JPS5826416A - Method of producing high foamable cable - Google Patents

Method of producing high foamable cable

Info

Publication number
JPS5826416A
JPS5826416A JP56124923A JP12492381A JPS5826416A JP S5826416 A JPS5826416 A JP S5826416A JP 56124923 A JP56124923 A JP 56124923A JP 12492381 A JP12492381 A JP 12492381A JP S5826416 A JPS5826416 A JP S5826416A
Authority
JP
Japan
Prior art keywords
cooling
cooling medium
foaming
foamed
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124923A
Other languages
Japanese (ja)
Inventor
武 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP56124923A priority Critical patent/JPS5826416A/en
Publication of JPS5826416A publication Critical patent/JPS5826416A/en
Pending legal-status Critical Current

Links

Classifications

    • B29C47/92

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は発泡絶縁体で導体周面に絶縁層を形成した高発
泡ケーブルの製造方法::関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a highly foamed cable in which an insulating layer is formed on the circumferential surface of a conductor using a foamed insulator.

高発泡絶縁同軸ケーブルの絶縁体層は、第1図に示すよ
うに、例えばポリエチレンに化学発泡剤を、配合した発
泡性組成物を押出機1で導体2の外 1− 周面上に押出被覆し、これを大気中で発泡させ補助冷却
水層3を挿通させて所定の外径で発泡を停止させた後主
冷却水槽4を挿通させて冷却固化させることにより製造
されている。
As shown in FIG. 1, the insulator layer of the highly foam-insulated coaxial cable is made by extruding a foaming composition, for example, polyethylene mixed with a chemical foaming agent, onto the outside of the conductor 2 using an extruder 1. It is manufactured by foaming it in the atmosphere, passing it through the auxiliary cooling water layer 3, stopping the foaming at a predetermined outer diameter, and then passing it through the main cooling water tank 4 to cool and solidify it.

ところで押出機1内で高い圧力が負荷されていた発泡性
組成物中の発泡ガスは、大気中に押出されたときに、高
圧からの解放に伴ない樹脂中で膨張し、この膨張は被覆
層が冷却固化して塑性変形不能となるまで続く。
By the way, when the foaming gas in the foamable composition that was under high pressure in the extruder 1 is extruded into the atmosphere, it expands in the resin as the high pressure is released, and this expansion causes the coating layer to expand. continues until it cools and solidifies and becomes unable to be plastically deformed.

従って発泡絶縁体の形成においては冷却条件をいかに選
ぶかが重要なポイントとなっている。
Therefore, when forming a foamed insulator, how to choose the cooling conditions is an important point.

特に絶縁被覆層の肉厚が約2鵡以上、発泡率約55%以
−ヒの高発泡絶縁コアを製造する場合にはこの冷却を適
切に行なう必要がある。
In particular, when producing a highly foamed insulating core in which the thickness of the insulating coating layer is about 2 mm or more and the expansion rate is about 55% or more, it is necessary to perform this cooling appropriately.

すなわち、冷却が適切に行なわれないと、所定の発泡度
とならなかったり、外径が楕円状につぶれたりするとい
う難点がある。
That is, if cooling is not carried out properly, there are problems in that the foaming degree may not be a predetermined level or the outer diameter may collapse into an elliptical shape.

このため上記した従来の製造方法においても次のように
してこの問題の解決がはかられていた。
Therefore, even in the conventional manufacturing method described above, this problem has been solved as follows.

第1図において、主冷却水槽4中には、高発泡 2− 絶縁同軸ケーブル5の静電容量を測定する静電容量計6
が配置されており、また補助冷却槽6はサーボモータ7
により、押出機1のヘッド1aに対して進退し・得る構
成とされている。17かして、静電容量計6の測定値は
制御回路8に入力されて設定値と比較され、設定値から
外れているときはこれを修正する方向に補助水槽3を移
動させるべくサーボモータ7が駆動される。すなわち、
測定された静電容量の値が設定値より大きいときは、補
助水槽3をヘッド1aに近づくように移動させて冷却時
間を早めるこkにより発泡の抑制が行なわれ、逆に静電
容■[の値が設定値より小さいときは補助水槽3がヘッ
ド1aから遠ざけられて発泡の増進が行なわれ、静電容
量の値が長平方向にばらつかないように調整されるので
ある。
In FIG. 1, a capacitance meter 6 for measuring the capacitance of the highly foamed coaxial cable 5 is installed in the main cooling water tank 4.
is arranged, and the auxiliary cooling tank 6 is connected to a servo motor 7.
Thus, it is configured to move forward and backward with respect to the head 1a of the extruder 1. 17, the measured value of the capacitance meter 6 is input to the control circuit 8 and compared with the set value, and if it deviates from the set value, a servo motor is activated to move the auxiliary water tank 3 in a direction to correct it. 7 is driven. That is,
When the measured capacitance value is larger than the set value, foaming is suppressed by moving the auxiliary water tank 3 closer to the head 1a and speeding up the cooling time. When the value is smaller than the set value, the auxiliary water tank 3 is moved away from the head 1a to promote foaming, and the capacitance value is adjusted so as not to vary in the longitudinal direction.

