WO2018074470A1 - 電池劣化診断装置、充電器および電池劣化診断方法 - Google Patents

電池劣化診断装置、充電器および電池劣化診断方法 Download PDF

Info

Publication number
WO2018074470A1
WO2018074470A1 PCT/JP2017/037528 JP2017037528W WO2018074470A1 WO 2018074470 A1 WO2018074470 A1 WO 2018074470A1 JP 2017037528 W JP2017037528 W JP 2017037528W WO 2018074470 A1 WO2018074470 A1 WO 2018074470A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage value
secondary battery
amplification
amplification degree
Prior art date
Application number
PCT/JP2017/037528
Other languages
English (en)
French (fr)
Inventor
神戸祥吾
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018074470A1 publication Critical patent/WO2018074470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery deterioration diagnosis device, a charger, and a battery deterioration diagnosis method for diagnosing deterioration of a secondary battery.
  • Patent document 1 is based on the magnitude
  • a battery pass / fail discrimination device for discriminating whether or not the secondary battery is abnormal is disclosed.
  • Patent Document 2 discloses a light emission control circuit that applies a voltage to both ends of an LED circuit composed of a plurality of light emitting diodes (LEDs) connected in series, and causes the LEDs to emit light according to the voltage. Disclose.
  • the resistance value of the internal resistance between the positive electrode and the negative electrode of the secondary battery may differ if the manufacturer and capacity of the secondary battery are different.
  • the manufacturer and capacity of the secondary battery are different, the magnitude of the AC voltage component included in the voltage generated between the positive electrode and the negative electrode when a pulsating current is passed differs.
  • the internal resistance is large, and the AC voltage component contained in the voltage generated between the positive electrode and the negative electrode when a pulsating current is passed. There is a big one.
  • the battery pass / fail judgment device described in Patent Document 1 may discriminate a secondary battery having a lower internal resistance than other secondary batteries as normal despite being deteriorated.
  • An object of the present invention is to provide a battery deterioration diagnosis device, a charger, and a battery deterioration diagnosis method capable of determining whether or not a secondary battery has an abnormality regardless of manufacturer or capacity.
  • the battery deterioration diagnosis device of the present invention provides: When a current containing an alternating current component flows between the positive electrode and the negative electrode of the secondary battery, the voltage value for extracting the alternating voltage component included in the voltage generated between the positive electrode and the negative electrode and obtaining the voltage value of the alternating voltage component A detection unit; A voltage value storage unit that stores an initial voltage value that is a voltage value of an AC voltage component when the secondary battery is normal; and A deterioration determination unit that determines the presence or absence of abnormality of the secondary battery based on the initial voltage value stored in the voltage value storage unit and the voltage value of the AC voltage component obtained by the voltage value detection unit; It is characterized by providing.
  • the battery deterioration diagnosis device of the present invention is The voltage value storage unit stores, for each manufacturer and capacity, voltage value information including manufacturer capacity identification information for identifying each manufacturer and capacity, and an initial voltage value in a secondary battery of each manufacturer and capacity.
  • has a voltage value information table In response to a selection instruction including manufacturer capacity identification information, the deterioration determination unit acquires voltage value information identified by the manufacturer capacity identification information from the voltage value information table, and is included in the acquired voltage value information. Determine the presence or absence of abnormality of the secondary battery based on the initial voltage value and the voltage value of the AC voltage component obtained by the voltage value detection unit, It is characterized by that.
  • the battery deterioration diagnosis device of the present invention is In response to an instruction to register an initial voltage value, a voltage value registration unit is provided that causes the voltage value storage unit to store the voltage value of the AC voltage component obtained by the voltage value detection unit as an initial voltage value. .
  • the battery deterioration diagnosis device of the present invention is The voltage value information table in which the voltage value storage unit stores, for a plurality of secondary batteries, voltage value information including secondary battery identification information for identifying each secondary battery and an initial voltage value in each secondary battery.
  • the voltage value registration unit is an initial voltage value of the AC voltage component obtained by the secondary battery identification information and the voltage value detection unit in response to a registration instruction of the initial voltage value including the secondary battery identification information.
  • Voltage value information including a voltage value is stored in the voltage value information table,
  • the deterioration determination unit acquires the voltage value information identified by the secondary battery identification information from the voltage value information table, and the acquired voltage value information Determine the presence or absence of abnormality of the secondary battery based on the included initial voltage value and the voltage value of the AC voltage component obtained by the voltage value detection unit, It is characterized by that.
  • the battery deterioration diagnosis device of the present invention is With multiple LEDs,
  • the deterioration determination unit determines the degree of deterioration of the secondary battery based on the initial voltage value stored in the voltage value storage unit and the voltage value of the AC voltage component obtained by the voltage value detection unit, Causing the plurality of LEDs to emit light in a number corresponding to the degree of deterioration, It is characterized by that.
  • the battery deterioration diagnosis device of the present invention is An AC voltage component extraction unit that extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode when a current including an AC current component flows between the positive electrode and the negative electrode of the secondary battery; Amplification storage for storing an amplification factor for generating an amplification voltage that generates a display indicating normality when the secondary battery is normal and generates a display indicating abnormality when the secondary battery is abnormal And An amplification voltage generation unit that amplifies the AC voltage component extracted by the AC voltage component extraction unit according to the amplification degree stored by the amplification degree storage unit and generates an amplification voltage; A deterioration indicator that displays the presence or absence of abnormality of the secondary battery based on the amplified voltage generated by the amplified voltage generator; It is characterized by providing.
  • the battery deterioration diagnosis device of the present invention is The amplification degree storage unit stores, for each manufacturer and capacity, amplification degree information including manufacturer capacity identification information for identifying each manufacturer and capacity, and amplification degree corresponding to the secondary battery of each manufacturer and capacity.
  • amplification degree information table Has a stored amplification degree information table.
  • the amplification voltage generation unit acquires the amplification degree information identified by the manufacturer capacity identification information from the amplification degree information table, and is included in the acquired amplification degree information. Generating the amplified voltage based on the amplification degree and the AC voltage component extracted by the AC voltage component extraction unit, It is characterized by that.
  • the battery deterioration diagnosis device of the present invention is In response to the instruction for registering the amplification degree, the amplification degree registration for obtaining the amplification degree based on the alternating voltage component extracted by the alternating voltage component extraction unit and storing the obtained amplification degree in the amplification degree storage unit. It comprises a part.
  • the battery deterioration diagnosis device of the present invention is Amplification in which the amplification degree storage unit stores, for a plurality of secondary batteries, amplification degree information including secondary battery identification information for identifying each secondary battery and an amplification degree corresponding to each secondary battery.
  • Degree information table In response to the amplification degree registration instruction including the secondary battery identification information, the amplification degree registration unit obtains the amplification degree based on the AC voltage component extracted by the AC voltage component extraction unit, and identifies the secondary battery.
  • Amplification information including information and the obtained amplification is stored in the amplification information table,
  • the amplification voltage generation unit acquires the amplification degree information identified by the secondary battery identification information from the amplification degree information table, and the obtained amplification degree information Generating the amplified voltage based on the degree of amplification included in the AC voltage component extracted by the AC voltage component extraction unit, It is characterized by that.
  • the battery deterioration diagnosis device of the present invention is
  • the deterioration display unit includes a plurality of LEDs, and an LED light emission control unit that causes the plurality of LEDs to emit light according to the degree of deterioration of the secondary battery based on the amplified voltage generated by the amplified voltage generator. It is characterized by providing.
  • the charger of the present invention is The battery deterioration diagnosis device described above; A power source for passing the current between a positive electrode and a negative electrode of the secondary battery; It is characterized by providing.
  • the battery deterioration diagnosis method of the present invention includes: Voltage value storage that stores the voltage value of the alternating voltage component included in the voltage generated between the positive electrode and the negative electrode as an initial voltage value when a current containing the alternating current component flows between the positive electrode and the negative electrode of a normal secondary battery
  • Voltage value storage that stores the voltage value of the alternating voltage component included in the voltage generated between the positive electrode and the negative electrode as an initial voltage value when a current containing the alternating current component flows between the positive electrode and the negative electrode of a normal secondary battery
  • the battery deterioration diagnosis method of the present invention includes: An amplification degree storage unit that stores an amplification degree for generating an amplification voltage that generates a display indicating normality when the secondary battery is normal and generates a display indicating abnormality when the secondary battery is abnormal
  • a battery deterioration diagnosis method using a battery deterioration diagnosis device having An AC voltage component extraction step of flowing an AC current component between the positive electrode and the negative electrode of the secondary battery and extracting an AC voltage component included in a voltage generated between the positive electrode and the negative electrode;
  • the present invention it is possible to determine whether there is an abnormality in the secondary battery regardless of the manufacturer and capacity.
  • FIG. 1 It is a figure which shows an example of a structure of the battery deterioration diagnostic apparatus and charger which concern on the 1st Embodiment of this invention. It is a figure which shows an example of a structure of a voltage value information table. It is a figure which shows the structure of the battery deterioration diagnostic apparatus and charger which are the modification of the battery deterioration diagnostic apparatus of FIG. 1, and a charger. It is a figure which shows the example of the voltage value information table different from the voltage value information table of FIG. It is a figure which shows an example of the flow of a process in the 1st battery deterioration diagnostic method which concerns on the 1st Embodiment of this invention.
  • FIG. 6 It is a figure which shows an example of the structure of the battery deterioration diagnostic apparatus and charger which concern on the 2nd Embodiment of this invention. It is a figure which shows an example of a structure of an amplification degree information table. It is a figure which shows the structure of the battery deterioration diagnostic apparatus and charger which are the modification of the battery deterioration diagnostic apparatus of FIG. 6, and a charger. It is a figure which shows the example of the amplification information table different from the amplification information table of FIG.
  • FIG. 1 shows an example of the configuration of a battery deterioration diagnosis device 100A and a charger 1A according to the first embodiment of the present invention.
  • the charger 1A includes a power source 200 and a battery deterioration diagnosis device 100A.
  • the charger 1A charges a secondary battery 201 such as a lead storage battery or a lithium ion battery.
  • the rated voltage of the secondary battery 201 is, for example, 12V.
  • the power source 200 includes, for example, a bridge type full-wave rectifier circuit.
  • the power source 200 rectifies the single-phase AC voltage and outputs a pulsating voltage between the positive electrode and the negative electrode.
  • the voltage of the pulsating current the voltage of the positive electrode is 0 V or more with reference to the potential of the negative electrode.
  • the positive electrode and the negative electrode of the power supply 200 are connected to the power supply line L1 and the power supply line L2, respectively.
  • the potential of the power supply line L2 is referred to as a reference potential.
  • Secondary battery 201 has a positive electrode and a negative electrode connected to power supply line L1 and power supply line L2, respectively. The secondary battery 201 is charged while the instantaneous value of the pulsating voltage output from the power source 200 reaches a voltage at which the secondary battery 201 is charged.
  • the secondary battery 201 is used for a long time and deteriorates as charging and discharging are repeated, and the resistance value of the internal resistance between the positive electrode and the negative electrode gradually increases. For this reason, when a pulsating current including a direct current component and an alternating current component flows between the positive electrode and the negative electrode of the deteriorated secondary battery 201, it is included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201.
  • the amplitude of the AC voltage component increases as compared with the case where the secondary battery 201 is normal. As the secondary battery 201 deteriorates, the amplitude of the AC voltage component generated between the positive electrode and the negative electrode gradually increases and reaches, for example, about 20 mV.
  • the power source 200 is not limited to a pulsating current, and may be a pulsed current or a square wave (rectangular wave) current.
  • the pulsating current, the pulse current, and the square wave (rectangular wave) current are examples of currents including an alternating current component in the present invention.
  • the battery deterioration diagnosis device 100A includes an input unit 110, a voltage value detection unit 120, a voltage value storage unit 130, a deterioration determination unit 140, and a display unit 141.
  • the input unit 110 includes, for example, a keyboard, a touch panel, a switch, a dial, and the like.
  • the input unit 110 receives various operations by the user using the battery deterioration diagnosis device 100A, that is, the charger 1A.
  • the voltage value detection unit 120 extracts the AC voltage component. And the voltage value detection part 120 calculates
  • the voltage value detection unit 120 outputs the voltage value of the AC voltage component from the output terminal OUT.
  • the voltage value storage unit 130 is not deteriorated, that is, is generated between a positive electrode and a negative electrode when a pulsating current including a direct current component and an alternating current component flows between the positive electrode and the negative electrode of a normal secondary battery 201.
  • the voltage value of the AC voltage component included in the voltage is stored as the initial voltage value.
  • the voltage value of the AC voltage component is input to the input terminal IN of the deterioration determination unit 140.
  • the degradation determination unit 140 compares the initial voltage value stored in the voltage value storage unit 130 with the voltage value of the AC voltage component obtained by the voltage value detection unit 120 to determine whether the secondary battery 201 is abnormal. To do.
  • the degradation determination unit 140 has a voltage value of the AC voltage component obtained by the voltage value detection unit 120 smaller than a voltage value of a predetermined multiple (for example, twice) of the initial voltage value stored in the voltage value storage unit 130. Is determined to be normal (no deterioration), and when it is equal to or higher than a predetermined multiple of the voltage value, it is determined to be abnormal (with deterioration).
  • the deterioration determination unit 140 is normal when the voltage value of the AC voltage component obtained by the voltage value detection unit 120 is smaller than 20 mV ( It is determined that there is no deterioration, and if it is 20 mV or more, it is determined that there is an abnormality (with deterioration).
  • the display unit 141 includes, for example, a display and LEDs. The display unit 141 displays the presence / absence of abnormality of the secondary battery 201 determined by the deterioration determination unit 140.
  • the voltage value storage unit 130 can store the voltage value information table 131 shown in FIG.
  • the voltage value information table 131 stores voltage value information.
  • the voltage value information includes, for each manufacturer and capacity of the secondary battery, manufacturer capacity identification information for identifying each manufacturer and capacity, and an initial voltage value in the secondary battery of each manufacturer and capacity.
