WO2018074513A1 - 光学フィルム、光学フィルムの製造方法、及び偏光板 - Google Patents

光学フィルム、光学フィルムの製造方法、及び偏光板 Download PDF

Info

Publication number
WO2018074513A1
WO2018074513A1 PCT/JP2017/037695 JP2017037695W WO2018074513A1 WO 2018074513 A1 WO2018074513 A1 WO 2018074513A1 JP 2017037695 W JP2017037695 W JP 2017037695W WO 2018074513 A1 WO2018074513 A1 WO 2018074513A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
polycondensation ester
ester
polycondensation
film
Prior art date
Application number
PCT/JP2017/037695
Other languages
English (en)
French (fr)
Inventor
高木 隆裕
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018546379A priority Critical patent/JPWO2018074513A1/ja
Publication of WO2018074513A1 publication Critical patent/WO2018074513A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an optical film, an optical film manufacturing method, and a polarizing plate.
  • organic EL organic electroluminescence
  • various resin films are used as a support or a protective film.
  • a film containing a hydrogenated (hereinafter referred to as “hydrogenated”) norbornene resin as a main component has high heat resistance and low water absorption.
  • a film containing such a hydrogenated norbornene-based resin as a main component is preferably used since it is excellent in dimensional stability and humidity fluctuation resistance.
  • hydrogenated norbornene-based resin has a small photoelastic coefficient, intrinsic birefringence can be kept low. Accordingly, the hydrogenated norbornene-based resin is a material excellent in optical characteristics as a material for a polarizing plate protective film for applications requiring optical isotropy.
  • a film containing a hydrogenated norbornene-based resin as a main component has the above-described advantages, but has a problem that it is poor in slipperiness. Due to the poor slidability between films, problems are likely to occur during the production of the film. In particular, when the film is wound, if the slipping property between the films is poor, there is a problem that the film is broken or scratched during winding.
  • the hydrogenated norbornene-based resin film is not sufficiently slippery, so that it is difficult to handle and its application is limited.
  • a method for improving the slipperiness of the resin film As a method for improving the slipperiness of the resin film, a method of applying a thin film such as an antistatic layer on the surface (for example, Patent Documents 1 and 2), or a method of forming irregularities on the surface (for example, Patent Documents 3, 5, and 6). A method of bonding a protective film to form irregularities on the film (for example, Patent Document 4) has been proposed.
  • Patent Document 1 discloses a film having a coating layer containing an aromatic polyester resin and an antistatic agent on the surface of a polyester film and having a surface nitrogen atom content of 0.5 to 10 mol%. By reducing the chargeability of the film surface, both smoothness and slipperiness are achieved.
  • Patent Document 2 discloses an optical film having an antistatic layer containing a hydrophilic conductive compound on the surface of a cellulose acylate film. A technique for providing an effect of chemical resistance by providing an antistatic layer has been proposed.
  • Patent Document 3 discloses that the slipperiness is improved by forming a fine convex structure on the film surface by an inkjet method.
  • Patent Document 4 discloses a multilayer film in which a protective film having a certain Ra (arithmetic average roughness) or Sm (average interval of irregularities) is bonded to the surface of an optical film containing an alicyclic structure-containing polymer. Has been.
  • Patent Document 5 discloses a film in which matting agent fine particles are added to a cyclic olefin resin.
  • Patent Document 6 discloses a film obtained by adding a certain amount (5 to 40%) of an elastomer having a refractive index difference of 0.02 or less to a cyclic olefin resin.
  • JP 2003-39619 A Japanese Patent No. 5377283 Japanese Patent No. 5182092 JP 2012-61712 A JP 2007-098643 A JP2015-55796A
  • Patent Documents 5 and 6 The inventors of the present invention have repeatedly studied the methods disclosed in Patent Documents 5 and 6, and have found that there are the following problems.
  • Patent Document 5 even when matting agent particles are contained in a hydrogenated norbornene-based resin, the effect of improving slipperiness is insufficient. Further, when a large amount of matting agent particles are added to improve the slipperiness, there is a problem that the haze (turbidity) of the film increases. Further, as shown in Patent Document 6, even when an elastomer is contained in a hydrogenated norbornene resin, it is necessary to add a large amount of elastomer (20% to) in order to obtain a certain level of slipperiness, and the resulting film There was a problem that the elastomer was detached from the surface.
  • the present invention has been made in view of the above problems, and its solution is to provide an optical film containing a hydrogenated norbornene-based resin and having improved slipperiness without increasing haze. is there. Moreover, it is providing the polarizing plate provided with the manufacturing method of the said optical film, and the said optical film.
  • a hydrogenated norbornene resin selected from the group consisting of hydrogenated products, silica fine particles, and polycondensed esters of aromatic dicarboxylic acid and aliphatic diol, wherein the OH groups at both ends of the polycondensed ester are aromatic monoesters.
  • the polycondensation ester 1 is a polycondensation ester of an aromatic dicarboxylic acid having an average carbon number of 8.0 or more and 12.0 or less and an aliphatic diol having an average carbon number of 2.0 or more and 8.0 or less.
  • the OH groups at both ends of the polycondensed ester are polycondensed esters sealed with an aromatic monocarboxylic acid having an average carbon number of 7.0 or more and 9.0 or less
  • the polycondensed ester 2 is A polycondensation ester of an aliphatic dicarboxylic acid having an average carbon number of 2.0 or more and 8.0 or less and an aliphatic diol having an average carbon number of 2.0 or more and 8.0 or less, wherein both ends of the polycondensation ester In the polycondensation ester sealed with an aromatic monocarboxylic acid having an average carbon number of 7.0 or more and 9.0 or less, and the polycondensation ester 3 has an average carbon number of 2.0 or more and 8.
  • the optical film has an in-plane retardation value Ro (nm) represented by the following formula (I) measured with light having a wavelength of 590 nm under an environment of 23 ° C. and a relative humidity of 55%. Any one of [1] to [9] that satisfies the following formula (III) and the retardation value Rt (nm) in the thickness direction represented by the following formula (II) satisfies the following formula (IV): The optical film as described.
  • a polarizing plate comprising a polarizer and the optical
  • the present invention can provide an optical film containing a hydrogenated norbornene-based resin and having improved slipperiness without increasing haze.
  • the present inventors have found that a hydrogenated norbornene resin, silica fine particles, a polycondensation ester 1 having a certain aromatic group or more, and a polycondensation having a hydroxy group at the molecular end.
  • the optical film containing the ester 3 was found to have improved slipperiness without excessively increasing haze. The reason for this is not clear, but is presumed as follows.
  • the polycondensation ester 3 Since the polycondensation ester 3 has a hydroxyl group at the molecular end, it not only easily interacts with silica particles, but also easily interacts with polar groups contained in the hydrogenated norbornene resin. Accordingly, the silica fine particles are likely to interact with the hydrogenated norbornene resin via the polycondensation ester 3, and an aggregate comprising a mixture of the silica fine particles, the hydrogenated norbornene resin and / or the polycondensation ester 3. Easy to form. Such an aggregate has not only a certain size but also a small difference in refractive index from the hydrogenated norbornene resin constituting the matrix (than an aggregate composed only of silica fine particles). Is difficult to increase.
  • aggregates having a certain size or more can be formed on the film surface without increasing the haze of the film, and the peak density on the film surface is increased (preferably within the range of 1000 to 5000 pieces / mm 2 ). )be able to.
  • the polycondensation ester 1 has a certain number or more of aromatic groups in the molecule, not only the elastic modulus (hardness) of the film can be increased, but also an aggregate can be formed together with the polycondensation ester 3. The hardness of can also be increased.
  • the polycondensation ester 1 can suppress an excessive interaction between the polycondensation ester 3 and the hydrogenated norbornene resin, an increase in haze due to an excessively large aggregate can also be suppressed.
  • an aggregate having a certain level of hardness and size fine particle aggregate
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • optical film of the present invention contains hydrogenated norbornene resin, silica particles, polycondensation ester 1 and polycondensation ester 3, and preferably further contains polycondensation ester 2.
  • the optical film of the present invention contains a hydrogenated norbornene resin.
  • the “hydrogenated norbornene resin” in the present invention is a norbornene derivative having a polar group (norbornene monomer having a polar group) alone or copolymerized with a norbornene monomer having the polar group.
  • the “polar group” in the norbornene monomer having a polar group is a group selected from the group consisting of an alkoxy group, a hydroxy group, an ester group (alkoxycarbonyl group, allyloxycarbonyl group), a cyano group, an amide group, and an imide group. It is preferable that A hydrogenated norbornene resin obtained from a norbornene monomer having such a polar group can be dissolved well in a solvent, so that not only film formation by a solution casting method is possible, but also polycondensation ester 3 Interactions with are also likely to occur.
  • the norbornene monomer having a polar group is preferably a norbornene monomer having a structure represented by the following general formula (I).
  • A, B, X and Y are each independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, an alkoxy group, a hydroxy group, an ester group (an alkoxycarbonyl group, An aryloxycarbonyl group), a cyano group, an amide group, an imide group and an silyl group;
  • at least one of A, B, X and Y is a polarity selected from the group consisting of an alkoxy group, a hydroxy group, an ester group (alkoxycarbonyl group, allyloxycarbonyl group), a cyano group, an amide group and an imide group. It is a group.
  • m represents 0 or 1.
  • the copolymerizable monomer that can be copolymerized with a norbornene monomer having a polar group is not particularly limited, and examples thereof include a norbornene monomer having no polar group and a cyclic olefin system having no norbornene skeleton. Monomer.
  • A, B, X and Y in the general formula (I) are each independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, Or the monomer which is a silyl group is mentioned.
  • Examples of the cyclic olefin monomer having no norbornene skeleton include cyclooctadiene, cyclooctene, cyclohexene, cyclododecene, and cyclododecatriene.
  • the content ratio of the structural unit derived from the ring-opened product of the norbornene monomer having a polar group is preferably 80 mol% or more based on the total number of moles of all structural units constituting the hydrogenated norbornene resin. It may be 100 mol%.
  • Examples of the norbornene monomer having a polar group include the following.
  • Examples of a method for polymerizing a norbornene monomer having a polar group or a method for copolymerizing a norbornene monomer having a polar group and a copolymerizable monomer copolymerizable therewith include, for example, ring-opening metathesis Conventionally known methods such as polymerization and addition polymerization can be employed.
  • the unsaturated bond in the molecule of the hydrogenated norbornene resin is saturated by hydrogenation.
  • the hydrogenation rate of the hydrogenated norbornene resin is preferably 95% or more, and more preferably 99% or more. If the hydrogenation rate is less than 95%, the resulting optical film may be inferior in light resistance and heat deterioration resistance.
  • the number average molecular weight in terms of polystyrene of the hydrogenated norbornene resin is preferably 10,000 to 1,000,000. If it is less than 10,000, the mechanical strength of the resulting optical film may be insufficient. Conversely, if it exceeds 1,000,000, melt extrusion moldability may be significantly reduced. More preferably, it is 15,000 to 700,000.
  • Examples of commercially available hydrogenated norbornene resins include, for example, “ZEONOR” series, “ZEONEX” series manufactured by ZEON Corporation, “Optretz” series manufactured by Hitachi Chemical Co., Ltd., “ARTON” series manufactured by JSR Corporation (for example, G7810, RX4500) and the like.
  • the “Arton” series having an appropriate moisture permeability, which is necessary when producing a polarizing plate using water glue, is particularly preferable because it has a polar group in the molecular skeleton.
  • the optical film of the present invention contains silica fine particles.
  • the silica fine particles are preferably surface-treated with a hydrophobizing agent from the viewpoint of suppressing an increase in haze.
  • a hydrophobizing agent from the viewpoint of suppressing an increase in haze.
  • the hydrogen atom of the hydroxy group on the surface of the silica particle is substituted with a silyl group such as a dimethylsilyl group, a trimethylsilyl group, an octylsilyl group, or a dimethylpolysiloxane group.
  • hydrophobizing agents used include chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, tert-butyldimethylchlorosilane, vinyltrichlorosilane; tetramethoxysilane, methyltrimethoxy Silane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methylphenyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyl
  • the particle size of the secondary particles of the silica fine particles is preferably in the range of 0.05 to 0.6 ⁇ m, more preferably in the range of 0.10 to 0.15 ⁇ m, as the equivalent circle diameter.
  • the “equivalent circle diameter” herein refers to the diameter of a circle having an area equal to the area of the particles. This range is preferable since the average particle diameter of the secondary particles (aggregates) of the fine particles is larger when the average particle diameter is better, and the smaller one is excellent in transparency.
  • the “average particle diameter of secondary particles” in the present invention is a value obtained by measuring the average particle diameter of fine particles in an optical film by the following method. That is, a sample of an optical film containing a hydrogenated norbornene resin and fine particles was embedded in an epoxy resin, and then an ultrathin slice having a thickness of about 100 nm was prepared by an ultramicrotome, and a JEOL transmission electron microscope 2000FX (acceleration voltage) : 200 kV), TEM image of 2500 to 10000 times is taken. The obtained image is converted into electronic data by Konica Minolta flat head scanner Sition 9231, and the average particle diameter in the film is measured using image analysis software ImagePro Plus. The average particle diameter in the film is calculated as a circle equivalent diameter represented by the diameter of a circle having an area equal to the grain projected area. This value is defined as “average particle diameter of secondary particles”.
  • filter processing is performed so that the image analysis software can recognize the fine particles by enhancing the contrast of the fine particle image.
  • the contrast is optimized by changing the filter condition. Filtering uses median 3 ⁇ 3, then flattened 20 pixels, then high pass 3 ⁇ 3, then median 3 ⁇ 3. Thereafter, particles are extracted from the image with the optimized contrast, the shape of each particle is measured with image analysis software, and the average particle diameter is measured.
  • the apparent specific gravity of the silica fine particles is preferably in the range of 50 to 200 g / liter, and particularly preferably in the range of 100 to 200 g / liter.
  • a larger apparent specific gravity of the silica fine particles is preferable because a high-concentration dispersion can be produced, and haze and aggregates are improved.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above, Nippon Aerosil Co., Ltd., trade name (Aerosil is a registered trademark)) are available.
  • Aerosil R812V is a fine particle of silicon dioxide having a primary average particle size of 20 nm or less and an apparent specific gravity of 70 g / liter or more, and has an effect of reducing the friction coefficient while keeping the haze of the optical film low. Particularly preferred because of its large size.
  • the content of the silica fine particles is preferably in the range of 0.01 to 2.5% by mass, more preferably in the range of 0.05 to 1.5% by mass with respect to the hydrogenated norbornene resin. preferable.
  • the content of the silica fine particles is 0.01% by mass or more, a sufficiently large aggregate is easily formed on the surface of the film, so that it is easy to improve slipperiness, and when the content is 2.5% by mass or less The increase in haze can be highly suppressed.
  • the optical film of the present invention contains at least polycondensation esters 1 and 3 shown below.
  • Polycondensed ester 1 Polycondensation ester of aromatic dicarboxylic acid and aliphatic diol, wherein OH groups at both ends of the polycondensation ester are sealed with aromatic monocarboxylic acid
  • Polycondensation ester 3 Polycondensation ester of aliphatic dicarboxylic acid and aliphatic diol, wherein OH groups at both ends of the polycondensation ester are not sealed
  • the polycondensation ester 1 increases the film density by mixing with a hydrogenated norbornene resin. Thereby, slip property can be improved by improving the elasticity modulus of a film.
  • the average carbon number of the aromatic dicarboxylic acid constituting the polycondensed ester 1 is preferably 8.0 or more and 16.0 or less, and more preferably 8.0 or more and 12.0 or less.
  • the average carbon number of the aliphatic diol is preferably 2.0 or more and 10 or less, and more preferably 2.0 or more and 8.0 or less.
  • it is preferable that the average carbon number of aromatic monocarboxylic acid of both ends is 7.0 or more and 9.0 or less.
  • the polycondensation ester 3 Since the polycondensation ester 3 has a hydroxy group at the molecular end, it not only easily interacts with silica particles but also easily interacts with a hydrogenated norbornene resin having a polar group. Thereby, the aggregation of the silica particles and the polycondensation ester 3 and, further, the aggregation of the hydrogenated norbornene resin are promoted, and the aggregates of the desired size (silica particles, polycondensation ester 3 and water-added norbornene resin) Can be formed in large numbers. Furthermore, the polycondensation ester 3 not only easily interacts with the resin, but also does not contain an aromatic group, so that the orientation can be easily relaxed. Thereby, the alignment phase difference can also be reduced.
  • the average carbon number of the aliphatic dicarboxylic acid constituting the polycondensed ester 3 is preferably 2.0 or more and 10.0 or less, and more preferably 2.0 or more and 8.0 or less.
  • the average carbon number of the aliphatic diol is preferably 2.0 or more and 10.0 or less, and more preferably 2.0 or more and 8.0 or less.
  • the optical film of the present invention preferably further contains a polycondensed ester 2.
  • a polycondensed ester 2 A polycondensation ester of an aliphatic dicarboxylic acid and an aliphatic diol, wherein the OH groups at both ends of the polycondensation ester are sealed with an aromatic monocarboxylic acid
  • the polycondensation ester 2 Since the polycondensation ester 2 has an intermediate polarity between the polycondensation ester 1 and the polycondensation ester 3, the polycondensation ester 2 is easily compatible with the hydrogenated norbornene resin. Furthermore, the polycondensation ester 2 has an aromatic group which is a constituent element of the polycondensation ester 1 and an aliphatic group which is a constituent element of the polycondensation ester 3, whereby the polycondensation ester 1 and the polycondensation ester 3 The compatibility between the hydrogenated norbornene resin and each polycondensed ester can be further improved. This can further reduce haze.
  • the average carbon number of the aliphatic dicarboxylic acid constituting the polycondensed ester 2 is preferably 2.0 or more and 10.0 or less, and more preferably 2.0 or more and 8.0 or less.
  • the average carbon number of the aliphatic diol is preferably 2.0 or more and 10.0 or less, and more preferably 2.0 or more and 8.0 or less.
  • the average carbon number of the aromatic monocarboxylic acid at both ends is preferably 7.0 or more and 9.0 or less.
  • aromatic dicarboxylic acid constituting the polycondensed ester 1 examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2, 8-Naphthalenedicarboxylic acid or 2,6-naphthalenedicarboxylic acid is preferably used, and phthalic acid and terephthalic acid are more preferable.
  • aromatic dicarboxylic acid may be used alone or in combination of two or more. When two types are used, it is preferable to use phthalic acid and terephthalic acid.