また、各種特性を一層向上させるため、軟化状態にある
発泡絶縁被覆をサイジングダイに通して賦形することも
すでに行なわれているところである。
Furthermore, in order to further improve various properties, it has already been carried out to pass the foamed insulation coating in a softened state through a sizing die to shape it.

しかるに、かかる従来の方法では、長手方向の静電容量
の変化が解消され、かつ断面貞円状に成形されるが、第
2図に示す、1′、うに発泡絶縁層9の発泡度が周方向
に偏る現象が往々にして生じていた。
However, in this conventional method, the change in capacitance in the longitudinal direction is eliminated and the cross section is formed into a circular shape, but the degree of foaming of the foamed insulating layer 9 at 1' as shown in FIG. Phenomena of deviation in direction often occurred.

このように発泡度合が周方向に偏ると外形士は同心固状
に発泡絶縁層9が形成されても静電容量の点では偏肉し
たと同じ結果となり大川−L問題があった。10は発泡
セルである。
If the degree of foaming is biased in the circumferential direction in this manner, even if the foamed insulating layer 9 is formed in a solid concentric manner, the result in terms of capacitance is the same as if the thickness was uneven, resulting in the Okawa-L problem. 10 is a foam cell.

このように発泡度合が周方向に偏る現象は、発泡絶縁層
9の冷却条件が周方向に異ることに起因するものであっ
て、冷却条件を周方向に均一化できればこのような問題
を回避することができる。
This phenomenon in which the degree of foaming is biased in the circumferential direction is caused by the fact that the cooling conditions for the foamed insulating layer 9 differ in the circumferential direction.If the cooling conditions could be made uniform in the circumferential direction, this problem could be avoided. can do.

本発明はかかる点に着目してなされたもので押出機によ
り押出された軟化状態の発/fq性絶縁体層を外周面側
から冷却さ−I+:て発泡を制御する手段を有する高発
泡ケーブルの製造方法において、前記冷却手段は少なく
とも発泡性絶縁被覆層の周面に沿って多極的に分割され
た冷却媒体噴射口を有17、かつそれぞれ対応する面の
発泡度合に応じて冷却媒体の温度もしくは噴射1゛辻を
制御する手段を備えていることを特徴とし、発泡被覆層
(二ついて発泡状態の偏りを防止した高発泡ケーブルの
製造方法を提供しようとするものである。
The present invention has been made with attention to this point, and is a highly foamed cable having a means for controlling foaming by cooling a softened foam/fq insulating layer extruded by an extruder from the outer peripheral surface side. In the manufacturing method, the cooling means has at least a multipolar cooling medium injection port 17 along the circumferential surface of the foamable insulating coating layer, and the cooling medium is injected according to the foaming degree of each corresponding surface. It is an object of the present invention to provide a method for manufacturing a highly foamed cable, which is characterized by being equipped with means for controlling the temperature or the injection point, and which has two foamed coating layers to prevent unevenness in the foamed state.

以下本発明の高発泡ケーブルの製造方法の一実施例を第
3図および第4図を参照して説明する。
An embodiment of the method for manufacturing a highly foamed cable of the present invention will be described below with reference to FIGS. 3 and 4.

第6図は本発明に使用する装置の側面図、第4図はその
要部の断面図である。
FIG. 6 is a side view of the device used in the present invention, and FIG. 4 is a sectional view of the main parts thereof.

