことで、上記欠陥部の検出を行うことができる。また必要に応じて、静電容量と気孔率との関係に加え、厚みと静電容量との関係も参照することができる。 The porosity can be derived based on the relationship between the first capacitance (and the second capacitance) measured in this way and the porosity of the insulating film 20 investigated in advance. Specifically, the pores of the insulated wire 1 are compared by comparing a theoretical curve obtained by calculation, a calibration curve obtained using a standard substance, and a capacitance value of the insulated wire 1 obtained in the inspection process. The rate can be estimated. The defect portion can be detected by setting in advance a threshold value of the capacitance that is determined from the porosity to be detected as a defect and that should be determined as the presence of the defect portion. In addition to the relationship between the capacitance and the porosity, the relationship between the thickness and the capacitance can be referred to as necessary.
 (実施の形態2)
 次に他の実施形態である実施の形態2について説明する。図14は実施の形態2において検査される絶縁電線の一例を示す断面模式図である。絶縁電線3は、線状の形状を有する導体12の長手方向に垂直な断面において円形の断面形状を有する。絶縁電線3は、円形の断面形状を有する線状の導体12と、この導体12の外周側に形成された絶縁皮膜25とを備える。実施の形態2において検査される絶縁電線3は、絶縁皮膜25が空孔を有しない点で実施の形態1と相違する。空孔を実質的に有しない絶縁皮膜25を有する絶縁電線3において図8に示す低気孔率部21が実質的に発生しない点で実施の形態2は実施の形態1と相違する。それ以外の点においては実施の形態2は実施の形態1と共通する。
(Embodiment 2)
Next, Embodiment 2, which is another embodiment, will be described. FIG. 14 is a schematic cross-sectional view showing an example of an insulated wire inspected in the second embodiment. The insulated wire 3 has a circular cross-sectional shape in a cross section perpendicular to the longitudinal direction of the conductor 12 having a linear shape. The insulated wire 3 includes a linear conductor 12 having a circular cross-sectional shape and an insulating film 25 formed on the outer peripheral side of the conductor 12. The insulated wire 3 inspected in the second embodiment is different from the first embodiment in that the insulating film 25 does not have holes. The second embodiment differs from the first embodiment in that the low-porosity portion 21 shown in FIG. 8 is not substantially generated in the insulated wire 3 having the insulating coating 25 having substantially no pores. In other respects, the second embodiment is common to the first embodiment.
 実施の形態2においては、絶縁電線1に代えて、空孔を実質的に有しない絶縁皮膜25を有する絶縁電線3が検査される。空孔を実質的に有しない絶縁皮膜25を有する絶縁電線3においても、導体10の長手方向に沿った長さが4mm以下の肉薄部22は発生し得る。実施の形態2に係る絶縁電線3の検査方法においても、導体10の長手方向に沿った長さが4mm以下の肉薄部22を検出することが可能である。また導体10の長手方向に沿った長さが4mm以下の傷23および穴24についても同様に検出が可能である。 In Embodiment 2, in place of the insulated wire 1, the insulated wire 3 having the insulating film 25 substantially having no holes is inspected. Even in the insulated wire 3 having the insulating coating 25 substantially free of pores, the thin portion 22 having a length of 4 mm or less along the longitudinal direction of the conductor 10 can be generated. Also in the inspection method of the insulated wire 3 according to the second embodiment, it is possible to detect the thin portion 22 having a length of 4 mm or less along the longitudinal direction of the conductor 10. Similarly, the flaw 23 and the hole 24 having a length of 4 mm or less along the longitudinal direction of the conductor 10 can be similarly detected.
 (実施の形態3)
 次に、他の実施形態である実施の形態3について説明する。図15は、実施の形態3における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の検査方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態3におけるキャパシタンスセンサ2の検査電極55は、1つの主電極60と、2つのガード電極62a,62bとから構成される点において実施の形態1の場合とは異なっている。
(Embodiment 3)
Next, the third embodiment which is another embodiment will be described. FIG. 15 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the third embodiment. The inspection method for the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 in the third embodiment is different from that in the first embodiment in that the inspection electrode 55 includes one main electrode 60 and two guard electrodes 62a and 62b.
 図15を参照して、本実施の形態における、第1の電極としての第3主電極60は、実施の形態1に係る第1主電極40と同一の構造を有する。すなわち、第3主電極60は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット60a,60b,60c,60d(60dは図示せず)から構成されている。第3主電極60は、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜内の欠陥部が検出可能となるように、導体10長手方向に沿った長さが調整されている。具体的には第3主電極60の導体10の長手方向に沿った長さL60は、本実施の形態においては0.1mm以上であって、かつ好ましくは10mm以下、より好ましくは5mm以下に設定される。 Referring to FIG. 15, third main electrode 60 as the first electrode in the present embodiment has the same structure as first main electrode 40 according to the first embodiment. That is, the third main electrode 60 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10, each unit has an arc shape, and each unit is a conductor. It is composed of four electrode units 60a, 60b, 60c, 60d (60d not shown) extending along the longitudinal direction of 10. The third main electrode 60 has a length along the longitudinal direction of the conductor 10 of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less, so that a defect in the insulating film can be detected. The length along is adjusted. Specifically, the length L 60 along the longitudinal direction of the conductor 10 of the third main electrode 60 is 0.1 mm or more in the present embodiment, and is preferably 10 mm or less, more preferably 5 mm or less. Is set.
 第3主電極60から見て導体10の長手方向において上流側には第4ガード電極62aが配置されている。第3主電極60から見て導体10の長手方向において下流側には第5ガード電極62bが配置されている。第4ガード電極62aおよび第5ガード電極62bのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cと同一の構造および同一の機能を有する。 A fourth guard electrode 62a is disposed on the upstream side in the longitudinal direction of the conductor 10 when viewed from the third main electrode 60. A fifth guard electrode 62 b is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the third main electrode 60. Each of the fourth guard electrode 62a and the fifth guard electrode 62b has the same structure and the same function as the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c according to the first embodiment.
 本実施の形態における検査部53によれば、導体10の長手方向に沿った長さL60は充分に短い(好ましくは10mm以下)。そのため実施の形態1と同様に、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の微細な低気孔率部21や肉薄部22などの欠陥部を検出することができる。 According to the inspection unit 53 in the present embodiment, the length L 60 along the longitudinal direction of the conductor 10 is sufficiently short (preferably 10 mm or less). Therefore, as in the first embodiment, the length of the conductor 10 along the longitudinal direction is 4 mm or less, preferably 2 mm or less, and more preferably 1 mm or less, such as a fine low-porosity portion 21 or a thin portion 22. Can be detected.
 また第3主電極60は、第1主電極40および第2主電極41と同様に、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット60a,60b,60c,60dから構成されている。そのため、絶縁電線1の周方向における欠陥部の存在位置についても細かく特定することが可能となる。 Similarly to the first main electrode 40 and the second main electrode 41, the third main electrode 60 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10. Has an arc shape, and each unit is composed of four electrode units 60 a, 60 b, 60 c and 60 d extending along the longitudinal direction of the conductor 10. Therefore, it is possible to finely specify the position where the defect portion exists in the circumferential direction of the insulated wire 1.
 (実施の形態4)
 次に、他の実施形態である実施の形態4について説明する。図16は、実施の形態4における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の検査方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態4におけるキャパシタンスセンサ2の検査電極55は、2つの主電極70,71が、導体10の長手方向に垂直な断面においてそれぞれ周方向に一続きに接続されたリング状の形状を有している点で実施の形態1の場合とは異なっている。
(Embodiment 4)
Next, Embodiment 4, which is another embodiment, will be described. FIG. 16 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the fourth embodiment. The inspection method for the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 according to the fourth embodiment has a ring shape in which the two main electrodes 70 and 71 are connected to each other in the circumferential direction in a cross section perpendicular to the longitudinal direction of the conductor 10. This is different from the case of the first embodiment.
 図16を参照して、本実施の形態における、第1の電極としての第4主電極70の導体10の長手方向の長さL70は、実施の形態1に係る第1主電極40の長さL40と同じである。また本実施の形態における、第2の電極としての第5主電極71の導体10の長手方向の長さL71は、実施の形態1に係る第2主電極41の導体10の長手方向の長さL41と同じである。第4主電極70及び第5主電極71は、それぞれ、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜内の欠陥部が検出可能となるように、導体10長手方向に沿った長さが調整されている。具体的には長さL70および長さL71はいずれも0.1mm以上であって、かつ好ましくは10mm以下、より好ましくは5mm以下に設定される。また長さL70よりも長さL71の方が長い。 Referring to FIG. 16, the length L 70 in the longitudinal direction of the conductor 10 of the fourth main electrode 70 as the first electrode in the present embodiment is the length of the first main electrode 40 according to the first embodiment. It is the same as the length L 40 . In the present embodiment, the length L 71 in the longitudinal direction of the conductor 10 of the fifth main electrode 71 as the second electrode is the length in the longitudinal direction of the conductor 10 of the second main electrode 41 according to the first embodiment. This is the same as the length L 41 . Each of the fourth main electrode 70 and the fifth main electrode 71 has a length along the longitudinal direction of the conductor 10 of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less, and a defective portion in the insulating film can be detected. Thus, the length along the longitudinal direction of the conductor 10 is adjusted. Specifically, the length L 70 and the length L 71 are both 0.1 mm or more, preferably 10 mm or less, more preferably 5 mm or less. Further, the length L 71 is longer than the length L 70 .
 第4主電極70から見て導体10の長手方向において上流側には第6ガード電極72aが配置されている。導体10の長手方向に沿って第4主電極70と第5主電極71との間には第7ガード電極72bが配置されている。第5主電極71から見て導体10の長手方向において下流側には第8ガード電極72cが配置されている。第6ガード電極72a、第7ガード電極72bおよび第8ガード電極72cのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cと同一の構造および同一の機能を有する。 A sixth guard electrode 72a is disposed on the upstream side in the longitudinal direction of the conductor 10 when viewed from the fourth main electrode 70. A seventh guard electrode 72 b is disposed between the fourth main electrode 70 and the fifth main electrode 71 along the longitudinal direction of the conductor 10. An eighth guard electrode 72 c is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the fifth main electrode 71. Each of the sixth guard electrode 72a, the seventh guard electrode 72b, and the eighth guard electrode 72c has the same structure and the same as the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c according to the first embodiment. It has the function of.
 本実施形態における検査電極55によれば、絶縁電線1の第4主電極70の、導体10の長手方向に沿った長さL70は充分に短い(好ましくは10mm以下)。そのため実施の形態1と同様に、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の微細な低気孔率部21や肉薄部22などの欠陥部を検出することができる。さらに第4主電極70の、導体10の長手方向に沿った長さL70が好ましくは0.1mm以上であることから、欠陥部の検出をより高い精度で行うことができる。 According to the inspection electrode 55 in the present embodiment, the length L 70 of the fourth main electrode 70 of the insulated wire 1 along the longitudinal direction of the conductor 10 is sufficiently short (preferably 10 mm or less). Therefore, as in the first embodiment, the length of the conductor 10 along the longitudinal direction is 4 mm or less, preferably 2 mm or less, and more preferably 1 mm or less, such as a fine low-porosity portion 21 or a thin portion 22. Can be detected. Furthermore, since the length L 70 of the fourth main electrode 70 along the longitudinal direction of the conductor 10 is preferably 0.1 mm or more, the defect portion can be detected with higher accuracy.
 本実施の形態における検査電極55は、複数の主電極(第4主電極70および第5主電極71)を有する。そのため2つの主電極を用いて測定される第1の静電容量および第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、より狭小な範囲の絶縁皮膜20の形成状態を検査することができる。すなわち、長さL70の第4主電極70と絶縁電線1との間の第1の静電容量と、長さL71の第5主電極71と絶縁電線1との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、実質的にL70とL71との差分(例えば10mm以下、具体例としては5mm)に相当するより局所的な範囲内の絶縁皮膜20の形成状態を検査することができる。 The inspection electrode 55 in the present embodiment has a plurality of main electrodes (fourth main electrode 70 and fifth main electrode 71). Therefore, by obtaining the first capacitance and the second capacitance measured using the two main electrodes, and comparing the inspection results based on them (by taking the difference between the two), it becomes narrower It is possible to inspect the formation state of the insulating film 20 in a wide range. That is, the second static between the fourth main electrode 70 a length L 70 and a first capacitance between the insulated wire 1, a fifth main electrode 71 a length L 71 and the insulated wire 1 By calculating the electric capacity and comparing the inspection results based on them (by taking the difference between the two), it is substantially equivalent to the difference between L 70 and L 71 (for example, 10 mm or less, as a specific example, 5 mm) Thus, the formation state of the insulating film 20 within a more local range can be inspected.
 (実施の形態5)
 次に、他の実施形態である実施の形態5について説明する。図17は、実施の形態5における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の検査方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態5におけるキャパシタンスセンサ2の検査電極55は、主電極(第6主電極80)が導体10の長手方向に垂直な断面においてそれぞれ周方向に一続きに接続されたリング状の形状を有している点、および検査電極55が1つの主電極(第6主電極80)と、2つのガード電極82a,82bとから構成される点において実施の形態1の場合とは異なっている。
(Embodiment 5)
Next, Embodiment 5 which is another embodiment will be described. FIG. 17 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the fifth embodiment. The inspection method for the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 according to the fifth embodiment has a ring shape in which the main electrode (sixth main electrode 80) is continuously connected in the circumferential direction in the cross section perpendicular to the longitudinal direction of the conductor 10. And the point that the inspection electrode 55 includes one main electrode (sixth main electrode 80) and two guard electrodes 82a and 82b is different from the case of the first embodiment. .