  • Examples of the aliphatic dicarboxylic acid constituting the polycondensed esters 2 and 3 include oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. , Dodecanedicarboxylic acid or 1,4-cyclohexanedicarboxylic acid. Succinic acid and adipic acid are preferred. Moreover, aliphatic dicarboxylic acid may be used alone or in combination of two or more. When two types are used, it is preferable to use succinic acid and adipic acid.
  • Examples of the aliphatic diol constituting the polycondensed ester 1 to 3 include alkyl diols and alicyclic diols, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1 , 2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di-) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol,
  • ethylene glycol as one or a mixture of two or more.
  • Preferred aliphatic diols are ethylene glycol, 1,2-propanediol, 1,4-propanediol and 1,6-hexanediol, particularly preferably ethylene glycol and 1,2-propanediol.
  • the OH groups at both ends of the polycondensation ester 1 and 2 are sealed by reacting with an aromatic monocarboxylic acid.
  • the OH groups at both ends of the polycondensed ester are aromatic monocarboxylic acid ester derivatives.
  • aromatic monocarboxylic acid used for sealing benzoic acid, toluic acid, xylyl acid and derivatives thereof are preferable, and benzoic acid is more preferable.
  • the number average molecular weight of the polycondensed esters 1 to 3 is preferably 400 to 2000, more preferably 400 to 1500, and still more preferably 400 to 700.
  • the number average molecular weight of the polycondensed esters 1 to 3 can be measured by gel permeation chromatography.
  • Specific examples of polycondensation ester Specific examples of the polycondensed ester 1 are shown in Table 1 below, specific examples of the polycondensed ester 2 are shown in Table 2, and specific examples of the polycondensed ester 3 are shown in Table 3, but are not limited thereto.
  • the content ratio (mass ratio) of polycondensation ester 1 / polycondensation ester 3 is 10/90 to 90/10. It is preferable that the ratio is 40/60 to 60/40.
  • the content ratio (mass ratio) of polycondensation ester 1 / polycondensation ester 2 / polycondensation ester 3 ) Is more preferably 25/50/25 to 40/20/40.
  • the total content of the polycondensation esters 1 to 3 is preferably 1 to 30% by mass relative to the hydrogenated norbornene resin.
  • the total content of the polycondensed esters 1 to 3 is more preferably 1 to 10% by mass with respect to the hydrogenated norbornene resin.
  • the optical film of the present invention can further contain various additives for the purpose of imparting various functions.
  • Additives that can be applied to the present invention are not particularly limited, and are, for example, ultraviolet absorbers, plasticizers, deterioration inhibitors, matting agents, retardation increasing agents, and chromatic dispersion improvement within the range that does not impair the object effects of the present invention.
  • An agent or the like can be used.
  • the optical film of the present invention can contain an ultraviolet absorber.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like, but less benzotriazole compounds Compounds are preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574 and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used. As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer and an organic EL element, it has an excellent ability to absorb ultraviolet light having a wavelength of 370 nm or less, and from the viewpoint of display properties of the organic EL element, it absorbs visible light having a wavelength of 400 nm or more. It is preferable to have few characteristics.
  • benzotriazole-based ultraviolet absorber examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t -Butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butyl Phenyl) -5-chlorobenzotriazole, 2- [2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl] benzotriazole, 2,2 -Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2'-hydroxy- '-T-butyl-5'-methylphenyl) -5-
  • TINUVIN 109 can be preferably used as a commercial product.
  • TINUVIN 171 can be preferably used as a commercial product.
  • TINUVIN 326 can be preferably used as a commercial product.
  • TINUVIN 328 can be preferably used as a commercial product.
  • the content of the ultraviolet absorber is preferably in the range of 0.1 to 5.0% by mass, and preferably in the range of 0.5 to 5.0% by mass with respect to the hydrogenated norbornene resin. Further preferred.
  • ⁇ Plasticizer> In general, an optical film is poor in flexibility, and when the film is subjected to bending stress or shear stress, the film is likely to be cracked. Moreover, when processing as an optical film, a crack is easy to enter into a cutting part and it is easy to generate
  • plasticizer examples include, for example, phthalic acid ester compounds, trimellitic acid ester compounds, aliphatic dibasic acid ester compounds, sugar ester compounds, normal phosphate ester compounds, acetate ester compounds, Examples include polyester / epoxidized ester compounds, ricinoleic acid ester compounds, polyolefin compounds, polyethylene glycol compounds, and the like.
  • a compound that is normal temperature, normal pressure, liquid and has a boiling point of 200 ° C. or higher specifically examples include aliphatic dibasic acid ester, phthalic acid ester, and polyolefin compounds.
  • an aliphatic dibasic acid ester compound or a sugar ester compound is contained in the optical film from the viewpoint of relaxing the orientation of the hydrogenated norbornene resin and reducing the retardation value.
  • the content of the plasticizer is preferably in the range of 0.5 to 40.0% by mass relative to the hydrogenated norbornene resin, and is preferably in the range of 1.0 to 30.0% by mass. More preferably, it is particularly preferably in the range of 3.0 to 20.0% by mass.
  • the content of the plasticizer is 0.5% by mass or more, the plasticizing effect is sufficient and the processability is improved. Further, when the content is 40% by mass or less, separation and elution of the plasticizer can be suppressed when it is aged for a long time, and optical unevenness, contamination to other parts, and the like can be more reliably suppressed.
  • the optical film of the present invention may contain a deterioration inhibitor such as an antioxidant, a peroxide decomposer, a radical polymerization inhibitor, a metal deactivator, an acid scavenger, and amines.
  • a deterioration inhibitor such as an antioxidant, a peroxide decomposer, a radical polymerization inhibitor, a metal deactivator, an acid scavenger, and amines.
  • deterioration preventing agent examples include butylated hydroxytoluene (abbreviation: BHT) and tribenzylamine (abbreviation: TBA).
  • BHT butylated hydroxytoluene
  • TBA tribenzylamine
  • the content of the deterioration preventing agent is 0.05 with respect to the hydrogenated norbornene resin from the viewpoint that the effect of the addition of the deterioration preventing agent is manifested, and the deterioration preventing agent bleeds out to the film surface. It can be in the range of -0.2% by weight.
  • the peak density of the optical film of the present invention is preferably in the range of 1000 to 5000 (pieces / mm 2 ), more preferably 2000 to 4000 (pieces / mm 2 ). This range is preferable because the higher peak density is excellent in slipperiness and the smaller peak density is excellent in transparency.
  • the unit of peak density (pieces / mm 2 ) represents the number of peaks per 1 mm 2 .
  • the peak density is 23 ° C., humidity 50% ⁇ 5%, using a three-dimensional surface structure analysis microscope zygo New View 5000 manufactured by Canon Sales Co., Ltd., with an objective lens 50 ⁇ and an image zoom 1.0 ⁇ .
  • the average line that serves as a reference for peak height is the sum of the areas of the peaks that can be formed above and below the line within the measurement length when the average line is drawn on the roughness curve based on JIS B0601 (1994). Pull so that they are equal.
  • the portion above the average line is the “profile peak”. To do.
  • profile peak a portion higher than the average line by 3 nm or more is defined as a peak in the present invention.
  • the secondary particles can be sufficiently aggregated, and the peak density on the surface of the optical film can be in the range of 1000 to 5000 (pieces / mm 2 ).
  • hydrogenated norbornene resin, silica fine particles, and polycondensation esters 1 and 3 may be combined. Specifically, by mixing these to form a dope, the polycondensation ester 3 and the silica fine particles interact in the dope, and aggregation of the silica fine particles and the polycondensation ester 3 or 1 is promoted. . At the same time, the interaction between the hydrogenated norbornene resin and the polycondensation ester 3 also acts to alleviate the aggregation of the silica fine particles.
  • the haze value of the optical film of the present invention is preferably 0.5% or less, more preferably 0.30% or less, and further preferably 0.20% or less. A smaller haze value is preferable because of high transparency.
  • the haze value can be measured by using T-260DA manufactured by Tokyo Denshoku Industries Co., Ltd. according to ASTM-D1003-52 (ASTM standard) after superposing three optical films.
  • the haze value is adjusted by the average particle size and content of the primary and secondary particles of silica fine particles, the composition and content of the polycondensation ester, and the like. For example, in order to reduce haze, the content of silica fine particles is decreased, polycondensation esters 1 and 3 are added to suppress excessive aggregation of silica fine particles, or polycondensation ester 2 is further added. It is preferable to increase the compatibility between the polycondensation esters 1 and 3 and the compatibility with the resin.
  • the optical film of the present invention preferably has a moisture permeability in the range of 100 to 400 g / m 2 ⁇ 24 h.
  • the moisture permeability is a value when measured according to JIS Z 0208 in an environment of a temperature of 40 ° C. and a relative humidity of 90%.
  • the dynamic friction coefficient of the optical film is preferably 0.1 to 1.1. When the dynamic friction coefficient of the optical film is 1.1 or less, sufficient slipperiness can be obtained.
  • the dynamic friction coefficient of the optical film can be adjusted by the average particle diameter of secondary particles of silica fine particles, the content of silica particles, the composition and content of polycondensation ester, and the like.
  • the dynamic friction coefficient of the optical film in order to set the dynamic friction coefficient of the optical film to a certain value or less, it is preferable to set the average particle diameter of the secondary particles of the silica fine particles to a certain value or to set the content of the polycondensation ester 3 to a certain value.
  • the in-plane direction retardation value Ro (nm) defined by the following formula (I) and the thickness direction retardation value Rt (nm) defined by the following formula (II) are: It is preferable that the following formula (III) and the following formula (IV) are satisfied.
  • Ro and Rt are phase difference values measured with light having a wavelength of 590 nm in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
  • nx is the refractive index of the optical film in the slow axis direction in the film plane.
  • ny is the refractive index of the optical film in the fast axis direction in the film plane.
  • nz is the refractive index in the film thickness direction of the optical film.
  • d is the film thickness (nm) of the optical film.
  • the retardation value (Ro) in the in-plane direction of the film and the retardation value (Rt) in the thickness direction are 23 ° C. using an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics).
  • a three-dimensional refractive index measurement is performed at a wavelength of 590 nm in an environment of 55% RH, and the obtained refractive indexes nx, ny, and nz can be calculated by applying the above formulas (I) and (II). it can.
  • the retardation value (Ro) in the in-plane direction of the film and the retardation value (Rt) in the thickness direction can be adjusted by the stretching conditions, the content of the polycondensation ester 3, and the like.
  • the draw ratio is low and the content of the polycondensation ester 3 is set to a certain level or more. This is because the polycondensation ester 3 does not contain an aromatic group, so that the orientation retardation can be reduced.
  • the film thickness of the optical film of the present invention is preferably 5 to 40 ⁇ m. It is more preferably 5 to 30 ⁇ m, and further preferably 5 to 20 ⁇ m. Thus, the optical film of the present invention can be thinned.
  • the film thickness of the optical film means the average film thickness of the film.
  • the optical film of the present invention is produced by a solution casting method or a melt casting method, but it is preferable to produce the optical film from the viewpoint of easy production of a thin film optical film and good surface quality.
  • the manufacturing method by the solution casting method will be described.
  • the optical film of the present invention includes the steps of preparing a dope solution by dissolving the hydrogenated norbornene resin, the polycondensation esters 1 and 3 and the silica particles described above in a solvent, and the obtained dope solution. And a step of drying to obtain a film-like material.
  • the above-mentioned hydrogenated norbornene-based resin, the above-mentioned polycondensation esters 1 and 3, and the above-mentioned silica particles are dissolved in a solvent to prepare a dope solution, and the endless metal support for infinitely transferring the dope It is performed by a step of casting on a body, a step of drying the cast dope as a web and then peeling it from the metal support, a step of stretching or maintaining the width of the obtained web, and a step of winding up the obtained film . If necessary, after the step of stretching or maintaining the width of the web, a step of drying the obtained film may be further performed.
  • the process for preparing the dope will be described. It is preferable that the dissolved concentration of the hydrogenated norbornene resin and the polycondensation esters 1 and 3 in the dope is high because the drying load after casting on the metal support can be reduced. Increases and the filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the hydrogenated norbornene resin.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as dichloromethane, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is dichloromethane or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving the hydrogenated norbornene-based resin, the polycondensation esters 1 and 3, and the above-described silica particles collects the solvent removed from the film by drying in the film-forming process and reuses it. Used.
  • a general method for dissolving the hydrogenated norbornene resin when preparing the dope described above a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
  • Silica fine particles may be directly mixed with hydrogenated norbornene resin or polycondensation ester 1 to 3; after preparing a fine particle additive solution in which silica fine particles are dispersed in a solvent, hydrogenated norbornene resin or polycondensation is prepared. It may be mixed with esters 1 to 3. When mixing the fine particle additive solution with a dope containing hydrogenated norbornene resin or polycondensation ester 1 to 3, it is preferable to use an in-line mixer.
  • the concentration of the silica fine particles in the fine particle addition liquid is preferably in the range of 5 to 30% by mass, more preferably in the range of 10 to 25% by mass, and in the range of 15 to 20% by mass. Is particularly preferred. A higher dispersion concentration is preferable because the turbidity with respect to the same amount of addition becomes low and generation of haze and aggregates can be suppressed.
  • a dope containing hydrogenated norbornene resin, silica fine particles, and polycondensation esters 1 and 3, or a dope containing hydrogenated norbornene resin and polycondensation esters 1 and 3, and a fine particle addition liquid containing silica fine particles Is filtered using a suitable filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. Therefore, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a plastic filter medium such as polypropylene or Teflon (registered trademark), or a metal filter medium such as stainless steel may cause fibers to fall off. Less preferred.
  • the bright spot foreign matter was placed in a crossed Nicols state with two polarizing plates, a rolled cellulose ester was placed between them, and light was applied from the side of one polarizing plate, and observed from the side of the other polarizing plate. It is a point (foreign matter) where light from the opposite side sometimes leaks, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point at normal pressure of the solvent and at which the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • the preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • a smaller filtration pressure is preferred.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting process is from ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased.
  • the flatness may deteriorate.
  • the support temperature is preferably 0 to 50 ° C, more preferably 5 to 30 ° C.
  • the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of bringing hot water into contact with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 Note that M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0.1% by mass or less. It is particularly preferably 0 to 0.01% by mass or less.
  • a roll drying method (a method in which the web is alternately passed and dried by a number of upper and lower rolls) or a method in which the web is dried while being conveyed by a tenter method is adopted.
  • the web is preferably stretched in at least one of the conveying direction (longitudinal direction) and the width direction where the residual solvent amount of the web immediately after peeling from the metal support is large.
  • the optical film of the present invention has low haze and good slipperiness, it can be used as a transparent substrate (transparent substrate film) or various protective films for display devices. Especially, since it is easy to adjust retardation to below fixed, it can be preferably used as a polarizing plate protective film (including retardation film).
  • any appropriate surface treatment may be further applied to the surface thereof.
  • the surface treatment include an antiglare treatment, a diffusion treatment (antiglare treatment), an antireflection treatment (antireflection treatment), a hard coat treatment, and an antistatic treatment.
  • Any appropriate method can be used as the anti-glare treatment method.
  • the surface reflection light can be formed by an appropriate method such as embossing, sand blasting, etching, or the like by providing a fine uneven structure on the surface.
  • the optical film of the present invention can be preferably used as a polarizing plate protective film. That is, the optical film of the present invention may be combined with a polarizer to form a polarizing plate.
  • the polarizing plate has a polarizer and a polarizing plate protective film provided on both sides of the polarizer, and at least one of the polarizing plate protective films is the optical film of the present invention.
  • the polarizing plate protective film has a contact angle with water on the surface of the transparent support opposite to the side having the light scattering layer or antireflection layer, that is, the surface to be bonded to the polarizer, in the range of 10 to 50 degrees. It is preferable.
  • an adhesive layer can be provided on one side of the optical film of the present invention and disposed on the outermost surface of the display.
  • polarizer Any appropriate polarizer can be used as the polarizer.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited and is generally about 1 to 80 ⁇ m.
  • a polarizer uniaxially stretched by adsorbing iodine to a polyvinyl alcohol film can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • Stretching may be performed after dyeing with iodine, or may be performed while dyeing. Further, it may be dyed with iodine after stretching.
  • the film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the polarizer preferably satisfies 0.030 ⁇ Rpva ⁇ 0.040.
  • Rpva nx ⁇ ny.
  • Rpva is more preferably 0.030 ⁇ Rpva ⁇ 0.039, and particularly preferably 0.030 ⁇ Rpva ⁇ 0.035. It is estimated that such characteristics are satisfied by increasing the amount of crystals that do not contribute to orientation in the polarizer (typically, low orientation).
  • Rpva is a polarizer in such a range, it can have excellent dimensional stability and optical durability in a high temperature and high humidity environment. As a result, even when the polarizer is used for a polarizing plate provided with a polarizing plate protective film only on one side of the polarizer, the dimensional change and the deterioration of the optical characteristics are unlikely to occur, and the practically acceptable dimensional stability and optical Durability can be achieved.
  • the polarizer has a dichroic ratio DR of preferably 160 or more, more preferably 160 to 220, particularly preferably 170 to 210, and most preferably 175 to 185.
  • a liquid crystal panel and a liquid crystal display device with high front contrast can be obtained by using the polarizing plate of the present invention.
