WO2018074360A1 - 流体殺菌装置 - Google Patents

流体殺菌装置 Download PDF

Info

Publication number
WO2018074360A1
WO2018074360A1 PCT/JP2017/037203 JP2017037203W WO2018074360A1 WO 2018074360 A1 WO2018074360 A1 WO 2018074360A1 JP 2017037203 W JP2017037203 W JP 2017037203W WO 2018074360 A1 WO2018074360 A1 WO 2018074360A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight pipe
vibrating body
axial direction
fluid
flow path
Prior art date
Application number
PCT/JP2017/037203
Other languages
English (en)
French (fr)
Inventor
真也 渡邊
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Publication of WO2018074360A1 publication Critical patent/WO2018074360A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present invention relates to a fluid sterilizer, and more particularly to a technique for sterilizing a fluid by irradiating ultraviolet light.
  • ultraviolet light has a sterilizing ability
  • an apparatus for irradiating ultraviolet light is used for sterilization treatment at medical or food processing sites.
  • an apparatus for continuously sterilizing a fluid by irradiating a fluid such as water with ultraviolet light is also used.
  • an ultraviolet LED is arranged on the inner wall of the tube end of a flow path formed of a straight tubular metal pipe (see, for example, Patent Document 1).
  • the present invention has been made in view of these problems, and one of its exemplary purposes is to provide a fluid sterilization apparatus that can prevent the stain on the inner wall of the pipe accompanying use.
  • a fluid sterilization apparatus includes a straight pipe that divides a processing flow path, a light source that irradiates ultraviolet light in the axial direction of the straight pipe toward the processing flow path, and a straight pipe shaft inside the straight pipe.
  • a vibrating body extending in the direction; and an ultrasonic vibrator that vibrates the vibrating body.
  • the inner wall surface of the straight pipe can be cleaned by ultrasonically vibrating the vibrating body arranged inside the straight pipe.
  • the cleaning efficiency can be improved as compared with the case where the straight pipe is directly vibrated.
  • adhesion of dirt to the inner wall of the pipe can be prevented, and the maintenance man-hours such as cleaning the inside of the pipe can be reduced.
  • the vibrating body may be made of a material that has a larger acoustic impedance difference from the fluid flowing through the processing channel than a straight pipe.
  • the straight pipe may be made of a fluorine resin material, and the vibrator may be made of a metal material.
  • a straight pipe may be housed inside and a casing having an inlet and an outlet for a fluid flowing through the processing flow path may be further provided.
  • the housing may be made of a material having an acoustic impedance closer to that of the vibrating body than the straight pipe.
  • the ultrasonic transducer may be provided at a position facing the light source in the axial direction of the straight tube with the housing interposed therebetween.
  • the vibrating body may include a plate-like member disposed between the housing and the ultrasonic transducer, and a rod-like member extending from the plate-like member toward the light source in the axial direction of the straight pipe.
  • FIG. 1 is a diagram schematically showing a configuration of a fluid sterilizer 10 according to an embodiment.
  • the fluid sterilizer 10 includes a straight tube 12, a housing 20, an inflow tube 31, an outflow tube 32, a light source 38, an ultrasonic transducer 40, and a vibrating body 42.
  • the fluid sterilizer 10 is used to sterilize the fluid flowing through the processing flow path 28 defined by the straight pipe 12 by irradiating ultraviolet light.
  • the housing 20 includes an inflow side end 21, an outflow side end 22, an inflow port 23, an outflow port 24, and a window member 26.
  • the housing 20 extends in the axial direction from the inflow side end 21 toward the outflow side end 22 and accommodates the straight pipe 12 therein.
  • An ultrasonic transducer 40 is provided at the inflow side end 21.
  • the outflow side end 22 is provided with a window member 26 that transmits ultraviolet light from the light source 38.
  • the window member 26 is configured by a member having a high ultraviolet light transmittance such as quartz (SiO 2 ), sapphire (Al 2 O 3 ), or an amorphous fluorine-based resin.
  • the inlet 23 is provided in the vicinity of the inflow side end 21.
  • An inflow pipe 31 extending in a direction intersecting or orthogonal to the axial direction of the housing 20 is attached to the inflow port 23.
  • the outflow port 24 is provided in the vicinity of the outflow side end 22.
  • An outflow pipe 32 extending in a direction intersecting or orthogonal to the axial direction of the housing 20 is attached to the outflow port 24.
  • the straight pipe 12 has an upstream end 13, a downstream end 14, an inner wall surface 16, and an outer wall surface 17.
  • the straight pipe 12 extends in the axial direction from the upstream end 13 toward the downstream end 14 and has, for example, a length that is three times or more the inner diameter.
  • the straight pipe 12 is a liner that covers the inner surface 34 of the casing 20, and is accommodated in the casing 20 at a position between the inlet 23 and the outlet 24, and defines the processing flow path 28.
  • the straight pipe 12 is arranged such that the upstream end 13 is positioned in the vicinity of the inflow port 23 and the downstream end 14 is positioned in the vicinity of the outflow port 24.
  • the straight pipe 12 is made of a fluorine resin material, for example, polytetrafluoroethylene (PTFE) which is a perfluorinated resin.
  • PTFE polytetrafluoroethylene
  • PTFE is a chemically stable material and is excellent in durability, heat resistance and chemical resistance.
  • PTFE is a material having a high reflectivity of ultraviolet light. Therefore, by providing the straight tube 12 made of PTFE, the ultraviolet light from the light source 38 can be propagated in the axial direction of the straight tube 12 while being reflected by the inner wall surface 16.
  • the straight pipe 12 is configured so that the thickness between the inner wall surface 16 and the outer wall surface 17 is uniform.
  • the thickness of the straight pipe 12 is 3 mm or more, preferably 5 mm or more.
  • the reflectance of the ultraviolet light incident on the inner wall surface 16 can be increased.
  • the straight pipe 12 is made of PTFE, it is known from the knowledge of the present inventors that the diffuse reflectance of ultraviolet light is about 90% or more when the thickness of the straight pipe 12 is 3 mm or more.
  • the light source 38 is a so-called UV-LED (Ultra Violet-Light Emitting Diode) light source including a light emitting element that emits ultraviolet light.
  • the light source 38 outputs deep ultraviolet light having a center wavelength or peak wavelength in a range of about 200 nm to 350 nm.
  • the light source 38 preferably emits ultraviolet light in the vicinity of 260 nm to 290 nm, which is a wavelength with high sterilization efficiency.
  • a light emitting element that outputs such a wavelength for example, an element using aluminum gallium nitride (AlGaN) is known.
  • the light source 38 is provided in the vicinity of the window member 26 and is arranged so as to irradiate the processing flow path 28 with ultraviolet light in the axial direction via the window member 26.
  • the light source 38 may include an adjustment mechanism for adjusting the light distribution angle of the light emitting element. For example, when the directivity angle or orientation angle of the light emitting element included in the light source 38 is 60 degrees or more, 90 degrees or more, or 120 degrees or more, the adjustment mechanism adjusts the emission angle so that the orientation angle ⁇ is 30 degrees or less.