 図17を参照して、本実施の形態における、第1の電極としての第6主電極80の導体10の長手方向の長さL80は、実施の形態1に係る第1主電極40の、導体10の長手方向の長さL40と同様に、好ましくは0.1mm以上10mm以下である。 Referring to FIG. 17, the length L 80 in the longitudinal direction of the conductor 10 of the sixth main electrode 80 as the first electrode in the present embodiment is the same as that of the first main electrode 40 according to the first embodiment. Like the length L 40 in the longitudinal direction of the conductor 10, it is preferably 0.1 mm or more and 10 mm or less.
 第6主電極80から見て導体10の長手方向において上流側には第9ガード電極82aが配置されている。第6主電極80から見て導体10の長手方向において下流側には第10ガード電極82bが配置されている。第9ガード電極82aおよび第10ガード電極82bのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cと同一の構造および同一の機能を有する。 A ninth guard electrode 82a is arranged on the upstream side in the longitudinal direction of the conductor 10 when viewed from the sixth main electrode 80. A tenth guard electrode 82 b is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the sixth main electrode 80. Each of the ninth guard electrode 82a and the tenth guard electrode 82b has the same structure and the same function as the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c according to the first embodiment.
 本実施の形態における検査電極55において、第6主電極80は、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の絶縁皮膜内の欠陥部が検出可能となるように、導体10長手方向に沿った長さが調整されている。導体10の長手方向に沿った第6主電極80の長さL80は充分に短い(好ましくは10mm以下)。そのため実施の形態1のように絶縁電線1の周方向における欠陥部の存在位置についても細かく特定することや、複数の電極を用いて検査結果を比較する場合のようなより細かい範囲の検査は難しいものの、実施の形態1と同様に、導体10の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の微細な低気孔率部21や肉薄部22などの欠陥部を検出することができる。 In the inspection electrode 55 in the present embodiment, the sixth main electrode 80 detects a defective portion in the insulating film whose length along the longitudinal direction of the conductor 10 is 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less. The length along the longitudinal direction of the conductor 10 is adjusted so as to be possible. The length L 80 of the sixth main electrode 80 along the longitudinal direction of the conductor 10 is sufficiently short (preferably 10 mm or less). Therefore, as in the first embodiment, it is difficult to specify the position of the defective portion in the circumferential direction of the insulated wire 1 in detail, or to inspect a finer range such as when comparing the inspection results using a plurality of electrodes. However, as in the first embodiment, the length of the conductor 10 along the longitudinal direction is 4 mm or less, preferably 2 mm or less, and more preferably 1 mm or less, such as a fine low-porosity portion 21 or a thin portion 22. Can be detected.
 (実施の形態6)
 次に、他の実施形態である実施の形態6について説明する。図18は、実施の形態6における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の製造方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態6におけるキャパシタンスセンサ2の検査電極55は、第7主電極90の長さL90及び第8主電極91の長さL91が10mmを超える点で実施の形態1の場合とは異なっている。
(Embodiment 6)
Next, the sixth embodiment which is another embodiment will be described. FIG. 18 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the sixth embodiment. The method of manufacturing the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 in the sixth embodiment, the case of the first embodiment in that the length L 91 of the length L 90 and the eighth main electrode 91 of the seventh main electrode 90 is more than 10mm Is different.
 図18を参照して、検査電極55は、第1の電極としての第7主電極90と、第2の電極としての第8主電極91とを有する。第7主電極90は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット90a,90b,90c,90d(電極ユニット90dは、電極ユニット40dと同様に、絶縁電線1を挟んで電極ユニット90bの対面側に位置し、図示は省略)から構成されている。第8主電極91も、同様の断面形状を有し、導体10の長手方向に沿って延在する4つの電極ユニット91a,91b,91c,91d(電極ユニット91dは、電極ユニット40dと同様に、絶縁電線1を挟んで電極ユニット91bの対面側に位置し、図示は省略)から構成される。 Referring to FIG. 18, the inspection electrode 55 has a seventh main electrode 90 as a first electrode and an eighth main electrode 91 as a second electrode. The seventh main electrode 90 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10, each unit has an arc shape, and each unit is formed of the conductor 10 Four electrode units 90a, 90b, 90c, 90d extending along the longitudinal direction (the electrode unit 90d is located on the opposite side of the electrode unit 90b with the insulated wire 1 in between, as in the electrode unit 40d. (Omitted). The eighth main electrode 91 also has the same cross-sectional shape, and four electrode units 91a, 91b, 91c, 91d extending along the longitudinal direction of the conductor 10 (the electrode unit 91d is similar to the electrode unit 40d, It is located on the opposite side of the electrode unit 91b across the insulated wire 1 and is not shown).
 導体10の長手方向に沿った第7主電極90の長さL90は、同方向の第8主電極91の長さL91とは異なり、長さL91は長さL90よりも長い。また長さL90および長さL91はいずれも10mm以下である。 The length L 90 of the seventh main electrode 90 along the longitudinal direction of the conductor 10 is different from the length L 91 of the eighth main electrode 91 in the same direction, the length L 91 is longer than the length L 90. Further, the length L 90 and the length L 91 are both 10 mm or less.
 また第7主電極90および第8主電極91の各電極ユニットは、それぞれ配線を介してキャパシタンスモニタ58(図2)と接続されている。説明の便宜のため、図18においては、各電極に接続された配線については図示を省略する。 The electrode units of the seventh main electrode 90 and the eighth main electrode 91 are connected to the capacitance monitor 58 (FIG. 2) via wiring. For convenience of explanation, in FIG. 18, the wiring connected to each electrode is not shown.
 第7主電極90から見て導体10の長手方向において上流側には第11ガード電極92aが配置されている。導体10の長手方向に沿って第7主電極90と第8主電極91との間には第12ガード電極92bが配置されている。第8主電極91から見て導体10の長手方向において下流側には第13ガード電極92cが配置されている。第11ガード電極92a、第12ガード電極92bおよび第13ガード電極92cのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cのそれぞれと同一の構造および同一の機能を有する。 The eleventh guard electrode 92a is arranged on the upstream side in the longitudinal direction of the conductor 10 when viewed from the seventh main electrode 90. A twelfth guard electrode 92 b is disposed between the seventh main electrode 90 and the eighth main electrode 91 along the longitudinal direction of the conductor 10. A thirteenth guard electrode 92 c is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the eighth main electrode 91. Each of eleventh guard electrode 92a, twelfth guard electrode 92b, and thirteenth guard electrode 92c has the same structure as each of first guard electrode 42a, second guard electrode 42b, and third guard electrode 42c according to the first embodiment. And has the same function.
 絶縁皮膜20の形成状態を検査する工程においては、第7主電極90および第8主電極91のそれぞれに電圧を印加し、第7主電極90の各電極ユニット90a,90b,90c,90dと絶縁電線1との間の第1の静電容量、および第8主電極91の各電極ユニット91a,91b,91c,91dと絶縁電線1との間の第2の静電容量を検出する。検出した第1の静電容量および第2の静電容量と、絶縁皮膜20の気孔率との関係に基づいて絶縁皮膜20の形成状態を検査する。 In the step of inspecting the formation state of the insulating film 20, a voltage is applied to each of the seventh main electrode 90 and the eighth main electrode 91 to insulate the electrode units 90a, 90b, 90c, 90d of the seventh main electrode 90 from each other. A first capacitance between the electric wire 1 and a second capacitance between each electrode unit 91a, 91b, 91c, 91d of the eighth main electrode 91 and the insulated electric wire 1 are detected. The formation state of the insulating film 20 is inspected based on the relationship between the detected first and second electrostatic capacitances and the porosity of the insulating film 20.
 本実施の形態においては、複数の主電極、すなわち第7主電極90および第8主電極91とを有する検査電極55を備えたキャパシタンスセンサ2を用いて第1の静電容量および第2の静電容量の測定を行う。このように複数の主電極を用いて検査を行うことで、一方の主電極による検査結果に欠陥の誤検出が含まれるか否かを、別の主電極の検査結果と対比して検証することができる。その結果、欠陥の誤検出を低減し、より精度良く欠陥を検出することができる。 In the present embodiment, the first electrostatic capacitance and the second static electricity using the capacitance sensor 2 including the inspection electrode 55 having a plurality of main electrodes, that is, the seventh main electrode 90 and the eighth main electrode 91. Measure the capacitance. By inspecting using multiple main electrodes in this way, verifying whether the inspection result of one main electrode includes a false detection of a defect in comparison with the inspection result of another main electrode Can do. As a result, it is possible to reduce erroneous detection of defects and detect defects with higher accuracy.
 さらに第7主電極90および第8主電極91は、それぞれ長さが異なる。そのため2つの主電極を用いて測定される第1の静電容量および第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、より狭小な範囲の絶縁皮膜20の形成状態を検査することができる。すなわち、長さL90を有する第7主電極90と絶縁電線1との間の第1の静電容量と、長さL90よりも大きい長さL91を有する第8主電極91と絶縁電線1との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、実質的に差(L91‐L90)(例えば1mm)の範囲に相当する絶縁皮膜20の形成状態を検査することができる。 Furthermore, the seventh main electrode 90 and the eighth main electrode 91 have different lengths. Therefore, by obtaining the first capacitance and the second capacitance measured using the two main electrodes, and comparing the inspection results based on them (by taking the difference between the two), it becomes narrower It is possible to inspect the formation state of the insulating film 20 in a wide range. That is, the first electrostatic capacitance between the seventh main electrode 90 having the length L 90 and the insulated wire 1, and the eighth main electrode 91 having the length L 91 larger than the length L 90 and the insulated wire By calculating the second capacitance between the first and the second and comparing the inspection results based on them (subtracting the difference between the two), a substantial difference (L 91 -L 90 ) (for example, 1 mm) The formation state of the insulating film 20 corresponding to the range can be inspected.
 また第7主電極90は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット90a,90b,90c,90dから構成されている。第8主電極91も同様に周方向に4分割された4つの電極ユニット91a,91b,91c,91dから構成されている。このように周方向に分割された複数の電極ユニットから構成される第7主電極90および第8主電極91を用いることにより、絶縁電線1の周方向における欠陥の存在位置についても細かく特定することが可能となる。 Further, the seventh main electrode 90 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10, each unit has an arc shape, and each unit is the conductor 10 Are comprised of four electrode units 90a, 90b, 90c, 90d extending along the longitudinal direction. Similarly, the eighth main electrode 91 is composed of four electrode units 91a, 91b, 91c, 91d divided into four in the circumferential direction. In this way, by using the seventh main electrode 90 and the eighth main electrode 91 composed of a plurality of electrode units divided in the circumferential direction, the positions of defects in the circumferential direction of the insulated wire 1 can be specified in detail. Is possible.
 (実施の形態7)
 次に、他の実施形態である実施の形態7について説明する。図19は、実施の形態7における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の製造方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態7におけるキャパシタンスセンサ2の検査電極55は、第9主電極100および第10主電極101が導体10の長手方向に垂直な断面においてそれぞれ周方向に一続きに接続されたリング状の形状を有している点、および第9主電極100の長さL100および第10主電極101の長さL100が10mmを超える点において実施の形態1の場合とは異なっている。
(Embodiment 7)
Next, a seventh embodiment which is another embodiment will be described. FIG. 19 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the seventh embodiment. The method of manufacturing the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 in the seventh embodiment has a ring shape in which the ninth main electrode 100 and the tenth main electrode 101 are connected in series in the circumferential direction in a cross section perpendicular to the longitudinal direction of the conductor 10. that it has a shape, and a length L 100 of the length L 100 and 10 main electrode 101 of the ninth main electrode 100 is different from that of the first embodiment in that more than 10 mm.
 図19を参照して、検査電極55は、第1の電極としての第9主電極100と、第2の電極としての第10主電極101とを有する。長さL60と長さL61は異なり、長さL61は長さL60よりも長い。また長さL60および長さL61はいずれも10mmを超える。第9主電極100および第10主電極101は、それぞれ配線を介してキャパシタンスモニタ58(図2)と接続されている。説明の便宜のため、図19においては、各電極に接続された配線については図示を省略する。 With reference to FIG. 19, the inspection electrode 55 includes a ninth main electrode 100 as a first electrode and a tenth main electrode 101 as a second electrode. The length L 60 and length L 61 are different, the length L 61 is longer than the length L 60. Further, the length L 60 and the length L 61 both exceed 10 mm. The ninth main electrode 100 and the tenth main electrode 101 are each connected to a capacitance monitor 58 (FIG. 2) via wiring. For convenience of explanation, in FIG. 19, the wiring connected to each electrode is not shown.
 第9主電極100から見て導体10の長手方向において上流側には第14ガード電極102aが配置されている。導体10の長手方向に沿って第9主電極100と第10主電極101との間には第15ガード電極102bが配置されている。第10主電極101から見て導体10の長手方向において下流側には第16ガード電極102cが配置されている。第14ガード電極102a、第15ガード電極102bおよび第16ガード電極102cのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cと同一の構造および同一の機能を有する。 A fourteenth guard electrode 102a is arranged on the upstream side in the longitudinal direction of the conductor 10 when viewed from the ninth main electrode 100. A fifteenth guard electrode 102 b is disposed between the ninth main electrode 100 and the tenth main electrode 101 along the longitudinal direction of the conductor 10. A sixteenth guard electrode 102 c is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the tenth main electrode 101. Each of the fourteenth guard electrode 102a, the fifteenth guard electrode 102b, and the sixteenth guard electrode 102c has the same structure and the same as the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c according to the first embodiment. It has the function of.