  • Such a liquid crystal panel and a liquid crystal display device are suitable for television applications, for example.
  • the dichroic ratio DR can be obtained from the following equation.
  • Dichroic ratio DR log (0.919 / k2) / log (0.919 / k1)
  • k1 is the transmittance in the transmission axis direction of the polarizer
  • k2 is the transmittance in the absorption axis direction of the polarizer
  • the constant 0.919 is the interface reflectance.
  • the polarizer preferably has a transmittance (single transmittance) Ts of 42% or more, more preferably 42. It is in the range of -44.0%, particularly preferably in the range of 42.5-43.0%.
  • Ts single transmittance
  • a liquid crystal panel or a liquid crystal display device with high luminance can be obtained by using the polarizing plate of the present invention.
  • Such a liquid crystal panel and a liquid crystal display device are suitable for television applications, for example.
  • permeability of a polarizing plate can be calculated
  • Transmittance ⁇ (k1 + k2) / 2 ⁇ ⁇ 100 [%]
  • k1 is the transmittance in the transmission axis direction of the polarizer
  • k2 is the transmittance in the absorption axis direction of the polarizer.
  • a polarizer mainly composed of a polyvinyl alcohol (PVA) -based resin containing a dichroic substance such as iodine or a dichroic dye can be used.
  • the iodine content of the polarizer is preferably 1.8 to 5.0% by mass, more preferably 2.0 to 4.0% by mass.
  • the boric acid content of the polarizer is preferably 0.5 to 3.0% by mass, more preferably 1.0 to 2.8% by mass, and particularly preferably 1.5 to 2% in terms of boron. .6% by mass.
  • a polarizer having excellent dimensional stability and optical durability in a humidified environment can be obtained without increasing the amount of boric acid.
  • the polarizer may preferably further contain potassium.
  • the potassium content is preferably 0.2 to 1.0% by mass, more preferably 0.3 to 0.9% by mass, and particularly preferably 0.4 to 0.8% by mass.
  • the linear expansion coefficient in the transmission axis direction of the polarizer is not particularly limited and may take any appropriate value.
  • the linear expansion coefficient in the transmission axis direction of the polarizer is 4.0 ⁇ 10 ⁇ 5 to 5.0. It can be ⁇ 10 ⁇ 5 / ° C.
  • the polarizing plate of the present invention may further have other layers.
  • the other layers include an antireflection layer, an antistatic layer, a retardation layer, a brightness enhancement film layer, and an adhesive layer.
  • the polarizing plate of the present invention is bonded to a liquid crystal cell via the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer preferably has a storage elastic modulus at 23 ° C. of 8.0 ⁇ 10 4 or more and less than 1.0 ⁇ 10 7 , and is 1.0 ⁇ 10 5 to 8.0 ⁇ 10 6. More preferred. Any other appropriate layer may be selected depending on the purpose and application, the configuration of the liquid crystal display device in which the polarizing plate of the present invention is used, and the number, type, position, arrangement, and the like are appropriately set. obtain.
  • FIG. 1 is a schematic sectional view of a polarizing plate according to a preferred embodiment of the present invention.
  • the polarizing plate 101 includes a polarizer 10 and polarizing plate protective films 20 and 30 disposed on both surfaces of the polarizer 10.
  • the polarizer 10 and the polarizing plate protective films 20 and 30 are bonded to each other through an arbitrary adhesive layer (not shown). And at least one of the polarizing plate protective films 20 and 30 can be used as the optical film of the present invention.
  • the optical film or polarizing plate of the present invention can be used in various display devices such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), and a cathode ray tube display device (CRT).
  • LCD liquid crystal display device
  • PDP plasma display panel
  • ELD electroluminescence display
  • CRT cathode ray tube display device
  • the optical film or polarizing plate of the present invention is preferably arranged on the viewing side of the display screen of the image display device.
  • the optical film or polarizing plate of the present invention is particularly preferably used for the outermost layer of a display such as a liquid crystal display device.
  • the liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof; the liquid crystal cell carries a liquid crystal between two electrode substrates.
  • one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates.
  • the liquid crystal cell is preferably in TN mode, VA mode, OCB mode, IPS mode or ECB mode.
  • the rod-like liquid crystal molecules are substantially horizontally aligned and twisted to 60 to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • VA mode liquid crystal cell rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of Tech.
  • the OCB mode liquid crystal cell is a bend alignment mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned in substantially opposite directions (symmetrically) at the upper and lower portions of the liquid crystal cell.
  • the bend alignment mode liquid crystal display device has an advantage of high response speed.
  • IPS mode liquid crystal cell is a type of switching by applying a lateral electric field to nematic liquid crystal. For details, see Proc. IDRC (Asia Display 1995), p. 577-580 and p. 707-710.
  • ECB mode liquid crystal cell
  • rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied.
  • the ECB mode is one of liquid crystal display modes having the simplest structure, and is described in detail in, for example, Japanese Patent Laid-Open No. 5-203946.
  • Each of the two polarizing plates includes a polarizer and two polarizing plate protective films sandwiching the polarizer; of the two polarizing plate protective films, the polarizing plate protective film disposed on the liquid crystal cell side is the main film.
  • the optical film of the invention is preferred. This is because in the optical film of the present invention, an increase in haze is suppressed, optical properties are not impaired, and an alignment phase difference is also reduced.
  • a plasma display panel is generally composed of a gas, a glass substrate, an electrode, an electrode lead material, a thick film printing material, and a phosphor.
  • Two glass substrates are a front glass substrate and a rear glass substrate.
  • An electrode and an insulating layer are formed on the two glass substrates.
  • a phosphor layer is further formed on the rear glass substrate. Two glass substrates are assembled and gas is sealed between them.
  • a commercially available plasma display panel (PDP) can be used.
  • the plasma display panel is described in JP-A-5-205643 and JP-A-9-306366.
  • the front plate may be placed in front of the plasma display panel.
  • the front plate preferably has sufficient strength to protect the plasma display panel.
  • the front plate can be used with a gap from the plasma display panel, or can be used by directly pasting the front plate to the plasma display body.
  • an optical filter can be directly attached to the display surface. Further, when a front plate is provided in front of the display, an optical filter can be attached to the front side (outside) or the back side (display side) of the front plate.
  • the optical film of the present invention can be used as a substrate (base film) such as an organic EL element or a protective film.
  • a substrate such as an organic EL element or a protective film.
  • the contents described in each publication can be applied. Further, it is preferably used in combination with the contents described in JP-A Nos. 2001-148291, 2001-221916, and 2001-231443.
  • the optical film of the present invention is also suitable as a transparent substrate film for a touch panel.
  • a touch panel can be produced according to the description in paragraphs [0073] to [0075] of JP2009-176608A.
  • the touch panel can be used as an input device by being incorporated in a display device such as a liquid crystal display, a plasma display, an organic EL display, a CRT display, or electronic paper.
  • a display device such as a liquid crystal display, a plasma display, an organic EL display, a CRT display, or electronic paper.
  • a capacitance type input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate.
  • a capacitance type is preferred.
  • a type that detects the input position can be preferably used.
  • descriptions in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be referred to.
  • Optical film material (resin) I Hydrogenated norbornene resin JSR Co., Ltd. Arton (registered trademark) (G7810) (hydrogenated product of a ring-opening (co) polymer of a norbornene monomer having a polar group)
  • II Hydrogenated norbornene resin JSR Co., Ltd.
  • Arton (registered trademark) (RX4500) hydrogenated product of ring-opening (co) polymer of norbornene monomer having a polar group
  • III TAC manufactured by Eastman Chemical Co., Ltd.
  • Silica fine particles Silica fine particles a (with surface treatment): Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) average primary particle diameter 0.01 ⁇ m, hydroxy group coverage (substitution rate) 70%, hydroxy group coating group: trimethylsilyl group)
  • the average particle diameter of primary particles of silica fine particles was measured by the following method.
  • a silica fine particle additive liquid (fine particle additive liquid A described later) was prepared by a method described later, applied to a glass plate, dried, and photographed with a transmission electron microscope (magnification 5000 to 10,000 times).
  • the obtained images were converted into electronic data using a flat head scanner Sitios 9231 manufactured by Konica Minolta, and the average primary particle size was measured using image analysis software Image Pro Plus (ImagePro Plus).
  • Image Pro Plus image Analysis software
  • As the average primary particle diameter an equivalent circle diameter represented by the diameter of a circle having an area equal to the projected particle area was used.
  • filter processing was performed so that the image analysis software can recognize the fine particles by enhancing the contrast of the fine particle image.
  • the contrast was optimized by changing the filter conditions. Filtering used median 3 ⁇ 3, then flattened 20 pixels, then high pass 3 ⁇ 3, then median 3 ⁇ 3. Thereafter, particles were extracted from the image with the optimized contrast, the shape of each primary particle was measured with image analysis software, and the average particle size of the primary particles was measured.
  • Fine particle additive liquid A (Preparation of fine particle additive liquid A) The obtained fine particle dispersion a was slowly added to a closed container containing dichloromethane with sufficient stirring. Further, dispersion was performed with an attritor. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution A.
  • Dichloromethane 50 parts by mass
  • Fine particle dispersion a 50 parts by mass
  • a main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Hydrogenated norbornene-based resin I, polycondensed esters 1A, 2A and 3A, and fine particle additive liquid A were charged into a pressure dissolution tank containing a solvent while stirring. After heating and stirring, this was completely dissolved, and then Azumi filter paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. was used. The main dope was prepared by filtration using 244.
  • the dope was uniformly cast on a stainless steel belt support at a temperature of 33 ° C. and a width of 1500 mm.
  • the temperature of the stainless steel belt was controlled at 30 ° C.
  • the solvent was evaporated until the residual solvent amount in the cast (cast) film was 30 to 50%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled optical film was stretched 5% in the width direction using a tenter while applying heat at 140 ° C.
  • the residual solvent at the start of stretching was 5 to 10%.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 120 ° C. and the transport tension was 90 N / m.
  • an optical film 101 having a dry film thickness of 20 ⁇ m was obtained.
  • optical films 102 to 129 ⁇ Preparation of optical films 102 to 129> Except that at least one of the type of hydrogenated norbornene resin, the type / content of the polycondensed ester, and the type / content of the fine particle dispersion was changed as shown in Table 4, it was the same as the optical film 101. Optical films 102 to 129 were produced. A fine particle dispersion B was prepared in the same manner as the fine particle dispersion A except that the fine particles B were used.
  • Table 4 shows the dope compositions used for the production of the obtained optical films 102 to 129.
  • the peak density, the average particle diameter of secondary particles (in the film), the moisture permeability, the in-plane direction retardation value Ro (nm), and the thickness direction retardation value Rt ( nm), haze, and dynamic friction coefficient were measured by the following methods.
  • ⁇ Peak density> The number of peaks having an optical film height of 3 nm or more was measured at a temperature of 23 ° C. and a humidity of 50% ⁇ 5% using a three-dimensional surface structure analysis microscope zygo New View 5000 manufactured by Canon Sales Co., Ltd. Measured with an image zoom of 1.0 times; divided by the measured area to calculate the number of peaks per unit area.
  • the average line that serves as a reference for peak height is the sum of the areas of the peaks that can be formed above and below the line within the measurement length when the average line is drawn on the roughness curve based on JIS B0601 (1994). Were drawn to be equal.
  • the portion above the average line is the “profile peak”. To do.
  • profile peak a portion higher than the average line by 3 nm or more was defined as a peak in the present invention.
  • the obtained optical film sample was embedded with an epoxy resin, and then an ultra-thin section having a thickness of about 100 nm was prepared by an ultramicrotome, and the transmission electron microscope 2000FX (acceleration voltage: 200 kV) manufactured by JEOL Ltd. A TEM image was taken.
  • the obtained images were converted into electronic data using Konica Minolta's flat head scanner Citios 9231, and the average particle diameter in the film was measured using image analysis software ImagePro Plus.
  • the average particle diameter in the film was calculated as an equivalent circle diameter represented by the diameter of a circle having an area equal to the projected area of the particles.
  • filter processing was performed so that the image analysis software can recognize the fine particles by enhancing the contrast of the fine particle image.
  • the contrast was optimized by changing the filter conditions.
  • the median 3 ⁇ 3, then flattened 20 pixels, then high pass 3 ⁇ 3, then median 3 ⁇ 3 was used for filtering.
  • secondary particles were extracted from the image with optimized contrast, the shape of each secondary particle was measured with image analysis software, and the average particle size was measured.
  • ⁇ Moisture permeability> The moisture permeability of the obtained optical film was measured according to JIS Z 0208 in an environment of a temperature of 40 ° C. and a relative humidity of 90%.
  • ⁇ Phase difference values Ro, Rt> The retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction of the obtained optical film were determined at 23 ° C. using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). -Three-dimensional refractive index measurement was performed at a wavelength of 590 nm in an environment of 55% RH, and the obtained refractive indexes nx, ny, and nz were calculated by applying the above formulas (I) and (II).
  • ⁇ Haze> The haze value of the obtained optical film was measured by using T-260DA manufactured by Tokyo Denshoku Industries Co., Ltd. according to ASTM-D1003-52 (ASTM standard) by superposing three optical films.
  • Table 5 shows the evaluation results of the optical films 101 to 129 produced above.
  • the optical film of the present invention can reduce the dynamic friction coefficient (can improve the slipperiness) while suppressing the increase in haze.
  • haze can be further reduced by surface treating silica fine particles with a hydrophobizing agent (contrast of films 112 and 114). Furthermore, it turns out that a haze can be further reduced by adding the polycondensation ester 2 further (contrast with the film 115 and the film 112 or 113). Furthermore, it can be seen that the haze can be further reduced by setting the number average molecular weight of the polycondensed esters 1 to 3 to 700 or less (contrast between the film 120 and the films 101, 102 and 109).
  • the films 116 to 118, 124 to 125 and 127 containing only the polycondensed ester 1 or 2 are less likely to cause interaction between the polycondensed ester and the resin, so that the diameter of the aggregate is relatively small. It can be seen that the number of agglomerates of a large size is relatively small (peak density is low) and the coefficient of dynamic friction is high (slidability is low). In addition, since the interaction with the resin hardly occurs, the aggregation of the silica fine particles is promoted, the refractive index difference between the aggregate and the resin is increased, and the haze is also increased.
  • the interaction between the polycondensed ester and the resin is too strong, so that the diameter of the aggregate becomes too large and the haze decreases; It can be seen that the coefficient of dynamic friction increases because the number of agglomerates having a small number (the peak density is low) and the elastic modulus is not sufficiently improved.
  • FIG. 2 shows an electron micrograph of the optical film 115 (comparative example)
  • FIG. 3 shows an electron micrograph of the optical film 101 (present invention).
  • the optical film 101 has more surface irregularities (aggregates) than the optical film 115.
  • protective films 201 to 204 were prepared as other protective films.
  • Protective film 201 Polyethylene naphthalate film, Teonex Q83 (trade name) (manufactured by Teijin DuPont), thickness: 40 ⁇ m
  • Protective film 202 Polyethylene terephthalate film, MRF40 (trade name) (manufactured by Mitsubishi Plastics) Thickness: 25 ⁇ m
  • Protective film 203 Triacetyl cellulose film, KC4UAW (trade name) manufactured by Konica Minolta, thickness: 40 ⁇ m
  • Protective film 204 Triacetyl cellulose film, KC2UAW (trade name) manufactured by Konica Minolta, thickness: 25 ⁇ m
  • ⁇ Preparation of Polarizing Plate 301> The optical film 101 is attached to one surface (A surface) of the polarizer 1 produced as described above via a PVA adhesive so that the slow axis of the optical film 101 and the transmission axis of the polarizer 1 are parallel to each other. Combined. Similarly, the above-mentioned protective film 203 was bonded to the other surface (B surface) of the polarizer 1 so that the slow axis of the protective film 203 and the transmission axis of the polarizer 1 were parallel. Thereby, the polarizing plate 301 was obtained.
  • polarizing plates 302 to 331 were produced in the same manner as the polarizing plate 301 except that the optical film and the polarizer were combined.
  • the polarizing plate was cut into a size of 5 cm ⁇ 7 cm.
  • the obtained cut piece was temporarily adhered to the center of a 6 cm ⁇ 8 cm glass plate with an acrylic adhesive, and then pressed to completely remove bubbles between the cut piece and the glass plate.
  • a test piece was prepared by adhering to a plate.
  • the obtained test piece was placed vertically on a support frame in a constant temperature and humidity oven set at 60 ° C. and 90% RH, and stored for 500 hours. Then, the test piece was taken out and the adhesiveness between a polarizer and an optical film was measured.
  • the film lifted portion is not found at all.
  • the film lifted portion is 1 mm or more and less than 5 mm in the periphery.
  • the film lifted portion is 5 mm or more in the periphery.
  • the polarization degree after leaving for 500 hours at 60 degreeC90% RH was measured with the following method.
  • the degree of polarization was measured by the following method. That is, the transmittance (single transmittance) of one polarizing plate was measured using a spectrophotometer (DOT-3 manufactured by Murakami Color Research Laboratory).
  • the transmittance parallel transmittance: H0
  • the transmittance orthogonal transmittance: H90
  • the degree of polarization was calculated by applying the parallel transmittance (H0) and the orthogonal transmittance (H90) to the following equation.
  • Polarization degree (%) ⁇ (H0 ⁇ H90) / (H0 + H90) ⁇ 1/2 ⁇ 100
  • the single transmittance, the parallel transmittance (H0), and the orthogonal transmittance (H90) are Y values obtained by correcting the visibility with a two-degree field of view (C light source) of JIS Z8701.
  • Polarization degree is 99.7% or more
  • Polarization degree is 99.2% or more and less than 99.7%
  • Polarization degree is less than 99.2%
  • Table 6 shows the configurations and evaluation results of the polarizing plates 301 to 331.
  • the polarizing plate of the present invention has good adhesion between the polarizer and the optical film.
  • the adhesion between the polarizer and the optical film is good, it is understood that moisture in the outside air hardly enters the polarizer, so that the wet heat durability of the degree of polarization is also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、水添ノルボルネン系樹脂を含有し、且つヘイズを増加させることなく、滑り性が改良された光学フィルムを提供することである。本発明の光学フィルムは、極性基を有するノルボルネン系単量体の開環重合体の水添物、又はノルボルネン系単量体とそれ以外の共重合性単量体との開環共重合体(但し、前記ノルボルネン系単量体と前記共重合性単量体の少なくとも一方が極性基を有する)の水添物からなる水添ノルボルネン系樹脂と、シリカ微粒子と、芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル1と、脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステル3とを含む。