  • the initial voltage value is obtained based on, for example, the resistance value of the internal resistance announced by the manufacturer of the secondary battery 201 and the current value of the alternating current component included in the pulsating current output from the power supply 200.
  • the initial voltage value can be obtained by the voltage value detection unit 120 by, for example, flowing a pulsating current output from the power source 200 through a new sample of the secondary battery 201.
  • the voltage value information table 131 in FIG. 2 stores initial voltage values of secondary batteries having different capacities for the secondary batteries of manufacturer A and manufacturer B whose rated voltage is 12V.
  • voltage value information having a capacity and an initial voltage value of 10 Ah (ampere hour) and 2.5 mV, 40 Ah and 10 mV, and 80 Ah and 20 mV, respectively, is stored.
  • voltage value information having a capacity and an initial voltage value of 10 Ah and 4 mV, 40 Ah and 16 mV, and 80 Ah and 32 mV, respectively, is stored.
  • the user can input a selection instruction including the manufacturer capacity identification information by specifying the manufacturer and the capacity from the input unit 110.
  • the deterioration determination unit 140 acquires voltage value information identified by the manufacturer capacity identification information from the voltage value information table 131. Then, the deterioration determination unit 140 compares the initial voltage value included in the acquired voltage value information with the voltage value of the AC voltage component obtained by the voltage value detection unit 120 to determine whether there is an abnormality in the secondary battery. .
  • the display part 141 can be comprised by several LED (light emitting diode), for example.
  • the deterioration determination unit 140 determines the degree of deterioration of the secondary battery based on the initial voltage value stored in the voltage value storage unit 130 and the voltage value of the AC voltage component obtained by the voltage value detection unit 120. Judgment is performed, and a plurality of LEDs are caused to emit light according to the degree of deterioration. For example, when the display unit 141 includes five LEDs, the deterioration determination unit 140 is an initial stage in which the voltage value of the AC voltage component obtained by the voltage value detection unit 120 is stored in the voltage value storage unit 130. One LED is caused to emit light when the voltage value is not less than 1.25 times the voltage value.
  • the deterioration determining unit 140 is not less than 1.5 times and less than 1.75 times the initial voltage value.
  • the initial voltage value is 1.75 times or more and less than 2 times, and when the initial voltage value is 2 times or more, the LED emits 2, 3, 4, and 5 LEDs, respectively.
  • the deterioration determination unit 140 determines that the voltage value of the AC voltage component is 10 mV or more and less than 12.5 mV, 12.5 mV or more and 15 mV. When it is smaller, 15 mV or more and less than 17.5 mV, 17.5 mV or more and less than 20 mV, and 20 mV or more, one, two, three, four, and five LEDs, respectively. Make it emit light.
  • FIG. 3 shows configurations of a battery deterioration diagnosis device 100B and a charger 1B, which are modifications of the battery deterioration diagnosis device 100A and the charger 1A of FIG.
  • Battery deterioration diagnosis device 100B is different from battery deterioration diagnosis device 100A in FIG. 1 in that voltage value registration unit 132 is provided.
  • battery deterioration diagnosis device 100B and charger 1B have the same configuration as battery deterioration diagnosis device 100A and charger 1A.
  • the user can input an initial voltage value registration instruction from the input unit 110.
  • voltage value registration unit 132 causes voltage value storage unit 130 to store the voltage value of the AC voltage component obtained by voltage value detection unit 120 as an initial voltage value.
  • FIG. 4 shows an example of a voltage value information table 133 different from the voltage value information table 131 of FIG.
  • the voltage value information stored in the voltage value information table 133 in FIG. 4 includes, for a plurality of secondary batteries 201, secondary battery identification information for identifying each secondary battery 201 and initial voltage values in each secondary battery 201. Including.
  • the secondary battery identification information and the initial voltage value are 000001 and 6 mV, 000002 and 23 mV, 000003 and 12 mV, 000004 and 17 mV, and 000005, respectively.
  • voltage value information of 9 mV, 000006 and 30 mV are stored.
  • the voltage value storage unit 130 stores the voltage value information table 133 of FIG. 4, when the user inputs an instruction to register the initial voltage value, the user himself / herself specifies the secondary battery identification information, or the voltage The value registration unit 132 provides secondary battery identification information.
  • the voltage value detection unit 120 obtains the voltage value of the AC voltage component as the initial voltage value.
  • the voltage value registration unit 132 receives the voltage value information including the secondary battery identification information and the initial voltage value obtained by the voltage value detection unit 120.
  • the voltage value information table 133 is stored.
  • the user can input a selection instruction including secondary battery identification information from the input unit 110.
  • the deterioration determination unit 140 acquires voltage value information identified by the secondary battery identification information from the voltage value information table 133 in response to the selection instruction including the secondary battery identification information. Then, the degradation determination unit 140 compares the initial voltage value included in the acquired voltage value information with the voltage value of the AC voltage component obtained by the voltage value detection unit 120 to determine whether the secondary battery 201 is abnormal. To do.
  • FIG. 5 shows an example of a processing flow in the first battery deterioration diagnosis method according to the first embodiment of the present invention.
  • the first battery deterioration diagnosis method according to the first embodiment of the present invention uses the battery deterioration diagnosis apparatus 100A or the battery deterioration diagnosis apparatus 100B.
  • Battery deterioration diagnosis device 100 ⁇ / b> A and battery deterioration diagnosis device 100 ⁇ / b> B have voltage value storage unit 130.
  • the voltage value storage unit 130 includes an AC voltage included in a voltage generated between the positive electrode and the negative electrode when a pulsating current including a DC current component and an AC current component flows between the positive electrode and the negative electrode of a normal secondary battery 201.
  • the voltage value of the component is stored as the initial voltage value.
  • the power source 200 causes a pulsating current including a direct current component and an alternating current component to flow between the positive electrode and the negative electrode of the secondary battery 201.
  • the voltage value detection unit 120 extracts the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201, and obtains the voltage value of the AC voltage component (S11).
  • the deterioration determination unit 140 acquires the initial voltage value from the voltage value storage unit 130, compares the initial voltage value with the voltage value of the AC voltage component obtained in step S11, and determines whether there is an abnormality in the secondary battery. Is discriminated (S12).
  • the display unit 141 displays the presence / absence of abnormality of the secondary battery 201 determined in step S12 (S13).
  • the voltage value detection unit 120, the voltage value storage unit 130, the voltage value registration unit 132, and the deterioration determination unit 140 can be realized by digital processing except for a part thereof. When these are realized by digital processing, for example, an FPGA (Field-Programmable Gate Array), a DSP (Digital Signal Processor), a microprocessor, or the like can be used. In addition, the voltage value detection unit 120, the voltage value storage unit 130, the voltage value registration unit 132, and the deterioration determination unit 140 can be realized by an analog circuit.
  • FIG. 6 shows an example of the configuration of the battery deterioration diagnosis apparatus 101A and the charger 2A according to the second embodiment of the present invention.
  • the charger 2A includes a power source 200 and a battery deterioration diagnosis device 101A.
  • the power source 200 is the same as that included in the charger 1A according to the first embodiment, and the secondary battery 201 is also the same as that charged using the charger 1A.
  • the battery deterioration diagnosis device 101A includes an input unit 110, an AC voltage component extraction unit 150, an amplification degree storage unit 160, an amplification voltage generation unit 170, and a deterioration display unit 180.
  • the input unit 110 is the same as that included in the charger 1A.
  • the input unit 110 includes, for example, a keyboard, a touch panel, a switch, a dial, and the like.
  • the input unit 110 receives various operations by the user using the battery deterioration diagnosis device 101A, that is, the charger 2A.
  • the AC voltage component extraction unit 150 extracts the AC voltage component and outputs the AC voltage component from the output terminal OUT.
  • the amplification degree storage unit 160 generates an amplification voltage that generates a display indicating normality when the secondary battery 201 is normal (no deterioration) and generates a display indicating abnormality when the secondary battery 201 is abnormal (with deterioration).
  • the degree of amplification is stored.
  • the AC voltage component extracted by the AC voltage component extraction unit 150 is input to the input terminal IN of the amplified voltage generation unit 170.
  • the amplified voltage generator 170 amplifies the AC voltage component according to the amplification stored in the amplification storage 160 and generates an amplified voltage.
  • the amplified voltage generator 170 outputs the amplified voltage from the output terminal OUT.
  • the deterioration display unit 180 includes, for example, a display and LEDs.
  • the amplified voltage generated by the amplified voltage generator 170 is input to the input terminal IN of the deterioration display unit 180.
  • the deterioration display unit 180 displays whether or not the secondary battery 201 is abnormal based on
  • the effective value of the AC voltage component extracted by the AC voltage component extraction unit 150 is 10 mV or less, and the secondary battery 201 is significantly deteriorated.
  • the effective value of the AC voltage component extracted by the AC voltage component extraction unit 150 increases to 20 mV or more.
  • the deterioration display unit 180 has only one LED that emits light when a DC voltage of 2 V is applied.
  • the amplification degree storage unit 160 stores 100 times as the amplification degree.
  • the amplification voltage generation unit 170 generates a direct current amplification voltage of 1V.
  • the LED of the deterioration display unit 180 is turned off.
  • the amplified voltage generator 170 generates a DC amplified voltage of 2 V or higher.
  • the LED of the deterioration display unit 180 is lit.
  • the amplification degree storage unit 160 can store the amplification degree information table 161 shown in FIG.
  • the amplification degree information table 161 stores amplification degree information.
  • the amplification degree information includes, for each manufacturer and capacity of the secondary battery, manufacturer capacity identification information for identifying each manufacturer and capacity, and an amplification degree corresponding to the secondary battery of each manufacturer and capacity.
  • the amplification degree is determined based on, for example, the resistance value of the internal resistance announced by the manufacturer of the secondary battery 201 and the current value of the AC current component included in the pulsating current output from the power supply 200. An initial voltage value is calculated and obtained based on the initial voltage value.
  • the amplification degree can be obtained based on the AC voltage component extracted by the AC voltage component extraction unit 150 when, for example, the pulsating current output from the power source 200 is passed through a new sample of the secondary battery 201. .
  • the amplification degree information table 161 in FIG. 7 stores amplification degrees corresponding to the secondary batteries 201 having different capacities for the secondary batteries of the manufacturer A and the manufacturer B whose rated voltage is 12V.
  • the amplification degree information is stored with the capacity and amplification degree being 10Ah (ampere hour) and 400 times, 40Ah and 100 times, and 80Ah and 50 times, respectively.
  • the capacity and amplification degree being 10Ah (ampere hour) and 400 times, 40Ah and 100 times, and 80Ah and 50 times, respectively.
  • amplification information with a capacity and amplification factor of 10 Ah and 250 times, 40 Ah and 62.5 times, and 80 Ah and 31.25 times, respectively, is stored.
  • FIG. 1 amplification degree information table 161 in FIG. 7 stores amplification degrees corresponding to the secondary batteries 201 having different capacities for the secondary batteries of the manufacturer A and the manufacturer B whose rated voltage is 12V.
  • the amplification degree information is stored with the capacity and amplification degree
  • the initial voltage value of the secondary battery 201 having a capacity of 10 Ah manufactured by the manufacturer A is 2.5 mV.
  • the amplification degree is set to 400 times as shown in FIG.
  • the amplified voltage generator 170 generates an amplified voltage of 1 V when the secondary battery 201 is new.
  • the deterioration display unit 180 displays normal.
  • the amplification voltage generation unit 170 generates an amplification voltage of 2 V or more.
  • the deterioration display unit 180 displays an abnormality.
  • the user can input a selection instruction including the manufacturer capacity identification information by specifying the manufacturer and the capacity from the input unit 110.
  • the amplified voltage generation unit 170 acquires the amplification degree information identified by the manufacturer capacity identification information from the amplification degree information table 161. Then, the amplified voltage generation unit 170 amplifies the AC voltage component extracted by the AC voltage component extraction unit 150 according to the amplification level included in the acquired amplification level information, and generates an amplified voltage.
  • FIG. 8 shows a configuration of a battery deterioration diagnosis apparatus 101B and a charger 2B, which are modifications of the battery deterioration diagnosis apparatus 101A and charger 2A of FIG.
  • the battery deterioration diagnosis apparatus 101B is different from the battery deterioration diagnosis apparatus 101A of FIG. 6 in that the amplification degree registration unit 162 is included.
  • the battery deterioration diagnosis device 101B and the charger 2B have the same configuration as the battery deterioration diagnosis device 101A and the charger 2A.
  • the user can input an amplification degree registration instruction from the input unit 110.
  • amplification degree registration unit 162 obtains the amplification degree based on the AC voltage component extracted by AC voltage extraction unit 150. Then, the amplification degree registration unit 162 stores the obtained amplification degree in the amplification degree storage unit 160.
  • FIG. 9 shows an example of the amplification information table 163 different from the amplification information table 161 of FIG.
  • the amplification degree information stored in the amplification degree information table 163 in FIG. 9 includes the secondary battery identification information for identifying each secondary battery 201 and the amplification degree corresponding to each secondary battery 201 for a plurality of secondary batteries 201. including.
  • the secondary battery identification information and the amplification degree are 000001 and 166.7 times, 000002 and 46.5 times, and 000003 and 83.83, respectively, for the secondary battery having a rated voltage of 12V.
  • Amplification information of 3 times, 000004 and 58.8 times, 000005 and 111.1 times, and 000006 and 33.3 times are stored.
  • the amplification degree storage unit 160 stores the amplification degree information table 163 of FIG. 9, when the user inputs an amplification degree registration instruction, the user himself designates the secondary battery identification information, or the amplification degree Storage unit 160 provides secondary battery identification information.
  • the amplification degree registration unit 162 obtains the amplification degree based on the AC voltage component extracted by the AC voltage component extraction unit 150 in response to the amplification degree registration instruction including the secondary battery identification information. Then, the amplification degree registration unit 162 stores the amplification degree information including the secondary battery identification information and the obtained amplification degree in the amplification degree information table 163.
  • the user can input a selection instruction including secondary battery identification information from the input unit 110.
  • the amplification voltage generation unit 170 acquires the amplification degree information identified by the secondary battery identification information from the amplification degree information table 163. Then, the amplified voltage generation unit 170 amplifies the AC voltage component extracted by the AC voltage component extraction unit 150 according to the amplification level included in the acquired amplification level information, and generates an amplified voltage.
  • the AC voltage component extraction unit 150, the amplification degree storage unit 160, the amplification degree registration unit 162, the amplification voltage generation unit 170, and the deterioration display unit 180 can be realized by digital processing except for a part thereof. When these are realized by digital processing, for example, an FPGA (Field-Programmable Gate Array), a DSP (Digital Signal Processor), a microprocessor, or the like can be used.
  • the AC voltage component extraction unit 150, the amplification degree storage unit 160, the amplification degree registration unit 162, the amplification voltage generation unit 170, and the deterioration display unit 180 can be realized by analog circuits.
  • an example will be described in which the AC voltage component extraction unit 150, the amplification degree storage unit 160, the amplification voltage generation unit 170, and the deterioration display unit 180 included in the battery deterioration diagnosis apparatus 101A illustrated in FIG.
  • FIG. 10 shows an example in which the AC voltage component extraction unit 150, the amplification degree storage unit 160, and the amplification voltage generation unit 170 are realized by analog circuits.
  • FIG. 11 shows an example in which the deterioration display unit 180 is realized by an analog circuit.