  • the adjustment mechanism may be constituted by a transmission type optical system such as a lens, or may be constituted by a reflection type optical system such as a concave mirror.
  • the adjusting mechanism adjusts the light distribution angle ⁇ so that most of the ultraviolet light output from the light source 38 enters the straight tube 12.
  • the adjustment mechanism may be configured such that the incident angle of the ultraviolet light incident on the inner wall surface 16 of the processing channel 28 is 75 degrees or more.
  • the inner wall surface 16 is made of PTFE
  • the present inventors know that the reflectance on the surface becomes very high when the incident angle to the PTFE is 70 degrees or more.
  • the ultrasonic vibrator 40 vibrates the casing 20 and the vibrating body 42 to help remove dirt adhering to the inner surfaces of the straight pipe 12, the casing 20, and the window member 26.
  • the ultrasonic transducer 40 is attached to the inflow side end portion 21 of the housing 20 via the vibrating body 42.
  • the ultrasonic transducer 40 operates intermittently at a predetermined time interval such as 30 minutes or 1 hour so that dirt adhering to the inner surfaces of the straight tube 12, the housing 20, and the window member 26 is removed. To do.
  • the ultrasonic transducer 40 may operate continuously during use of the fluid sterilizer 10.
  • the vibrating body 42 includes a plate-like member 44 and a rod-like member 46.
  • the plate-like member 44 is disposed outside the housing 20 and is provided between the housing 20 and the ultrasonic transducer 40.
  • the plate-like member 44 mainly plays a role of transmitting vibration from the ultrasonic transducer 40 to the housing 20.
  • the rod-shaped member 46 is disposed inside the housing 20 and extends in the axial direction along the central axis of the straight pipe 12.
  • the rod-shaped member 46 may be disposed on the central axis of the straight pipe 12 or may be disposed at a position shifted from the central axis of the straight pipe 12.
  • the rod-shaped member 46 mainly plays a role of transmitting vibration from the ultrasonic transducer 40 to the processing flow path 28 inside the straight pipe 12.
  • the plate-like member 44 and the rod-like member 46 may be integrally formed or may be connected after being formed as separate bodies.
  • the rod-shaped member 46 is inserted into the mounting hole 36 provided in the inflow side end portion 21 and is connected to the plate-shaped member 44.
  • the tip 48 of the rod-shaped member 46 reaches the vicinity of the downstream end 14, that is, the vicinity of the outflow end 22 or the window member 26.
  • the rod-shaped member 46 is disposed so that a slight gap is provided between the window member 26 and the tip 48.
  • the tip 48 is located between the downstream end 14 and the window member 26, and the rod-shaped member 46 is longer in the axial direction than the straight pipe 12.
  • the rod-shaped member 46 may be provided so that the rod-shaped member 46 is accommodated inside the downstream end portion 14, and the distal end portion 48 may be located inside the straight pipe 12.
  • the rod-shaped member 46 preferably extends longer in the axial direction, and the distal end portion 48 is preferably located closer to the downstream end portion 14 than the upstream end portion 13.
  • the vibrating body 42 is preferably made of a material that can easily transmit ultrasonic waves from the ultrasonic transducer 40 far in the axial direction, and is made of a material having a large acoustic impedance difference from the fluid flowing through the processing flow path 28. It is preferable.
  • the vibrating body 42 is preferably made of a metal material having a large acoustic impedance difference with water, and in particular, it is preferably made of stainless steel that has little elution into water. Comparing acoustic impedance, water is 1.5 ⁇ 10 6 [kg / m 2 / s], whereas stainless steel is 45 ⁇ 10 6 [kg / m 2 / s].
  • the ultrasonic wave propagating in the fluid in the processing flow path 28 is reflected with high efficiency at the interface with the vibrating body 42 and transmits the ultrasonic wave farther in the axial direction. it can.
  • PTFE constituting the straight pipe 12 is 2.5 ⁇ 10 6 [kg / m 2 / s], and can be said to be a material having a small acoustic impedance difference with water. Therefore, reflection of ultrasonic waves hardly occurs on the inner wall surface 16 of the straight pipe 12, and the straight pipe 12 mainly serves as an ultrasonic absorber.
  • the casing 20 is preferably made of a material that can easily transmit ultrasonic waves from the ultrasonic transducer 40 far in the axial direction, and has a large acoustic impedance difference from the fluid flowing through the processing flow path 28. It is preferable to be comprised with a material. In other words, it is preferably made of a material having an acoustic impedance closer to the vibrating body 42 than the straight pipe 12.
  • the housing 20 is made of a metal material, and is made of, for example, stainless steel like the vibrating body 42. By configuring the casing 20 with such a material, it is possible to efficiently reflect ultrasonic waves on the inner surface of the casing 20 and to propagate in the axial direction.
  • the fluid sterilizer 10 irradiates the fluid flowing through the processing flow path 28 with ultraviolet light from the light source 38. Since the ultraviolet light from the light source 38 propagates in the axial direction while being reflected by the inner wall surface 16 of the straight tube 12 made of a fluorine-based resin material, high-intensity ultraviolet light can be irradiated far in the axial direction.
  • the fluid sterilizer 10 vibrates the casing 20 and the vibrating body 42 by the ultrasonic vibrator 40.
  • the ultrasonic wave transmitted through the fluid flowing through the processing channel 28 propagates in the axial direction while being reflected by the casing 20 and the vibrating body 42 having high acoustic impedance, it is possible to propagate high-intensity vibration far in the axial direction. it can.
  • the high-intensity ultraviolet light is irradiated to the fluid flowing through the processing flow path 28 while preventing the adhesion of dirt to the inner wall surface 16 of the straight pipe 12 and the inner surface of the casing 20 and the window member 26 by ultrasonic vibration. It can be sterilized. As a result, it is possible to prevent the adhesion of dirt to the inner wall surface that defines the processing flow path 28, and to reduce maintenance man-hours such as cleaning the inside.
  • the ultrasonic transducer 40 is provided at the inflow side end portion 21 and the light source 38 is provided at the outflow side end portion 22 .
  • the arrangement of the ultrasonic transducer 40 and the light source 38 is reversed, the light source 38 and the window member 26 are arranged at the inflow side end 21, and the ultrasonic transducer 40 is arranged at the outflow side end 22.
  • the plate-like member 44 of the vibrating body 42 may be disposed at the outflow side end 22, and the rod-like member 46 may extend from the outflow side end 22 toward the inflow side end 21.
  • the apparatus has been described as a device for performing sterilization treatment by irradiating a fluid such as water with ultraviolet light.
  • this apparatus may be used for a purification process for decomposing an organic substance contained in a fluid by irradiation with ultraviolet light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