Description

光学フィルム、光学フィルムの製造方法、及び偏光板
 本発明は、光学フィルム、光学フィルムの製造方法、及び偏光板に関する。
 近年、液晶表示装置、有機エレクトロルミネッセンス(以下、「有機EL」と略記する。)表示装置、タッチパネル等の用途が拡大している。このようなデバイスでは、支持体や保護フィルム等として、各種の樹脂フィルムが用いられている。中でも、水素添加(以下「水添」という)ノルボルネン系樹脂を主成分とするフィルムは、耐熱性が高く、吸水率が低い。そのような水添ノルボルネン系樹脂を主成分とするフィルムは、寸法安定性や湿度変動耐性に優れることから、好ましく用いられている。また、水添ノルボルネン系樹脂は、光弾性係数が小さいため、固有複屈折を低く抑えることができる。従って、水添ノルボルネン系樹脂は、光学的に等方性を必要とされる用途の偏光板保護フィルムの材料として、光学特性にも優れた素材である。
 一方、表示装置やタッチパネルに対する薄膜化や軽量化の要求は益々高まってきている。そのために、樹脂フィルムの薄膜化や軽量化も重要な検討課題となっている。従って、前述のような優れた光学特性を有する水添ノルボルネン系樹脂を主成分とするフィルムにも薄膜化の要望が高くなってきている。
 水添ノルボルネン系樹脂を主成分とするフィルムは、前記のような利点を有する一方で、滑り性に劣るという問題があった。フィルム同士の滑り性が悪いことにより、フィルムの製造時において不具合が発生しやすくなる。特に、フィルムを巻き取る際に、フィルム同士の滑り性が悪いと、巻き取り時にフィルムが破断したり、傷がついたりするという問題を抱えている。
 特に薄膜化した時に、上記滑り性がより劣化していた。このように、水添ノルボルネン系樹脂フィルムは、滑り性が十分ではないため、取り扱いが難しく、応用が制限されていた。
 樹脂フィルムの滑り性の改良方法としては、表面に帯電防止層等の薄膜を塗布する方法(例えば特許文献1及び2)や、表面に凹凸を形成させる方法(例えば特許文献3、5及び6)、保護フィルムを貼り合わせて、該フィルムに凹凸を形成する方法(例えば特許文献4)等が提案されている。
 例えば、特許文献1には、ポリエステルフィルムの表面に、芳香族ポリエステル樹脂と帯電防止剤とを含み、表面の窒素原子量が0.5~10mol%である被覆層を有するフィルムが開示されている。フィルム表面の帯電性を低下させることにより、平滑性と滑り性を両立させるものである。特許文献2には、セルロースアシレートフィルムの表面に、親水性を有する導電性化合物を含む帯電防止層を有する光学フィルムが開示されている。帯電防止層を設けることで、耐薬品性の効果を付与する技術が提案されている。特許文献3では、インクジェット方式でフィルム表面に微細凸構造を形成することにより、滑り性を向上させることが開示されている。特許文献4では、脂環式構造含有重合体を含む光学フィルムの表面に、一定のRa(算術平均粗さ)やSm(凹凸の平均間隔)を有する保護フィルムが貼り合わされた複層フィルムが開示されている。
 しかしながら、特許文献1及び2に記載されている帯電防止層を塗布する場合、塗布前のフィルムの滑り性が悪いため、塗布加工の収率が悪く改善を求められていた。
 特許文献3に記載されているインクジェット方式でフィルム表面に凹凸を形成させる場合、微粒子分散液の液滴に生じる微妙な着地位置のズレが、汚染につながってしまい改善が必要とされた。特許文献4に記載されている、他のフィルムを保護目的で貼合わせる技術は常套手段であるが、膜厚が大きくなり、また廃棄物として剥離する保護目的のフィルムが発生して環境側面で問題となるため、改善が求められていた。
 また、特許文献5には、環状オレフィン系樹脂にマット剤微粒子を添加したフィルムが開示されている。特許文献6には、環状オレフィン系樹脂に、屈折率の差が0.02以下のエラストマーを一定量添加(5~40%)したフィルムが開示されている。
特開2003-39619号公報 特許第5377283号公報 特許第5182092号公報 特開2012-61712号公報 特開2007-098643号公報 特開2015-55796公報
 本発明者は、特許文献5及び6に開示されている方法について検討を重ねたところ、以下の問題があることを見出した。
 即ち、特許文献5に示されるように水添ノルボルネン系樹脂にマット剤粒子を含有させても、滑り性改良の効果が不十分であった。また、滑り性を改良するためにマット剤粒子を大量に添加すると、フィルムのヘイズ(濁り)が増大するという問題があった。
 また、特許文献6に示されるように水添ノルボルネン系樹脂にエラストマーを含有させても、一定の滑り性を得るためには大量にエラストマーを添加する(20%~)必要があり、得られるフィルムからエラストマーが脱離するという問題があった。
 このように、水添ノルボルネン系樹脂を主成分とするフィルムにおいては、ヘイズを増加させることなく、十分な滑り性を付与することが実際には困難であった。
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、水添ノルボルネン系樹脂を含有し、且つヘイズを増加させることなく、滑り性が改良された光学フィルムを提供することである。また、当該光学フィルムの製造方法及び当該光学フィルムを備える偏光板を提供することである。
 [1] 極性基を有するノルボルネン系単量体の開環重合体の水添物、及び極性基を有するノルボルネン系単量体とそれ以外の共重合性単量体との開環共重合体の水添物からなる群より選ばれる水添ノルボルネン系樹脂と、シリカ微粒子と、芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル1と、脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステル3とを含む、光学フィルム。
 [2] 前記シリカ粒子は、疎水化剤で表面処理されている、[1]に記載の光学フィルム。
 [3] 脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル2をさらに含む、[1]又は[2]に記載の光学フィルム。
 [4] 前記重縮合エステル1~3の数平均分子量は、それぞれ400以上700以下である、[3]に記載の光学フィルム。
 [5] 前記重縮合エステル1は、平均炭素数が8.0以上12.0以下の芳香族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が、平均炭素数7.0以上9.0以下の芳香族モノカルボン酸で封止された重縮合エステルであり、前記重縮合エステル2は、平均炭素数が2.0以上8.0以下の脂肪族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が、平均炭素数7.0以上9.0以下の芳香族モノカルボン酸で封止された重縮合エステルであり、前記重縮合エステル3は、平均炭素数が2.0以上8.0以下の脂肪族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステルである、[3]または[4]に記載の光学フィルム。
 [6] 前記重縮合エステル1、前記重縮合エステル2及び前記重縮合エステル3の含有比率は、重縮合エステル1/重縮合エステル2/重縮合エステル3=25/50/25~40/20/40(質量比)である、[3]~[5]のいずれかに記載の光学フィルム。
 [7] 前記光学フィルムの表面に形成されたピークの密度が、1000~5000個/mmの範囲内である、[1]~[6]のいずれかに記載の光学フィルム。
 [8] 前記光学フィルムのヘイズ値が0.5%以下である、[1]~[7]のいずれかに記載の光学フィルム。
 [9] 前記光学フィルムの膜厚が、5~40μmの範囲内である、[1]~[8]のいずれかに記載の光学フィルム。
 [10] 前記光学フィルムの、23℃、相対湿度55%の環境下で波長590nmの光で測定される、下記式(I)で表される面内方向の位相差値Ro(nm)が、下記式(III)を満たし、かつ下記式(II)で表される厚さ方向の位相差値Rt(nm)が、下記式(IV)を満たす、[1]~[9]のいずれかに記載の光学フィルム。
 式(I) Ro=(nx-ny)×d
 式(II) Rt={(nx+ny)/2-nz}×d
 式(III) |Ro|≦10nm
 式(IV) |Rt|≦10nm
(式(I)及び(II)中、
 nxは、前記光学フィルムの、フィルム面内の遅相軸方向での屈折率であり、
 nyは、前記光学フィルムの、フィルム面内の進相軸方向での屈折率であり、
 nzは、前記光学フィルムの、膜厚方向の屈折率であり、
 dは、前記光学フィルムの膜厚(nm)である)
 [11] 前記光学フィルムは、偏光板保護フィルムである、[1]~[10]のいずれかに記載の光学フィルム。
 [12] [1]~[11]のいずれかに記載の光学フィルムの製造方法であって、極性基を有するノルボルネン系単量体の開環物由来の構造単位を含む水添ノルボルネン系樹脂と、シリカ微粒子と、芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル1と、脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステル3と、溶剤とを含むドープ液を支持体上に流延した後、乾燥させて膜状物を得る工程を含む、光学フィルムの製造方法。
 [13] 偏光子と、その少なくとも一方に設けられた[11]に記載の光学フィルムとを含む、偏光板。
 本発明は、水添ノルボルネン系樹脂を含有し、且つヘイズを増加させることなく、滑り性が改良された光学フィルムを提供することができる。
偏光板の概略断面図 光学フィルム115(比較例)の断面の電子顕微鏡写真 光学フィルム101(本発明)の断面の電子顕微鏡写真
 本発明者らは、上記課題を解決すべく鋭意検討した結果、水添ノルボルネン系樹脂と、シリカ微粒子と、芳香族基を一定以上有する重縮合エステル1と、分子末端にヒドロキシ基を有する重縮合エステル3とを含有する光学フィルムは、ヘイズを過剰に増大させることなく、滑り性が改良されることを見出した。この理由は明らかではないが、以下のように推測される。
 即ち、1)重縮合エステル3は分子末端にヒドロキシ基を有するので、シリカ粒子との間で相互作用を生じやすいだけでなく、水添ノルボルネン系樹脂に含まれる極性基とも相互作用を生じやすい。従って、シリカ微粒子が、重縮合エステル3を介して水添ノルボルネン系樹脂との相互作用を生じやすく、シリカ微粒子と、水添ノルボルネン系樹脂及び/又は重縮合エステル3との混合体からなる凝集体を形成しやすい。そのような凝集体は、一定以上の大きさを有するだけでなく、マトリクスを構成する水添ノルボルネン系樹脂との間の屈折率差が(シリカ微粒子のみからなる凝集体よりも)少ないため、ヘイズを増大させにくい。その結果、フィルムのヘイズを増大させることなく、フィルム表面に一定以上の大きさを有する凝集体を形成でき、フィルム表面のピーク密度を高める(好ましくは1000~5000個/mmの範囲内とする)ことができる。
 さらに、2)重縮合エステル1は分子内に芳香族基を一定以上有するので、フィルムの弾性率(硬度)を高めうるだけでなく、重縮合エステル3と共に凝集体を形成しうるので、凝集体の硬度も高めうる。さらに、重縮合エステル1は、重縮合エステル3と水添ノルボルネン系樹脂との過剰な相互作用を抑制しうるので、凝集体が大きくなりすぎることによるヘイズの増大も抑制しうる。
 上記1)と2)により、シリカ微粒子の添加量を増やすことなく、フィルム表面に一定以上の硬度と大きさを有する凝集体(微粒子凝集体)を形成できるので、ヘイズを増大させることなく、滑り性を高めることができる。
 また、驚くべきことに、偏光子と貼り合わせて偏光板を得る際に、偏光子との接着性も改善されることが見出された。この理由は明らかではないが、フィルム表面の凹凸の増加に伴い表面積が大きくなり、コロナ処理等の表面処理で付与される表面極性基が増加することにより接着が改善されたと推定している。
 さらに、分子末端に芳香族基を含み、且つ脂肪族基を有する重縮合エステル2をさらに添加することで、重縮合エステル1と重縮合エステル3との相溶性を高めたり;シリカ粒子の表面を疎水化剤で表面処理することで、シリカ微粒子同士の過剰な相互作用を抑制し、樹脂との相互作用を相対的に高めたりすることができる。それにより、ヘイズの増大を一層抑制することができる。本発明は、これらの知見に基づいてなされたものである。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。尚、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 (光学フィルムの概要)
 本発明の光学フィルムは、水添ノルボルネン系樹脂と、シリカ粒子と、重縮合エステル1と、重縮合エステル3とを含み、好ましくは重縮合エステル2をさらに含む。
 <水添ノルボルネン系樹脂>
 本発明の光学フィルムは、水添ノルボルネン系樹脂を含有する。本発明における「水添ノルボルネン系樹脂」とは、極性基を有するノルボルネン誘導体(極性基を有するノルボルネン系単量体)を単独で、又は当該極性基を有するノルボルネン系単量体とこれと共重合可能な共重合性単量体とをメタセシス重合触媒を用いて開環重合させること等によって得られる開環重合体をさらに水素添加して得られる樹脂をいう。
 極性基を有するノルボルネン系単量体における「極性基」は、アルコキシ基、ヒドロキシ基、エステル基(アルコキシカルボニル基、アリロキシカルボニル基)、シアノ基、アミド基及びイミド基からなる群より選ばれる基であることが好ましい。そのような極性基を有するノルボルネン系単量体から得られる水添ノルボルネン系樹脂は、溶剤に良好に溶解し得るので、溶液製膜法による製膜が可能となるだけでなく、重縮合エステル3との相互作用も生じやすい。
 極性基を有するノルボルネン系単量体は、下記一般式(I)で表される構造を有するノルボルネン系単量体であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、A、B、X及びYは、それぞれ独立に、水素原子、炭素数1~10の炭化水素基及び、ハロゲン原子、アルコキシ基、ヒドロキシ基、エステル基(アルコキシカルボニル基、アリロキシカルボニル基)、シアノ基、アミド基、イミド基及びシリル基から選ばれる原子又は基を表す。但し、A、B、X及びYのうち少なくとも一つは、アルコキシ基、ヒドロキシ基、エステル基(アルコキシカルボニル基、アリロキシカルボニル基)、シアノ基、アミド基及びイミド基からなる群より選ばれる極性基である。mは、0又は1を表す。
 極性基を有するノルボルネン系単量体と共重合可能な共重合性単量体としては、特に限定されず、例えば、極性基を有しないノルボルネン系単量体や、ノルボルネン骨格を有しない環状オレフィン系単量体が挙げられる。
 極性基を有しないノルボルネン系単量体としては、例えば、一般式(I)のA、B、X及びYが、それぞれ独立に、水素原子、炭素数1~10の炭化水素基、ハロゲン原子、又はシリル基である単量体が挙げられる。
 ノルボルネン骨格を有しない環状オレフィン系単量体としては、例えば、シクロオクタジエン、シクロオクテン、シクロヘキセン、シクロドデセン、シクロドデカトリエン等が挙げられる。
 極性基を有するノルボルネン系単量体の開環物由来の構造単位の含有比率は、水添ノルボルネン系樹脂を構成する全構造単位の合計モル数に対して80モル%以上であることが好ましく、100モル%であってもよい。
 極性基を有するノルボルネン系単量体(一般式(I)で表されるノルボルネン系単量体)の例には、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 極性基を有しないノルボルネン系単量体の例には、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 極性基を有するノルボルネン系単量体を重合する方法又は極性基を有するノルボルネン系単量体とこれと共重合可能な共重合性単量体とを共重合する方法としては、例えば、開環メタセシス重合、付加重合等の従来公知の方法を採用することができる。
 水添ノルボルネン系樹脂の分子内の不飽和結合は、水素添加により飽和されていることが好ましい。具体的には、水添ノルボルネン系樹脂の水素添加率は、95%以上であることが好ましく、より好ましくは99%以上である。水素添加率が95%未満であると、得られる光学フィルムの耐光性、耐熱劣化性が劣る場合がある。
 水添ノルボルネン系樹脂のポリスチレン換算による数平均分子量は、1万~100万であることが好ましい。1万未満であると、得られる光学フィルムの力学強度が不足することがあり、逆に100万を超えると、溶融押出成形性が著しく低下することがある。より好ましくは1.5万~70万である。
 水添ノルボルネン系樹脂のうち市販されているものとしては、例えば、日本ゼオン社製「ゼオノア」シリーズ、「ゼオネックス」シリーズ、日立化成社製「オプトレッツ」シリーズ、JSR社製「アートン」シリーズ(例えばG7810、RX4500)等が挙げられる。この中でも特に極性基を分子骨格中に有するために、水糊を用いて偏光板を作製する際に必要な、適度な透湿性を有する「アートン」シリーズが好ましい。
 <シリカ微粒子>
 本発明の光学フィルムは、シリカ微粒子を含有する。シリカ微粒子は、ヘイズの増大を抑制する観点では、疎水化剤で表面処理されていることが好ましい。具体的には、シリカ粒子表面のヒドロキシ基の水素原子が、ジメチルシリル基、トリメチルシリル基、オクチルシリル基、ジメチルポリシロキサン基等のシリル基で置換されていることが好ましい。それにより、シリカ微粒子同士の過度な凝集を抑制しうるので、シリカ微粒子と水添ノルボルネン系樹脂との相互作用を相対的に高めることができる。
 用いられる疎水化剤の例には、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、tert-ブチルジメチルクロロシラン、ビニルトリクロロシラン等のクロロシラン類;テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ジメチルアミノトリメチルシラン等のアルコキシシラン類;トリエチルシラン、オクチルシラン等のアルキルシラン類;ヘキサメチルジシラザン、ヘキサエチルジシラザン、へキサプロピルジシラザン、ヘキサブチルジシラザン、ヘキサペンチルジシラザン、ヘキサヘキシルジシラザン、ヘキサシクロヘキシルジシラザン、ヘキサフェニルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のシラザン類;ジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル等のストレートシリコーンオイル;アルキル変性シリコーンオイル、クロロアルキル変性シリコーンオイル、クロロフェニル変性シリコーンオイル、脂肪酸変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、フッ素変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル等の変性シリコーンオイル類;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン等のシロキサン類が含まれる。
 シリカ微粒子の二次粒子の粒子径の大きさは、円相当径として0.05~0.6μmの範囲内であることが好ましく、0.10~0.15μmの範囲内であることがより好ましい。ここでいう「円相当径」とは、粒子の面積と等しい面積を有する円の直径を指す。該微粒子の二次粒子(凝集体)の平均粒子径が、大きい方が分散性に優れ、小さい方が透明性に優れるためこの範囲が好ましい。