 絶縁皮膜20の形成状態を検査する工程においては、第9主電極100および第10主電極101のそれぞれに電圧を印加し、第9主電極100と絶縁電線1との間の第1の静電容量、および第10主電極101と絶縁電線1との間の第2の静電容量を検出する。検出した第1の静電容量および第2の静電容量と、絶縁皮膜20の気孔率との関係に基づいて絶縁皮膜20の形成状態を検査する。 In the step of inspecting the formation state of the insulating film 20, a voltage is applied to each of the ninth main electrode 100 and the tenth main electrode 101, and a first electrostatic between the ninth main electrode 100 and the insulated wire 1 is applied. The capacitance and the second capacitance between the tenth main electrode 101 and the insulated wire 1 are detected. The formation state of the insulating film 20 is inspected based on the relationship between the detected first and second electrostatic capacitances and the porosity of the insulating film 20.
 本実施の形態においては、複数の主電極、すなわち第9主電極100および第10主電極101とを有する検査電極55を備えたキャパシタンスセンサ2を用いて第1の静電容量および第2の静電容量の測定を行う。このように複数の主電極を用いて検査を行うことで、一方の主電極による検査結果に欠陥の誤検出が含まれるか否かを、別の主電極の検査結果と対比して検証することができる。その結果、欠陥の誤検出を低減し、より精度良く欠陥を検出することができる。 In the present embodiment, the first electrostatic capacitance and the second static electricity using the capacitance sensor 2 including the inspection electrode 55 having a plurality of main electrodes, that is, the ninth main electrode 100 and the tenth main electrode 101. Measure the capacitance. By inspecting using multiple main electrodes in this way, verifying whether the inspection result of one main electrode includes a false detection of a defect in comparison with the inspection result of another main electrode Can do. As a result, it is possible to reduce erroneous detection of defects and detect defects with higher accuracy.
 さらに第9主電極100および第10主電極101は、それぞれ長さが異なる。そのため2つの主電極を用いて測定される第1の静電容量および第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、より狭小な範囲の絶縁皮膜20の形成状態を検査することができる。すなわち、長さL100を有する第9主電極100と絶縁電線1との間の第1の静電容量と、長さL100よりも大きい長さL101を有する第10主電極101と絶縁電線1との間の第2の静電容量とを求め、それらに基づく検査結果を比較することにより(両者の差分をとることにより)、実質的に差(L101‐L100)(例えば1mm)の範囲に相当する絶縁皮膜20の形成状態を検査することができる。 Further, the ninth main electrode 100 and the tenth main electrode 101 have different lengths. Therefore, by obtaining the first capacitance and the second capacitance measured using the two main electrodes, and comparing the inspection results based on them (by taking the difference between the two), it becomes narrower It is possible to inspect the formation state of the insulating film 20 in a wide range. That is, the first capacitance and a tenth main electrode 101 having a length L 101 greater than the length L 100 insulated wire between the ninth main electrode 100 and the insulated wire 1 having a length L 100 By calculating the second capacitance between 1 and 1 and comparing the inspection results based on them (by taking the difference between the two), a substantial difference (L 101 -L 100 ) (for example, 1 mm) The formation state of the insulating film 20 corresponding to the range can be inspected.
 (実施の形態8)
 次に、他の実施形態である実施の形態8について説明する。図20は、実施の形態8における検査電極55の構造の一例を示す概略平面図である。本実施の形態に係る絶縁電線1の製造方法は、基本的には実施の形態1の場合と同様に実施され、同様の効果を奏する。しかし、実施の形態8におけるキャパシタンスセンサ2の検査電極55は、第11主電極110の長さL110が10mmを超える点、および検査電極55が1つの主電極(第11主電極)110と、2つのガード電極112a,112bとから構成される点において実施の形態1の場合とは異なっている。
(Embodiment 8)
Next, Embodiment 8, which is another embodiment, will be described. FIG. 20 is a schematic plan view showing an example of the structure of the inspection electrode 55 in the eighth embodiment. The method of manufacturing the insulated wire 1 according to the present embodiment is basically performed in the same manner as in the first embodiment, and has the same effect. However, the inspection electrode 55 of the capacitance sensor 2 according to the eighth embodiment is such that the length L 110 of the eleventh main electrode 110 exceeds 10 mm, and the inspection electrode 55 is one main electrode (the eleventh main electrode) 110. The second embodiment is different from the first embodiment in that it includes two guard electrodes 112a and 112b.
 図20を参照して、検査電極55は、第1の電極としての第11主電極110を有する。第11主電極110は、実施の形態1に係る第1主電極40と同一の構造を有する。すなわち、第11主電極110は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット110a,110b,110c,110d(110dは図示せず)から構成されている。第11主電極110は、導体10の長手方向に沿って長さL110を有する。長さL110は10mmを超える。また第11主電極110の各電極ユニットは、それぞれ配線を介してキャパシタンスモニタ58(図2)と接続されている。説明の便宜のため、図20においては、各電極に接続された配線については図示を省略する。 Referring to FIG. 20, the inspection electrode 55 has an eleventh main electrode 110 as a first electrode. The eleventh main electrode 110 has the same structure as the first main electrode 40 according to the first embodiment. That is, the eleventh main electrode 110 is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10, each unit has an arc shape, and each unit is a conductor. 10 comprises four electrode units 110a, 110b, 110c, 110d (110d not shown) extending along the longitudinal direction. The eleventh main electrode 110 has a length L 110 along the longitudinal direction of the conductor 10. The length L 110 exceeds 10 mm. Each electrode unit of the eleventh main electrode 110 is connected to a capacitance monitor 58 (FIG. 2) via wiring. For convenience of explanation, illustration of wirings connected to the respective electrodes is omitted in FIG.
 第11主電極110から見て導体10の長手方向において上流側には第17ガード電極112aが配置されている。第11主電極110から見て導体10の長手方向において下流側には第18ガード電極112bが配置されている。第17ガード電極112aおよび第18ガード電極112bのそれぞれは、実施の形態1に係る第1ガード電極42a、第2ガード電極42bおよび第3ガード電極42cのそれぞれと同一の構造および同一の機能を有する。 A seventeenth guard electrode 112a is arranged on the upstream side in the longitudinal direction of the conductor 10 when viewed from the eleventh main electrode 110. An eighteenth guard electrode 112b is disposed on the downstream side in the longitudinal direction of the conductor 10 when viewed from the eleventh main electrode 110. Each of the seventeenth guard electrode 112a and the eighteenth guard electrode 112b has the same structure and the same function as each of the first guard electrode 42a, the second guard electrode 42b, and the third guard electrode 42c according to the first embodiment. .
 絶縁皮膜20の形成状態を検査する工程においては、第11主電極110に電圧を印加し、第11主電極110の各電極ユニット110a,110b,110c,110dと絶縁電線1との間の第1の静電容量を検出し、第1の静電容量と絶縁皮膜20の気孔率との関係に基づいて絶縁皮膜20の形成状態を検査する。 In the step of inspecting the formation state of the insulating film 20, a voltage is applied to the eleventh main electrode 110, and a first between the electrode units 110 a, 110 b, 110 c, 110 d of the eleventh main electrode 110 and the insulated wire 1 is applied. And the formation state of the insulating film 20 is inspected based on the relationship between the first capacitance and the porosity of the insulating film 20.
 図20を参照して、本実施の形態における、第1の電極としての第11主電極110は、導体10の長手方向に垂直な断面において導体10の周方向に互いに離間するように4分割され、各ユニットが円弧状の形状を有し、かつ各ユニットが導体10の長手方向に沿って延在する4つの電極ユニット110a,110b,110c,110dから構成されている。このように周方向に分割された複数の電極ユニットから構成される第11主電極110を用いることにより、絶縁電線1の周方向における欠陥の存在位置についても細かく特定することが可能となる。 Referring to FIG. 20, the eleventh main electrode 110 as the first electrode in the present embodiment is divided into four so as to be separated from each other in the circumferential direction of the conductor 10 in a cross section perpendicular to the longitudinal direction of the conductor 10. Each unit has an arc shape, and each unit includes four electrode units 110 a, 110 b, 110 c, and 110 d extending along the longitudinal direction of the conductor 10. By using the eleventh main electrode 110 composed of a plurality of electrode units divided in the circumferential direction as described above, it is possible to finely specify the position where the defect exists in the circumferential direction of the insulated wire 1.
 なお、上記各実施の形態においては、円形の断面形状を有する線状の絶縁電線1の検査方法を説明したが、絶縁電線1の断面形状はこれらに限定されず、四角形、六角形など任意の断面形状に加工された絶縁電線を得ることも可能である。 In each of the above embodiments, the method for inspecting a linear insulated wire 1 having a circular cross-sectional shape has been described. However, the cross-sectional shape of the insulated wire 1 is not limited to these, and an arbitrary shape such as a quadrangle, a hexagon, or the like. It is also possible to obtain an insulated wire processed into a cross-sectional shape.
 また上記実施形態においては、導体10の長手方向に沿った各主電極の長さは特に限定されないが、好ましくは10mm以下である。また複数の主電極を有する場合、少なくとも1つの上記長さが10mm以下であるのが好ましい。 In the above embodiment, the length of each main electrode along the longitudinal direction of the conductor 10 is not particularly limited, but is preferably 10 mm or less. Moreover, when it has a some main electrode, it is preferable that at least 1 said length is 10 mm or less.
 また上記実施の形態においては、静電容量の検出を行うための検査部53を巻取り部56において巻き取られる直前の位置に配置したが、検査部53を配置する位置はこの位置に限定されない。例えば、導体10上に複数の層の絶縁層を形成することにより絶縁皮膜20を形成する場合、巻取り部56において巻き取られる直前の位置に代えて、または巻取り部56において巻き取られる直前の位置とともに、絶縁皮膜20が完成する前の中間体の段階において静電容量の検出が行える位置に検査部53を配置してもよい。 Moreover, in the said embodiment, although the test | inspection part 53 for detecting an electrostatic capacitance was arrange | positioned in the position just before winding in the winding part 56, the position which arrange | positions the test | inspection part 53 is not limited to this position. . For example, in the case where the insulating film 20 is formed by forming a plurality of insulating layers on the conductor 10, instead of the position immediately before being wound at the winding portion 56, or immediately before being wound at the winding portion 56. In addition to the position, the inspection unit 53 may be arranged at a position where the capacitance can be detected at the intermediate stage before the insulating film 20 is completed.
 また上記実施形態においては、導体10の長手方向に沿った各ガード電極の長さが同一であったが、各ガード電極の上記長さはそれぞれ異なっていてもよい。また、欠陥部の検出に影響のない範囲でガード電極を省略することもできる。 In the above embodiment, the length of each guard electrode along the longitudinal direction of the conductor 10 is the same, but the length of each guard electrode may be different. Further, the guard electrode can be omitted as long as it does not affect the detection of the defective portion.
 上記実施形態においては、導体10,12の表面に塗工されたワニスを焼付炉内で加熱する方法により絶縁皮膜20,25を形成したが、絶縁皮膜20,25の形成方法はこの方法に限定されない。たとえば、熱可塑性樹脂の押出成形により絶縁皮膜20,25を形成することもできる。また空孔15の形成方法についても、熱分解性樹脂の分解を利用した空孔15の形成方法のみならず、他の方法を利用することもできる。例えば、相分離法(ポリマーと溶剤の均一溶液から、ミクロ相分離後、溶剤を抽出除去することにより多孔を形成する方法)や超臨界法(超臨界流体を利用して多孔質体を形成する方法)を利用して、絶縁皮膜20に空孔15を形成することも可能である。 In the said embodiment, although the insulating films 20 and 25 were formed by the method of heating the varnish coated on the surface of the conductors 10 and 12 in a baking furnace, the formation method of the insulating films 20 and 25 is limited to this method. Not. For example, the insulating films 20 and 25 can be formed by extrusion molding of a thermoplastic resin. As for the method for forming the holes 15, not only the method for forming the holes 15 using the decomposition of the thermally decomposable resin but also other methods can be used. For example, a phase separation method (a method of forming a pore by extracting and removing a solvent after a microphase separation from a homogeneous solution of a polymer and a solvent) or a supercritical method (a porous material is formed using a supercritical fluid) It is also possible to form the holes 15 in the insulating film 20 using the method.