この装置においては、第1図に示した装置(=おける補
助冷却水槽6が、高発泡同軸ケーブル5通路に噴射口1
2a、12b、・・・を求心的に向けて放射状に配置さ
れた多数の冷却媒体噴射ノズル16a113b、・・・
で置き換えられている。各冷却媒体噴射ノズル13a、
13b、・・・には、それぞれ別個の冷却媒体給送管1
4a、14b、・・・が接続され、各冷却媒体給送管1
4a、14b、・・・(−は、個別に温度制御可能な例
えば冷却パイプ15a、15b、・・・から成る冷却装
置が付属されている。
In this device, the auxiliary cooling water tank 6 in the device shown in FIG.
A large number of cooling medium injection nozzles 16a, 113b, .
has been replaced by Each cooling medium injection nozzle 13a,
13b, . . . have separate cooling medium supply pipes 1, respectively.
4a, 14b,... are connected, and each cooling medium supply pipe 1
4a, 14b, . . . (- is attached with a cooling device consisting of, for example, cooling pipes 15a, 15b, . . . whose temperature can be controlled individually.

冷却媒体給送管14a、14b、・・・中を通る冷却媒
体、例えば水は、冷却パイプ15a、15b、・・・に
より個々に所望の温度にまで冷却可能とされている。
The cooling medium, such as water, passing through the cooling medium supply pipes 14a, 14b, . . . can be individually cooled to a desired temperature by cooling pipes 15a, 15b, .

個々の冷却媒体給送管14a、141)、・・・の冷却
温度の制御は、後述するように冷却制御系16a、16
b、・・・により高発泡絶縁同軸ケーブル5の静電容量
が周方向に均一になるように行なわれる。
The cooling temperature of each cooling medium supply pipe 14a, 141), . . . is controlled by cooling control systems 16a, 16, as described later.
b, . . . so that the capacitance of the highly foamed insulated coaxial cable 5 is made uniform in the circumferential direction.

すなわち、主冷却水槽4中には、高発泡絶縁同軸ケーブ
ル5の通路を囲んで冷却媒体噴射ノズル13a、13b
、・・・と同数の静電容晴検出ヘッド19a119b、
・・・が、冷却媒体噴射ノズル13a、13b、・・・
と等しい角度で放射状に配置されており、これらの静電
容世検出ヘッド19a、19b、・・・の出力は、それ
ぞれ冷却制御系16a、16b、・・・へ送られ、高発
泡同軸ケーブルの周方向の静電容量の分布が均一になる
よう、対応する冷却媒体給送管14a114b、・・・
を冷却する冷却パイプ15a、15b、・・・の冷却温
度が制御される。
That is, in the main cooling water tank 4, cooling medium injection nozzles 13a and 13b surround the passage of the highly foamed insulated coaxial cable 5.
, . . . and the same number of electrostatic capacitance detection heads 19a119b,
... are the coolant injection nozzles 13a, 13b, ...
The outputs of these electrostatic force detection heads 19a, 19b, . . . are sent to cooling control systems 16a, 16b, . The corresponding cooling medium feed pipes 14a114b, . . .
The cooling temperature of the cooling pipes 15a, 15b, . . . is controlled.

すなわち、例えば高発泡同軸ケーブル5の心線2に対し
て垂直下方方向の静電容量値が所定の値よりも小さい場
合には、対応する位置(垂直上向き)に配置された冷却
媒体噴射ノズル13aから噴射される冷却媒体を給送す
る冷却媒体給送管14aを冷却する冷却バイブ15aの
冷却温度が低くなるように制御され、逆に所定の値より
も大きい場合には冷却バイブ15aの冷却温度が高くな
るように制御されて高発泡同軸ケーブル5の心線2に対
1.7で垂直下方方向の発泡絶縁被覆の発泡度が周方向
に均一となるよう調節されるのである。
That is, for example, if the capacitance value in the vertically downward direction with respect to the core wire 2 of the highly foamed coaxial cable 5 is smaller than a predetermined value, the cooling medium injection nozzle 13a disposed at the corresponding position (vertically upward) The cooling temperature of the cooling vibrator 15a that cools the cooling medium feed pipe 14a that feeds the cooling medium injected from the cooling medium is controlled to be low, and conversely, when the cooling temperature is higher than a predetermined value, the cooling temperature of the cooling vibrator 15a is lowered. The degree of foaming of the foamed insulation coating in the vertical downward direction is adjusted to be uniform in the circumferential direction at a ratio of 1.7 to the core wire 2 of the highly foamed coaxial cable 5.