 本発明における「二次粒子の平均粒子径」とは、光学フィルム中の微粒子の平均粒子径を下記の方法で測定した値である。
 即ち、水添ノルボルネン系樹脂と微粒子を含有する光学フィルムのサンプルを、エポキシ樹脂で包埋後、ウルトラミクロトームにより約100nm厚の超薄切片を作製し、日本電子製透過型電子顕微鏡2000FX(加速電圧:200kV)により2500~10000倍のTEM画像を撮影する。得られた画像をコニカミノルタ製フラットヘッドスキャナーSitios9231にて電子データ化し、画像解析ソフトImagePro Plusを使用して、フィルム中の平均粒子径の測定を行う。フィルム中の平均粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を計算する。この値を「二次粒子の平均粒子径」とする。
 なお、スキャナーで読み取った画像から解析を行うために、微粒子の画像のコントラストを強調することで画像解析ソフトが微粒子を認識できるようにするフィルター処理を行う。さらに、このフィルター条件を変更することでコントラストの最適化を行う。フィルター処理は、メディアン3×3、次に平坦化20ピクセル、次にハイパス3×3、次にメディアン3×3を使用する。その後、上記コントラストを最適化した画像から粒子を抽出し、個々の粒子の形状を画像解析ソフトで測定して、平均粒子径を測定する。
 シリカ微粒子の見かけ比重は、50~200g/リットルの範囲内であることが好ましく、100~200g/リットルの範囲内であることが特に好ましい。シリカ微粒子の見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
 シリカ微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上、日本アエロジル(株)製、商品名(アエロジルは登録商標))等の市販品を使用することができる。これらの中でも、アエロジルR812Vが、一次平均粒子サイズが20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化ケイ素の微粒子であり、光学フィルムのヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましい。
 シリカ微粒子の含有量は、水添ノルボルネン系樹脂に対して0.01~2.5質量%の範囲内であることが好ましく、0.05~1.5質量%の範囲内であることが更に好ましい。シリカ微粒子の含有量が0.01質量%以上であると、フィルムの表面に十分な大きさの凝集体を形成しやすいので、滑り性を高めやすく、2.5質量%以下であると、フィルムのヘイズの増大を高度に抑制しうる。
 <重縮合エステル>
 本発明の光学フィルムは、少なくとも以下に示す重縮合エステル1及び3を含有する。
 (重縮合エステル1)
 芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、該重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル
 (重縮合エステル3)
 脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、該重縮合エステルの両末端のOH基が封止されていない重縮合エステル
 重縮合エステル1は、水添ノルボルネン系樹脂に混合することにより、フィルム密度を増加させる。これにより、フィルムの弾性率を向上させることによって、滑り性を高めうる。
 重縮合エステル1を構成する芳香族ジカルボン酸の平均炭素数は、8.0以上16.0以下であることが好ましく、8.0以上12.0以下であることがさらに望ましい。脂肪族ジオールの平均炭素数は、2.0以上10以下であることが好ましく、2.0以上8.0以下であることがより好ましい。また、両末端の芳香族モノカルボン酸の平均炭素数は、7.0以上9.0以下であることが好ましい。
 重縮合エステル1の平均炭素数が好ましい範囲を超えると、脂肪族炭化水素部分の割合が増加し、フィルム密度が低下する傾向がある。また、エステル基の数が低下することで、相互作用が低下し、フィルムの強度も低下する傾向がある。芳香族モノカルボン酸の、平均炭素数を6より小さくすると密度向上の構成要素である、ベンゼン環形成不可能となり、同様にフィルム強度が低下する傾向がある。
 重縮合エステル3は分子末端にヒドロキシ基を有するので、シリカ粒子と相互作用を生じやすいだけでなく、極性基を有する水添ノルボルネン系樹脂と相互作用を生じやすい。それにより、シリカ粒子と重縮合エステル3との凝集、ひいてはさらに水添ノルボルネン系樹脂との凝集を促進して、所望の大きさの凝集体(シリカ粒子、重縮合エステル3及び水添加ノルボルネン系樹脂が混在した凝集体)を多く形成することができる。さらに、重縮合エステル3は、樹脂との相互作用が生じやすいだけでなく、芳香族基を含まないだけでないので、配向を緩和させやすくすることもできる。それにより、配向位相差を低下させることもできる。
 重縮合エステル3を構成する脂肪族ジカルボン酸の平均炭素数は、2.0以上10.0以下であることが好ましく、2.0以上8.0以下であることがより好ましい。脂肪族ジオールの平均炭素数は、2.0以上10.0以下であることが好ましく、2.0以上8.0以下であることがより好ましい。
 重縮合エステル3の平均炭素数が好ましい範囲を超えると、エステル基の数が低下することで、シリカ微粒子や樹脂との相互作用が低下する傾向があり、所望の大きさの凝集体を形成しにくい傾向がある。
 本発明の光学フィルムは、重縮合エステル2をさらに含有することが好ましい。
 (重縮合エステル2)
 脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、該重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル
 重縮合エステル2は、重縮合エステル1の極性と重縮合エステル3の極性の中間的な極性を有するため、水添ノルボルネン系樹脂と相溶しやすい。さらに、重縮合エステル2は、重縮合エステル1の構成要素である芳香族基を有し、重縮合エステル3の構成要素である脂肪族基を有することにより、重縮合エステル1と重縮合エステル3との間の相互作用を強め、水添ノルボルネン系樹脂と各重縮合エステルとの相溶性を一層向上させうる。これによりヘイズを一層低下させうる。
 重縮合エステル2を構成する脂肪族ジカルボン酸の平均炭素数は、2.0以上10.0以下であることが好ましく、2.0以上8.0以下であることがより好ましい。脂肪族ジオールの平均炭素数は、2.0以上10.0以下であることが好ましく、2.0以上8.0以下であることがより好まし。両末端の芳香族モノカルボン酸の平均炭素数は、7.0以上9.0以下であることが好ましい。
 重縮合エステル2の平均炭素数が、好ましい範囲を超えると脂肪族炭化水素部分及び芳香族炭化水素部分の割合が増加し、重縮合エステル1及び3との相互作用が低下する傾向がある。
 重縮合エステル1を構成する芳香族ジカルボン酸としては、例えばフタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,8-ナフタレンジカルボン酸または2,6-ナフタレンジカルボン酸等が好ましく用いられ、フタル酸、テレフタル酸がより好ましい。また、芳香族ジカルボン酸は1種でも、2種以上を用いてもよい。2種用いる場合は、フタル酸とテレフタル酸を用いることが好ましい。
 重縮合エステル2及び3を構成する脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸または1,4-シクロヘキサンジカルボン酸等が挙げられる。好ましくはコハク酸、アジピン酸である。また、脂肪族ジカルボン酸は1種でも、2種以上を用いてもよい。2種用いる場合は、コハク酸とアジピン酸を用いることが好ましい。
 重縮合エステル1~3を構成する脂肪族ジオールとしては、例えば、アルキルジオールまたは脂環式ジオール類を挙げることができ、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、ジエチレングリコール等がある。これらはエチレングリコールとともに1種または2種以上の混合物として使用されることが好ましい。好ましい脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,4-プロパンジオール及び1,6-ヘキサンジオールであり、特に好ましくはエチレングリコール、及び1,2-プロパンジオールである。   
 重縮合エステル1及び2の両末端のOH基は、芳香族モノカルボン酸と反応させて封止する。このとき、該重縮合エステルの両末端のOH基は、芳香族モノカルボン酸エステル誘導体となっている。封止に用いられる芳香族モノカルボン酸としては、安息香酸、トルイル酸、キシリル酸及びその誘導体等が好ましく、安息香酸がより好ましい。
 重縮合エステル1~3の数平均分子量は、400~2000であることが好ましく、400~1500がより好ましく、400~700がさらに好ましい。重縮合エステル1~3の数平均分子量は、ゲルパーミエーションクロマトグラフィーにより、測定することができる。
 (重縮合エステルの具体例)
 重縮合エステル1の具体例を以下の表1に、重縮合エステル2の具体例を表2に、重縮合エステル3の具体例を表3にそれぞれ示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 光学フィルムに含まれる重縮合エステルが重縮合エステル1と重縮合エステル3の2種類からなる場合、重縮合エステル1/重縮合エステル3の含有比率(質量比)は、10/90~90/10であることが好ましく、40/60~60/40であることがより好ましい。
 光学フィルムに含まれる重縮合エステルが重縮合エステル1、重縮合エステル2及び重縮合エステル3の3種類からなる場合、重縮合エステル1/重縮合エステル2/重縮合エステル3の含有比率(質量比)は、25/50/25~40/20/40であることがより好ましい。
 重縮合エステル1~3の合計含有量は、水添ノルボルネン系樹脂に対して1~30質量%であることが好ましい。重縮合エステル1~3の合計含有量が30質量%以下であると、ヘイズの増大を高度に抑制しやすく、1質量%以上であると、フィルム表面に十分な大きさの凝集体(微粒子凝集体)を形成しやすい。重縮合エステル1~3の合計含有量は、水添ノルボルネン系樹脂に対して1~10質量%であることがより好ましい。
 <各種添加剤>
 本発明の光学フィルムには、様々な機能を付与する目的で、各種添加剤をさらに含有させることができる。
 本発明に適用可能な添加剤は、特に制限はなく、本発明の目的効果を損なわない範囲で、例えば、紫外線吸収剤、可塑剤、劣化抑制剤、マット剤、位相差上昇剤、波長分散改良剤等が用いることができる。
 以下に、本発明の光学フィルムに適用可能な代表的添加剤について示す。
 <紫外線吸収剤>
 本発明の光学フィルムには、紫外線吸収剤を含有させることができる。
 紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報に記載の紫外線吸収剤、特開平6-148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。紫外線吸収剤としては、偏光子や有機EL素子の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れ、かつ有機EL素子の表示性の観点から、波長400nm以上の可視光の吸収が少ない特性を備えていることが好ましい。
 本発明に有用なベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-[2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル]ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-[3-t-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートと2-エチルヘキシル-3-[3-t-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートの混合物等を挙げることができるが、これらに限定されない。
 また、市販品として、「チヌビン(TINUVIN)109」、「チヌビン(TINUVIN)171」、「チヌビン(TINUVIN)326」、「チヌビン(TINUVIN)328」(以上、BASFジャパン社製)を好ましく使用できる。
 紫外線吸収剤の含有量は、水添ノルボルネン系樹脂に対して0.1~5.0質量%の範囲内であることが好ましく、0.5~5.0質量%の範囲内であることが更に好ましい。
 <可塑剤>
 一般的に、光学フィルムは、柔軟性に乏しく、フィルムに曲げ応力やせん断応力がかかると、フィルムに割れ等が生じ易い。また、光学フィルムとして加工する際に、切断部にひびが入りやすく、切り屑が発生しやすい。発生した切り屑は、光学フィルムを汚染し、光学的欠陥の原因となっていた。これらの問題点を改良すべく、光学フィルムに可塑剤を含有させることができる。
 可塑剤として、具体的には、例えば、フタル酸エステル系化合物、トリメリット酸エステル系化合物、脂肪族二塩基酸エステル系化合物、糖エステル系化合物、正リン酸エステル系化合物、酢酸エステル系化合物、ポリエステル・エポキシ化エステル系化合物、リシノール酸エステル系化合物、ポリオレフィン系化合物、ポリエチレングリコール系化合物等を挙げることができる。
 また常温、常圧、液状で、かつ沸点が200℃以上の化合物から選択することが好ましい。具体的な化合物名としては、例えば、脂肪族二塩基酸エステル系、フタル酸エステル系、ポリオレフィン系化合物を挙げることができる。
 脂肪族二塩基酸エステル系化合物、糖エステル系化合物を光学フィルムに含有させることが、水添ノルボルネン樹脂の配向を緩和させ、位相差値を低下させることができる観点からより好ましい。
 可塑剤の含有量としては、水添ノルボルネン系樹脂に対して0.5~40.0質量%の範囲内であることが好ましく、1.0~30.0質量%の範囲内であることがより好ましく、3.0~20.0質量%の範囲内であることが特に好ましい。可塑剤の含有量が0.5質量%以上であると、可塑効果が十分で、加工適性が向上する。また、40質量%以下であると、長時間経時した場合における可塑剤の分離溶出を抑制でき、光学的ムラ、他部品への汚染等をより確実に抑制することができる。
 <劣化防止剤>
 本発明の光学フィルムには、劣化防止剤、例えば、酸化防止剤、過酸化物分解剤、ラジカル重合禁止剤、金属不活性化剤、酸捕獲剤、アミン類等を含有させることができる。
 劣化防止剤については、例えば、特開平3-199201号公報、同5-197073号公報、同5-194789号公報、同5-271471号公報、同6-107854号公報等に記載がある。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(略称:BHT)、トリベンジルアミン(略称:TBA)を挙げることができる。
 劣化防止剤の含有量は、劣化防止剤の添加による効果が発現し、フィルム表面への劣化防止剤のブリードアウト(滲み出し)を抑制する観点から、水添ノルボルネン系樹脂に対して0.05~0.2質量%の範囲内としうる。
 <フィルム物性>
 <ピーク密度>
 本発明の光学フィルムのピーク密度は、1000~5000(個/mm)の範囲であることが好ましく、2000~4000(個/mm)であることがより好ましい。ピーク密度の大きい方が滑り性に優れ、小さい方が透明性に優れるためこの範囲が好ましい。なお、ピーク密度の単位の(個/mm)は、1mm当たりのピークの個数を表す。
 ピーク密度は、温度23℃、湿度50%±5%において、三次元表面構造解析顕微鏡zygo New View 5000 キヤノン販売(株)製を用い、対物レンズ50倍、イメージズーム1.0倍で、高さが3nm以上のピークの数を測定し、測定面積で割って、単位面積あたりのピークの数を算出することによって求めることができる。
 ここで、ピークの高さの基準となる平均線は、JIS B0601(1994)に基づいて、粗さ曲線に平均線を引いた時、測定長さ内で線の上下にできる山の面積の合計が等しくなるように引く。粗さ曲線を前記平均線によって切断したときの、隣り合う二つの交点に挟まれた曲線部分のうち、前記平均線より上側(光学フィルムから空間側への方向)の部分を「profile peak」とする。「profile peak」のうち、前記平均線に対し、3nm以上高い部分を、本発明におけるピークとする。
 水添ノルボルネン系樹脂に、単に微粒子を添加した場合には、微粒子が凝集しにくく二次粒子が形成されにくい。このため、ピーク密度は大きくなりにくく、滑り性が不十分であるという問題がある。
 本発明では、水添ノルボルネン系樹脂においても、二次粒子を十分に凝集させ、光学フィルムの表面のピーク密度を1000~5000(個/mm)の範囲内にすることができる。
 光学フィルムの表面のピーク密度を1000~5000(個/mm)の範囲内にするためには、水添ノルボルネン系樹脂と、シリカ微粒子と、重縮合エステル1及び3を組み合わせればよい。具体的には、これらを混合してドープを作成することにより、ドープ中で、重縮合エステル3とシリカ微粒子とが相互作用し、シリカ微粒子と重縮合エステル3や1との凝集が促進される。同時に、水添ノルボルネン樹脂と重縮合エステル3との相互作用も働くことで、シリカ微粒子同士の凝集が緩和される。
 <ヘイズ>
 本発明の光学フィルムのヘイズ値は、0.5%以下であることが好ましく、0.30%以下であることがより好ましく、0.20%以下であることがさらに好ましい。ヘイズ値は、小さいほうが、透明性が高いので好ましい。
 ヘイズ値は光学フィルム3枚を重ね合わせ、ASTM-D1003-52(ASTM規格)に従って、東京電色工業(株)製T-260DAを使用して測定することができる。
 ヘイズ値は、シリカ微粒子の一次粒子や二次粒子の平均粒子径や含有量、重縮合エステルの組成及び含有量等により調整される。例えば、ヘイズを低減するためには、シリカ微粒子の含有量を少なくしたり、重縮合エステル1及び3を添加してシリカ微粒子同士の過度な凝集を抑制したり、重縮合エステル2をさらに添加して重縮合エステル1と3との相溶性や樹脂との相溶性を高めたりすることが好ましい。
 <透湿度>
 本発明の光学フィルムは、透湿度が、100~400g/m・24hの範囲内であることが好ましい。透湿度が前記の範囲内であると、安定して偏光板の製造を行いやすくなる。透湿度は、温度40℃、相対湿度90%の環境下、JIS Z 0208に準拠して測定した時の値である。
 <動摩擦係数>
 光学フィルムの動摩擦係数は、0.1~1.1であることが好ましい。光学フィルムの動摩擦係数が1.1以下であると、十分な滑り性を有し得る。
 光学フィルムの動摩擦係数は、JIS K 7125(ISO8295)に準じて測定することができる。具体的には、光学フィルムを所定の大きさに切り出し、測定テーブル上にセットする。セットした光学フィルムの表面上に200gの重りを載せ、サンプル移動速度100mm/分、接触面積80mm×200mmの条件で重りを水平に引っ張る。移動中の重りの平均荷重(F)を測定し、下記式より動摩擦係数(μ)を求める。
 動摩擦係数=F(gf)/重りの重さ(gf)