 (実施の形態9)
 次に、実施の形態9を、図1および図21~図25を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
(Embodiment 9)
Next, Embodiment 9 will be described with reference to FIGS. 1 and 21 to 25. FIG. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 [絶縁電線の構造]
 本実施の形態において製造される絶縁電線の例を図1、図21および図22に示す。図1、図21および図22は、それぞれ、絶縁電線の一例を示す断面模式図を示す。図1を参照して、円形の断面形状を有する絶縁電線1は、円形の断面形状を有する線状の導体10と、この導体10の外周側の面を覆うように導体10を被覆する絶縁皮膜20とを備える。絶縁皮膜20は、有機材料を含む絶縁体からなる。絶縁体に含まれる上記有機材料としては特に限定されないが、例えばポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)などが挙げられる。なかでも絶縁性および耐熱性に優れることから、絶縁皮膜20を構成する絶縁体はポリイミドまたはポリアミドイミドを含むのが好ましい。例えば、本実施の形態における絶縁皮膜20はポリイミドからなる。図1を参照して、本実施の形態における絶縁皮膜20はその内部に空孔15を含む。絶縁皮膜20の全体積に占める空孔15の総体積の割合(気孔率)は、一般的に5体積%以上80体積%以下であり、好ましくは10体積%以上60体積%以下、より好ましくは25体積%以上55体積%以下である。ポリイミドなどの絶縁皮膜20を構成する材料と空気とでは誘電率が異なることから、絶縁皮膜20が空孔15を有することにより絶縁皮膜20全体としての誘電率が変化する。例えばポリイミドは、空気よりも誘電率(比誘電率)が高い。したがって、絶縁皮膜20がポリイミドからなる場合、絶縁皮膜20が空孔15を有することで、空孔15を有しない絶縁皮膜20に比べて誘電率の低い絶縁皮膜20を得ることができる。
[Insulated wire structure]
Examples of insulated wires manufactured in the present embodiment are shown in FIGS. FIG.1, FIG.21 and FIG.22 shows the cross-sectional schematic diagram which shows an example of an insulated wire, respectively. Referring to FIG. 1, an insulated wire 1 having a circular cross-sectional shape includes a linear conductor 10 having a circular cross-sectional shape and an insulating film that covers the conductor 10 so as to cover the outer peripheral surface of the conductor 10. 20. The insulating film 20 is made of an insulator containing an organic material. Although it does not specifically limit as said organic material contained in an insulator, For example, a polyimide (PI), a polyamideimide (PAI), a polyether sulfone (PES), polyetheretherketone (PEEK) etc. are mentioned. Especially, since it is excellent in insulation and heat resistance, it is preferable that the insulator which comprises the insulating film 20 contains a polyimide or a polyamideimide. For example, the insulating film 20 in the present embodiment is made of polyimide. Referring to FIG. 1, insulating film 20 in the present embodiment includes voids 15 therein. The ratio of the total volume of the pores 15 (porosity) in the total volume of the insulating film 20 is generally 5% by volume to 80% by volume, preferably 10% by volume to 60% by volume, more preferably It is 25 volume% or more and 55 volume% or less. Since the dielectric constant is different between air and the material constituting the insulating film 20 such as polyimide, the dielectric constant of the insulating film 20 as a whole changes when the insulating film 20 has the holes 15. For example, polyimide has a higher dielectric constant (relative dielectric constant) than air. Therefore, when the insulating film 20 is made of polyimide, the insulating film 20 having the holes 15 makes it possible to obtain the insulating film 20 having a lower dielectric constant than the insulating film 20 having no holes 15.
 絶縁電線1は、図1に示すように絶縁皮膜20の厚み方向全体に渡って均一に空孔15を有していてもよい。また図21または図22のように、絶縁皮膜20が、中実層18と、空孔15を有する多孔質層19との多層構造を有していてもよい。図21または図22に示す絶縁電線1は、図1に示す絶縁電線1と同様に、円形の断面形状を有する線状の導体10と、この導体10の外周側の面を覆うように導体10を被覆する絶縁皮膜20とを備える。ただし図21に示す絶縁電線1の絶縁皮膜20は、導体10の外周面を覆うように形成された、空孔15を有する多孔質層19と、多孔質層19の外周面を覆うように形成された中実層18とを含む多層構造を有する。また図22に示す絶縁電線1の絶縁皮膜20は、導体10の外周面を覆うように形成された中実層18と、中実層18の外周面を覆うように形成された、空孔15を有する多孔質層19とを含む多層構造を有する。また図示していないが、絶縁皮膜20は、円形の断面形状を有する絶縁電線1の径方向外側に向かって中実層18と多孔質層19とが交互に積層された多層構造を有していてもよい。中実層18の厚みと多孔質層19の厚みとは、必要な特性に併せて任意に設定できる。 The insulated wire 1 may have pores 15 uniformly throughout the thickness direction of the insulating film 20 as shown in FIG. Further, as shown in FIG. 21 or FIG. 22, the insulating film 20 may have a multilayer structure of a solid layer 18 and a porous layer 19 having pores 15. The insulated wire 1 shown in FIG. 21 or FIG. 22 is similar to the insulated wire 1 shown in FIG. 1 and includes a linear conductor 10 having a circular cross-sectional shape and a conductor 10 so as to cover the outer peripheral surface of the conductor 10. And an insulating film 20 for coating. However, the insulating film 20 of the insulated wire 1 shown in FIG. 21 is formed so as to cover the outer peripheral surface of the porous layer 19 and the porous layer 19 having pores 15 formed so as to cover the outer peripheral surface of the conductor 10. A multilayer structure including the solid layer 18 formed. Further, the insulating film 20 of the insulated wire 1 shown in FIG. 22 includes a solid layer 18 formed so as to cover the outer peripheral surface of the conductor 10, and a hole 15 formed so as to cover the outer peripheral surface of the solid layer 18. And a porous layer 19 having a multilayer structure. Although not shown, the insulating film 20 has a multilayer structure in which the solid layers 18 and the porous layers 19 are alternately laminated toward the radial outer side of the insulated wire 1 having a circular cross-sectional shape. May be. The thickness of the solid layer 18 and the thickness of the porous layer 19 can be arbitrarily set in accordance with necessary characteristics.
 次に、本実施の形態に係る絶縁電線1の製造方法の流れを、図23~図25を参照して説明する。図23は実施の形態9における絶縁電線1の製造工程を説明するためのブロック図である。図24は実施の形態9における絶縁皮膜形成部を説明するためのブロック図である。図25は実施の形態9における絶縁電線1の製造方法の手順を示すフローチャートである。 Next, the flow of the method for manufacturing the insulated wire 1 according to the present embodiment will be described with reference to FIGS. FIG. 23 is a block diagram for explaining a manufacturing process of the insulated wire 1 according to the ninth embodiment. FIG. 24 is a block diagram for explaining an insulating film forming portion in the ninth embodiment. FIG. 25 is a flowchart showing the procedure of the method for manufacturing the insulated wire 1 in the ninth embodiment.
 図23を参照して、絶縁電線1の製造装置130は、導線準備部150と、絶縁皮膜形成部154と、検査部153と、巻取り部156とを備える。導線準備部150から巻取り部156までは並べて配置されている。絶縁電線1の検査は検査部153において行われる。導線準備部150は、素線供給部151と導線加工部152とを含む。まず素線供給部151から銅線などの素線が供給される。素線は矢印Dの方向に送られ、導線加工部152において所望の形状に加工される。導線加工部152において素線から加工された導体10は、絶縁皮膜形成部154に送られる。 Referring to FIG. 23, the insulated wire 1 manufacturing apparatus 130 includes a conducting wire preparation unit 150, an insulating film forming unit 154, an inspection unit 153, and a winding unit 156. The lead wire preparation unit 150 to the winding unit 156 are arranged side by side. The inspection of the insulated wire 1 is performed in the inspection unit 153. The conducting wire preparation unit 150 includes a strand supply unit 151 and a conducting wire processing unit 152. First, a strand such as a copper wire is supplied from the strand supply section 151. Wire is fed in the direction of arrow D 1, it is processed into a desired shape in the conductor processing unit 152. The conductor 10 processed from the strand in the conductor processing unit 152 is sent to the insulating film forming unit 154.
 図24を参照して、絶縁皮膜形成部154は、例えば絶縁皮膜20の原料となるワニスを導体10に塗工する塗工装置154aと、塗工された塗膜を加熱し、ポリイミド皮膜を形成する、加熱部としての焼付炉154bとを備える。絶縁皮膜形成部154では、導体10の表面に絶縁皮膜20が形成される。このようにして、導体10と、導体10を被覆する絶縁皮膜20とを有する絶縁電線1が得られる。得られた絶縁電線1は、さらに矢印Dの方向に送られ、絶縁皮膜20の形成状態が検査される。 Referring to FIG. 24, the insulating film forming section 154 forms a polyimide film by heating, for example, a coating device 154a that coats the conductor 10 with a varnish that is a raw material of the insulating film 20, and the coated film. And a baking furnace 154b as a heating unit. In the insulating film forming part 154, the insulating film 20 is formed on the surface of the conductor 10. Thus, the insulated wire 1 having the conductor 10 and the insulating film 20 covering the conductor 10 is obtained. The resulting insulated wire 1 is further fed in the direction of arrow D 1, the state of formation of the insulating coating 20 is inspected.
 検査部153は、絶縁皮膜形成部154の下流側に配置される。検査部153においては、絶縁電線1の静電容量を検出し、その静電容量と絶縁皮膜20気孔率との関係に基づいて、絶縁皮膜20の形成状態を検査する。検査には、図23に示すようなキャパシタンスセンサ4を用いる。絶縁電線1がキャパシタンスセンサ4を貫通するようにキャパシタンスセンサ4を配置し、絶縁電線1の静電容量を検出する。検出した静電容量のデータは、キャパシタンス監視装置158に送信される。キャパシタンス監視装置158に表示される静電容量と絶縁皮膜20の気孔率との関係に基づいて、絶縁皮膜20の形成状態を検査する。 The inspection unit 153 is disposed on the downstream side of the insulating film forming unit 154. The inspection unit 153 detects the capacitance of the insulated wire 1 and inspects the formation state of the insulating film 20 based on the relationship between the capacitance and the porosity of the insulating film 20. For the inspection, a capacitance sensor 4 as shown in FIG. 23 is used. The capacitance sensor 4 is arranged so that the insulated wire 1 penetrates the capacitance sensor 4, and the capacitance of the insulated wire 1 is detected. The detected capacitance data is transmitted to the capacitance monitoring device 158. Based on the relationship between the capacitance displayed on the capacitance monitoring device 158 and the porosity of the insulating film 20, the formation state of the insulating film 20 is inspected.
 検査部153において検査された絶縁電線1は、その後巻取り部156において巻き取られる。 The insulated wire 1 inspected in the inspection unit 153 is then wound up in the winding unit 156.
 キャパシタンスセンサ4は、第1の電極としての主電極141と、第1ガード電極142aと、第2ガード電極142bと、筐体144とを備える。主電極141、第1ガード電極142aおよび第2ガード電極142bは、それぞれ絶縁電線1を貫通可能な中空円筒状の形状を有する。筐体144は主電極141と、第1ガード電極142aと、第2ガード電極142bと、各電極に接続された配線とを収容できる形状を有する。 The capacitance sensor 4 includes a main electrode 141 as a first electrode, a first guard electrode 142a, a second guard electrode 142b, and a housing 144. The main electrode 141, the first guard electrode 142a, and the second guard electrode 142b each have a hollow cylindrical shape that can penetrate the insulated wire 1. The housing 144 has a shape that can accommodate the main electrode 141, the first guard electrode 142a, the second guard electrode 142b, and the wiring connected to each electrode.
 主電極141は絶縁電線1の外周側に配置される。主電極141は、キャパシタンス監視装置158と接続されている。絶縁皮膜20の形成状態を検査する工程においては、主電極141に電圧を印加し、絶縁電線1の第1の静電容量を検出する。 The main electrode 141 is disposed on the outer peripheral side of the insulated wire 1. The main electrode 141 is connected to the capacitance monitoring device 158. In the step of inspecting the formation state of the insulating film 20, a voltage is applied to the main electrode 141 to detect the first capacitance of the insulated wire 1.
 第1ガード電極142aは、主電極141から見て絶縁電線1の長手方向において絶縁皮膜形成部154側(上流側)に配置される。第2ガード電極142bは、主電極141から見て絶縁電線1の長手方向において巻取り部156側(下流側)に配置される。第1ガード電極142aおよび第2ガード電極142bは、主電極141の端部における電界の集中を緩和し、絶縁電線1と主電極141との間に生じる静電容量の数値を安定的に計測するために設置される。第1ガード電極142aと第2ガード電極142bとは互いに接続されている。また第1ガード電極142aおよび第2ガード電極142bは、キャパシタンス監視装置158および巻取り部156と接続され、巻取り部156と第1ガード電極142aおよび第2ガード電極142bとの間の経路において接地されている。すなわち、第1ガード電極142aおよび第2ガード電極142bは接地電極である。 1st guard electrode 142a is arrange | positioned in the longitudinal direction of the insulated wire 1 seeing from the main electrode 141 at the insulating film formation part 154 side (upstream side). The second guard electrode 142b is disposed on the winding portion 156 side (downstream side) in the longitudinal direction of the insulated wire 1 when viewed from the main electrode 141. The first guard electrode 142a and the second guard electrode 142b alleviate the concentration of the electric field at the end of the main electrode 141, and stably measure the numerical value of the capacitance generated between the insulated wire 1 and the main electrode 141. Installed for. The first guard electrode 142a and the second guard electrode 142b are connected to each other. The first guard electrode 142a and the second guard electrode 142b are connected to the capacitance monitoring device 158 and the winding unit 156, and are grounded in a path between the winding unit 156 and the first guard electrode 142a and the second guard electrode 142b. Has been. That is, the first guard electrode 142a and the second guard electrode 142b are ground electrodes.
 次に図23~図25を参照して、絶縁電線1の製造方法の手順を説明する。本実施の形態に係る絶縁電線1の製造方法においては、図25に示すS30~S50のステップが実施される。図23および図25を参照して、まず導線準備部150において、円形の断面形状を有する線状の導体10を準備する(S30)。具体的には、素線供給部151に保持された素線が素線供給部151から引き出され、導線加工部152において所望の形状に加工される。導体10を構成する材料は、例えば銅である。 Next, the procedure of the method for manufacturing the insulated wire 1 will be described with reference to FIGS. In the method for manufacturing insulated wire 1 according to the present embodiment, steps S30 to S50 shown in FIG. 25 are performed. Referring to FIG. 23 and FIG. 25, first, a conductor 10 having a circular cross section is prepared in the conductor preparation unit 150 (S30). Specifically, the strands held by the strand supply section 151 are drawn from the strand supply section 151 and processed into a desired shape by the conducting wire processing section 152. The material constituting the conductor 10 is, for example, copper.