  • the deterioration display unit 180 includes LEDs 1 to LED5 which are light emitting diodes, and an LED light emission control unit 181. LEDs 1 to 5 are connected in series. In this case, the anode of LED2 is connected to the cathode of LED1. The anode of LED 3 is connected to the cathode of LED 2. Thereafter, the LEDs 3 to 5 are connected in the same manner.
  • the amplitude of the AC component of the voltage generated between the positive electrode and the negative electrode when the secondary battery 201 is significantly deteriorated is, for example, about 20 mV.
  • the forward voltage drop of red, orange, yellow and green LEDs is about 2V.
  • an LED circuit composed of the LEDs 1 to LED5 with a voltage of 10 V or more. Must be applied. Therefore, the amplified voltage generator 170 needs to amplify the AC voltage component extracted by the AC voltage component extractor 150 by, for example, 500 times or more.
  • the AC voltage component extraction unit 150 includes a capacitor C1.
  • the amplification degree storage unit 160 includes a variable resistor VR1 and a variable resistor VR2.
  • the amplified voltage generator 170 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
  • the amplified voltage generation unit 170 amplifies and rectifies the AC voltage component extracted by the AC voltage component extraction unit 150, thereby displaying the presence or absence of abnormality of the secondary battery 201 and the degree of deterioration. Is generated.
  • the amplified voltage generator 170 outputs the amplified voltage from the output terminal OUT.
  • the amplified voltage generation unit 170 includes a transformer T1, an amplification unit 171, an inversion unit 172, and a double amplification unit 173.
  • Capacitor C1 included in AC voltage component extraction unit 150 has one end connected to power supply line L1 and the other end connected to one end of the primary winding of transformer T1. The other end of the transformer T1 is connected to the power supply line L2.
  • Capacitor C1 extracts an AC voltage component included in a voltage generated between the positive electrode and the negative electrode of secondary battery 201 (between power supply line L1 and power supply line L2).
  • the transformer T1 amplifies the AC voltage component extracted by the capacitor C1 by about 10 times, for example, and generates a first intermediate AC voltage.
  • the amplification unit 171 includes a resistor R1, a resistor R2, a capacitor C2, an operational amplifier OP1, an amplification degree storage unit 160, and a capacitor C3.
  • the resistor R1 has one end connected to the power supply line L1 and the other end connected to one end of the resistor R2.
  • the other end of the resistor R2 is connected to the power supply line L2.
  • the resistor R1 and the resistor R2 divide the voltage between the power supply line L1 and the power supply line L2, and generate an intermediate voltage, preferably about half of the voltage between the power supply line L1 and the power supply line L2, at their connection portion.
  • One end of the capacitor C2 is connected to a connection portion between the resistor R1 and the resistor R2, and the other end is connected to the power supply line L2.
  • the capacitor C2 absorbs ripples and noise from the voltage at the connection portion between the resistor R1 and the resistor R2.
  • one end of the secondary winding is connected to the non-inverting input end of the operational amplifier OP1, and the other end of the secondary winding is connected to a connection portion between the resistor R1 and the resistor R2.
  • a voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is generated at one end of the secondary winding of the transformer T1.
  • the positive power supply terminal of the operational amplifier OP1 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2.
  • the output terminal of the operational amplifier OP1 is connected to one end of the variable resistor VR2 included in the amplification degree storage unit 160.
  • the other end of the variable resistor VR2 is connected to the inverting input end of the operational amplifier OP1 and one end of the variable resistor VR1 included in the amplification degree storage unit 160.
  • the other end of the variable resistor VR1 is connected to one end of the capacitor C3.
  • the other end of the capacitor C3 is connected to the power supply line L2.
  • the operational amplifier OP1 operates as a non-inverting amplifier having an amplification degree determined by the resistance values of the variable resistor VR1 and the variable resistor VR2.
  • An addition voltage obtained by adding the first intermediate AC voltage and the intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP1.
  • the operational amplifier OP1 amplifies the first intermediate AC voltage in the positive direction.
  • the operational amplifier OP1 when the addition voltage is smaller than the intermediate voltage, the operational amplifier OP1 amplifies the first intermediate AC voltage in the negative direction. In this manner, the amplifying unit 171 generates the second intermediate AC voltage by amplifying the first intermediate AC voltage with the amplification degree stored in the variable resistance VR1 and the variable resistance VR2 of the amplification degree storage unit 160. . For example, the amplifying unit 171 amplifies the first intermediate AC voltage about 25 times to generate the second intermediate AC voltage.
  • the operational amplifier OP1 is operated as a non-inverting amplifier. However, the operational amplifier OP1 may be operated as an inverting amplifier.
  • the inverting unit 172 includes a capacitor C4, a resistor R3, a resistor R4, and an operational amplifier OP2.
  • One end of the capacitor C4 is connected to the output end of the operational amplifier OP1, and the other end is connected to one end of the resistor R3.
  • the other end of the resistor R3 is connected to the inverting input end of the operational amplifier OP2 and one end of the resistor R4.
  • the other end of the resistor R4 is connected to the output end of the operational amplifier OP2.
  • the resistance values of the resistors R3 and R4 are the same.
  • the positive power supply terminal of the operational amplifier OP2 is connected to the power supply line L1, and the negative power supply terminal is connected to the power supply line L2.
  • the inverting input terminal of the operational amplifier OP2 is connected to a connection portion between the other end of the resistor R3 and one end of the resistor R4, and an intermediate voltage is input to the non-inverting input terminal of the operational amplifier OP2.
  • the operational amplifier OP2 operates as an inverting amplifier having an amplification factor of 1.
  • the operational amplifier OP2 generates an inverted AC voltage in which the positive and negative polarities of the second intermediate AC voltage generated by the amplifying unit 171 are inverted.
  • the double amplification unit 173 includes a capacitor C5, a capacitor C6, a diode D1, a diode D2, a diode D3, and a capacitor C7.
  • the diode D3 has an anode connected to the power supply line L2 and a cathode connected to the anode of the diode D2.
  • the cathode of the diode D2 is connected to the anode of the diode D1.
  • the cathode of the diode D1 is connected to the output terminal OUT.
  • One end of the capacitor C5 is connected to the output end of the operational amplifier OP1, and the other end is connected to a connection portion between the anode of the diode D1 and the cathode of the diode D2.
  • the double amplification unit 173 operates as a double voltage amplifier.
  • the double amplification unit 173 amplifies and rectifies the second intermediate AC voltage by a factor of two based on the second intermediate AC voltage generated by the amplification unit 171 and the inverted AC voltage generated by the inverter 172.
  • the generated DC voltage is output from the output terminal OUT.
  • the DC voltage output from the output terminal OUT is an amplified voltage for displaying the presence / absence of an abnormality of the secondary battery 201 and the degree of deterioration.
  • the amplified voltage generation unit 170 converts the AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 into, for example, 10 by the amplification unit 171, the inversion unit 172, and the double amplification unit 173, respectively. It amplifies about 500 times in total, about 25 times and 2 times, and generates an amplified voltage, which is output from the output terminal OUT.
  • FIG. 11 shows an example of the configuration of the deterioration display unit 180.
  • the deterioration display unit 180 includes an LED light emission control unit 181.
  • the LED light emission control unit 181 is connected to the power supply line L1 and the power supply line L2, and operates with a voltage supplied from the power supply 200.
  • the LED light emission control unit 181 includes an NPN transistor Q1, a resistor R5, N-channel enhancement type field effect transistors FET1 to FET5, diodes D4 to D8, resistors R6 to R10, an NPN transistor Q2, a resistor R11, and an NPN. It has a transistor Q3 and a resistor R12.
  • the amplified voltage output from the output terminal OUT of the amplified voltage generator 170 is input to the input terminal IN.
  • the transistor Q1 has a base B connected to the input terminal IN, a collector C connected to the power supply line L1, and an emitter E connected to the anode of the LED1.
  • the resistor R5 has one end connected to the power supply line L1 and the other end connected to the anodes of the diodes D4 to D8 and the collector C of the transistor Q2.
  • the current path (the path between the drain D and the source S) of the FET 1 is connected in parallel with the LED 1. That is, the drain D and the source S of the FET 1 are connected to the anode and the cathode of the LED 1, respectively.
  • the gate G of the FET 1 is connected to one end of the resistor R6 and the cathode of the diode D4.
  • the other end of the resistor R6 is connected to the source S of the FET1.
  • LED1 is turned on when the current path of FET1 is non-conductive, and LED1 is turned off when the current path of FET1 is conductive.
  • connection of LED2, FET2, diode D5, and resistor R7 is the same as that of LED1, FET1, diode D4, and resistor R6. Also, the connection between LED3, FET3, diode D6, and resistor R8, the connection between LED4, FET4, diode D7, and resistor R9, and the connection between LED5, FET5, diode D8, and resistor R10 are the same as LED1, FET1, and diode D4. The same as the resistor R6.
  • the transistor Q2 has a base B connected to the cathode of the LED 5, a collector C connected to the other end of the resistor R5, and an emitter E connected to one end of the resistor R11. The other end of the resistor R11 is connected to the power supply line L2.
  • the transistor Q3 has a base B connected to the cathode of the LED 5, the base B of the transistor Q2, and its collector C.
  • the collector C is connected to the cathode of the LED 5, its own base B, and the base B of the transistor Q2. Is connected to one end of the resistor R12.
  • the other end of the resistor R12 is connected to the power supply line L2. Note that the resistance value of the resistor R11 is about ten times the resistance value of the resistor R12.
  • the light emission control of the LEDs 1 to 5 in the LED light emission control unit 181 will be described in detail.
  • the voltage applied to the series connection circuit of the LEDs 1 to LED5 is the highest (hereinafter, this voltage is referred to as the highest voltage).
  • the base B of the transistor Q2 is forward-biased by the potential generated at the collector C of the transistor Q3 by the path between the collector C and the emitter E of the transistor Q1 and the current flowing through the LEDs 1 to LED5, and between the collector C and the emitter E of the transistor Q2 becomes conductive.
  • the potential of the collector C of the transistor Q2 is the same level as the reference potential (the potential of the power supply line L2).
  • the collector C and the emitter E of the transistor Q2 do not have to be in a completely conductive state (semi-conductive or the like).
  • the potential of the gate G of the FET1 to FET5 may be any potential that does not cause the current paths to conduct.
  • the potential of the collector C of the transistor Q2 is slightly higher than the reference potential.
  • “potential of the same level as the reference potential” and “potential slightly higher than the reference potential” are collectively referred to as “equivalent potential”.
  • the anodes of the diodes D4 to D8 are also at the same potential as the reference potential, no forward bias potential is applied to the gates G of the FET1 to FET5, the current paths of the FET1 to FET5 become non-conductive, and the LEDs 1 to LED5 All emit light.
  • the potential of the collector C of the transistor Q2 rises, forward biases the gate G of the FET 5, the current path of the FET 5 becomes conductive, a current flows between the collector C and the emitter E of the transistor Q3, and the collector C of the transistor Q3 Although the potential recovers a little, the base B of the transistor Q2 is not forward biased, and the collector potential of the transistor Q2 rises.
  • the gate G of only the FET 5 is forward-biased, and the FET 5 becomes conductive, and a voltage lower than the forward voltage drop is applied to both ends of the LED 5 to become non-conductive and stop light emission.
  • the potentials of the gates G of the FET1 to FET5 rise as the same potential with reference to the reference potential, but the current paths of the FET1 to FET4 are not conducted, and the LEDs 1 to LED4 continue to emit light.
  • the reason why only the FET 5 is conductive is that the potential of the source S of the FET 5 is the potential of the collector C of the transistor Q3 and is low.
  • the potential of the source S of the FET 4 is the potential of the drain D of the FET 5 and is slightly higher than the potential of the source S of the FET 5. For this reason, the potential of the gate G with respect to the source S of the FET 4 is lower than that of the FET 5, and the FET 4 does not conduct even if the FET 5 conducts. Accordingly, the LED 4 emits light.
  • FET4 Since FET4 is not conducting, the potential of the source S of FET3, FET2, and FET1 is the cathode potential of LED3, LED2, and LED1, respectively, the potential of the source S is high, and the potentials of the gates G of FET3, FET2, and FET1 are also in order. Not biased.
  • the current paths of FET3, FET2, and FET1 are also non-conductive, and LED3, LED2, and LED1 emit light.
  • FET5 does not become a complete conduction state but retains a certain resistance value. This is because a negative feedback circuit is formed by the collector C of the transistor Q2, the gate G of the FET 5, the source S of the FET 5, and the base B of the transistor Q2, and the potential of the collector C (base B) of the transistor Q3 is kept constant. This is because the conduction resistance value between the drain D and the source S of the FET 5 is balanced at a certain value.
  • the FET 5 forms a source follower circuit with the transistor Q3 and the resistor R12 as loads.
  • This negative feedback circuit has an effect of making the potential of the collector C (base B) of the transistor Q3 constant.
  • the resistance value between the collector C and the emitter E of the transistor Q2 is also balanced at a constant value. Everything is balanced with this negative feedback circuit.
  • the voltage across the resistor R12 is constant. Therefore, the transistor Q3 may not be provided and one end of the resistor R12 may be directly connected to the source S of the FET 5.
  • the FET 5 When the FET 5 is not fully conductive, the FET 5 replaces the current path of the LED 5, the current flows as usual, the LED 5 stops emitting light, and the other light emitting diodes (LED4 to LED1) maintain the light emission.
  • the voltage drop in the current path of the FET 5 due to the conduction of the FET 5 is smaller than the forward voltage drop of the light emitting diode. In this state, the LED 5 does not emit light.
  • the potential of the source S of the FET 4 is increased by the voltage drop between the drain D and the source S of the FET 5. For this reason, the potential between the gate G and the source S of the FET 4 is lower than the conduction potential, and the FET 4 does not conduct. If FET4 does not conduct, FET3, FET2, and FET1 do not conduct.
  • LED3, LED2, and LED1 stop emitting light in order. That is, when the voltage applied to the series connection circuit of LED1 to LED5 is decreased by the forward voltage drop of the light emitting diode, the light emission is stopped in the order of LED5 ⁇ LED4 ⁇ LED3 ⁇ LED2 ⁇ LED1 and the forward voltage drop of the light emitting diode is decreased. If it rises, it will light-emit in order of LED1->LED2->LED3->LED4-> LED5.
  • FIG. 12 shows an example of the flow of processing in the second battery deterioration diagnosis method according to the second embodiment of the present invention.
  • the second battery deterioration diagnosis method according to the second embodiment of the present invention uses the battery deterioration diagnosis apparatus 101A or the battery deterioration diagnosis apparatus 101B.
  • the battery deterioration diagnosis device 101A and the battery deterioration diagnosis device 101B have an amplification degree storage unit 160.
  • the amplification degree storage unit 160 generates a display that indicates normality when the secondary battery 201 is normal, and an amplification for generating an amplification voltage that generates a display that indicates abnormality when the secondary battery 201 is abnormal.
  • the power source 200 causes a pulsating current including a direct current component and an alternating current component to flow between the positive electrode and the negative electrode of the secondary battery 201.
  • the AC voltage component extraction unit 150 extracts an AC voltage component included in the voltage generated between the positive electrode and the negative electrode of the secondary battery 201 (S21).
  • the amplification voltage generation unit 170 acquires the amplification degree from the amplification degree storage unit 160 and amplifies the AC voltage component extracted in step S21 according to the amplification degree to generate an amplification voltage (S22).
  • the deterioration display unit 180 displays the presence / absence of abnormality of the secondary battery 201 based on the amplified voltage generated in step S22 (S23).
  • the display unit 141 or the deterioration display unit 180 includes one or five LEDs.
  • the display unit 141 or the deterioration display unit 180 includes two to four LEDs or five LEDs. Even if it is a case where it contains above, this invention is applicable.
  • the rated voltage of the secondary battery 201 is 12 V has been described.
  • the present invention is applied even if the rated voltage of the secondary battery 201 is other voltage, such as 24 V or 380 V. Of course you can.
  • the present invention it is possible to determine whether there is an abnormality in the secondary battery regardless of the manufacturer and capacity. Further, according to the present invention, when the secondary battery is abnormal, it is possible to visually determine the degree of deterioration based on the same standard regardless of the manufacturer and capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