 光学フィルムの動摩擦係数は、シリカ微粒子の二次粒子の平均粒子径、シリカ粒子の含有量、重縮合エステルの組成及び含有量等により調整されうる。例えば、光学フィルムの動摩擦係数を一定以下とするためには、シリカ微粒子の二次粒子の平均粒子径を一定以上としたり、重縮合エステル3の含有量を一定以上としたりすることが好ましい。
 <光学特性>
 <位相差値>
 本発明の光学フィルムの、下記式(I)で定義される面内方向の位相差値Ro(nm)及び下記式(II)で定義される厚さ方向の位相差値Rt(nm)は、下記式(III)及び下記式(IV)を満たすことが好ましい。
 式(I) Ro=(nx-ny)×d
 式(II) Rt={(nx+ny)/2-nz}×d
 式(III) |Ro|≦10nm
 式(IV) |Rt|≦10nm
 式(I)~(IV)中、Ro及びRtは、温度23℃、相対湿度55%の環境下で波長590nmの光で測定した位相差値である。nxは、光学フィルムの、フィルム面内の遅相軸方向での屈折率である。nyは、光学フィルムの、フィルム面内の進相軸方向での屈折率である。nzは、光学フィルムの膜厚方向の屈折率である。dは、光学フィルムの膜厚(nm)である。
 フィルムの面内方向の位相差値(Ro)と厚さ方向の位相差値(Rt)は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzを、前述の式(I)及び(II)に当てはめて算出することができる。
 フィルムの面内方向の位相差値(Ro)と厚さ方向の位相差値(Rt)は、延伸条件や重縮合エステル3の含有量等によって調整されうる。例えば、フィルムの面内方向の位相差値(Ro)を小さくするためには、延伸倍率は低く、重縮合エステル3の含有量は一定以上とすることが好ましい。重縮合エステル3は芳香族基を含まないので、配向位相差を低減することができるからである。
 本発明の光学フィルムの膜厚は、5~40μmであることが好ましい。5~30μmであることがより好ましく、5~20μmであることがさらに好ましい。このように、本発明の光学フィルムは、薄膜化することが可能である。ここで、光学フィルムの膜厚とは、フィルムの平均膜厚を意味している。
 次に、本発明の光学フィルムの製造方法について説明する。
 本発明の光学フィルムは、溶液流延法若しくは溶融流延で製造されるが、溶液流延法で製造することが、薄膜の光学フィルムを製造しやすく、また面品質が良い観点から好ましい。以下、溶液流延法での製造方法について述べる。
 本発明の光学フィルムの製造は、前述の水添ノルボルネン系樹脂、前述の重縮合エステル1及び3、及び前述のシリカ粒子を溶剤に溶解させてドープ液を調製する工程と、得られたドープ液を支持体上に流延した後、乾燥させて膜状物を得る工程とを含む。具体的には、前述の水添ノルボルネン系樹脂、前述の重縮合エステル1及び3、及び前述のシリカ粒子を溶剤に溶解させてドープ液を調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥した後、金属支持体から剥離する工程、得られたウェブを延伸又は幅保持する工程、得られたフィルムを巻き取る工程により行われる。必要に応じて、ウェブを延伸又は幅保持する工程の後、得られたフィルムを乾燥する工程を更に実施してもよい。
 ドープを調製する工程について述べる。ドープ中の水添ノルボルネン系樹脂、重縮合エステル1及び3の溶解濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。
 ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方が水添ノルボルネン系樹脂の溶解性の点で好ましい。
 良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用する水添ノルボルネン系樹脂を単独で溶解するものを良溶剤、単独で膨潤するか又は溶解しないものを貧溶剤と定義している。
 本発明に用いられる良溶剤は、特に限定されないが、ジクロロメタン等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはジクロロメタン又は酢酸メチルが挙げられる。
 また、本発明に用いられる貧溶剤は、特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。
 また、水添ノルボルネン系樹脂、重縮合エステル1及び3、及び前述のシリカ粒子の溶解に用いられる溶剤は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。上記記載のドープを調製する時の、水添ノルボルネン系樹脂の溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。
 溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら撹拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 シリカ微粒子は、直接、水添ノルボルネン系樹脂や重縮合エステル1~3と混合されてもよいし;シリカ微粒子を溶剤に分散させた微粒子添加液を調製した後、水添ノルボルネン系樹脂や重縮合エステル1~3と混合されてもよい。微粒子添加液と、水添ノルボルネン系樹脂や重縮合エステル1~3を含むドープとを混合する場合、インラインミキサーを使用することが好ましい。
 微粒子添加液のシリカ微粒子の濃度は、5~30質量%の範囲内であることが好ましく、10~25質量%の範囲内であることが更に好ましく、15~20質量%の範囲内であることが特に好ましい。分散濃度が高い方が、同量の添加量に対する濁度が低くなり、ヘイズや凝集物の発生を抑制することができるため好ましい。
 次に、水添ノルボルネン系樹脂と、シリカ微粒子と、重縮合エステル1及び3とを含むドープ、又は水添ノルボルネン系樹脂と重縮合エステル1及び3とを含むドープ及びシリカ微粒子を含む微粒子添加液を、濾紙等の適当な濾過材を用いて濾過する。
 濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため、絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。
 濾過により、原料の水添ノルボルネン系樹脂に含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にロール状セルロースエステルを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は、通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。
 好ましい温度は、45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 次いで、ドープの流延について説明する。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。
 流延工程の金属支持体の表面温度は、-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化したりする場合がある。好ましい支持体温度は、0~50℃であり、5~30℃が更に好ましい。
 あるいは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は、特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 ロール状の光学フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は、10~150質量%が好ましい。本発明においては、残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 また、ロール状の光学フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。
 ウェブを延伸又は幅保持しながら乾燥させる工程では、一般にロール乾燥方式(上下に配置した多数のロールでウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。本発明の光学フィルムを作製するためには、金属支持体より剥離した直後のウェブの残留溶剤量の多いところで搬送方向(長尺方向)と幅方向の少なくとも一方に延伸することが好ましい。
 本発明の光学フィルムは、ヘイズが低く、良好な滑り性を有することから、表示装置の透明基板(透明基材フィルム)や各種保護フィルムとして用いることができる。中でも、位相差を一定以下に調整しやすいことから、偏光板保護フィルム(位相差フィルムを含む)として好ましく用いることができる。
 <表面処理>
 本発明の光学フィルムが表示装置の外側に配置される偏光板保護フィルム(外側保護フィルム)として用いられる場合、その表面に任意の適切な表面処理がさらに施されてもよい。表面処理としては、防眩処理、拡散処理(アンチグレア処理)、反射防止処理(アンチリフレクション処理)、ハードコート処理、帯電防止処理等が挙げられる。防眩処理方法としては任意の適切な方法を用いることができる。例えばエンボス加工、サンドブラスト加工やエッチング加工等の適宜な方式で表面に微細凹凸構造を付与することなどにより、表面反射光が拡散する適宜な方式で形成することができる。
 <偏光板>
 本発明の光学フィルムは、前述の通り、偏光板保護フィルムとして好ましく用いることができる。即ち、本発明の光学フィルムは、偏光子と組み合わせて偏光板としてもよい。偏光板は、偏光子と、該偏光子の両側に設けられた偏光板保護フィルムを有するものであって、該偏光板保護フィルムの少なくとも一方が本発明の光学フィルムである。偏光板保護フィルムは、光散乱層や反射防止層を有する側とは反対側の透明支持体の表面、すなわち偏光子と貼り合わせる側の表面の水に対する接触角が10~50度の範囲にあることが好ましい。例えば、本発明の光学フィルムの片面に粘着層を設けてディスプレイの最表面に配置することができる。
 <偏光子>
 偏光子としては、任意の適切な偏光子を用いることができる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは、特に制限はなく、一般的に、1~80μm程度である。
 ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいてもよいし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。
 ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行ってもよいし、染色しながら延伸してもよい。また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。
 偏光子は、好ましくは、0.030≦Rpva≦0.040を満足する。ここで、Rpvaは、波長1000nmにおいて、偏光子の面内で屈折率が最大になる方向の屈折率をnx、当該屈折率が最大になる方向に直交する方向の屈折率をnyとしたとき、Rpva=nx-nyで表される。Rpvaは、さらに好ましくは0.030≦Rpva≦0.039であり、特に好ましくは0.030≦Rpva≦0.035である。偏光子中の配向に寄与しない(代表的には、配向性の低い)結晶量が増大することにより、このような特性が満足されると推定される。Rpvaがこのような範囲の偏光子であれば、高温高湿環境下において優れた寸法安定性及び光学的耐久性を有し得る。その結果、当該偏光子は、偏光子の片側のみに偏光板保護フィルムを設けた偏光板に用いられる場合でも、寸法変化及び光学特性の劣化が起こりにくく、実用上許容可能な寸法安定性及び光学的耐久性を実現することができる。
 偏光子は、二色比DRが好ましくは160以上であり、さらに好ましくは160~220であり、特に好ましくは170~210であり、最も好ましくは175~185である。二色比DRがこのような範囲であれば、本発明の偏光板を用いることにより、正面コントラストの高い液晶パネル及び液晶表示装置を得ることができる。このような液晶パネル及び液晶表示装置は、例えば、テレビ用途に適する。なお、二色比DRは下記の式から求めることができる。
 二色比DR=log(0.919/k2)/log(0.919/k1)
 ここで、k1は偏光子の透過軸方向の透過率であり、k2は偏光子の吸収軸方向の透過率であり、定数0.919は界面反射率である。
 偏光子は、透過率(単体透過率)Tsが好ましくは42%以上であり、さらに好ましくは42.~44.0%の範囲であり、特に好ましくは42.5~43.0%の範囲である。透過率Tsがこのような範囲であれば、本発明の偏光板を用いることにより、輝度の高い液晶パネル又は液晶表示装置を得ることができる。このような液晶パネル及び液晶表示装置は、例えば、テレビ用途に適する。なお、偏光板の透過率は、以下の式から求めることができる。
 透過率={(k1+k2)/2}×100 [%]
 ここで、k1は偏光子の透過軸方向の透過率であり、k2は偏光子の吸収軸方向の透過率である。
 偏光子は、上記のとおり、ヨウ素又は二色性染料等の二色性物質を含有するポリビニルアルコール(PVA)系樹脂を主成分とする偏光子が用いられ得る。
 偏光子のヨウ素含有量は、好ましくは1.8~5.0質量%であり、さらに好ましくは2.0~4.0質量%である。ヨウ素含有量を上記の範囲とすることによって、好ましい範囲の透過率の偏光板が得られ、正面方向のコントラスト比が高い液晶表示装置を得ることができる。
 偏光子のホウ酸含有量は、ホウ素換算で、好ましくは0.5~3.0質量%であり、さらに好ましくは1.0~2.8質量%であり、特に好ましくは1.5~2.6質量%である。上記のように、本発明によれば、ホウ酸量を増量することなく、加湿環境下において優れた寸法安定性及び光学的耐久性を有する偏光子を得ることができる。
 偏光子は、好ましくは、カリウムをさらに含有し得る。上記カリウム含有量は、好ましくは0.2~1.0質量%であり、さらに好ましくは0.3~0.9質量%であり、特に好ましくは0.4~0.8質量%である。カリウム含有量を上記範囲とすることによって、好ましい範囲の透過率を有し、かつ、偏光度が高い偏光板を得ることができる。
 偏光子の透過軸方向の線膨張係数は、特に制限はなく、任意の適切な値をとり得る。例えば、二色性物質を含有するポリビニルアルコール(PVA)系樹脂を主成分とする偏光子を用いる場合、偏光子の透過軸方向の線膨張係数は、4.0×10-5~5.0×10-5/℃となり得る。
 <その他の層>
 本発明の偏光板は、その他の層をさらに有してもよい。その他の層としては、例えば、反射防止層、帯電防止層、位相差層、輝度向上フィルム層、粘着剤層等が挙げられる。一つの実施形態においては、本発明の偏光板は、該粘着剤層を介して液晶セルと貼り合わせられる。該粘着剤層は、23℃における貯蔵弾性率が8.0×10以上1.0×10未満であることが好ましく、1.0×10~8.0×10であることがより好ましい。その他の層は、目的や用途、本発明の偏光板が用いられる液晶表示装置の構成等に応じて、任意の適切な層を選択すればよく、数、種類、位置、配置等は適宜設定され得る。
 図1は、本発明の好ましい実施形態による偏光板の概略断面図である。図1の実施形態においては、偏光板101は、偏光子10と該偏光子10の両方の面に配置された偏光板保護フィルム20及び30とを備える。該偏光子10と該偏光板保護フィルム20及び30は、任意の接着層(図示せず)を介して貼り合わされている。そして、偏光板保護フィルム20及び30の少なくとも一方を本発明の光学フィルムとしうる。
 <表示装置>
 本発明の光学フィルム又は偏光板は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)等の各種表示装置に用いることができる。本発明の光学フィルム又は偏光板は、画像表示装置の表示画面の視認側に配置されることが好ましい。
 <液晶表示装置>
 本発明の光学フィルム又は偏光板は、特に液晶表示装置等のディスプレイの最表層に用いることが好ましい。液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し;液晶セルは、2枚の電極基板の間に液晶を担持している。さらに、光学異方性層が、液晶セルと一方の偏光板との間に1枚配置されるか、あるいは液晶セルと双方の偏光板との間に2枚配置されることもある。
 液晶セルは、TNモード、VAモード、OCBモード、IPSモード又はECBモードであることが好ましい。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of Tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
 OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルであり、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードと呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
 IPSモードの液晶セルは、ネマチック液晶に横電界をかけてスイッチングする方式であり、詳しくはProc.IDRC(Asia Display 1995),p.577-580及び同p.707-710に記載されている。
 ECBモードの液晶セルは、電圧無印加時に棒状液晶性分子が実質的に水平配向している。ECBモードは、最も単純な構造を有する液晶表示モードの一つであって、例えば特開平5-203946号公報に詳細が記載されている。
 2枚の偏光板は、それぞれ偏光子と、それを挟持する2枚の偏光板保護フィルムとを含み;2枚の偏光板保護フィルムのうち、液晶セル側に配置される偏光板保護フィルムが本発明の光学フィルムであることが好ましい。本発明の光学フィルムは、ヘイズの増大が抑制され、光学特性が損なわれていないだけでなく、配向位相差も低減されているからである。
 <プラズマディスプレイパネル(PDP)>
 プラズマディスプレイパネル(PDP)は、一般に、ガス、ガラス基板、電極、電極リード材料、厚膜印刷材料、蛍光体により構成される。ガラス基板は、前面ガラス基板と後面ガラス基板の2枚である。2枚のガラス基板には電極と絶縁層を形成する。後面ガラス基板には、さらに蛍光体層を形成する。2枚のガラス基板を組み立てて、その間にガスを封入する。
 プラズマディスプレイパネル(PDP)は、既に市販されているものを用いることできる。プラズマディスプレイパネルについては、特開平5-205643号、同9-306366号の各公報に記載がある。
 前面板をプラズマディスプレイパネルの前面に配置することがある。前面板はプラズマディスプレイパネルを保護するために充分な強度を備えていることが好ましい。前面板は、プラズマディスプレイパネルと隙間を置いて使用することもできるし、プラズマディスプレイ本体に直貼りして使用することもできる。
 プラズマディスプレイパネルのような画像表示装置では、光学フィルターをディスプレイ表面に直接貼り付けることができる。また、ディスプレイの前に前面板が設けられている場合は、前面板の表側(外側)又は裏側(ディスプレイ側)に光学フィルターを貼り付けることもできる。
 <有機EL素子>