なお、冷却媒体噴射ノズル13a、13b、・・・の噴
射口12a、12b1・・・近傍には温度検出器18a
、181)、・・・が配置されており、これらの温度検
出器18a、18b、・・・により冷却媒体の液温か測
定され、この測定値が冷却制御系1621.16I)、
・・・へ送られてフィードバック制御が行なわれる。
In addition, temperature detectors 18a are installed near the injection ports 12a, 12b1... of the coolant injection nozzles 13a, 13b,...
, 181), ... are arranged, and the liquid temperature of the cooling medium is measured by these temperature detectors 18a, 18b, ..., and this measured value is sent to the cooling control system 1621.16I),
... and feedback control is performed.

また、第3図に示した実施例では、冷却媒・体の噴射量
による静電容量制御のほか、冷却媒体噴射ノズル13a
、161)、・・・の全体を第1図に示した装置におけ
ると同様に高発泡同軸ケーブル5の通路に沿って前後動
させて長手方向の静電容量制御も行なわれるようにされ
ている。この構成は第1図(=示した装置におけると同
様なので共通部分に同一符号を付して説明を省略する。
In addition, in the embodiment shown in FIG. 3, in addition to the capacitance control based on the injection amount of the cooling medium,
, 161), . . . are moved back and forth along the path of the highly foamed coaxial cable 5 in the same way as in the device shown in FIG. 1, so that capacitance control in the longitudinal direction is also performed. . This configuration is the same as that in the apparatus shown in FIG.

しかして、」1記実施例においては、押出1411から
押出された高発泡絶縁同軸ケーブル5は、静電容量計6
にJニリその静電容量が測定され結果が静電容量制御系
8に入力されて静電容量制御系8からの指令信号により
冷却媒体噴射ノズル13a、13b、・・・の全体がザ
ーボモータ7により前後動されて長手方向の静電容量が
均一化される。
Therefore, in the embodiment 1, the highly foamed insulated coaxial cable 5 extruded from the extrusion 1411 is connected to the capacitance meter 6.
Then, the capacitance is measured and the result is input to the capacitance control system 8, and the entire coolant injection nozzle 13a, 13b, . It is moved back and forth to equalize the capacitance in the longitudinal direction.

ここで高発泡絶縁ケーブル5の周方向の静電容量に偏り
が生じると、この偏りは静電容量検出ヘッド19a、1
9b、・・・に検出され、その出力は冷却制御系16a
、16b、・・・へ送られて冷却制御系16a、16b
、・・・からの指令信号により個々の冷却媒体噴射ノズ
ル13a、131)、・・・から噴出される冷却媒体の
温度が上記した静電容量の偏りを矯正するように調整さ
れて周方向の静電容量が均一化される。
If a deviation occurs in the capacitance in the circumferential direction of the highly foamed insulated cable 5, this deviation will cause the capacitance detection heads 19a, 1
9b,..., and its output is detected by the cooling control system 16a.
, 16b, . . . cooling control systems 16a, 16b.
, . . . The temperature of the cooling medium ejected from the individual cooling medium injection nozzles 13a, 131), . Capacitance is equalized.

上記実施例では、冷却媒体給送管1a、14b、・・・
を個別に冷却バイブ15a、15b、・・・で冷却する
ことにより冷却媒体温度の制御を行ったが、冷却媒体の
全体を一旦過度に冷却しておき、これを冷却媒体給送管
で給送する過程で個別に所要温度まで加温して噴射させ
るようにしてもよい。
In the above embodiment, the cooling medium supply pipes 1a, 14b,...
The temperature of the cooling medium was controlled by individually cooling the cooling vibrators 15a, 15b, . In the process of doing so, the fuel may be heated individually to a required temperature and then injected.

第5図は、かかる実施例の要部を概念的に示すもので、
冷却装置20で過度に冷却された冷却媒体は、冷却媒体
給送管14a、lb、・・・で給送される過程で各給送
管14a、14b、・・・の外周に設けたヒーター21
a、21b、・・・により個別に所要の温度まで加温さ
れる。ヒーター21a、21b、・・・の温度制御は、
第6図に示した静電容量計19a、19b1・・・の出
力信号に基いて加熱制御系22a、22b、・・・によ
り行なわれる。
FIG. 5 conceptually shows the main parts of such an embodiment.
The cooling medium that has been excessively cooled by the cooling device 20 is cooled by a heater 21 provided on the outer periphery of each feeding pipe 14a, 14b, .
a, 21b, . . . are individually heated to the required temperature. Temperature control of the heaters 21a, 21b,...
This is carried out by the heating control systems 22a, 22b, . . . based on the output signals of the capacitance meters 19a, 19b1, . . . shown in FIG.