メーカや容量に関わらず、二次電池の異常の有無を判別する。 電源200は、二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流を流す。このとき、電圧値検出部120は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する。そして、電圧値検出部120は、その交流電圧成分の電圧値を求める。電圧値記憶部130は、二次電池201が正常であるときの交流電圧成分の電圧値である初期電圧値を記憶している。劣化判別部140は、電圧値記憶部130に記憶されている初期電圧値と電圧値検出部120によって求められた交流電圧成分の電圧値とを比較して二次電池の異常の有無を判別する。表示部141は、二次電池201の異常の有無を表示する。

Description

電池劣化診断装置、充電器および電池劣化診断方法
 本発明は、二次電池の劣化を診断する電池劣化診断装置、充電器および電池劣化診断方法に関する。
 特許文献1は、二次電池の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流を流し、正極と負極の間に生じる電圧に含まれる交流電圧成分の大きさに基づいて、その二次電池が異常であるか否かを判別する電池良否判別装置を開示する。
 また、特許文献2は、直列に接続された複数の発光ダイオード(LED:Light Emitting Diode)からなるLED回路の両端に電圧を印加し、その電圧に応じた個数だけLEDを発光させる発光制御回路を開示する。
特開2001-126774号公報 特開2013-179279号公報
 劣化していない新品の二次電池であっても、二次電池のメーカおよび容量が異なると、二次電池の正極と負極の間の内部抵抗の抵抗値が異なる場合がある。この場合、二次電池のメーカおよび容量が異なれば、脈流電流を流したときに正極と負極の間に生じる電圧に含まれる交流電圧成分の大きさは異なるものとなる。
 すなわち、メーカおよび容量によっては、劣化していない新品の二次電池であっても内部抵抗が大きくて、脈流電流を流したときに正極と負極の間に生じる電圧に含まれる交流電圧成分が大きいものがある。このような二次電池では、特許文献1に記載の電池良否判別装置を用いると、劣化していない正常なものを誤って異常と判別するおそれがある。また、逆に、特許文献1に記載の電池良否判別装置は、他の二次電池に比べて内部抵抗が小さい二次電池を、劣化しているにもかかわらず正常と判別するおそれがある。
 本発明の目的は、メーカや容量に関わらず、二次電池の異常の有無を判別することができる電池劣化診断装置、充電器および電池劣化診断方法を提供することである。
 上記目的を達成するために、本発明の電池劣化診断装置は、
 二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分の電圧値を求める電圧値検出部と、
 二次電池が正常であるときの交流電圧成分の電圧値である初期電圧値を記憶する電圧値記憶部と、
 前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する劣化判別部と、
 を備えることを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 前記電圧値記憶部が、製造メーカおよび容量毎に、当該各製造メーカおよび容量を識別するメーカ容量識別情報と当該各製造メーカおよび容量の二次電池における初期電圧値とを含む電圧値情報を記憶している電圧値情報テーブルを有し、
 前記劣化判別部が、メーカ容量識別情報を含む選択指示に応答して、当該メーカ容量識別情報によって識別される電圧値情報を前記電圧値情報テーブルから取得し、当該取得した電圧値情報に含まれる初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する、
 ことを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 初期電圧値の登録指示に応答して、前記電圧値検出部によって求められた交流電圧成分の電圧値を初期電圧値として前記電圧値記憶部に記憶させる電圧値登録部を備えることを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 前記電圧値記憶部が、複数の二次電池について、当該各二次電池を識別する二次電池識別情報と当該各二次電池における初期電圧値とを含む電圧値情報を記憶する電圧値情報テーブルを有し、
 前記電圧値登録部が、二次電池識別情報を含む初期電圧値の登録指示に応答して、当該二次電池識別情報と前記電圧値検出部によって求められた交流電圧成分の電圧値である初期電圧値とを含む電圧値情報を前記電圧値情報テーブルに記憶させ、
 前記劣化判別部が、二次電池識別情報を含む選択指示に応答して、当該二次電池識別情報によって識別される電圧値情報を前記電圧値情報テーブルから取得し、当該取得した電圧値情報に含まれる初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する、
 ことを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 複数のLEDを備え、
 前記劣化判別部が、前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の劣化の程度を判定し、前記複数のLEDを当該劣化の程度に応じた個数だけ発光させる、
 ことを特徴とする。
 また、本発明の電池劣化診断装置は、
 二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する交流電圧成分抽出部と、
 前記二次電池が正常である場合に正常を示す表示を生じさせ、前記二次電池が異常である場合に異常を示す表示を生じさせる増幅電圧を生成するための増幅度を記憶する増幅度記憶部と、
 前記増幅度記憶部によって記憶されている増幅度に応じて前記交流電圧成分抽出部によって抽出された交流電圧成分を増幅して増幅電圧を生成する増幅電圧生成部と、
 前記増幅電圧生成部で生成された増幅電圧に基づいて前記二次電池の異常の有無を表示する劣化表示部と、
 を備えることを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 前記増幅度記憶部が、製造メーカおよび容量毎に、当該各製造メーカおよび容量を識別するメーカ容量識別情報と当該各製造メーカおよび容量の二次電池に対応する増幅度とを含む増幅度情報を記憶している増幅度情報テーブルを有し、
 前記増幅電圧生成部が、メーカ容量識別情報を含む選択指示に応答して、当該メーカ容量識別情報によって識別される増幅度情報を前記増幅度情報テーブルから取得し、当該取得した増幅度情報に含まれる増幅度と前記交流電圧成分抽出部によって抽出された交流電圧成分とに基づいて前記増幅電圧を生成する、
 ことを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 増幅度の登録指示に応答して、前記交流電圧成分抽出部によって抽出された交流電圧成分に基づいて前記増幅度を求めて当該求められた増幅度を前記増幅度記憶部に記憶させる増幅度登録部を備えることを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 前記増幅度記憶部が、複数の二次電池について、当該各二次電池を識別する二次電池識別情報と当該各二次電池に対応する増幅度とを含む増幅度情報を記憶している増幅度情報テーブルを有し、
 前記増幅度登録部が、二次電池識別情報を含む増幅度の登録指示に応答して、前記交流電圧成分抽出部で抽出された交流電圧成分に基づいて増幅度を求め、当該二次電池識別情報と当該求められた増幅度とを含む増幅度情報を前記増幅度情報テーブルに記憶させ、
 前記増幅電圧生成部が、二次電池識別情報を含む選択指示に応答して、当該二次電池識別情報によって識別される増幅度情報を前記増幅度情報テーブルから取得し、当該取得した増幅度情報に含まれる増幅度と前記交流電圧成分抽出部によって抽出された交流電圧成分とに基づいて前記増幅電圧を生成する、
 ことを特徴とする。
 好ましくは、本発明の電池劣化診断装置は、
 前記劣化表示部が、複数のLEDと、前記増幅電圧生成部で生成された増幅電圧に基づいて当該複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部とを備えることを特徴とする。
 また、本発明の充電器は、
 上述した電池劣化診断装置と、
 前記二次電池の正極と負極の間に前記電流を流す電源と、
 を備えることを特徴とする。
 また、本発明の電池劣化診断方法は、
 正常な二次電池の正極と負極の間に交流電流成分を含む電流が流れるときに当該正極と負極の間に生じる電圧に含まれる交流電圧成分の電圧値を初期電圧値として記憶する電圧値記憶部を有する電池劣化診断装置を用いる電池劣化診断方法であって、
 二次電池の正極と負極の間に交流電流成分を含む電流を流し、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分の電圧値を求める電圧値検出ステップと、
 前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出ステップで求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する劣化判別ステップと、
 を備えることを特徴とする。
 また、本発明の電池劣化診断方法は、
 二次電池が正常である場合に正常を示す表示を生じさせ、当該二次電池が異常である場合に異常を示す表示を生じさせる増幅電圧を生成するための増幅度を記憶する増幅度記憶部を有する電池劣化診断装置を用いる電池劣化診断方法であって、
 二次電池の正極と負極の間に交流電流成分を含む電流を流し、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する交流電圧成分抽出ステップと、
 前記増幅度記憶部によって記憶されている増幅度に応じて前記交流電圧成分抽出ステップで抽出された交流電圧成分を増幅して増幅電圧を生成する増幅電圧生成ステップと、
 前記増幅電圧生成ステップで生成された増幅電圧に基づいて前記二次電池の異常の有無を表示する劣化表示ステップと、
 を備えることを特徴とする。
 本発明によれば、メーカや容量に関わらず、二次電池の異常の有無を判別することができる。
本発明の第1の実施形態に係る電池劣化診断装置および充電器の構成の一例を示す図である。 電圧値情報テーブルの構成の一例を示す図である。 図1の電池劣化診断装置および充電器の変形例である電池劣化診断装置および充電器の構成を示す図である。 図2の電圧値情報テーブルとは異なる電圧値情報テーブルの例を示す図である。 本発明の第1の実施形態に係る第1の電池劣化診断方法における処理の流れの一例を示す図である。 本発明の第2の実施形態に係る電池劣化診断装置および充電器の構成の一例を示す図である。 増幅度情報テーブルの構成の一例を示す図である。 図6の電池劣化診断装置および充電器の変形例である電池劣化診断装置および充電器の構成を示す図である。 図7の増幅度情報テーブルとは異なる増幅度情報テーブルの例を示す図である。 本発明の第2の実施形態に係る電池劣化診断装置に含まれる交流電圧成分抽出部と増幅度記憶部と増幅電圧生成部とをアナログ回路で実現する一例を示す図である。 本発明の第2の実施形態に係る電池劣化診断装置に含まれる劣化表示部をアナログ回路で実現する一例を示す図である。 本発明の第2の実施形態に係る第2の電池劣化診断方法における処理の流れの一例を示す図である。
 以下、本発明の実施形態に係る電池劣化診断装置、充電器および電池劣化診断方法について図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
 図1は、本発明の第1の実施形態に係る電池劣化診断装置100Aおよび充電器1Aの構成の一例を示す。
 充電器1Aは、電源200と電池劣化診断装置100Aとを有する。充電器1Aは、鉛蓄電池やリチウムイオン電池等の二次電池201を充電する。二次電池201の定格電圧は、例えば12Vである。
 電源200は、例えばブッリジ型全波整流回路を含む。電源200は、単相交流電圧を整流し、正極と負極の間に脈流の電圧を出力する。脈流の電圧は、負極の電位を基準として、正極の電圧が0V以上である。電源200の正極と負極は、それぞれ電源ラインL1と電源ラインL2に接続される。以下、電源ラインL2の電位を基準電位という。
 二次電池201は、その正極と負極がそれぞれ電源ラインL1と電源ラインL2に接続される。電源200の出力する脈流の電圧の瞬時値が、二次電池201が充電される程度の電圧に達している間に、二次電池201は充電される。