 本発明の光学フィルムは、有機EL素子等の基板(基材フィルム)や保護フィルムとして用いることができる。本発明の光学フィルムを有機EL素子等に用いる場合には、特開平11-335661号、特開平11-335368号、特開2001-192651号、特開2001-192652号、特開2001-192653号、特開2001-335776号、特開2001-247859号、特開2001-181616号、特開2001-181617号、特開2002-181816号、特開2002-181617号、特開2002-056976号等の各公報記載の内容を応用することができる。また、特開2001-148291号、特開2001-221916号、特開2001-231443号の各公報記載の内容と併せて用いることが好ましい。
 <タッチパネル>
 本発明の光学フィルムは、タッチパネルの透明基材フィルムとしても好適であり、例えば、特開2009-176608号公報の段落[0073]~[0075]の記載に従い、タッチパネルを作製することができる。
 タッチパネルは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプのレイ、CRTディスプレイ、電子ペーパー等の表示装置等に組み込むことで、入力デバイスとして利用することができる。
 タッチパネルの構成については、抵抗膜型、静電容量型などがあり、静電容量型の入力装置は、単に1枚の基板に透光性導電膜を形成すればよいという利点があるため、静電容量型であることが好ましい。かかる静電容量型の入力装置では、例えば、前記透明電極層として互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプのものを好ましく用いることができる。このようなタッチパネルの構成については、例えば、特開2010-86684号公報、特開2010-152809号公報、特開2010-257492号公報等の記載を参酌できる。
 タッチパネルを構成要素として備えた画像表示装置の構成については、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
 また、タッチパネルを組み込むことができる液晶ディスプレイの構成については、特開2002-48913号公報等の記載も参酌できる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 1.光学フィルムの材料
 (樹脂)
 I:水添ノルボルネン樹脂JSR(株)製 アートン(登録商標)(G7810)(極性基を有するノルボルネン系単量体の開環(共)重合体の水添物)
 II:水添ノルボルネン樹脂JSR(株)製 アートン(登録商標)(RX4500)(極性基を有するノルボルネン系単量体の開環(共)重合体の水添物)
 III:トリアセチルセルロース イーストマンケミカル(株)製 TAC
 (重縮合エステル)
 《重縮合エステル1Aの合成》
 1,2-プロピレングリコール76g、フタル酸81g、安息香酸240g、エステル化触媒としてテトライソプロピルチタネート0.181gを、温度計、撹拌器、緩急冷却管を備えた2Lの四ツ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、前述の表1の重縮合エステル1Aを得た。酸価0.10mgKOH/g、数平均分子量500であった。
 《重縮合エステル1B~1Xの合成》
 芳香族ジカルボン酸、脂肪族ジオール、モノカルボン酸の種類及び数平均分子量のうち少なくとも一つを前述の表1に示されるように変更した以外は重縮合エステル1Aと同様にして前述の表1の重縮合エステル1B~1Xを得た。
 《重縮合エステル2Aの合成》
 1,2-プロピレンジオール76g、アジピン酸61g、安息香酸240g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四ツ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、前述の表2の重縮合エステル2Aを得た。酸価0.10mgKOH/g、数平均分子量500であった。
 《重縮合エステル2B~2Z2の合成》
 脂肪族ジカルボン酸、脂肪族ジオール、モノカルボン酸の種類及び数平均分子量のうち少なくとも一つを前述の表2に示されるように変更した以外は重縮合エステル2Aと同様にして前述の表2の重縮合エステル2B~2Z2を得た。
 《重縮合エステル3Aの合成》
 1,2-プロピレンジオール76g、セバシン酸101g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四ツ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、前述の表3の重縮合エステル3Aを得た。酸価0.10mgKOH/g、数平均分子量580であった。
 《重縮合エステル3B~3Yの合成》
 脂肪族ジカルボン酸、脂肪族ジオールの種類及び数平均分子量のうち少なくとも一つを表3に示されるように変更した以外は重縮合エステル3Aと同様にして前述の表3の重縮合エステル3B~3Yを得た。
 (シリカ微粒子)
 シリカ微粒子a(表面処理有り):
 アエロジルR812(日本アエロジル社製)平均一次粒子径0.01μm、ヒドロキシ基の被覆率(置換率)70%、ヒドロキシ基の被覆基:トリメチルシリル基)
 シリカ微粒子b(表面処理無し):
 アエロジル300V(日本アエロジル社製、平均一次粒子径0.02μm、ヒドロキシ基の被覆率(置換率)0%)
 シリカ微粒子の一次粒子の平均粒子径は、下記の方法で測定した。
 <一次粒子の平均粒子径>
 後述する方法でシリカ微粒子添加液(後述の微粒子添加液A)を調製し、ガラス板に塗布した後、乾燥させて、透過型電子顕微鏡(倍率5000~1万倍)で微粒子を撮影した。
 得られた画像をコニカミノルタ社製フラットヘッドスキャナーシティオス(Sitios)9231にて電子データ化し、画像解析ソフトイメージプロプラス(ImagePro Plus)を使用して、平均一次粒子径の測定を行った。平均一次粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を使用した。
 尚、スキャナーで読み取った画像から解析を行うために、微粒子の画像のコントラストを強調することで画像解析ソフトが微粒子を認識できるようにするフィルター処理を行った。さらに、このフィルター条件を変更することでコントラストの最適化を行った。フィルター処理は、メディアン3×3、次に平坦化20ピクセル、次にハイパス3×3、次にメディアン3×3を使用した。
 その後、上記コントラストを最適化した画像から粒子を抽出し、個々の一次粒子の形状を画像解析ソフトで測定して、一次粒子の平均粒子径を測定した。
 2.光学フィルム(偏光板保護フィルム)の作製と評価
 実施例1
 <光学フィルム101の作製>
 (微粒子分散液aの調製)
 エタノール90質量部を密閉容器に投入し、撹拌しながら表5に記載のシリカ微粒子a(日本アエロジル(株)製)を10質量部加えた。その後、ディゾルバーで50分間撹拌混合した後、この混合液2000gを高圧分散装置(商品名:超高圧ホモジナイザーM110-E/H、Microfluidics Corporation 製)に通し、175MPaで1回処理することで、微粒子分散液aを調製した。
 (微粒子添加液Aの調製)
 得られた微粒子分散液aを、ジクロロメタンを入れた密閉容器に、十分撹拌しながらゆっくりと添加した。更に、アトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液Aを調製した。
 ジクロロメタン:50質量部
 微粒子分散液a:50質量部
 下記組成の主ドープを調製した。まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクに、水添ノルボルネン系樹脂I、重縮合エステル1A、2A及び3A、並びに微粒子添加液Aを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解させた後、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
 (主ドープの組成)
 ジクロロメタン:300質量部
 エタノール:19質量部
 水添ノルボルネン樹脂I:100質量部
 重縮合エステル1A:3質量部
 重縮合エステル2A:3質量部
 重縮合エステル3A:3質量部
 微粒子添加液A:30質量部
 次いで、無端ベルト流延装置を用い、ドープを温度33℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が30~50%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。剥離した光学フィルムを、140℃の熱をかけながらテンターを用いて幅方向に5%延伸した。延伸開始時の残留溶媒は5~10%であった。次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は120℃で、搬送張力は90N/mとした。以上のようにして、乾燥膜厚20μmの光学フィルム101を得た。
 <光学フィルム102~129の作製>
 水添ノルボルネン系樹脂の種類、重縮合エステルの種類・含有量、及び微粒子分散液の種類・含有量の少なくとも一つを、表4に示されるように変更した以外は光学フィルム101と同様にして光学フィルム102~129を作製した。尚、微粒子Bを用いた以外は微粒子分散液Aと同様に調製したものを微粒子分散液Bとした。
 得られた光学フィルム102~129の作製に用いたドープ組成を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 得られた光学フィルム101~129の、ピーク密度、(フィルム中の)二次粒子の平均粒子径、透湿度、面内方向の位相差値Ro(nm)、厚さ方向の位相差値Rt(nm)、ヘイズ及び動摩擦係数について、以下の方法で測定した。
 <ピーク密度>
 光学フィルムの高さが3nm以上のピークの数を、温度23℃、湿度50%±5%において、三次元表面構造解析顕微鏡zygo New View 5000 キヤノン販売(株)製を用い、対物レンズ50倍、イメージズーム1.0倍で測定し;測定面積で割って、単位面積あたりのピークの数を算出した。
 ここで、ピークの高さの基準となる平均線は、JIS B0601(1994)に基づいて、粗さ曲線に平均線を引いた時、測定長さ内で線の上下にできる山の面積の合計が等しくなるように引いた。粗さ曲線を前記平均線によって切断したときの、隣り合う二つの交点に挟まれた曲線部分のうち、前記平均線より上側(光学フィルムから空間側への方向)の部分を「profile peak」とする。「profile peak」のうち、前記平均線に対し、3nm以上高い部分を、本発明におけるピークとした。
 <二次粒子(凝集体)の平均粒子径>
 得られた光学フィルムのサンプルを、エポキシ樹脂で包埋後、ウルトラミクロトームにより約100nm厚の超薄切片を作製し、日本電子製透過型電子顕微鏡2000FX(加速電圧:200kV)により2500~10000倍のTEM画像を撮影した。
 得られた画像をコニカミノルタ製フラットヘッドスキャナーシティオス(Sitios9231)にて電子データ化し、画像解析ソフトImagePro Plusを使用して、フィルム中の平均粒子径の測定を行った。フィルム中の平均粒子径は、粒子投影面積と等しい面積をもつ円の直径で表される円相当径を計算した。
 尚、スキャナーで読み取った画像から解析を行うために、微粒子の画像のコントラストを強調することで画像解析ソフトが微粒子を認識できるようにするフィルター処理を行った。さらに、このフィルター条件を変更することでコントラストの最適化を行った。
 ここで、フィルター処理はメディアン3×3、次に平坦化20ピクセル、次にハイパス3×3、次にメディアン3×3を使用した。
 その後、上記コントラストを最適化した画像から二次粒子を抽出し、個々の二次粒子の形状を画像解析ソフトで測定して、平均粒子径を測定した。
 <透湿度>
 得られた光学フィルムの透湿度は、温度40℃、相対湿度90%の環境下で、JIS Z 0208に準拠して測定した。
 <位相差値Ro、Rt>
 得られた光学フィルムの面内方向の位相差値Roと厚さ方向の位相差値Rtは、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzを、前述の式(I)及び(II)に当てはめて算出した。
 <ヘイズ>
 得られた光学フィルムのヘイズ値は、当該光学フィルム3枚を重ね合わせ、ASTM-D1003-52(ASTM規格)に従って、東京電色工業(株)製T-260DAを使用して測定した。
 <動摩擦係数>
 光学フィルムの動摩擦係数は、JIS K 7125(ISO8295)に準じて測定した。具体的には、光学フィルムを所定の大きさに切り出したものを2枚準備し、一方の光学フィルムの表面に、他方の光学フィルムの裏面が接するように重ねて測定テーブル上に配置した。他方の光学フィルムの表面上に200gの重りを載せ、サンプル移動速度100mm/分、接触面積80mm×200mmの条件で重りを水平に引っ張った。移動中の重りの平均荷重(F)を測定し、下記式より動摩擦係数(μ)を求めた。
 動摩擦係数=F(gf)/重りの重さ(gf)
 上記作製した光学フィルム101~129の評価結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000008
 表5の結果から示されるように、本発明の光学フィルムは、ヘイズの増大を抑制しつつ、動摩擦係数を小さくすることができる(滑り性を高めることができる)ことがわかる。
 特に、シリカ微粒子を疎水化剤で表面処理することで、ヘイズを一層低減できることがわかる(フィルム112と114の対比)。さらに、重縮合エステル2をさらに添加することで、ヘイズを一層低減できることがわかる(フィルム115とフィルム112又は113との対比)。さらに、重縮合エステル1~3の数平均分子量を700以下とすることで、ヘイズを一層低減できることがわかる(フィルム120と、フィルム101、102及び109との対比)。
 これに対して重縮合エステル1又は2のみを含むフィルム116~118、124~125及び127は、重縮合エステルと樹脂との相互作用が生じにくいため、凝集体の径が比較的小さく、一定以上の大きさの凝集体の数も比較的少なく(ピーク密度が低く)、動摩擦係数が高い(滑り性が低い)ことがわかる。また、樹脂との相互作用が生じにくいため、シリカ微粒子同士の凝集が促進されて、凝集体と樹脂との屈折率差が大きくなり、ヘイズも増大したと考えられる。
 一方、重縮合エステル3のみを含むフィルム119や126は、重縮合エステルと樹脂との相互作用が強すぎるため、凝集体の径が大きくなりすぎてヘイズが低下するか;または一定以上の大きさを有する凝集体の数が少なく(ピーク密度が低く)、弾性率も十分には向上しないため、動摩擦係数が高くなることがわかる。
 また、光学フィルム101と115のフィルムの断面を、電子顕微鏡(装置名:日本電子製透過型電子顕微鏡2000FX)を用いて、10000の倍率で観察した。図2に、光学フィルム115(比較例)の電子顕微鏡写真を示し、図3に、光学フィルム101(本発明)の電子顕微鏡写真を示す。図2及び3に示されるように、光学フィルム101は、光学フィルム115よりも表面の凸凹(凝集体)が多く形成されていることがわかる。
 3.偏光板の作製と評価
 実施例2
 <偏光子1の作製>
 重合度2400、ケン化度99.7モル%、厚さ75μmのPVA系樹脂フィルムを用意した。当該フィルムを、30℃のヨウ素水溶液中で染色しながらフィルム搬送方向に3倍に延伸し、次いで、60℃の4質量%ホウ酸、5質量%のヨウ化カリウム水溶液中で、総延伸倍率が元長の6倍となるように延伸した。さらに、延伸したフィルムを30℃の2質量%のヨウ化カリウム水溶液中に数秒浸漬することで洗浄した。得られた延伸フィルムを90℃で乾燥し偏光子を得た。
 <他の保護フィルム>
 他の保護フィルムとして、以下の保護フィルム201~204を準備した。
 保護フィルム201:ポリエチレンナフタレートフィルム、テオネックスQ83(商品名)(帝人デュポン社製)、厚さ:40μm
 保護フィルム202:ポリエチレンテレフタレートフィルム、MRF40(商品名)(三菱樹脂社製)厚さ:25μm
 保護フィルム203:トリアセチルセルロースフィルム、KC4UAW(商品名)コニカミノルタ社製、厚さ:40μm
 保護フィルム204:トリアセチルセルロースフィルム、KC2UAW(商品名)コニカミノルタ社製、厚さ:25μm
 <偏光板301の作製>
 上記作製した偏光子1の一方の面(A面)に、PVA系接着剤を介して、光学フィルム101の遅相軸と偏光子1の透過軸とが平行となるように光学フィルム101を貼り合わせた。同様に、偏光子1の他方の面(B面)に、保護フィルム203の遅相軸と偏光子1の透過軸とが平行となるように前述の保護フィルム203を貼り合わせた。それにより、偏光板301を得た。
 <偏光板302~331の作製>
 表6に記載のように、光学フィルム及び偏光子を組み合わせた以外は偏光板301と同様にして、偏光板302~偏光板331を作製した。
 得られた偏光板301~331について、下記の評価を行った。
 <湿熱耐久後の密着性>
 偏光板を5cm×7cmのサイズに切断した。得られた切断片を、6cm×8cmのガラス板の中央部にアクリル系粘着剤で仮粘着し、次いでこれを押圧して切断片とガラス板の間の気泡を完全に除去して、切断片をガラス板に粘着させて、試験片とした。   
 得られた試験片を60℃、90%RHにセットした恒温恒湿オーブン内の支持枠に垂直に配置し、500時間保存した。その後、試験片を取り出し、偏光子と光学フィルムとの間の接着性の測定を行った。偏光子と光学フィルムの接着性の評価は、高温高湿処理後に偏光子と光学フィルムの間の剥離状態を目視観察して行った。
 ○:膜の浮き上がりの部分がまったく見当たらない
 △:膜の浮き上がりの部分が周辺1mm以上5mm未満である
 ×:膜の浮き上がりの部分が周辺5mm以上である
 <湿熱耐久後の偏光度>
 各偏光板について、60℃90%RHでの500時間放置した後の偏光度を、以下の方法で測定した。
 偏光度の測定は、以下の方法で行った。即ち、分光光度計(村上色彩技術研究所製 DOT-3)を用いて、1枚の偏光板の透過率(単体透過率)を測定した。また、同様の分光光度計を用いて、2枚の同じ偏光板を両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:H0)及び、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:H90)を測定した。そして、平行透過率(H0)と直交透過率(H90)を、以下の式に適用することで、偏光度を算出した。
 偏光度(%)={(H0-H90)/(H0+H90)}1/2×100
 尚、単体透過率、平行透過率(H0)、直交透過率(H90)は、JIS Z8701の2度視野(C光源)により視感度補整したY値である。
 そして、以下の評価基準は下記のとおりである。
 ○:偏光度が99.7%以上
 △:偏光度が99.2%以上99.7%未満
 ×:偏光度が99.2%未満
 偏光板301~331の構成と評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
 表6の結果から示されるように、本発明の偏光板は、偏光子と光学フィルムとの密着性が良いことがわかる。また、偏光子と光学フィルムとの密着性が良いことから、外気中の水分が偏光子内に浸入しにくいため、偏光度の湿熱耐久性も改善されることがわかる。
 本出願は、2016年10月19日出願の特願2016-205045に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 10 偏光子
 20,30 偏光板保護フィルム
 101 偏光板