この実施例では周方向の冷却媒体の温度分布の制御がヒ
ーター(二より行なわれるので冷却バイブによる制御と
比較して応答性が良好であり、かつ動力省費量も少くて
済む。
In this embodiment, the temperature distribution of the cooling medium in the circumferential direction is controlled by a heater (two heaters), so the response is better than control by a cooling vibrator, and the power consumption is also reduced.

なお、以上は、発泡絶縁被覆の周方向の発泡度の制御を
冷却媒体の周方向の温度分布を変えることにより制御し
た例であるが、例えば各冷却媒体給送管に流量調整弁を
介在させて冷却媒体の噴射量を周方向に異ならせること
により周方向の発泡度の分布を均一にすることも可能で
ある。
The above is an example of controlling the degree of foaming in the circumferential direction of the foam insulation coating by changing the temperature distribution of the cooling medium in the circumferential direction. It is also possible to make the distribution of the degree of foaming in the circumferential direction uniform by varying the injection amount of the cooling medium in the circumferential direction.

以上説明したように、本発明によれば周方向に均一な発
泡度を有する高発泡同軸ケーブルを容易に得ることがで
きる。
As explained above, according to the present invention, a highly foamed coaxial cable having a uniform degree of foaming in the circumferential direction can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の高発泡同軸ケーブルの製造装置を概略
的に示す側面図、第2図は、にl’来の方法で得られた
高発泡同軸ケー7fルの発d・1度の分布状態を示す断
1111図、第6図は本発明の製造方法に用いる装置を
概略的に示す側面図、第4図はその要部を示す正面図、
第5図は他の実施例の要部を示す正面図である。 1 ・・・・・・押出機 2・・・・・導体 4 ・・・・・・ 主冷却水槽 5 ・・・・・・ 高発泡絶縁間軸ケーブル6 ・・・
・・・ 静電容量計 7 ・・・・・・ ザーボモータ 9 ・・・・・・発泡絶縁層 12a、12b、・・・・・・噴射口 13a、13b、・・・・・・冷却媒体噴射ノズル14
a、14b1・・・・・・冷却媒体給送管158.15
h1・・・・・・冷却パイプ16a、16+)、・・・
・・・冷却制御系19a、19I)、・・・・・・静電
容量検出ヘッド20  ・・・・・・冷却装置 21a、211)、・・・・・・ ヒーター22a、2
2b、・・・・・・加熱制御系代理人弁理士  須 山
 佐 − 同上 山田明信
Fig. 1 is a side view schematically showing a conventional highly foamed coaxial cable manufacturing apparatus, and Fig. 2 shows the degree of foaming of the highly foamed coaxial cable 7f obtained by the conventional method. FIG. 6 is a side view schematically showing the apparatus used in the manufacturing method of the present invention, FIG. 4 is a front view showing the main parts thereof,
FIG. 5 is a front view showing the main parts of another embodiment. 1...Extruder 2...Conductor 4...Main cooling water tank 5...Highly foamed insulated shaft cable 6...
... Capacitance meter 7 ... Serbo motor 9 ... Foamed insulation layers 12a, 12b, ... Injection ports 13a, 13b, ... Cooling medium injection Nozzle 14
a, 14b1... Cooling medium supply pipe 158.15
h1...Cooling pipe 16a, 16+),...
...Cooling control system 19a, 19I), ...Capacitance detection head 20, ...Cooling device 21a, 211), ...Heater 22a, 2
2b, ... Heating control system representative patent attorney Sa Suyama - Same as above Akinobu Yamada

Claims (1)

【特許請求の範囲】[Claims] 押出機(二より押出された軟化状態の発泡性絶縁体層を
被覆した導体の前記発泡性絶縁体被覆層を外周面側から
冷却させて発泡を制御する手段を有する高発泡ケーブル
の製造方法において、前記冷却手段は少なくとも発泡性
絶縁被覆層の周面に沿って多極的に分割された冷却媒体
噴射口を有し、かつそれぞれ対応する面の発泡度合に応
じて冷却媒体の温度もしくは噴射量を制御する手段を備
えていることを特徴とする高発泡ケーブルの製造方法。
An extruder (in a method for producing a highly foamed cable having a means for controlling foaming by cooling the foamed insulating coating layer of a conductor coated with a softened foamed insulating layer extruded from the outer peripheral surface side from an extruder) , the cooling means has at least cooling medium injection ports divided into multiple polarities along the circumferential surface of the foamable insulating coating layer, and adjusts the temperature or injection amount of the cooling medium according to the degree of foaming of each corresponding surface. A method for manufacturing a highly foamed cable, comprising means for controlling.
JP56124923A 1981-08-10 1981-08-10 Method of producing high foamable cable Pending JPS5826416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124923A JPS5826416A (en) 1981-08-10 1981-08-10 Method of producing high foamable cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124923A JPS5826416A (en) 1981-08-10 1981-08-10 Method of producing high foamable cable