 二次電池201は、長時間使用され、充放電を繰り返すに連れて劣化し、正極と負極の間の内部抵抗の抵抗値が徐々に増加する。このため、劣化した二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、その二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分の振幅は、二次電池201が正常である場合に比べて増大する。二次電池201が劣化するに連れてその正極と負極の間に発生する交流電圧成分の振幅は、徐々に増加し、例えば20mV程度に達する。
 なお、電源200は、脈流電流に限らず、パルス電流や方形波(矩形波)電流を流すものであってもよい。脈流電流、パルス電流、および方形波(矩形波)電流は、本発明における交流電流成分を含む電流の例である。
 電池劣化診断装置100Aは、入力部110と、電圧値検出部120と、電圧値記憶部130と、劣化判別部140と、表示部141とを有する。
 入力部110は、例えば、キーボード、タッチパネル、スイッチ、ダイヤル等を有する。入力部110は、電池劣化診断装置100A、すなわち充電器1Aを使用するユーザによる各種の操作を受け付ける。
 電源200が電源ラインL1と電源ラインL2(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる電圧には交流電圧成分が含まれる。電圧値検出部120はその交流電圧成分を抽出する。そして、電圧値検出部120は、交流電圧成分の電圧値を求める。電圧値は、最大値であってもよいし、実効値であってもよい。電圧値検出部120は、出力端子OUTから交流電圧成分の電圧値を出力する。
 電圧値記憶部130は、劣化していない、すなわち正常な二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるとき、正極と負極の間に生じる電圧に含まれる交流電圧成分の電圧値を初期電圧値として記憶している。
 劣化判別部140の入力端子INには交流電圧成分の電圧値が入力される。劣化判別部140は、電圧値記憶部130に記憶されている初期電圧値と電圧値検出部120によって求められた交流電圧成分の電圧値とを比較して二次電池201の異常の有無を判別する。劣化判別部140は、例えば、電圧値検出部120によって求められた交流電圧成分の電圧値が電圧値記憶部130に記憶されている初期電圧値の所定倍数(例えば2倍)の電圧値より小さい場合に正常(劣化なし)と判別し、その所定倍数の電圧値以上である場合に異常(劣化あり)と判別する。例えば、電圧値記憶部130に記憶されている初期電圧値が10mVであるとき、劣化判別部140は、電圧値検出部120によって求められた交流電圧成分の電圧値が20mVより小さい場合に正常(劣化なし)と判別し、20mV以上である場合に異常(劣化あり)と判別する。
 表示部141は、例えば、ディスプレイやLED等を有する。表示部141は、劣化判別部140によって判別された二次電池201の異常の有無を表示する。
 電圧値記憶部130は、図2に示す電圧値情報テーブル131を記憶することができる。電圧値情報テーブル131は、電圧値情報を格納する。電圧値情報は、二次電池の製造メーカおよび容量毎に、各製造メーカおよび容量を識別するメーカ容量識別情報と各製造メーカおよび容量の二次電池における初期電圧値とを含む。初期電圧値は、例えば、二次電池201の製造メーカが公表している内部抵抗の抵抗値と、電源200が出力する脈流電流に含まれる交流電流成分の電流値とに基づいて求められる。または、初期電圧値は、例えば、電源200が出力する脈流電流を二次電池201の新品のサンプルに流して電圧値検出部120で求めることができる。
 図2の電圧値情報テーブル131には、定格電圧が12Vである製造メーカA社と製造メーカB社の二次電池について、異なる容量の二次電池における初期電圧値が格納されている。製造メーカA社の二次電池については、容量と初期電圧値がそれぞれ10Ah(アンペア時)と2.5mV、40Ahと10mV、80Ahと20mVである電圧値情報が格納されている。製造メーカB社の二次電池については、容量と初期電圧値がそれぞれ10Ahと4mV、40Ahと16mV、80Ahと32mVである電圧値情報が格納されている。
 電圧値記憶部130が電圧値情報テーブル131を格納している場合、ユーザは入力部110から製造メーカと容量を指定してメーカ容量識別情報を含む選択指示を入力することができる。
 劣化判別部140は、その選択指示に応答して、メーカ容量識別情報によって識別される電圧値情報を電圧値情報テーブル131から取得する。そして、劣化判別部140は、取得した電圧値情報に含まれる初期電圧値と電圧値検出部120によって求められた交流電圧成分の電圧値とを比較して二次電池の異常の有無を判別する。
 また、表示部141は、例えば、複数のLED(発光ダイオード)で構成することができる。
 この場合、劣化判別部140は、電圧値記憶部130に記憶されている初期電圧値と電圧値検出部120によって求められた交流電圧成分の電圧値とに基づいて二次電池の劣化の程度を判定し、複数のLEDを劣化の程度に応じた個数だけ発光させる。
 例えば、表示部141が5個のLEDで構成されている場合、劣化判別部140は、電圧値検出部120によって求められた交流電圧成分の電圧値が電圧値記憶部130に記憶されている初期電圧値以上、かつその1.25倍より小さいときにLEDを1個発光させせる。そして、劣化判別部140は、交流電圧成分の電圧値が初期電圧値の1.25倍以上かつ1.5倍より小さいとき、初期電圧値の1.5倍以上かつ1.75倍より小さいとき、初期電圧値の1.75倍以上かつ2倍より小さいとき、および初期電圧値の2倍以上であるときに、それぞれLEDを2個、3個、4個、および5個発光させる。
 例えば、電圧値記憶部130に記憶されている初期電圧値が10mVであるとき、劣化判別部140は、交流電圧成分の電圧値が10mV以上かつ12.5mVより小さいとき、12.5mV以上かつ15mVより小さいとき、15mV以上かつ17.5mVより小さいとき、17.5mV以上かつ20mVより小さいとき、および20mV以上であるときに、それぞれLEDを1個、2個、3個、4個、および5個発光させる。
 図3は、図1の電池劣化診断装置100Aおよび充電器1Aの変形例である電池劣化診断装置100Bおよび充電器1Bの構成を示す。
 電池劣化診断装置100Bは、電圧値登録部132を有する点が図1の電池劣化診断装置100Aと異なる。それ以外、電池劣化診断装置100Bおよび充電器1Bは電池劣化診断装置100Aおよび充電器1Aと同一の構成である。
 ユーザは入力部110から初期電圧値の登録指示を入力することができる。電圧値登録部132は、その登録指示に応答して、電圧値検出部120によって求められた交流電圧成分の電圧値を初期電圧値として電圧値記憶部130に記憶させる。
 図4は、図2の電圧値情報テーブル131とは異なる電圧値情報テーブル133の例を示す。
 図4の電圧値情報テーブル133に格納される電圧値情報は、複数の二次電池201について、各二次電池201を識別する二次電池識別情報と各二次電池201における初期電圧値とを含む。図4の電圧値情報テーブル133には、定格電圧が12Vである二次電池について、二次電池識別情報と初期電圧値がそれぞれ000001と6mV、000002と23mV、000003と12mV、000004と17mV、000005と9mV、000006と30mVである電圧値情報が格納されている。
 電圧値記憶部130が図4の電圧値情報テーブル133を格納している場合、ユーザが初期電圧値の登録指示を入力するときにユーザ自身が二次電池識別情報を指定するか、または、電圧値登録部132が二次電池識別情報を付与する。
 電圧値検出部120は、二次電池識別情報を含む初期電圧値の登録指示に応答して、交流電圧成分の電圧値を初期電圧値として求める。電圧値登録部132は、二次電池識別情報を含む初期電圧値の登録指示に応答して、二次電池識別情報と電圧値検出部120によって求められた初期電圧値とを含む電圧値情報を電圧値情報テーブル133に記憶させる。
 ユーザは入力部110から二次電池識別情報を含む選択指示を入力することができる。
 劣化判別部140は、二次電池識別情報を含む選択指示に応答して、二次電池識別情報によって識別される電圧値情報を電圧値情報テーブル133から取得する。そして、劣化判別部140は、取得した電圧値情報に含まれる初期電圧値と電圧値検出部120によって求められた交流電圧成分の電圧値とを比較して二次電池201の異常の有無を判別する。
 図5は、本発明の第1の実施形態に係る第1の電池劣化診断方法における処理の流れの一例を示す。
 本発明の第1の実施形態に係る第1の電池劣化診断方法は、電池劣化診断装置100Aまたは電池劣化診断装置100Bを用いる。電池劣化診断装置100Aと電池劣化診断装置100Bは、電圧値記憶部130を有する。電圧値記憶部130は、正常な二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流が流れるときに正極と負極の間に生じる電圧に含まれる交流電圧成分の電圧値を初期電圧値として記憶する。
 第1の電池劣化診断方法では、電源200は、二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流を流す。電圧値検出部120は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、交流電圧成分の電圧値を求める(S11)。
 そして、劣化判別部140は、電圧値記憶部130から初期電圧値を取得し、その初期電圧値とステップS11で求められた交流電圧成分の電圧値とを比較して二次電池の異常の有無を判別する(S12)。
 表示部141は、ステップS12で判別された二次電池201の異常の有無を表示する(S13)。
 なお、電圧値検出部120と電圧値記憶部130と電圧値登録部132と劣化判別部140は、一部を除き、デジタル処理で実現することができる。これらをデジタル処理で実現する場合には、例えば、FPGA(Field-Programmable Gate Array)、DSP(Digital Signal Processor)、マイクロプロセッサ等を用いて実現することができる。
 また、電圧値検出部120と電圧値記憶部130と電圧値登録部132と劣化判別部140は、アナログ回路で実現することもできる。
 図6は、本発明の第2の実施形態に係る電池劣化診断装置101Aおよび充電器2Aの構成の一例を示す。
 充電器2Aは、電源200と電池劣化診断装置101Aとを有する。電源200は第1の実施形態に係る充電器1Aに含まれるものと同一であり、二次電池201も充電器1Aを用いて充電されるものと同一である。
 電池劣化診断装置101Aは、入力部110と、交流電圧成分抽出部150と、増幅度記憶部160と、増幅電圧生成部170と、劣化表示部180とを有する。
 入力部110は、充電器1Aに含まれるものと同一である。入力部110は、例えば、キーボード、タッチパネル、スイッチ、ダイヤル等を有する。入力部110は、電池劣化診断装置101A、すなわち充電器2Aを使用するユーザによる各種の操作を受け付ける。
 電源200が電源ラインL1と電源ラインL2(二次電池201の正極と負極の間)に直流電流成分と交流電流成分とを含む脈流電流を流すとき、二次電池201の正極と負極の間に生じる電圧には交流電圧成分が含まれる。交流電圧成分抽出部150は、その交流電圧成分を抽出し、出力端子OUTから交流電圧成分を出力する。
 増幅度記憶部160は、二次電池201が正常(劣化なし)である場合に正常を示す表示を生じさせ、異常(劣化あり)である場合に異常を示す表示を生じさせる増幅電圧を生成するための増幅度を記憶している。
 増幅電圧生成部170の入力端子INには、交流電圧成分抽出部150によって抽出された交流電圧成分が入力される。増幅電圧生成部170は、増幅度記憶部160によって記憶されている増幅度に応じて交流電圧成分を増幅して増幅電圧を生成する。増幅電圧生成部170は、出力端子OUTから増幅電圧を出力する。
 劣化表示部180は、例えば、ディスプレイやLED等を有する。劣化表示部180の入力端子INには、増幅電圧生成部170で生成された増幅電圧が入力される。劣化表示部180は、増幅電圧に基づいて二次電池201の異常の有無を表示する。
 例えば、二次電池201が新品であるときに(すなわち、正常であるときに)交流電圧成分抽出部150が抽出する交流電圧成分の実効値は10mV以下であり、二次電池201の劣化が著しく進むと、交流電圧成分抽出部150が抽出する交流電圧成分の実効値は20mV以上に増加するとする。また、例えば、劣化表示部180は、2Vの直流電圧が印加されると発光するLEDを1個のみ有しているとする。