Claims (13)

  1.  極性基を有するノルボルネン系単量体の開環重合体の水添物、及び極性基を有するノルボルネン系単量体とそれ以外の共重合性単量体との開環共重合体の水添物からなる群より選ばれる水添ノルボルネン系樹脂と、
     シリカ微粒子と、
     芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル1と、
     脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステル3とを含む、光学フィルム。
  2.  前記シリカ粒子は、疎水化剤で表面処理されている、請求項1に記載の光学フィルム。
  3.  脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル2をさらに含む、請求項1又は2に記載の光学フィルム。
  4.  前記重縮合エステル1~3の数平均分子量は、それぞれ400以上700以下である、請求項3に記載の光学フィルム。
  5.  前記重縮合エステル1は、平均炭素数が8.0以上12.0以下の芳香族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が、平均炭素数7.0以上9.0以下の芳香族モノカルボン酸で封止された重縮合エステルであり、
     前記重縮合エステル2は、平均炭素数が2.0以上8.0以下の脂肪族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が、平均炭素数7.0以上9.0以下の芳香族モノカルボン酸で封止された重縮合エステルであり、
     前記重縮合エステル3は、平均炭素数が2.0以上8.0以下の脂肪族ジカルボン酸と平均炭素数が2.0以上8.0以下の脂肪族ジオールとの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステルである、請求項3または4に記載の光学フィルム。
  6.  前記重縮合エステル1、前記重縮合エステル2及び前記重縮合エステル3の含有比率は、重縮合エステル1/重縮合エステル2/重縮合エステル3=25/50/25~40/20/40(質量比)である、請求項3~5のいずれか一項に記載の光学フィルム。
  7.  前記光学フィルムの表面に形成されたピークの密度が、1000~5000個/mmの範囲内である、請求項1~6のいずれか一項に記載の光学フィルム。
  8.  前記光学フィルムのヘイズ値が0.5%以下である、請求項1~7のいずれか一項に記載の光学フィルム。
  9.  前記光学フィルムの膜厚が、5~40μmの範囲内である、請求項1~8のいずれか一項に記載の光学フィルム。
  10.  前記光学フィルムの、23℃、相対湿度55%の環境下で波長590nmの光で測定される、下記式(I)で表される面内方向の位相差値Ro(nm)が下記式(III)を満たし、かつ下記式(II)で表される厚さ方向の位相差値Rt(nm)が下記式(IV)を満たす、請求項1~9のいずれか一項に記載の光学フィルム。
     式(I) Ro=(nx-ny)×d
     式(II) Rt={(nx+ny)/2-nz}×d
     式(III) |Ro|≦10nm
     式(IV) |Rt|≦10nm
    (式(I)及び(II)中、
     nxは、前記光学フィルムの、フィルム面内の遅相軸方向での屈折率であり、
     nyは、前記光学フィルムの、フィルム面内の進相軸方向での屈折率であり、
     nzは、前記光学フィルムの、膜厚方向の屈折率であり、
     dは、前記光学フィルムの膜厚(nm)である)
  11.  前記光学フィルムは、偏光板保護フィルムである、請求項1~10のいずれか一項に記載の光学フィルム。
  12.  請求項1~11のいずれか一項に記載の光学フィルムの製造方法であって、
     極性基を有するノルボルネン系単量体の開環重合体の水添物、及び極性基を有するノルボルネン系単量体とそれ以外の共重合性単量体との開環共重合体の水添物からなる群より選ばれる水添ノルボルネン系樹脂と、シリカ微粒子と、芳香族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が芳香族モノカルボン酸で封止された重縮合エステル1と、脂肪族ジカルボン酸と脂肪族ジオールの重縮合エステルであって、前記重縮合エステルの両末端のOH基が封止されていない重縮合エステル3と、溶剤とを含むドープ液を調製する工程と、
     前記ドープ液を支持体上に流延した後、乾燥させて膜状物を得る工程とを含む、光学フィルムの製造方法。
  13.  偏光子と、その少なくとも一方に設けられた請求項11に記載の光学フィルムとを含む、偏光板。
PCT/JP2017/037695 2016-10-19 2017-10-18 光学フィルム、光学フィルムの製造方法、及び偏光板 WO2018074513A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546379A JPWO2018074513A1 (ja) 2016-10-19 2017-10-18 光学フィルム、光学フィルムの製造方法、及び偏光板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205045 2016-10-19
JP2016-205045 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074513A1 true WO2018074513A1 (ja) 2018-04-26

Family

ID=62019232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037695 WO2018074513A1 (ja) 2016-10-19 2017-10-18 光学フィルム、光学フィルムの製造方法、及び偏光板

Country Status (2)

Country Link
JP (1) JPWO2018074513A1 (ja)
WO (1) WO2018074513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017110536A1 (ja) * 2015-12-24 2018-10-11 コニカミノルタ株式会社 光学フィルム、光学フィルムロール体及び光学フィルムの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265643A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 延伸フィルム、延伸フィルムの製造方法、および偏光板
JP2013029792A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 環状オレフィン系樹脂フィルム、偏光板及び液晶表示装置
JP2013116621A (ja) * 2011-03-31 2013-06-13 Fujifilm Corp 積層フィルム、光学補償フィルム、偏光板、及び液晶表示装置
JP2013137439A (ja) * 2011-12-28 2013-07-11 Konica Minolta Inc 液晶表示装置
JP2016014869A (ja) * 2014-06-13 2016-01-28 コニカミノルタ株式会社 環状ポリオレフィンフィルムの製造方法及び環状ポリオレフィンフィルム
WO2016052109A1 (ja) * 2014-09-30 2016-04-07 コニカミノルタ株式会社 偏光板及び液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265643A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 延伸フィルム、延伸フィルムの製造方法、および偏光板
JP2013116621A (ja) * 2011-03-31 2013-06-13 Fujifilm Corp 積層フィルム、光学補償フィルム、偏光板、及び液晶表示装置
JP2013029792A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 環状オレフィン系樹脂フィルム、偏光板及び液晶表示装置
JP2013137439A (ja) * 2011-12-28 2013-07-11 Konica Minolta Inc 液晶表示装置
JP2016014869A (ja) * 2014-06-13 2016-01-28 コニカミノルタ株式会社 環状ポリオレフィンフィルムの製造方法及び環状ポリオレフィンフィルム
WO2016052109A1 (ja) * 2014-09-30 2016-04-07 コニカミノルタ株式会社 偏光板及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017110536A1 (ja) * 2015-12-24 2018-10-11 コニカミノルタ株式会社 光学フィルム、光学フィルムロール体及び光学フィルムの製造方法

Also Published As

Publication number Publication date
JPWO2018074513A1 (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5169215B2 (ja) 偏光板用保護フィルム
KR20100015898A (ko) 표시 화면용 보호 필름 및 편광판
KR20180021706A (ko) 대전 방지 필름 및 그 제조 방법, 편광판 그리고 액정 표시 장치
JP2006301572A (ja) 偏光板及びこれを用いた液晶表示装置
WO2007052478A1 (ja) セルロース系樹脂フィルム、セルロース系樹脂フィルムの製造方法、反射防止フィルム、偏光板及び液晶表示装置
KR102166221B1 (ko) 광학 필름과 그 제조 방법, 편광판 및 액정 표시 장치
TWI703343B (zh) 防帶電硬塗膜、偏光板、觸控面板、液晶顯示裝置及製造方法
JP6677722B2 (ja) 水平配向型液晶表示装置
JP6729383B2 (ja) 帯電防止フィルム及びその製造方法、並びに、液晶表示装置
JP2010032718A (ja) 液晶パネル及び液晶表示装置
JP2009223163A (ja) 位相差板
JPWO2018070132A1 (ja) 偏光板および液晶表示装置
JPWO2006054695A1 (ja) 液晶表示装置
JP2008003425A (ja) 偏光板
CN113412440B (zh) 带指纹验证传感器的图像显示装置的表面保护薄膜用基材薄膜、表面保护薄膜和图像显示装置
WO2015146890A1 (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
WO2015076409A1 (ja) 光学部材および表示装置
WO2018074513A1 (ja) 光学フィルム、光学フィルムの製造方法、及び偏光板
JP2008120905A (ja) 環状ポリオレフィンフィルム、それを用いた偏光板および液晶表示装置
JP2007065191A (ja) 偏光板及び液晶表示装置
EP3170660B1 (en) Uniaxially stretched multilayer laminate film, and optical member comprising same
JP6880746B2 (ja) 光学フィルム及び偏光板
WO2018181070A1 (ja) 帯電防止フィルム、偏光板、タッチパネル、及び液晶表示装置
WO2017110400A1 (ja) 偏光板保護フィルム、その製造方法及び偏光板
JP2006058322A (ja) 偏光板及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862679

Country of ref document: EP

Kind code of ref document: A1