 次に、絶縁皮膜20が形成される(S40)。絶縁皮膜20は、線状の形状を有する導体10の外周側の面を覆うように形成される。絶縁皮膜20は絶縁体からなり、内部に空孔15を含む。内部に空孔15を含む絶縁皮膜20は以下のようにして形成される。一例として、上記絶縁体がポリイミドからなる場合について説明する。まずポリイミドの前駆体である、ポリイミドのプレポリマーを準備する。そのプレポリマーに、ポリイミドの硬化温度よりも低い温度で分解する熱分解樹脂を混合し、ポリイミドプレポリマーと熱分解樹脂との混合物(ワニス)を準備する。準備したワニスを導体10の表面に塗工し、導体10の表面に塗膜を形成する。この塗膜を加熱すると、ポリイミドプレポリマーからポリイミドへの反応が促進される。ポリイミドは熱硬化性であるため、加熱により塗膜が硬化する。また加熱により熱分解樹脂が分解されて気化する。その結果、ポリイミドの硬化皮膜中の、熱分解性樹脂が存在していた箇所に空孔15が形成される。このようにして、導体10の外周側の面を覆うように、絶縁体であるポリイミドからなり、内部に空孔15を含む絶縁皮膜20が形成される。以上の手順により、導体10と、導体10を被覆する絶縁皮膜20とを有する絶縁電線1が得られる。 Next, the insulating film 20 is formed (S40). The insulating film 20 is formed so as to cover the outer peripheral surface of the conductor 10 having a linear shape. The insulating film 20 is made of an insulator and includes pores 15 inside. The insulating film 20 including the voids 15 is formed as follows. As an example, the case where the insulator is made of polyimide will be described. First, a polyimide prepolymer, which is a polyimide precursor, is prepared. A thermal decomposition resin that decomposes at a temperature lower than the curing temperature of the polyimide is mixed with the prepolymer to prepare a mixture (varnish) of the polyimide prepolymer and the thermal decomposition resin. The prepared varnish is applied to the surface of the conductor 10 to form a coating film on the surface of the conductor 10. When this coating film is heated, the reaction from the polyimide prepolymer to the polyimide is promoted. Since polyimide is thermosetting, the coating is cured by heating. Further, the pyrolysis resin is decomposed and vaporized by heating. As a result, pores 15 are formed in the polyimide cured film where the thermally decomposable resin was present. In this way, the insulating film 20 made of polyimide as an insulator and including the voids 15 is formed so as to cover the outer peripheral surface of the conductor 10. With the above procedure, the insulated wire 1 having the conductor 10 and the insulating film 20 covering the conductor 10 is obtained.
 また以下の様な手順で、図21または図22に示すような、中実層18と、空孔15を有する多孔質層19との多層構造を有する絶縁皮膜20を導体10の外周側に形成することもできる。まずポリイミドの前駆体である、ポリイミドのプレポリマーを準備する。次に、そのプレポリマーに熱分解樹脂を混合して得られる、プレポリマーと熱分解樹脂との両方を含有する第1のワニスと、プレポリマーを含有するが、熱分解樹脂は含有しない第2のワニスとを準備する。多孔質層19を形成する場合、第1のワニスが塗布され、加熱される。加熱により熱分解樹脂が分解して気化し、ポリイミドの硬化皮膜内に空孔15が形成される。これにより多孔質層19が形成される。また中実層18を形成する場合、第2のワニスが塗布され、加熱される。これにより中実層18が形成される。この手順を繰り返すことにより、所望の順に多孔質層19と中実層18とが形成された多層構造を有する絶縁皮膜20を導体10の外周側の面を覆うように形成することができる。 Further, an insulating film 20 having a multilayer structure of a solid layer 18 and a porous layer 19 having pores 15 as shown in FIG. 21 or 22 is formed on the outer peripheral side of the conductor 10 by the following procedure. You can also First, a polyimide prepolymer, which is a polyimide precursor, is prepared. Next, the first varnish containing both the prepolymer and the pyrolysis resin, obtained by mixing the prepolymer with the prepolymer, and the second containing the prepolymer but no pyrolysis resin. Prepare with varnish. In the case of forming the porous layer 19, the first varnish is applied and heated. The pyrolysis resin is decomposed and vaporized by heating, and voids 15 are formed in the cured film of polyimide. Thereby, the porous layer 19 is formed. When the solid layer 18 is formed, the second varnish is applied and heated. Thereby, the solid layer 18 is formed. By repeating this procedure, the insulating film 20 having a multilayer structure in which the porous layer 19 and the solid layer 18 are formed in the desired order can be formed so as to cover the outer peripheral surface of the conductor 10.
 絶縁皮膜20を形成するステップS40に引き続き、得られた絶縁電線1を検査する(S50)。ステップS50においては、絶縁電線1の静電容量を検出し、その静電容量と絶縁皮膜20の気孔率(絶縁皮膜20の全体積に占める空孔15の総体積の割合)との関係に基づいて、絶縁皮膜20の形成状態を検査する。検査はオンラインで行われる。オンラインで行う検査では、ステップS30~S50までの一連の工程において、上記ステップS40に引き続き連続して、ステップS40で得られた絶縁皮膜20の形成状態の検査を行う。また検査をオンラインで行う場合、図23に示す素線供給部151から巻取り部156に至るまでの一連の流れが、絶縁電線1を切断することなく一体的に行われる。 Subsequent to step S40 for forming the insulating film 20, the obtained insulated wire 1 is inspected (S50). In step S50, the capacitance of the insulated wire 1 is detected and based on the relationship between the capacitance and the porosity of the insulating coating 20 (the ratio of the total volume of the holes 15 to the total volume of the insulating coating 20). Then, the formation state of the insulating film 20 is inspected. The inspection is done online. In the on-line inspection, in the series of steps from Step S30 to Step S50, the formation state of the insulating film 20 obtained in Step S40 is inspected continuously following Step S40. Further, when the inspection is performed on-line, a series of flows from the wire supply unit 151 to the winding unit 156 shown in FIG. 23 are performed integrally without cutting the insulated wire 1.
 絶縁皮膜20の形成状態を検査する工程においては、測定部(キャパシタンスセンサ4)を水に浸漬した状態で主電極141に電圧を印加して、絶縁電線1の静電容量を監視する。絶縁電線1の静電容量は、主電極141に接続されたキャパシタンス監視装置158にて監視される。本実施の形態においては、絶縁電線1の静電容量と絶縁皮膜20の気孔率との関係に基づいて、絶縁皮膜20の形成状態を検査する。具体的には、計算により求められる理論曲線や、標準物質を用いて求められる検量線と、検査工程において求められる絶縁電線1の静電容量の値とを比較することにより、絶縁電線1の気孔率を見積もることができる。見積もられた気孔率から、絶縁皮膜20の形成状態を評価し、所定の気孔率の絶縁電線1が得られたか否かを判定することができる。検査された絶縁電線1は、その後巻取り部156において巻き取られる。 In the step of inspecting the formation state of the insulating film 20, a voltage is applied to the main electrode 141 in a state where the measurement unit (capacitance sensor 4) is immersed in water, and the capacitance of the insulated wire 1 is monitored. The capacitance of the insulated wire 1 is monitored by a capacitance monitoring device 158 connected to the main electrode 141. In the present embodiment, the formation state of the insulating film 20 is inspected based on the relationship between the capacitance of the insulated wire 1 and the porosity of the insulating film 20. Specifically, the pores of the insulated wire 1 are compared by comparing a theoretical curve obtained by calculation, a calibration curve obtained using a standard substance, and a capacitance value of the insulated wire 1 obtained in the inspection process. The rate can be estimated. From the estimated porosity, the formation state of the insulating film 20 can be evaluated to determine whether or not the insulated wire 1 having a predetermined porosity has been obtained. The inspected insulated wire 1 is then wound up by the winding unit 156.
 以上が本願発明の各実施の形態の説明である。なお、上記各実施の形態においては、円形の断面形状を有する線状の絶縁電線1の製造方法および検査方法を説明したが、絶縁電線1の断面形状はこれらに限定されず、四角形、六角形など任意の断面形状に加工された絶縁電線を得ることも可能である。 The above is the description of each embodiment of the present invention. In each of the above-described embodiments, the manufacturing method and the inspection method of the linear insulated wire 1 having a circular cross-sectional shape have been described. However, the cross-sectional shape of the insulated wire 1 is not limited to these, and a square, hexagonal shape. It is also possible to obtain an insulated wire processed into an arbitrary cross-sectional shape.
 また上記実施形態においては、導体10の長手方向に沿った各主電極の長さは特に限定されないが、好ましくは10mm以下である。また複数の主電極を有する場合、少なくとも1つの上記長さが10mm以下であるのが好ましい。 In the above embodiment, the length of each main electrode along the longitudinal direction of the conductor 10 is not particularly limited, but is preferably 10 mm or less. Moreover, when it has a some main electrode, it is preferable that at least 1 said length is 10 mm or less.
 また上記実施の形態においては、静電容量の検出を行うための検査部53を巻取り部56において巻き取られる直前の位置に配置したが、検査部53を配置する位置はこの位置に限定されない。例えば、導体10上に複数の層の絶縁層を形成することにより絶縁皮膜20を形成する場合、巻取り部56において巻き取られる直前の位置に代えて、または巻取り部56において巻き取られる直前の位置とともに、絶縁皮膜20が完成する前の中間体の段階において静電容量の検出が行える位置に検査部53を配置してもよい。 Moreover, in the said embodiment, although the test | inspection part 53 for detecting an electrostatic capacitance was arrange | positioned in the position just before winding in the winding part 56, the position which arrange | positions the test | inspection part 53 is not limited to this position. . For example, in the case where the insulating film 20 is formed by forming a plurality of insulating layers on the conductor 10, instead of the position immediately before being wound at the winding portion 56, or immediately before being wound at the winding portion 56. In addition to the position, the inspection unit 53 may be arranged at a position where the capacitance can be detected at the intermediate stage before the insulating film 20 is completed.
 また上記実施形態においては、導体10の長手方向に沿った各ガード電極の長さが同一であったが、各ガード電極の上記長さはそれぞれ異なっていてもよい。また、欠陥部の検出に影響のない範囲でガード電極を省略することもできる。 In the above embodiment, the length of each guard electrode along the longitudinal direction of the conductor 10 is the same, but the length of each guard electrode may be different. Further, the guard electrode can be omitted as long as it does not affect the detection of the defective portion.
 上記実施形態においては、導体10,12の表面に塗工されたワニスを焼付炉内で加熱する方法により絶縁皮膜20,25を形成したが、絶縁皮膜20,25の形成方法はこの方法に限定されない。たとえば、熱可塑性樹脂の押出成形により絶縁皮膜20,25を形成することもできる。また空孔15の形成方法についても、熱分解性樹脂の分解を利用した空孔15の形成方法のみならず、他の方法を利用することもできる。例えば、相分離法(ポリマーと溶剤の均一溶液から、ミクロ相分離後、溶剤を抽出除去することにより多孔を形成する方法)や超臨界法(超臨界流体を利用して多孔質体を形成する方法)を利用して、絶縁皮膜20に空孔15を形成することも可能である。 In the said embodiment, although the insulating films 20 and 25 were formed by the method of heating the varnish coated on the surface of the conductors 10 and 12 in a baking furnace, the formation method of the insulating films 20 and 25 is limited to this method. Not. For example, the insulating films 20 and 25 can be formed by extrusion molding of a thermoplastic resin. As for the method for forming the holes 15, not only the method for forming the holes 15 using the decomposition of the thermally decomposable resin but also other methods can be used. For example, a phase separation method (a method of forming a pore by extracting and removing a solvent after a microphase separation from a homogeneous solution of a polymer and a solvent) or a supercritical method (a porous material is formed using a supercritical fluid) It is also possible to form the holes 15 in the insulating film 20 using the method.
 [検査例]
 次に、本願の絶縁電線1の検査方法に基づいて、キャパシタンスセンサ2により実際に絶縁皮膜20の欠陥部を検査した例を示す。
[Inspection example]
Next, an example in which a defective portion of the insulating film 20 is actually inspected by the capacitance sensor 2 based on the inspection method of the insulated wire 1 of the present application will be described.