 この場合、増幅度記憶部160に、例えば、増幅度として100倍を記憶させる。二次電池201が新品であるとき、増幅電圧生成部170は1Vの直流の増幅電圧を生成する。このとき、劣化表示部180のLEDは消灯している。二次電池201の劣化が著しく進むと、増幅電圧生成部170は2V以上の直流の増幅電圧を生成する。このとき、劣化表示部180のLEDは点灯する。
 増幅度記憶部160は、図7に示す増幅度情報テーブル161を記憶することができる。増幅度情報テーブル161は、増幅度情報を格納する。増幅度情報は、二次電池の製造メーカおよび容量毎に、各製造メーカおよび容量を識別するメーカ容量識別情報と各製造メーカおよび容量の二次電池に対応する増幅度とを含む。増幅度は、例えば、二次電池201の製造メーカが公表している内部抵抗の抵抗値と、電源200が出力する脈流電流に含まれる交流電流成分の電流値とに基づいて交流電圧成分の初期電圧値を算出し、その初期電圧値に基づいて求められる。または、増幅度は、例えば、電源200が出力する脈流電流を二次電池201の新品のサンプルに流したときに交流電圧成分抽出部150で抽出される交流電圧成分に基づいて求めることができる。
 図7の増幅度情報テーブル161には、定格電圧が12Vである製造メーカA社と製造メーカB社の二次電池について、異なる容量の二次電池201に対応する増幅度が格納されている。増幅度情報テーブル161には、製造メーカA社の二次電池については、容量と増幅度がそれぞれ10Ah(アンペア時)と400倍、40Ahと100倍、80Ahと50倍である増幅度情報が格納されている。製造メーカB社の二次電池については、容量と増幅度がそれぞれ10Ahと250倍、40Ahと62.5倍、80Ahと31.25倍である増幅度情報が格納されている。
 例えば、図2に示すように製造メーカA社の容量10Ahの二次電池201の初期電圧値は2.5mVである。このとき、図7に示すように増幅度は400倍に設定される。このため、増幅電圧生成部170は、この二次電池201が新品であるときに1Vの増幅電圧を生成する。このとき、劣化表示部180は正常を表示する。そして、この二次電池201の劣化が進み、交流電圧成分抽出部150で抽出される交流電圧成分の電圧値が5mV以上に増加すると、増幅電圧生成部170は2V以上の増幅電圧を生成する。このとき、劣化表示部180は異常を表示する。
 増幅度記憶部160が増幅度情報テーブル161を格納している場合、ユーザは入力部110から製造メーカと容量を指定してメーカ容量識別情報を含む選択指示を入力することができる。
 増幅電圧生成部170は、その選択指示に応答して、メーカ容量識別情報によって識別される増幅度情報を増幅度情報テーブル161から取得する。そして、増幅電圧生成部170は、取得した増幅度情報に含まれる増幅度に応じて交流電圧成分抽出部150によって抽出された交流電圧成分を増幅し、増幅電圧を生成する。
 図8は、図6の電池劣化診断装置101Aおよび充電器2Aの変形例である電池劣化診断装置101Bおよび充電器2Bの構成を示す。
 電池劣化診断装置101Bは、増幅度登録部162を有する点が図6の電池劣化診断装置101Aと異なる。それ以外、電池劣化診断装置101Bおよび充電器2Bは電池劣化診断装置101Aおよび充電器2Aと同一の構成である。
 ユーザは入力部110から増幅度の登録指示を入力することができる。増幅度登録部162は、その登録指示に応答して、交流電圧抽出部150によって抽出された交流電圧成分に基づいて増幅度を求める。そして、増幅度登録部162は、求めた増幅度を増幅度記憶部160に記憶させる。
 図9は、図7の増幅度情報テーブル161とは異なる増幅度情報テーブル163の例を示す。
 図9の増幅度情報テーブル163に格納される増幅度情報は、複数の二次電池201について、各二次電池201を識別する二次電池識別情報と各二次電池201に対応する増幅度とを含む。図9の増幅度情報テーブル163には、定格電圧が12Vである二次電池について、二次電池識別情報と増幅度がそれぞれ000001と166.7倍、000002と46.5倍、000003と83.3倍、000004と58.8倍、000005と111.1倍、000006と33.3倍である増幅度情報が格納されている。
 増幅度記憶部160が図9の増幅度情報テーブル163を格納している場合、ユーザが増幅度の登録指示を入力するときにユーザ自身が二次電池識別情報を指定するか、または、増幅度記憶部160が二次電池識別情報を付与する。
 増幅度登録部162は、二次電池識別情報を含む増幅度の登録指示に応答して、交流電圧成分抽出部150で抽出された交流電圧成分に基づいて増幅度を求める。そして、増幅度登録部162は、二次電池識別情報と求めた増幅度とを含む増幅度情報を増幅度情報テーブル163に記憶させる。
 ユーザは入力部110から二次電池識別情報を含む選択指示を入力することができる。
 増幅電圧生成部170は、二次電池識別情報を含む選択指示に応答して、二次電池識別情報によって識別される増幅度情報を増幅度情報テーブル163から取得する。そして、増幅電圧生成部170は、取得した増幅度情報に含まれる増幅度に応じて交流電圧成分抽出部150によって抽出された交流電圧成分を増幅し、増幅電圧を生成する。
 なお、交流電圧成分抽出部150と増幅度記憶部160と増幅度登録部162と増幅電圧生成部170と劣化表示部180とは、一部を除き、デジタル処理で実現することができる。これらをデジタル処理で実現する場合には、例えば、FPGA(Field-Programmable Gate Array)、DSP(Digital Signal Processor)、マイクロプロセッサ等を用いて実現することができる。
 また、交流電圧成分抽出部150と増幅度記憶部160と増幅度登録部162と増幅電圧生成部170と劣化表示部180とは、アナログ回路で実現することもできる。以下では、図6に示す電池劣化診断装置101Aに含まれる交流電圧成分抽出部150と増幅度記憶部160と増幅電圧生成部170と劣化表示部180とをアナログ回路で実現する例について説明する。
 図10は、交流電圧成分抽出部150と増幅度記憶部160と増幅電圧生成部170とをアナログ回路で実現する一例を示す。また、図11は、劣化表示部180をアナログ回路で実現する一例を示す。
 劣化表示部180は、発光ダイオードであるLED1~LED5と、LED発光制御部181とで構成される。LED1~LED5は、直列に接続される。この場合、LED1のカソードにLED2のアノードが接続される。LED2のカソードにLED3のアノードが接続される。以下、同様にしてLED3~LED5が接続される。
 二次電池201が著しく劣化したときにその正極と負極の間に発生する電圧の交流成分の振幅は、例えば20mV程度である。一方、赤、橙、黄、緑のLEDの順方向電圧降下は2V程度である。このため、LED1~LED5がこれらの色のLEDである場合、二次電池201が著しく劣化したときにLED1~LED5を全て発光させるためには、例えば10V以上の電圧をLED1~LED5からなるLED回路に印加しなければならない。従って、増幅電圧生成部170は、交流電圧成分抽出部150によって抽出された交流電圧成分を例えば500倍以上に増幅する必要がある。
 図10に示すように、交流電圧成分抽出部150はコンデンサC1を有する。増幅度記憶部160は可変抵抗VR1と可変抵抗VR2を有する。
 増幅電圧生成部170は電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。
 増幅電圧生成部170は、交流電圧成分抽出部150によって抽出された交流電圧成分を増幅して整流することにより、二次電池201の異常の有無および劣化の程度を表示するための直流の増幅電圧を生成する。増幅電圧生成部170は、出力端子OUTから増幅電圧を出力する。
 増幅電圧生成部170は、変圧器T1と、増幅部171と、反転部172と、2倍増幅部173とを有する。
 交流電圧成分抽出部150に含まれるコンデンサC1は、一端が電源ラインL1に接続され、他端が変圧器T1の1次巻線の一端に接続される。変圧器T1の他端は、電源ラインL2に接続される。コンデンサC1は、二次電池201の正極と負極の間(電源ラインL1と電源ラインL2の間)に生じる電圧に含まれる交流電圧成分を抽出する。変圧器T1は、コンデンサC1によって抽出された交流電圧成分を例えば10倍程度増幅して第1の中間交流電圧を生成する。
 増幅部171は、抵抗R1と、抵抗R2と、コンデンサC2と、オペアンプOP1と、増幅度記憶部160と、コンデンサC3とを有する。
 抵抗R1は、一端が電源ラインL1に接続され、他端が抵抗R2の一端に接続される。抵抗R2の他端は電源ラインL2に接続される。抵抗R1と抵抗R2は、電源ラインL1と電源ラインL2間の電圧を分圧し、それらの接続部分に電源ラインL1と電源ラインL2間の電圧の好ましくは半分程度の中間電圧を生じる。
 コンデンサC2は、一端が抵抗R1と抵抗R2の接続部分に接続され、他端が電源ラインL2に接続される。コンデンサC2は、抵抗R1と抵抗R2の接続部分の電圧からリップルやノイズを吸収する。
 変圧器T1は、2次巻線の一端がオペアンプOP1の非反転入力端に接続され、2次巻線の他端が抵抗R1と抵抗R2の接続部分に接続される。変圧器T1の2次巻線の一端には、第1の中間交流電圧と中間電圧が加算された電圧が生じる。
 オペアンプOP1の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP1の出力端は、増幅度記憶部160に含まれる可変抵抗VR2の一端に接続される。可変抵抗VR2の他端は、オペアンプOP1の反転入力端と増幅度記憶部160に含まれる可変抵抗VR1の一端とに接続される。可変抵抗VR1の他端はコンデンサC3の一端に接続される。コンデンサC3の他端は電源ラインL2に接続される。
 ユーザは、入力部110に含まれるダイヤル等を操作することにより、増幅度記憶部160に含まれる可変抵抗VR1と可変抵抗VR2の抵抗値を変更することができる。
 上述した構成により、オペアンプOP1は可変抵抗VR1と可変抵抗VR2の抵抗値で決まる増幅度の非反転増幅器として動作する。オペアンプOP1の非反転入力端には、第1の中間交流電圧と中間電圧が加算された加算電圧が入力される。加算電圧が中間電圧より大きい場合、オペアンプOP1は第1の中間交流電圧を正の方向に増幅する。一方、加算電圧が中間電圧より小さい場合、オペアンプOP1は第1の中間交流電圧を負の方向に増幅する。
 このようにして、増幅部171は、増幅度記憶部160の可変抵抗VR1と可変抵抗VR2に記憶されている増幅度で第1の中間交流電圧を増幅して第2の中間交流電圧を生成する。例えば、増幅部171は第1の中間交流電圧を25倍程度増幅して第2の中間交流電圧を生成する。
 なお、本実施形態では、オペアンプOP1を非反転増幅器として動作させる例を示すが、オペアンプOP1を反転増幅器として動作させる構成とすることもできる。
 反転部172は、コンデンサC4と、抵抗R3と、抵抗R4と、オペアンプOP2とを有する。
 コンデンサC4は、一端がオペアンプOP1の出力端に接続され、他端が抵抗R3の一端に接続される。抵抗R3の他端は、オペアンプOP2の反転入力端と抵抗R4の一端とに接続される。抵抗R4の他端は、オペアンプOP2の出力端に接続される。抵抗R3と抵抗R4の抵抗値は同一である。
 オペアンプOP2の正電源端は電源ラインL1に接続され、その負電源端は電源ラインL2に接続される。オペアンプOP2の反転入力端は、抵抗R3の他端と抵抗R4の一端との接続部分に接続され、オペアンプOP2の非反転入力端には中間電圧が入力される。
 上述した構成により、オペアンプOP2は増幅度が1倍の反転増幅器として動作する。オペアンプOP2は、増幅部171で生成される第2の中間交流電圧の正負の極性が反転した反転交流電圧を生成する。
 2倍増幅部173は、コンデンサC5と、コンデンサC6と、ダイオードD1と、ダイオードD2と、ダイオードD3と、コンデンサC7とを有する。
 ダイオードD3は、アノードが電源ラインL2に接続され、カソードがダイオードD2のアノードに接続される。ダイオードD2のカソードは、ダイオードD1のアノードに接続される。ダイオードD1のカソードは出力端子OUTに接続される。
 コンデンサC5は、一端がオペアンプOP1の出力端に接続され、他端がダイオードD1のアノードとダイオードD2のカソードとの接続部分に接続される。コンデンサC6は、一端がオペアンプOP2の出力端に接続され、他端がダイオードD2のアノードとダイオードD3のカソードとの接続部分に接続される。
 コンデンサC7は、出力端子OUTと電源ラインL2との間に接続される。コンデンサC7は、ダイオードD1のカソードから出力される電圧を平滑化する。
 上述した構成により、2倍増幅部173は2倍電圧増幅器として動作する。2倍増幅部173は、増幅部171で生成される第2の中間交流電圧と反転部172で生成される反転交流電圧とに基づいて第2の中間交流電圧を2倍に増幅して整流し、生成された直流電圧を出力端子OUTから出力する。出力端子OUTから出力される直流電圧が、二次電池201の異常の有無および劣化の程度を表示させるための増幅電圧である。