Publications (1)

Publication Number Publication Date
JPS5826416A true JPS5826416A (en) 1983-02-16

Family

ID=14897485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124923A Pending JPS5826416A (en) 1981-08-10 1981-08-10 Method of producing high foamable cable

Country Status (1)

Country Link
JP (1) JPS5826416A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06259350A (en) * 1993-03-03 1994-09-16 Nec Yamagata Ltd Computer network fault detecting method
JPH075721U (en) * 1992-02-19 1995-01-27 株式会社イノアックコーポレーション Extruded foam molding manufacturing equipment
WO2018074577A1 (en) * 2016-10-20 2018-04-26 住友電気工業株式会社 Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device
JP2018169381A (en) * 2017-03-30 2018-11-01 住友電気工業株式会社 Inspection method for insulated wire
CN109844872A (en) * 2016-10-20 2019-06-04 住友电气工业株式会社 The method for being used to prepare insulated electric conductor, for checking the method for insulated electric conductor and being used to prepare the device of insulated electric conductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075721U (en) * 1992-02-19 1995-01-27 株式会社イノアックコーポレーション Extruded foam molding manufacturing equipment
JPH06259350A (en) * 1993-03-03 1994-09-16 Nec Yamagata Ltd Computer network fault detecting method
WO2018074577A1 (en) * 2016-10-20 2018-04-26 住友電気工業株式会社 Production method for insulated electric wire, inspection method for insulated electric wire, and insulated electric wire production device
CN109844872A (en) * 2016-10-20 2019-06-04 住友电气工业株式会社 The method for being used to prepare insulated electric conductor, for checking the method for insulated electric conductor and being used to prepare the device of insulated electric conductor
US10962498B2 (en) 2016-10-20 2021-03-30 Sumitomo Electric Industries, Ltd. Method for producing insulated electric wire, method for inspecting insulated electric wire, and apparatus for producing insulated electric wire
CN113053588A (en) * 2016-10-20 2021-06-29 住友电气工业株式会社 Method for producing insulated wire, method for inspecting insulated wire, and apparatus for producing insulated wire
JP2018169381A (en) * 2017-03-30 2018-11-01 住友電気工業株式会社 Inspection method for insulated wire

Similar Documents

Publication Publication Date Title
US4093414A (en) Single die co-extrusion apparatus for insulation
AU700985B2 (en) Method and apparatus for coating optical fibers
JPS625776B2 (en)
JPS5826416A (en) Method of producing high foamable cable
US4264555A (en) Process for production of monofilaments from polyvinylidene fluoride
US5249427A (en) Method and device for cooling coated wire
JP2854459B2 (en) Intermittent heating device for plasticized fluid in injection molding etc.
JP4438596B2 (en) Linear object cooling device
SE441732B (en) SET FOR MANUFACTURING A PIPE OF INSULATING MATERIALS INCLUDING ONE OR MORE INTERNAL PIPES, A PLASTIC FOAM INSULATION AND PLASTIC LAYER
CN101754846B (en) Distributor tool for the production of a multilayer blown film
WO1993009548A1 (en) Method for the heat treatment of a cable
JP6817458B2 (en) Thermally efficient transfer system for phase change inks in 3D printing systems
EP1271565B1 (en) Capacitance controlling process
JPH0520944A (en) Manufacture of foam insulation conductor
JPH08249958A (en) Method and equipment for manufacturing foamed insulation electric wire
CN111002538A (en) Hot flow channel system with accurate heating function
JP3605136B2 (en) High foam polyethylene coaxial cable manufacturing method
JPS60107217A (en) Method of producing foamable plastic insulated wire
JP2501582B2 (en) Glass fiber cooling
JPH0764007B2 (en) Method and apparatus for controlling film thickness in extrusion die
US20240100755A1 (en) Apparatus and method for the production of foamed polymeric material
US20230347593A1 (en) Short-length and efficient liquid cooled dispenser method
US7832998B1 (en) Controlled skin formation for foamed extrudate
JP3237183B2 (en) Extrusion equipment for deformed wire
KR100437348B1 (en) Extruding/foaming method of resin for coaxial cable using gas