 [空孔を有する絶縁皮膜20を備えた絶縁皮膜における低気孔率部の検出例]
 (検査例1)
 導体10と、導体10を被覆する絶縁皮膜20とを有する無欠陥の絶縁電線1を準備した。絶縁皮膜20に、絶縁皮膜20側から平面的に見た形状が一辺0.5mmの正方形形状である穴を開け、その穴をエポキシ樹脂(誘電率約3.1)で充填して、人工的に低気孔率部21を有する測定試料Aを作製した。測定試料Aにおける低気孔率部21の、長手方向最大長さと幅方向最大長さとの積は0.25mmである。同様に、絶縁皮膜20に、絶縁皮膜20側から平面的に見た形状が一辺0.4mmの正方形形状である穴を開け、その穴を同じエポキシ樹脂で充填して、人工的に低気孔率部21を有する測定試料Bを作製した。測定試料Bにおける低気孔率部21の長手方向最大長さと幅方向最大長さとの積は0.16mmである。
[Detection example of low-porosity part in insulating film provided with insulating film 20 having pores]
(Inspection example 1)
A defect-free insulated electric wire 1 having a conductor 10 and an insulating film 20 covering the conductor 10 was prepared. A hole having a square shape with a side of 0.5 mm is formed in the insulating film 20 in a plan view from the insulating film 20 side, and the hole is filled with an epoxy resin (dielectric constant of about 3.1). A measurement sample A having a low porosity portion 21 was prepared. The product of the maximum length in the longitudinal direction and the maximum length in the width direction of the low porosity portion 21 in the measurement sample A is 0.25 mm 2 . Similarly, a hole having a square shape with a side of 0.4 mm is formed in the insulating film 20 in a plan view from the insulating film 20 side, and the hole is filled with the same epoxy resin to artificially reduce the porosity. A measurement sample B having a portion 21 was produced. The product of the maximum length in the longitudinal direction and the maximum length in the width direction of the low porosity portion 21 in the measurement sample B is 0.16 mm 2 .
 実施の形態1に係る検査電極55を有するキャパシタンスセンサ2を用いて、測定試料Aおよび測定試料Bの低気孔率部21が検出されるか否かを検査した。その結果、測定試料Aおよび測定試料Bのいずれについても低気孔率部21が検出された。 Using the capacitance sensor 2 having the inspection electrode 55 according to the first embodiment, it was inspected whether or not the low porosity portion 21 of the measurement sample A and the measurement sample B was detected. As a result, the low porosity portion 21 was detected for both the measurement sample A and the measurement sample B.
 (検査例2)
 実施の形態3に係る検査電極55を有するキャパシタンスセンサ2を用いて、測定試料Aおよび測定試料Bの低気孔率部21が検出されるか否かを検査した。その結果、測定試料Aおよび測定試料Bのいずれについても低気孔率部21が検出された。
(Inspection example 2)
Whether or not the low porosity portion 21 of the measurement sample A and the measurement sample B is detected is inspected using the capacitance sensor 2 having the inspection electrode 55 according to the third embodiment. As a result, the low porosity portion 21 was detected for both the measurement sample A and the measurement sample B.
 (検査例3)
 実施の形態4に係る検査電極55を有するキャパシタンスセンサ2を用いて、測定試料Aおよび測定試料Bの低気孔率部21が検出されるか否かを検査した。その結果、測定試料Aおよび測定試料Bのいずれについても低気孔率部21が検出された。
(Inspection example 3)
Using the capacitance sensor 2 having the inspection electrode 55 according to the fourth embodiment, it was inspected whether or not the low porosity portion 21 of the measurement sample A and the measurement sample B was detected. As a result, the low porosity portion 21 was detected for both the measurement sample A and the measurement sample B.
 (検査例4)
 実施の形態5に係る検査電極55を有するキャパシタンスセンサ2を用いて、測定試料Aおよび測定試料Bの低気孔率部21が検出されるか否かを検査した。その結果、測定試料Aおよび測定試料Bのいずれについても低気孔率部21が検出された。
(Inspection example 4)
Using the capacitance sensor 2 having the inspection electrode 55 according to the fifth embodiment, it was inspected whether or not the low porosity portion 21 of the measurement sample A and the measurement sample B was detected. As a result, the low porosity portion 21 was detected for both the measurement sample A and the measurement sample B.
 上述の通り、いずれの検査例においても、平面的に見た形状が一辺0.5mm、長手方向最大長さと幅方向最大長さとの積が0.25mmの正方形形状である低気孔率部21、および平面的に見た形状が一辺0.4mm、長手方向最大長さと幅方向最大長さとの積が0.16mmの正方形形状である低気孔率部21を検出できることが明らかとなった。 As described above, in any of the inspection examples, the low porosity portion 21 having a square shape in which the shape viewed in a plane is 0.5 mm on a side and the product of the maximum length in the longitudinal direction and the maximum length in the width direction is 0.25 mm 2. It was revealed that the low-porosity portion 21 having a square shape having a side shape of 0.4 mm and a product of the maximum length in the longitudinal direction and the maximum length in the width direction of 0.16 mm 2 can be detected.
 [肉薄部の検出例]
 次に、種々の大きさの肉薄部22を有する絶縁電線3を準備し、上記検査方法によって肉薄部22が検出可能かを調べた(検査例5~検査例9)。各検査例においては、絶縁電線3を導体12の長手方向に搬送しながら、図6に示す構造を有する電極と、測定対象の絶縁電線3との間の静電容量を測定し、静電容量の推移を調べた。結果を表1に示す。表1において、静電容量変動量とは、絶縁皮膜25に欠陥のない正常な部分における静電容量の値に対し、欠陥部が存在する部分における静電容量の変動量(%)を示す。また膜厚減少量(μm)とは、肉薄部における、正常部の絶縁皮膜25の膜厚の平均値からの減少量の平均値(図10における膜厚減少量dの、1つの欠陥内の平均値)を示す。長手方向最大長さ(L)(mm)とは、絶縁皮膜25の厚み方向から平面視した平面形状における、欠陥部の長手方向に沿った最大の長さ(図11における長さLD2)を示す。また幅方向最大長さ(W)(mm)とは、絶縁皮膜25の厚み方向から平面視した平面形状における欠陥部の幅方向に沿った最大の長さ(図11における幅W)を示す。導体12の膨れの高さ(μm)とは、肉薄部22が発生した箇所の導体12の盛り上がり量の最大値を示す。
[Detection of thin part]
Next, an insulated wire 3 having thin portions 22 of various sizes was prepared, and it was examined whether the thin portions 22 could be detected by the above inspection method (Inspection Examples 5 to 9). In each inspection example, while the insulated wire 3 is conveyed in the longitudinal direction of the conductor 12, the capacitance between the electrode having the structure shown in FIG. The transition of was investigated. The results are shown in Table 1. In Table 1, the capacitance fluctuation amount indicates the capacitance fluctuation amount (%) in the portion where the defect portion exists with respect to the capacitance value in the normal portion where the insulating film 25 has no defect. Further, the film thickness reduction amount (μm) is the average value of the reduction amount from the average value of the film thickness of the insulating film 25 in the normal part (thin film thickness reduction amount d in FIG. Average value). The maximum length (L) (mm) in the longitudinal direction is the maximum length (length L D2 in FIG. 11) along the longitudinal direction of the defective portion in the planar shape viewed in plan from the thickness direction of the insulating film 25. Show. Moreover, the width direction maximum length (W) (mm) shows the maximum length (width W 2 in FIG. 11) along the width direction of the defect portion in the planar shape in plan view from the thickness direction of the insulating film 25. . The swelling height (μm) of the conductor 12 indicates the maximum value of the bulge amount of the conductor 12 where the thin portion 22 is generated.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、表1の検査例5~検査例9においては、欠陥のない正常部分における静電容量の値と比べて、肉薄部に対応する箇所で3.0%以上、最大4.8%の静電容量の変動が生じた。これは、欠陥部を検出するために充分な変動量であった。その結果、導体12の長手方向に沿った長さが4mm以下の絶縁皮膜25内の肉薄部22を的確に検出することが可能である。また表1に示す結果から、上記検査方法は、長手方向最大長さLと幅方向最大長さWとの積L×Wが、0.1mm以上20mm以下であり、かつ膜厚減少量が1μm以上50μm以下である肉薄部22を適切に検出可能であることが示される。 As shown in Table 1, in the inspection examples 5 to 9 in Table 1, the value corresponding to the thin portion is 3.0% or more and the maximum is 4 as compared with the capacitance value in the normal portion having no defect. A capacitance variation of .8% occurred. This was an amount of fluctuation sufficient to detect a defective portion. As a result, it is possible to accurately detect the thin portion 22 in the insulating film 25 whose length along the longitudinal direction of the conductor 12 is 4 mm or less. Further, from the results shown in Table 1, in the inspection method, the product L × W of the maximum length L in the longitudinal direction and the maximum length W in the width direction is 0.1 mm 2 or more and 20 mm 2 or less, and the film thickness is reduced. It is shown that the thin portion 22 having a thickness of 1 μm or more and 50 μm or less can be appropriately detected.
[静電容量と絶縁皮膜20の気孔率との関係に基づく検査例]
 次に、図26を参照して、本実施の形態において行われる、絶縁皮膜20の形成状態の検査の一例を示す。図26は静電容量と気孔率との関係を示すグラフである。縦軸は静電容量(単位:pF・m-1)を示す。また、横軸は気孔率(vol%(体積%))を示す。ひし形(◆)の印は、絶縁皮膜20の膜厚が50μmの場合のデータを表す。正方形(■)の印は、絶縁皮膜20の膜厚が100μmの場合のデータを表す。三角形(▲)の印は、絶縁皮膜20の膜厚が150μmの場合のデータを表す。また実線200は、絶縁皮膜20の膜厚が50μmの場合における上記データを線形近似して得られる直線である。破線210は、絶縁皮膜20の膜厚が100μmの場合における上記データを線形近似して得られる直線である。一点鎖線220は、絶縁皮膜20の膜厚が100μmの場合における上記データを線形近似して得られる直線である。
[Example of inspection based on relationship between capacitance and porosity of insulating film 20]
Next, with reference to FIG. 26, an example of the inspection of the formation state of the insulating film 20 performed in the present embodiment will be described. FIG. 26 is a graph showing the relationship between capacitance and porosity. The vertical axis represents the capacitance (unit: pF · m −1 ). The horizontal axis indicates the porosity (vol% (volume%)). The diamond (♦) mark represents data when the thickness of the insulating film 20 is 50 μm. The square (■) marks represent data when the thickness of the insulating film 20 is 100 μm. The triangles ()) represent data when the thickness of the insulating film 20 is 150 μm. A solid line 200 is a straight line obtained by linearly approximating the above data when the film thickness of the insulating film 20 is 50 μm. A broken line 210 is a straight line obtained by linearly approximating the above data when the film thickness of the insulating film 20 is 100 μm. An alternate long and short dash line 220 is a straight line obtained by linearly approximating the above data when the film thickness of the insulating film 20 is 100 μm.
 絶縁皮膜20の膜厚に応じて図26に示す実線200、破線210、または一点鎖線220を参照することにより、絶縁皮膜20の膜厚が既知であれば、測定された静電容量から、絶縁電線1が有する絶縁皮膜20の気孔率を見積もることができる。その見積もられた気孔率から、絶縁皮膜20の形成状態を検査することができる。また気孔率が既知であれば、サンプルの静電容量を測定することにより、絶縁皮膜20の膜厚を見積もることも可能である。 If the film thickness of the insulating film 20 is known by referring to the solid line 200, the broken line 210, or the alternate long and short dash line 220 shown in FIG. 26 according to the film thickness of the insulating film 20, the insulating film 20 is insulated from the measured capacitance. The porosity of the insulating film 20 of the electric wire 1 can be estimated. The formation state of the insulating film 20 can be inspected from the estimated porosity. If the porosity is known, the thickness of the insulating film 20 can be estimated by measuring the capacitance of the sample.
 [まとめ]
 以上説明した通り、上記絶縁電線の製造方法によれば、絶縁電線1,3の絶縁特性に影響を与え得る欠陥部、特に微小な欠陥部を、絶縁電線を搬送しながら非破壊で適切に検出することができ、それにより安定した品質の絶縁電線1,3を製造することが可能となる。また本願の絶縁電線の検査方法によれば、絶縁皮膜20、25を備える絶縁電線1,3の、絶縁性に影響を与え得る絶縁電線1,3の内部の欠陥部、特に導体10,12の長手方向に沿った長さが4mm以下、好ましくは2mm以下、より好ましくは1mm以下の微細な低気孔率部21や肉薄部22を適切に検出することができ、それにより安定した品質の絶縁電線1,3の製造に貢献することが可能となる。
[Summary]
As described above, according to the method for manufacturing an insulated wire, a defective portion that can affect the insulation characteristics of the insulated wires 1 and 3, particularly a minute defect portion, can be appropriately detected non-destructively while carrying the insulated wire. Accordingly, it is possible to manufacture insulated wires 1 and 3 having stable quality. Moreover, according to the inspection method of the insulated wire of this application, the defect part of the insulated wires 1 and 3 which can affect insulation of the insulated wires 1 and 3 provided with the insulating films 20 and 25, especially the conductors 10 and 12 A fine low-porosity portion 21 or a thin portion 22 having a length along the longitudinal direction of 4 mm or less, preferably 2 mm or less, more preferably 1 mm or less can be detected appropriately, and thereby a stable quality insulated wire It is possible to contribute to the production of 1 and 3.