 このようにして、増幅電圧生成部170は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を、増幅部171と反転部172と2倍増幅部173で例えばそれぞれ10倍程度と25倍程度と2倍、合計で500倍程度増幅し、増幅電圧を生成して、それを出力端子OUTから出力する。
 図11は、劣化表示部180の構成の一例を示す。劣化表示部180は、LED発光制御部181を含む。
 LED発光制御部181は、電源ラインL1と電源ラインL2に接続され、電源200から供給される電圧で動作する。
 LED発光制御部181は、NPNトランジスタQ1と、抵抗R5と、Nチャネルエンハンスメント型電界効果トランジスタFET1~FET5と、ダイオードD4~D8と、抵抗R6~R10と、NPNトランジスタQ2と、抵抗R11と、NPNトランジスタQ3と、抵抗R12とを有する。
 入力端子INには、増幅電圧生成部170の出力端子OUTから出力される増幅電圧が入力される。トランジスタQ1は、ベースBが入力端子INに接続され、コレクタCが電源ラインL1に接続され、エミッタEがLED1のアノードに接続される。
 抵抗R5は、一端が電源ラインL1に接続され、他端がダイオードD4~D8の各アノードとトランジスタQ2のコレクタCに接続される。
 FET1の電流路(ドレインDとソースSの間の経路)は、LED1と並列に接続される。すなわち、FET1のドレインDとソースSはそれぞれLED1のアノードとカソードに接続される。FET1のゲートGは、抵抗R6の一端とダイオードD4のカソードとに接続される。抵抗R6の他端はFET1のソースSに接続される。FET1の電流路が非導通のときにLED1は点灯し、FET1の電流路が導通しているときにLED1は消灯する。
 LED2とFET2とダイオードD5と抵抗R7との接続は、LED1とFET1とダイオードD4と抵抗R6と同様である。また、LED3とFET3とダイオードD6と抵抗R8との接続、LED4とFET4とダイオードD7と抵抗R9との接続、およびLED5とFET5とダイオードD8と抵抗R10との接続も、LED1とFET1とダイオードD4と抵抗R6と同様である。
 トランジスタQ2は、ベースBがLED5のカソードに接続され、コレクタCが抵抗R5の他端に接続され、エミッタEが抵抗R11の一端に接続される。抵抗R11の他端は電源ラインL2に接続される。トランジスタQ3は、ベースBがLED5のカソードとトランジスタQ2のベースBと自身のコレクタCとに接続され、コレクタCがLED5のカソードと自身のベースBとトランジスタQ2のベースBとに接続され、エミッタEが抵抗R12の一端に接続される。抵抗R12の他端は電源ラインL2に接続される。なお、抵抗R11の抵抗値は抵抗R12の抵抗値の10倍程度の大きさである。
 以下、LED発光制御部181におけるLED1~LED5の発光制御について詳細に説明する。
(1)二次電池201の劣化が著しく、LED1~LED5が全部発光する場合
 このとき、LED1~LED5の直列接続回路にかかる電圧は最も高い(以下、この電圧を最高電圧という。)。トランジスタQ1のコレクタCとエミッタE間の経路、およびLED1~LED5を流れる電流により、トランジスタQ3のコレクタCに発生する電位でトランジスタQ2のベースBが順バイアスされ、トランジスタQ2のコレクタCとエミッタE間が導通状態となる。このため、トランジスタQ2のコレクタCの電位は、基準電位(電源ラインL2の電位)と同じレベルの電位となる。
 ただし、トランジスタQ2のコレクタCとエミッタE間は完全な導通状態である必要はない(半導通など)。FET1~FET5のゲートGの電位がそれらの電流路を導通させない電位であれば良い。このとき、トランジスタQ2のコレクタCの電位は、基準電位より少し高めの電位である。以下、「基準電位と同じレベルの電位」と「基準電位より少し高めの電位」などを総称して、「同等の電位」という。
 このとき、ダイオードD4~D8のアノードも、基準電位と同等の電位であり、FET1~FET5のゲートGに順バイアス電位は印加されず、FET1~FET5の電流路は非導通となり、LED1~LED5は全て発光する。
(2)二次電池201が正常であり、LED1~LED5が全部発光を停止する場合
 このとき、LED1~LED5の直列接続回路にかかる電圧は最も低い。LED1~LED5は、FET1~FET5の各電流路により短絡(バイパス)されている。トランジスタQ2のベースBは順バイアス(電流値)されず、または順バイアス(電流値)が小さくなり、トランジスタQ2のコレクタCとエミッタE間が非導通または導通抵抗値が大となり、コレクタCの電位が上昇し、FET1~FET5のすべてのゲートGを順バイアスする。このため、FET1~FET5の電流路はすべて導通し、LED1~LED5は全て発光を停止する。
(3)二次電池201の劣化が激しく、LED1~LED4が発光し、LED5が発光を停止する場合
 このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5の順方向電圧降下分だけ低い電圧がかかっている。LED1~LED5の直列接続回路にかかる電圧が低下したことにより、トランジスタQ3のコレクタCの電位は少し低下する。このため、トランジスタQ2のベースBは順バイアスが不充分となり、そのコレクタCとエミッタE間が非導通となるように働く。
 従って、トランジスタQ2のコレクタCの電位は上昇し、FET5のゲートGを順バイアスし、FET5の電流路は導通し、トランジスタQ3のコレクタCとエミッタE間に電流が流れ、トランジスタQ3のコレクタCの電位は少し回復するが、トランジスタQ2のベースBは順バイアスされず、トランジスタQ2のコレクタの電位は上昇する。FET5のみのゲートGが順バイアスされてFET5は導通し、LED5の両端に順方向電圧降下より低い電圧が印加されて非導通となり発光を停止する。
 このとき、FET1~FET5のゲートGの電位は基準電位を基準として同一電位として上昇するが、FET1~FET4の電流路は導通せず、LED1~LED4は発光を継続する。
 FET5のみが導通する理由は、FET5のソースSの電位は、トランジスタQ3のコレクタCの電位であり低電位である。一方、FET4のソースSの電位は、FET5のドレインDの電位であり、FET5のソースSの電位より少し高電位である。このため、FET4のソースSに対するゲートGの電位はFET5のものより低電位であり、FET5が導通してもFET4は導通しない。従って、LED4は発光する。
 FET4は導通していないので、FET3、FET2、FET1のソースSの電位は、それぞれLED3、LED2、LED1のカソード電位であり、ソースSの電位は高くFET3、FET2、FET1のゲートGの電位も順バイアスされない。FET3、FET2、FET1の電流路も非導通であり、LED3、LED2、LED1は発光する。
 FET5は完全導通状態とならないで、ある程度の抵抗値を保持する。これは、トランジスタQ2のコレクタC、FET5のゲートG、FET5のソースS、トランジスタQ2のベースBの回路で負帰還回路を構成し、トランジスタQ3のコレクタC(ベースB)の電位を一定に保持し、FET5のドレインDとソースS間の導通抵抗値をある一定の値で均衡させるからである。
 また、この負帰還回路で、FET5はトランジスタQ3と抵抗R12を負荷としてソースフォロア回路を構成している。この負帰還回路は、トランジスタQ3のコレクタC(ベースB)の電位を一定にする作用がある。
 この負帰還回路によって、トランジスタQ2のコレクタCとエミッタE間の抵抗値も一定の値で均衡する。すべては、この負帰還回路で均衡する。
 なお、トランジスタQ3が無く、抵抗R12の一端がFET5のソースS(LED5のカソード、トランジスタQ2のベース)に接続されている構成であっても、抵抗R12を流れる電流を一定にする作用があるので、抵抗R12の両端の電圧は一定となる。従って、トランジスタQ3が無く、抵抗R12の一端がFET5のソースSに直接接続されている構成であってもよい。
 FET5は完全導通ではないが導通することで、LED5の電流路をFET5が代替し、電流は通常どおり流れ、LED5は発光を停止し、その他の発光ダイオード(LED4~LED1)は発光を維持する。
 FET5の導通によるFET5の電流路の電圧降下は、発光ダイオードの順方向電圧降下より小さい。この状態ではLED5は発光しない。FET4のソースSの電位は、FET5のドレインDとソースS間の電圧降下分上昇している。このため、FET4のゲートGとソースS間の電位は導通電位よりも低くなり、FET4は導通しない。FET4が導通しなければ、FET3、FET2、FET1も導通しない。
(4)二次電池201の劣化がやや激しく、LED1~LED3が発光し、LED4とLED5が発光を停止する場合
 このとき、LED1~LED5の直列接続回路には、最高電圧よりLED5とLED4の順方向電圧降下分だけ低い電圧がかかっている。このため、FET4がFET5と同様に動作することとなる。負帰還回路もFET4が同様な動作をする。
 従って、FET4は完全導通ではないが導通し、この導通による電位降下値は、LED4の順方向電圧降下より小さいため、LED4には順方向電圧降下より低い電圧が印加されてLED4は発光を停止する。
 LED1~LED5の直列接続回路にかかる電圧が更に低下すると、LED3、LED2、LED1が順番に発光を停止する。すなわち、LED1~LED5の直列接続回路にかかる電圧が発光ダイオードの順方向電圧降下分ずつ低下すると、LED5→LED4→LED3→LED2→LED1の順に発光を停止し、発光ダイオードの順方向電圧降下分ずつ上昇すると、LED1→LED2→LED3→LED4→LED5の順に発光する。
 なお、LED1~LED5の直列接続回路にかかる電圧が最高電圧より微少電圧δV(0<δV<発光ダイオードの順方向電圧降下)だけ低いとき、FET5は不完全導通で、FET5とLED5とに電流が流れる場合がある。この微少電圧だけ低い場合でも負帰還が働いている。
 図12は、本発明の第2の実施形態に係る第2の電池劣化診断方法における処理の流れの一例を示す。
 本発明の第2の実施形態に係る第2の電池劣化診断方法は、電池劣化診断装置101Aまたは電池劣化診断装置101Bを用いる。電池劣化診断装置101Aと電池劣化診断装置101Bは、増幅度記憶部160を有する。増幅度記憶部160は、二次電池201が正常である場合に正常を示す表示を生じさせ、二次電池201が異常である場合に異常を示す表示を生じさせる増幅電圧を生成するための増幅度を記憶する。
 第2の電池劣化診断方法では、電源200は、二次電池201の正極と負極の間に直流電流成分と交流電流成分とを含む脈流電流を流す。交流電圧成分抽出部150は、二次電池201の正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する(S21)。
 そして、増幅電圧生成部170は、増幅度記憶部160から増幅度を取得し、その増幅度に応じてステップS21で抽出された交流電圧成分を増幅して増幅電圧を生成する(S22)。
 劣化表示部180は、ステップS22で生成された増幅電圧に基づいて二次電池201の異常の有無を表示する(S23)。
 なお、上述した実施形態では表示部141または劣化表示部180がLEDを1個または5個含む例について説明したが、表示部141または劣化表示部180がLEDを2個~4個、または5個以上含む場合であっても本発明を適用することができる。
 また、上述した実施形態では二次電池201の定格電圧が12Vである例について説明したが、二次電池201の定格電圧がそれ以外の電圧、例えば24Vや380V等であっても本発明を適用できることはもちろんである。
 以上説明したように、本発明によれば、メーカや容量に関わらず、二次電池の異常の有無を判別することができる。
 また、本発明によれば、二次電池が異常である場合には、メーカや容量に関わらず同程度の基準で、その劣化の程度を目視で判定することができる。
 以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。
1A,1B,2A,2B…充電器、100A,100B,101,101B…電池劣化診断装置、110…入力部、120…電圧値検出部、130…電圧値記憶部、131…電圧値情報テーブル、132…電圧値登録部、133…電圧値情報テーブル、140…劣化判別部、141…表示部、150…交流電圧成分抽出部、160…増幅度記憶部、161…増幅度情報テーブル、162…増幅度登録部、163…増幅度情報テーブル、170…増幅電圧生成部、171…増幅部、172…反転部、173…2倍増幅部、180…劣化表示部、181…LED発光制御部、200…電源、201…二次電池、LED1~LED5…発光ダイオード

Claims (13)

  1.  二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分の電圧値を求める電圧値検出部と、
     二次電池が正常であるときの交流電圧成分の電圧値である初期電圧値を記憶する電圧値記憶部と、
     前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する劣化判別部と、
     を備えることを特徴とする電池劣化診断装置。
  2.  前記電圧値記憶部が、製造メーカおよび容量毎に、当該各製造メーカおよび容量を識別するメーカ容量識別情報と当該各製造メーカおよび容量の二次電池における初期電圧値とを含む電圧値情報を記憶している電圧値情報テーブルを有し、
     前記劣化判別部が、メーカ容量識別情報を含む選択指示に応答して、当該メーカ容量識別情報によって識別される電圧値情報を前記電圧値情報テーブルから取得し、当該取得した電圧値情報に含まれる初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する、
     ことを特徴とする請求項1に記載の電池劣化診断装置。
  3.  初期電圧値の登録指示に応答して、前記電圧値検出部によって求められた交流電圧成分の電圧値を初期電圧値として前記電圧値記憶部に記憶させる電圧値登録部を備えることを特徴とする請求項1に記載の電池劣化診断装置。
  4.  前記電圧値記憶部が、複数の二次電池について、当該各二次電池を識別する二次電池識別情報と当該各二次電池における初期電圧値とを含む電圧値情報を記憶する電圧値情報テーブルを有し、
     前記電圧値登録部が、二次電池識別情報を含む初期電圧値の登録指示に応答して、当該二次電池識別情報と前記電圧値検出部によって求められた交流電圧成分の電圧値である初期電圧値とを含む電圧値情報を前記電圧値情報テーブルに記憶させ、
     前記劣化判別部が、二次電池識別情報を含む選択指示に応答して、当該二次電池識別情報によって識別される電圧値情報を前記電圧値情報テーブルから取得し、当該取得した電圧値情報に含まれる初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する、
     ことを特徴とする請求項3に記載の電池劣化診断装置。
  5.  複数のLEDを備え、
     前記劣化判別部が、前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出部によって求められた交流電圧成分の電圧値とに基づいて二次電池の劣化の程度を判定し、前記複数のLEDを当該劣化の程度に応じた個数だけ発光させる、
     ことを特徴とする請求項1ないし4のいずれか1項に記載の電池劣化診断装置。
  6.  二次電池の正極と負極の間に交流電流成分を含む電流が流れるとき、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する交流電圧成分抽出部と、
     前記二次電池が正常である場合に正常を示す表示を生じさせ、前記二次電池が異常である場合に異常を示す表示を生じさせる増幅電圧を生成する増幅度を記憶する増幅度記憶部と、
     前記増幅度記憶部によって記憶されている増幅度に応じて前記交流電圧成分抽出部によって抽出された交流電圧成分を増幅して増幅電圧を生成する増幅電圧生成部と、
     前記増幅電圧生成部で生成された増幅電圧に基づいて前記二次電池の異常の有無を表示する劣化表示部と、
     を備えることを特徴とする電池劣化診断装置。
  7.  前記増幅度記憶部が、製造メーカおよび容量毎に、当該各製造メーカおよび容量を識別するメーカ容量識別情報と当該各製造メーカおよび容量の二次電池に対応する増幅度とを含む増幅度情報を記憶している増幅度情報テーブルを有し、
     前記増幅電圧生成部が、メーカ容量識別情報を含む選択指示に応答して、当該メーカ容量識別情報によって識別される増幅度情報を前記増幅度情報テーブルから取得し、当該取得した増幅度情報に含まれる増幅度と前記交流電圧成分抽出部によって抽出された交流電圧成分とに基づいて前記増幅電圧を生成する、
     ことを特徴とする請求項6に記載の電池劣化診断装置。
  8.  増幅度の登録指示に応答して、前記交流電圧成分抽出部によって抽出された交流電圧成分に基づいて前記増幅度を求めて当該求められた増幅度を前記増幅度記憶部に記憶させる増幅度登録部を備えることを特徴とする請求項6に記載の電池劣化診断装置。
  9.  前記増幅度記憶部が、複数の二次電池について、当該各二次電池を識別する二次電池識別情報と当該各二次電池に対応する増幅度とを含む増幅度情報を記憶している増幅度情報テーブルを有し、
     前記増幅度登録部が、二次電池識別情報を含む増幅度の登録指示に応答して、前記交流電圧成分抽出部で抽出された交流電圧成分に基づいて増幅度を求め、当該二次電池識別情報と当該求められた増幅度とを含む増幅度情報を前記増幅度情報テーブルに記憶させ、
     前記増幅電圧生成部が、二次電池識別情報を含む選択指示に応答して、当該二次電池識別情報によって識別される増幅度情報を前記増幅度情報テーブルから取得し、当該取得した増幅度情報に含まれる増幅度と前記交流電圧成分抽出部によって抽出された交流電圧成分とに基づいて前記増幅電圧を生成する、
     ことを特徴とする請求項8に記載の電池劣化診断装置。
  10.  前記劣化表示部が、複数のLEDと、前記増幅電圧生成部で生成された増幅電圧に基づいて当該複数のLEDを前記二次電池の劣化の程度に応じた個数だけ発光させるLED発光制御部とを備えることを特徴とする請求項6ないし9のいずれか1項に記載の電池劣化診断装置。
  11.  請求項1ないし10のいずれか1項に記載の電池劣化診断装置と、
     前記二次電池の正極と負極の間に前記電流を流す電源と、
     を備えることを特徴とする充電器。
  12.  正常な二次電池の正極と負極の間に交流電流成分を含む電流が流れるときに当該正極と負極の間に生じる電圧に含まれる交流電圧成分の電圧値を初期電圧値として記憶する電圧値記憶部を有する電池劣化診断装置を用いる電池劣化診断方法であって、
     二次電池の正極と負極の間に交流電流成分を含む電流を流し、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出し、当該交流電圧成分の電圧値を求める電圧値検出ステップと、
     前記電圧値記憶部に記憶されている初期電圧値と前記電圧値検出ステップで求められた交流電圧成分の電圧値とに基づいて二次電池の異常の有無を判別する劣化判別ステップと、
     を備えることを特徴とする電池劣化診断方法。
  13.  二次電池が正常である場合に正常を示す表示を生じさせ、当該二次電池が異常である場合に異常を示す表示を生じさせる増幅電圧を生成するための増幅度を記憶する増幅度記憶部を有する電池劣化診断装置を用いる電池劣化診断方法であって、
     二次電池の正極と負極の間に交流電流成分を含む電流を流し、当該正極と負極の間に生じる電圧に含まれる交流電圧成分を抽出する交流電圧成分抽出ステップと、
     前記増幅度記憶部によって記憶されている増幅度に応じて前記交流電圧成分抽出ステップで抽出された交流電圧成分を増幅して増幅電圧を生成する増幅電圧生成ステップと、
     前記増幅電圧生成ステップで生成された増幅電圧に基づいて前記二次電池の異常の有無を表示する劣化表示ステップと、
     を備えることを特徴とする電池劣化診断方法。
PCT/JP2017/037528 2016-10-20 2017-10-17 電池劣化診断装置、充電器および電池劣化診断方法 WO2018074470A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-205642 2016-10-20
JP2016205642A JP2018066661A (ja) 2016-10-20 2016-10-20 電池劣化診断装置、充電器および電池劣化診断方法

Publications (1)

Publication Number Publication Date
WO2018074470A1 true WO2018074470A1 (ja) 2018-04-26

Family

ID=62018494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037528 WO2018074470A1 (ja) 2016-10-20 2017-10-17 電池劣化診断装置、充電器および電池劣化診断方法

Country Status (2)

Country Link
JP (1) JP2018066661A (ja)
WO (1) WO2018074470A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646200A (zh) * 2018-08-23 2018-10-12 重庆雅讯电源技术有限公司 电池健康状态评估方法及系统
JP2021076421A (ja) * 2019-11-06 2021-05-20 三菱重工業株式会社 バッテリー診断装置、フォークリフト、充電器、バッテリー診断方法およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349371A (ja) * 1991-05-27 1992-12-03 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池の劣化状態検出方法
JP2000341867A (ja) * 1999-05-28 2000-12-08 Ntt Data Corp 二次電池の状態判定方法及び装置
JP2006262647A (ja) * 2005-03-17 2006-09-28 Hitachi Ltd 機器コントローラ
JP2007178401A (ja) * 2005-12-28 2007-07-12 Ntt Facilities Inc 二次電池管理装置、二次電池管理方法及びプログラム
JP2008309715A (ja) * 2007-06-15 2008-12-25 Chugoku Electric Power Co Inc:The マルチトランスデューサ及びその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349371A (ja) * 1991-05-27 1992-12-03 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池の劣化状態検出方法
JP2000341867A (ja) * 1999-05-28 2000-12-08 Ntt Data Corp 二次電池の状態判定方法及び装置
JP2006262647A (ja) * 2005-03-17 2006-09-28 Hitachi Ltd 機器コントローラ
JP2007178401A (ja) * 2005-12-28 2007-07-12 Ntt Facilities Inc 二次電池管理装置、二次電池管理方法及びプログラム
JP2008309715A (ja) * 2007-06-15 2008-12-25 Chugoku Electric Power Co Inc:The マルチトランスデューサ及びその制御方法

Also Published As

Publication number Publication date
JP2018066661A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
US11881566B2 (en) Battery pack monitoring system
US8264200B2 (en) Multi-cell power system controller
US7684163B2 (en) Abnormal connection detecting circuit and driving device including the same
JP2019158539A (ja) 電池監視装置
JP2016213955A (ja) 太陽電池検査装置および太陽電池検査方法
US9694686B2 (en) Multifunctional monitoring of electrical systems
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
WO2018074470A1 (ja) 電池劣化診断装置、充電器および電池劣化診断方法
JP7014565B2 (ja) 二次電池監視装置及び故障診断方法
US10122185B2 (en) Battery management system
JP2019193351A (ja) 故障検知機能付き充電器、及び故障検知方法
TW201322584A (zh) 電池控制電路、系統和方法
US20120182022A1 (en) Method of indicating voltage, voltage indicating apparatus, and battery pack
US9632116B2 (en) DC reverse polarity detection
US7830102B2 (en) Light source driving device
US20140354163A1 (en) Led driving device
US3784903A (en) Leakage detector for determining possible shock hazards to humans
JP2018031678A (ja) 電池劣化診断装置および充電器
JP2017219495A (ja) 電池劣化判定装置および充電器
WO2017212844A1 (ja) 電池劣化判定装置および充電器
US10224919B2 (en) Power switch control by supply voltage terminal
JP7445894B2 (ja) 漏電検出装置
JP2016076399A (ja) 充放電電源の電流電圧校正方法及びその校正用負荷装置
JP2005051114A (ja) Led駆動装置
JP6559521B2 (ja) バッテリーチェッカー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861235

Country of ref document: EP

Kind code of ref document: A1