 今回開示された実施の形態および検査例はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and inspection examples disclosed this time are examples in all respects and are not restrictive in any aspect. The scope of the present invention is defined not by the above-described meaning but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1 絶縁電線、2 キャパシタンスセンサ、3 絶縁電線、10 導体、11 膨れ、12 導体、15 空孔、18 中実層、19 多孔質層、20 絶縁皮膜、21 低気孔率部、22 肉薄部、23 傷、24 穴、25 絶縁皮膜、30 製造装置、40 第1主電極、40a,40b,40c,40d 電極ユニット、41 第2主電極、41a,41b,41c,41d 電極ユニット、42a 第1ガード電極、42b 第2ガード電極、42c 第3ガード電極、44 筐体、50 導線準備部、51 素線供給部、52 導体加工部、53 検査部、54 絶縁皮膜形成部、54a 塗工装置、54b 焼付炉、55 検査電極、56 巻取り部、58 キャパシタンスモニタ、60 第3主電極、60a,60b,60c,60d 電極ユニット、62a 第4ガード電極、62b 第5ガード電極、70 第4主電極、71 第5主電極、72a 第6ガード電極、72b 第7ガード電極、72c 第8ガード電極、80 第6主電極、82a 第9ガード電極、82b 第10ガード電極、90 第7主電極、90a 電極ユニット、90b 電極ユニット、90c 電極ユニット、90d 電極ユニット、91 第8主電極、91a 電極ユニット、91b 電極ユニット、91c 電極ユニット、91d 電極ユニット、92a 第11ガード電極、92b 第12ガード電極、92c 第13ガード電極、100 第9主電極、101 第10主電極、102a 第14ガード電極、102b 第15ガード電極、102c 第16ガード電極、110 第11主電極、110a,110b,110c,110d 電極ユニット、112a 第17ガード電極、112b 第18ガード電極、130 製造装置、141 主電極、142a 第1ガード電極、142b 第2ガード電極、144 筐体、150 導線準備部、151 素線供給部、152 導線加工部、153 検査部、154 絶縁皮膜形成部、154a 塗工装置、154b 焼付炉、156 巻取り部、158 キャパシタンス監視装置、200 実線、210 破線、220 一点鎖線 1 insulated wire, 2 capacitance sensor, 3 insulated wire, 10 conductor, 11 bulge, 12 conductor, 15 pores, 18 solid layer, 19 porous layer, 20 insulation coating, 21 low porosity portion, 22 thin portion, 23 Scratches, 24 holes, 25 insulation coating, 30 manufacturing equipment, 40 first main electrode, 40a, 40b, 40c, 40d electrode unit, 41 second main electrode, 41a, 41b, 41c, 41d electrode unit, 42a first guard electrode , 42b 2nd guard electrode, 42c 3rd guard electrode, 44 housing, 50 conductor preparation section, 51 strand supply section, 52 conductor processing section, 53 inspection section, 54 insulation coating forming section, 54a coating device, 54b baking Furnace, 55 inspection electrode, 56 winding part, 58 capacitance monitor, 60 third main electrode, 60a, 60b, 60 , 60d electrode unit, 62a fourth guard electrode, 62b fifth guard electrode, 70 fourth main electrode, 71 fifth main electrode, 72a sixth guard electrode, 72b seventh guard electrode, 72c eighth guard electrode, 80 sixth Main electrode, 82a 9th guard electrode, 82b 10th guard electrode, 90th 7th main electrode, 90a electrode unit, 90b electrode unit, 90c electrode unit, 90d electrode unit, 91 8th main electrode, 91a electrode unit, 91b electrode unit 91c electrode unit, 91d electrode unit, 92a eleventh guard electrode, 92b twelfth guard electrode, 92c thirteenth guard electrode, 100th ninth main electrode, 101 tenth main electrode, 102a fourteenth guard electrode, 102b fifteenth guard electrode , 102c, the 16th guard electrode, 10 eleventh main electrode, 110a, 110b, 110c, 110d electrode unit, 112a 17th guard electrode, 112b 18th guard electrode, 130 manufacturing device, 141 main electrode, 142a first guard electrode, 142b second guard electrode, 144 housing Body, 150 conductor preparation section, 151 strand supply section, 152 conductor processing section, 153 inspection section, 154 insulation film forming section, 154a coating apparatus, 154b baking furnace, 156 winding section, 158 capacitance monitoring apparatus, 200 solid line, 210 dashed line, 220 dashed line

Claims (36)

  1.  線状の形状を有する導体を準備する工程と、
     前記導体の外周側の面を覆うように、絶縁皮膜を形成することにより、前記導体と、前記導体を被覆する前記絶縁皮膜とを有する絶縁電線を得る工程と、
     前記絶縁電線を前記導体の長手方向に搬送しながら、前記絶縁電線の外周面に対向するように前記絶縁電線の径方向外側に配置される第1の電極と前記絶縁電線との間の第1の静電容量を測定し、前記第1の静電容量の推移に基づいて、前記絶縁皮膜内の欠陥部の形成状態を含む前記絶縁皮膜の形成状態を検査する工程と、を含む、絶縁電線の製造方法。
    Preparing a conductor having a linear shape;
    Forming an insulating film so as to cover the outer peripheral surface of the conductor to obtain an insulated wire having the conductor and the insulating film covering the conductor;
    While conveying the said insulated wire to the longitudinal direction of the said conductor, the 1st between the 1st electrode arrange | positioned on the radial direction outer side of the said insulated wire and the said insulated wire so that the outer peripheral surface of the said insulated wire may be opposed And measuring the formation state of the insulation film including the formation state of the defective portion in the insulation film based on the transition of the first capacitance. Manufacturing method.
  2.  前記絶縁皮膜の形成状態を検査する工程において、前記導体の長手方向に沿った長さが4mm以下の前記絶縁皮膜内の前記欠陥部を検出する、請求項1に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to claim 1, wherein in the step of inspecting the formation state of the insulating film, the defective portion in the insulating film having a length of 4 mm or less along the longitudinal direction of the conductor is detected.
  3.  前記第1の電極は、前記導体の長手方向に沿った長さが4mm以下の前記絶縁皮膜内の前記欠陥部が検出可能となるように、前記長手方向に沿った長さが調整されている請求項2に記載の絶縁電線の製造方法。 The length along the longitudinal direction of the first electrode is adjusted so that the defect portion in the insulating film having a length of 4 mm or less along the longitudinal direction of the conductor can be detected. The manufacturing method of the insulated wire of Claim 2.
  4.  前記絶縁皮膜の形成状態を検査する工程において、前記導体の長手方向に沿った長さが2mm以下の前記絶縁皮膜内の前記欠陥部を検出する、請求項1~請求項3のいずれか1項に記載の絶縁電線の製造方法。 The defect part in the insulating film having a length of 2 mm or less along the longitudinal direction of the conductor is detected in the step of inspecting the formation state of the insulating film. The manufacturing method of the insulated wire of description.
  5.  前記絶縁電線を得る工程において、前記絶縁皮膜は、前記導体の外周側の面を覆うように塗工液を塗工して塗膜を形成し、前記塗膜を加熱することにより形成される、請求項1~請求項4のいずれか1項に記載の絶縁電線の製造方法。 In the step of obtaining the insulated wire, the insulating film is formed by coating a coating liquid so as to cover the outer peripheral surface of the conductor, and heating the coating film. The method for manufacturing an insulated wire according to any one of claims 1 to 4.
  6.  前記絶縁電線を準備する工程において準備される前記絶縁電線の前記絶縁皮膜は、内部に空孔を有し、
     前記絶縁皮膜の形成状態を検査する工程において、さらに前記第1の静電容量と気孔率との関係に基づいて前記絶縁皮膜の形成状態を検査する、請求項1~請求項5のいずれか1項に記載の絶縁電線の製造方法。
    The insulating film of the insulated wire prepared in the step of preparing the insulated wire has a hole inside,
    6. The step of inspecting the formation state of the insulating film further includes inspecting the formation state of the insulating film based on a relationship between the first capacitance and the porosity. The manufacturing method of the insulated wire as described in a term.
  7.  前記絶縁皮膜内の前記欠陥部は、内部に空孔を有する前記絶縁皮膜内に存在する低気孔率部である請求項6に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to claim 6, wherein the defective portion in the insulating film is a low porosity portion existing in the insulating film having pores therein.
  8.  前記絶縁皮膜内の前記欠陥部は肉薄部である請求項1~請求項7のいずれか1項に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to any one of claims 1 to 7, wherein the defective portion in the insulating film is a thin portion.
  9.  前記肉薄部は、膜厚減少量が1μm以上50μm以下である、請求項8に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to claim 8, wherein the thinned portion has a thickness reduction amount of 1 µm or more and 50 µm or less.
  10.  前記絶縁皮膜の厚み方向から平面視した平面形状における前記欠陥部の長手方向最大長さと幅方向最大長さとの積が、0.1mm以上20mm以下である請求項1~請求項9のいずれか1項に記載の絶縁電線の製造方法。 10. The product of the maximum length in the longitudinal direction and the maximum length in the width direction of the defect portion in a planar shape in plan view from the thickness direction of the insulating film is 0.1 mm 2 or more and 20 mm 2 or less. The manufacturing method of the insulated wire of Claim 1.
  11.  前記第1の電極は、前記導体の長手方向に垂直な断面において前記導体の周方向に互いに離間するように分割された複数のユニットを含み、各前記ユニットは前記導体の長手方向に沿って延在する、請求項1~請求項10のいずれか1項に記載の絶縁電線の製造方法。 The first electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each of the units extends along the longitudinal direction of the conductor. The method for producing an insulated wire according to any one of claims 1 to 10, wherein:
  12.  前記絶縁皮膜の形成状態を検査する工程において、前記第1の電極と前記絶縁電線との間の第1の静電容量を検出するとともに、前記絶縁電線の外周面に対向するように前記絶縁電線の径方向外側に配置された第2の電極と前記絶縁電線との間の第2の静電容量をさらに検出し、前記第1の静電容量の推移および前記第2の静電容量の推移の少なくともいずれか一方に基づいて前記絶縁皮膜の形成状態を検査する、請求項1~請求項11のいずれか1項に記載の絶縁電線の製造方法。 In the step of inspecting the formation state of the insulating film, the insulated wire detects the first capacitance between the first electrode and the insulated wire and faces the outer peripheral surface of the insulated wire. The second capacitance between the second electrode arranged on the outer side in the radial direction and the insulated wire is further detected, and the transition of the first capacitance and the transition of the second capacitance The method of manufacturing an insulated wire according to any one of claims 1 to 11, wherein the formation state of the insulating film is inspected based on at least one of the following.
  13.  前記第2の電極の、前記導体の長手方向に沿った長さが前記第1の電極とは異なる、請求項12に記載の絶縁電線の製造方法。 The method for manufacturing an insulated wire according to claim 12, wherein a length of the second electrode along a longitudinal direction of the conductor is different from that of the first electrode.
  14.  前記第2の電極は、前記導体の長手方向に垂直な断面において前記導体の周方向に互いに離間するように分割された複数のユニットを含み、各前記ユニットは前記導体の長手方向に沿って延在する、請求項12又は請求項13に記載の絶縁電線の製造方法。 The second electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each of the units extends along the longitudinal direction of the conductor. The manufacturing method of the insulated wire of Claim 12 or Claim 13 which exists.
  15.  前記絶縁皮膜はポリイミドを含む、請求項1~請求項14のいずれか1項に記載の絶縁電線の製造方法。 15. The method of manufacturing an insulated wire according to claim 1, wherein the insulating film includes polyimide.
  16.  前記絶縁皮膜の形成状態を検査する工程は、オンラインで行われる、請求項1~請求項15のいずれか1項に記載の絶縁電線の製造方法。 The method of manufacturing an insulated wire according to any one of claims 1 to 15, wherein the step of inspecting the formation state of the insulating film is performed online.
  17.  線状の形状を有する導体と、前記導体の外周側に形成された絶縁皮膜とを有する絶縁電線を準備する工程と、
     前記絶縁電線を前記導体の長手方向に搬送しながら、前記絶縁電線の外周面に対向するように前記絶縁電線の径方向外側に配置される電極と前記絶縁電線との間の静電容量を測定し、前記静電容量の推移に基づいて前記絶縁皮膜の形成状態を検査する工程とを含み、
     前記絶縁皮膜の形成状態を検査する工程において、前記導体の長手方向に沿った長さが4mm以下の前記絶縁皮膜内の欠陥部を検出可能な絶縁電線の検査方法。
    Preparing an insulated wire having a conductor having a linear shape and an insulating film formed on the outer peripheral side of the conductor;
    While conveying the insulated wire in the longitudinal direction of the conductor, the capacitance between the electrode and the insulated wire measured on the radially outer side of the insulated wire so as to face the outer peripheral surface of the insulated wire is measured. And inspecting the formation state of the insulating film based on the transition of the capacitance,
    A method for inspecting an insulated wire capable of detecting a defective portion in the insulating film whose length along the longitudinal direction of the conductor is 4 mm or less in the step of inspecting the formation state of the insulating film.
  18.  前記電極は、前記導体の長手方向に沿った長さが4mm以下の前記絶縁皮膜内の前記欠陥部が検出可能となるように、前記長手方向に沿った長さが調整されている、請求項17に記載の絶縁電線の検査方法。 The length along the longitudinal direction of the electrode is adjusted so that the defect portion in the insulating film having a length along the longitudinal direction of the conductor of 4 mm or less can be detected. 17. The method for inspecting an insulated wire according to 17.
  19.  前記絶縁皮膜の形成状態を検査する工程において、前記導体の長手方向に沿った長さが2mm以下の前記絶縁皮膜内の前記欠陥部を検出可能である、請求項17又は請求項18に記載の検査方法。 The step of inspecting the formation state of the insulating film can detect the defect portion in the insulating film having a length of 2 mm or less along the longitudinal direction of the conductor. Inspection method.
  20.  前記絶縁電線を準備する工程において準備される前記絶縁電線の前記絶縁皮膜は、内部に空孔を有し、
     前記絶縁皮膜の形成状態を検査する工程において、さらに前記静電容量と気孔率との関係に基づいて前記絶縁皮膜の形成状態を検査する、請求項17~請求項19のいずれか1項に記載の絶縁電線の検査方法。
    The insulating film of the insulated wire prepared in the step of preparing the insulated wire has a hole inside,
    The inspecting state of the insulating film is further inspected based on a relationship between the capacitance and the porosity in the step of inspecting the forming state of the insulating film. Inspection method for insulated wires.
  21.  前記絶縁皮膜内の前記欠陥部は、内部に空孔を有する前記絶縁皮膜内に存在する低気孔率部である請求項20に記載の絶縁電線の検査方法。 21. The method for inspecting an insulated wire according to claim 20, wherein the defective portion in the insulating film is a low porosity portion existing in the insulating film having pores therein.
  22.  前記絶縁皮膜内の前記欠陥部は肉薄部である請求項17~請求項21のいずれか1項に記載の絶縁電線の検査方法。 The insulated wire inspection method according to any one of claims 17 to 21, wherein the defective portion in the insulating film is a thin portion.
  23.  前記肉薄部は、膜厚減少量が1μm以上50μm以下である、請求項22に記載の絶縁電線の検査方法。 23. The insulated wire inspection method according to claim 22, wherein the thinned portion has a thickness reduction amount of 1 μm or more and 50 μm or less.
  24.  前記絶縁皮膜の厚み方向から平面視した平面形状における前記欠陥部の長手方向最大長さと幅方向最大長さとの積が、0.1mm以上20mm以下である請求項17~請求項23のいずれか1項に記載の絶縁電線の検査方法。 The product of the maximum length in the longitudinal direction and the maximum length in the width direction of the defect portion in a planar shape in plan view from the thickness direction of the insulating film is 0.1 mm 2 or more and 20 mm 2 or less. The insulated wire inspection method according to claim 1.
  25.  前記絶縁皮膜はポリイミドを含む、請求項17~請求項24のいずれか1項に記載の絶縁電線の検査方法。 The method for inspecting an insulated wire according to any one of claims 17 to 24, wherein the insulating film includes polyimide.
  26.  前記絶縁皮膜の形成状態を検査する工程は、オンラインで行われる、請求項17~請求項25のいずれか1項に記載の絶縁電線の検査方法。 The method for inspecting an insulated wire according to any one of claims 17 to 25, wherein the step of inspecting the formation state of the insulating film is performed online.
  27.  線状の形状を有する導体を準備する導線準備部と、
     前記導体の外周側を覆うように絶縁皮膜を形成する絶縁皮膜形成部と、
     前記導体および前記絶縁皮膜を有する絶縁電線の、前記絶縁皮膜の形成状態を検査する検査部と、を備え、
     前記絶縁皮膜形成部は、
     前記絶縁皮膜の原料となるワニスを前記導体の外周側を覆うように塗工する塗工装置と、
     前記塗工装置により塗工された塗膜を加熱する加熱部と、を含み、
     前記検査部は、
     前記導体の長手方向に搬送されながら検査される前記絶縁電線の外周面に対向するように前記絶縁電線の径方向外側に配置される第1の電極を有し、前記導体の長手方向に搬送される前記絶縁電線と前記第1の電極との間の第1の静電容量を測定するキャパシタンスセンサを含む、絶縁電線製造装置。
    A conductor preparation unit for preparing a conductor having a linear shape;
    An insulating film forming part for forming an insulating film so as to cover the outer peripheral side of the conductor;
    An inspection unit for inspecting the formation state of the insulating film of the insulated wire having the conductor and the insulating film; and
    The insulating film forming part is
    A coating device for coating the varnish, which is a raw material of the insulating film, so as to cover the outer peripheral side of the conductor;
    A heating unit for heating the coating film applied by the coating apparatus,
    The inspection unit
    A first electrode disposed radially outward of the insulated wire so as to face an outer peripheral surface of the insulated wire to be inspected while being conveyed in the longitudinal direction of the conductor, and conveyed in the longitudinal direction of the conductor; An insulated wire manufacturing apparatus including a capacitance sensor that measures a first capacitance between the insulated wire and the first electrode.
  28.  前記第1の電極の、前記導体の長手方向の長さが0.1mm以上10mm以下である、請求項27に記載の絶縁電線製造装置。 The insulated wire manufacturing apparatus according to claim 27, wherein the length of the first electrode in the longitudinal direction of the conductor is 0.1 mm or more and 10 mm or less.
  29.  前記第1の電極は、前記導体の長手方向に垂直な断面において前記導体の周方向に互いに離間するように分割された複数のユニットを含み、各前記ユニットは前記導体の長手方向に沿って延在する、請求項27又は請求項28に記載の絶縁電線製造装置。 The first electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each of the units extends along the longitudinal direction of the conductor. The insulated wire manufacturing apparatus according to claim 27 or claim 28.
  30.  前記キャパシタンスセンサは、前記導体の長手方向に搬送されながら検査される前記絶縁電線の外周面に対向するように前記絶縁電線の径方向外側に配置される、前記第1の電極とは異なる第2の電極をさらに有し、
     前記キャパシタンスセンサは、前記導体の長手方向に搬送される前記絶縁電線と前記第2の電極との間の第2の静電容量をさらに測定する、請求項27~請求項29のいずれか1項に記載の絶縁電線製造装置。
    The capacitance sensor is disposed on the radially outer side of the insulated wire so as to face an outer peripheral surface of the insulated wire to be inspected while being conveyed in the longitudinal direction of the conductor. The electrode further comprises
    30. The capacitance sensor according to claim 27, wherein the capacitance sensor further measures a second capacitance between the insulated wire and the second electrode conveyed in a longitudinal direction of the conductor. The insulated wire manufacturing apparatus described in 1.
  31.  前記第2の電極の、前記導体の長手方向の長さが0.1mm以上10mm以下である、請求項30に記載の絶縁電線製造装置。 The insulated wire manufacturing apparatus according to claim 30, wherein a length of the second electrode in the longitudinal direction of the conductor is 0.1 mm or more and 10 mm or less.
  32.  前記第2の電極の、前記導体の長手方向に沿った長さが前記第1の電極とは異なる、請求項30又は請求項31に記載の絶縁電線製造装置。 32. The insulated wire manufacturing apparatus according to claim 30, wherein a length of the second electrode along a longitudinal direction of the conductor is different from that of the first electrode.
  33.  前記第2の電極は、前記導体の長手方向に垂直な断面において前記導体の周方向に互いに離間するように分割された複数のユニットを含み、各前記ユニットは前記導体の長手方向に沿って延在する、請求項30~請求項32のいずれか1項に記載の絶縁電線製造装置。 The second electrode includes a plurality of units divided so as to be separated from each other in the circumferential direction of the conductor in a cross section perpendicular to the longitudinal direction of the conductor, and each of the units extends along the longitudinal direction of the conductor. The insulated wire manufacturing apparatus according to any one of claims 30 to 32.
  34.  前記導線準備部は、
     金属素線を保持する素線供給部と、
     前記素線供給部から供給される前記金属素線を加工する導体加工部と、を含む、請求項27~請求項33のいずれか1項に記載の絶縁電線製造装置。
    The conductor preparation part
    A wire supply unit for holding a metal wire;
    The insulated wire manufacturing apparatus according to any one of claims 27 to 33, further comprising: a conductor processing unit that processes the metal strand supplied from the strand supply unit.
  35.  前記絶縁皮膜形成部において、
     前記塗工装置は、ポリイミド前駆体を含む前記ワニスを前記導体に塗工し、
     前記加熱部は、塗工された前記塗膜を加熱し、前記ポリイミド前駆体からポリイミド皮膜を形成する焼付炉である、請求項27~請求項34のいずれか1項に記載の絶縁電線製造装置。
    In the insulating film forming part,
    The coating apparatus applies the varnish containing a polyimide precursor to the conductor,
    The insulated wire manufacturing apparatus according to any one of claims 27 to 34, wherein the heating unit is a baking furnace that heats the coated film to form a polyimide film from the polyimide precursor. .
  36.  前記絶縁電線製造装置は、前記検査部において検査された前記絶縁電線を巻き取る巻取り部をさらに備え、
     前記絶縁電線が切断されないように前記導線準備部から前記巻取り部までが並べて配置された、請求項27~請求項35のいずれか1項に記載の絶縁電線製造装置。
    The insulated wire manufacturing apparatus further includes a winding unit that winds up the insulated wire inspected in the inspection unit,
    The insulated wire manufacturing apparatus according to any one of claims 27 to 35, wherein a part from the conducting wire preparation unit to the winding unit is arranged side by side so that the insulated wire is not cut.
PCT/JP2017/037953 2016-10-20 2017-10-20 Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device WO2018074577A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/339,933 US10962498B2 (en) 2016-10-20 2017-10-20 Method for producing insulated electric wire, method for inspecting insulated electric wire, and apparatus for producing insulated electric wire
CN201780064900.4A CN109844872A (en) 2016-10-20 2017-10-20 The method for being used to prepare insulated electric conductor, for checking the method for insulated electric conductor and being used to prepare the device of insulated electric conductor

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-206330 2016-10-20
JP2016206330 2016-10-20
JP2017-069200 2017-03-30
JP2017069202 2017-03-30
JP2017069198A JP2018170260A (en) 2017-03-30 2017-03-30 Manufacturing method of insulated wire
JP2017-069198 2017-03-30
JP2017-069202 2017-03-30
JP2017069200A JP2018170261A (en) 2017-03-30 2017-03-30 Manufacturing method of insulated wire
JP2017149486A JP6908462B2 (en) 2017-03-30 2017-08-01 Insulated wire inspection method
JP2017-149486 2017-08-01

Publications (1)

Publication Number Publication Date
WO2018074577A1 true WO2018074577A1 (en) 2018-04-26

Family

ID=62019410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037953 WO2018074577A1 (en) 2016-10-20 2017-10-20 Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device

Country Status (1)

Country Link
WO (1) WO2018074577A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826416A (en) * 1981-08-10 1983-02-16 昭和電線電纜株式会社 Method of producing high foamable cable
JPH03283208A (en) * 1990-03-29 1991-12-13 Tatsuta Electric Wire & Cable Co Ltd Insulated core wire twister
JPH10125151A (en) * 1996-10-18 1998-05-15 Sumitomo Wiring Syst Ltd Stranding period detecting method for stranded cable
JP2005123116A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Manufacturing method and manufacturing device of insulated wire, and communication cable
JP2007026909A (en) * 2005-07-19 2007-02-01 Sumitomo Electric Ind Ltd Two-core balanced cable
JP2012224714A (en) * 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd Insulating varnish for low dielectric constant and insulated wire using the same
JP2013004399A (en) * 2011-06-20 2013-01-07 Hitachi Magnet Wire Corp Method of manufacturing rectangular enameled wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826416A (en) * 1981-08-10 1983-02-16 昭和電線電纜株式会社 Method of producing high foamable cable
JPH03283208A (en) * 1990-03-29 1991-12-13 Tatsuta Electric Wire & Cable Co Ltd Insulated core wire twister
JPH10125151A (en) * 1996-10-18 1998-05-15 Sumitomo Wiring Syst Ltd Stranding period detecting method for stranded cable
JP2005123116A (en) * 2003-10-20 2005-05-12 Sumitomo Electric Ind Ltd Manufacturing method and manufacturing device of insulated wire, and communication cable
JP2007026909A (en) * 2005-07-19 2007-02-01 Sumitomo Electric Ind Ltd Two-core balanced cable
JP2012224714A (en) * 2011-04-18 2012-11-15 Sumitomo Electric Ind Ltd Insulating varnish for low dielectric constant and insulated wire using the same
JP2013004399A (en) * 2011-06-20 2013-01-07 Hitachi Magnet Wire Corp Method of manufacturing rectangular enameled wire

Similar Documents

Publication Publication Date Title
JP6908462B2 (en) Insulated wire inspection method
Louis et al. An experimental investigation of through-thickness electrical resistivity of CFRP laminates
US7355395B2 (en) Method and apparatus for eddy current-based quality inspection of dry electrode structure
CN110568263B (en) Multi-parameter detection method and device for conductor with metal coating
CN106556748A (en) Measurement apparatus and method based on the thin-film material complex dielectric permittivity of transmission bounce technique
CN108519261B (en) Method for testing dielectric property of semiconductive material based on sandwich structure
US10962498B2 (en) Method for producing insulated electric wire, method for inspecting insulated electric wire, and apparatus for producing insulated electric wire
WO2018074577A1 (en) Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device
CN104220884B (en) Method for determining the electrical properties of cable insulation
Tai et al. Combining the converse humidity/resistance response behaviors of rGO films for flexible logic devices
KR20180108680A (en) Standard gas barrier film
JP6893815B2 (en) Manufacturing method of insulated wire
US7737691B2 (en) NMR characterization of thin films
WO2018074004A1 (en) Production method for insulated electric wire
JP2018170261A (en) Manufacturing method of insulated wire
JP2018170260A (en) Manufacturing method of insulated wire
CN113589078B (en) High-frequency performance prediction method for medium degradation connector in humid environment
CN108364881A (en) A kind of method of dielectric layer hole link on detection wafer
US11181505B2 (en) Quality testing of additive manufactured product using electrical measurements
KR101722238B1 (en) Method and measurement device for the estimation of extruded orientated characteristic in the semi-conductor layers of power cables
Vavilova et al. Instrument for in-process control of capacitance per unit length of an electrical wire
Case et al. Microwave quantification of porosity level in 3D printed polymers
CN113639642A (en) Method for detecting hole length and heating hidden danger of composite insulator core rod
CN109946356B (en) Quantitative evaluation method for concrete damage after high temperature and fire
JPWO2018168452A1 (en) Manufacturing method of insulated wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862132

Country of ref document: EP

Kind code of ref document: A1