流体殺菌装置10は、処理流路28を区画する直管12と、処理流路28に向けて直管12の軸方向に紫外光を照射する光源38と、直管12の内側において直管12の軸方向に延在する振動体42と、振動体42を振動させる超音波振動子40と、を備える。振動体42は、処理流路28を流れる流体との音響インピーダンス差が直管12より大きい材料で構成されてもよい。直管12は、フッ素系樹脂材料で構成され、振動体42は、金属材料で構成されてもよい。

Description

流体殺菌装置
 本発明は、流体殺菌装置に関し、特に、紫外光を照射して流体を殺菌する技術に関する。
 紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、水などの流体に紫外光を照射することで、流体を連続的に殺菌する装置も用いられている。例えば、直管状の金属パイプで形成される流路の管端部内壁に紫外線LEDを配置した装置が挙げられる(例えば、特許文献1参照)。
特開2011-16074号公報
 管状の流体殺菌装置では、使用により管内壁に汚れが付着することがあり、定期的に管内部を清掃するなどのメンテナンスが必要となる。
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、使用に伴う管内壁の汚れを防止できる流体殺菌装置を提供することにある。
 本発明のある態様の流体殺菌装置は、処理流路を区画する直管と、処理流路に向けて直管の軸方向に紫外光を照射する光源と、直管の内側において直管の軸方向に延在する振動体と、振動体を振動させる超音波振動子と、を備える。
 この態様によると、直管の内側に配置される振動体を超音波振動させて直管の内壁面を洗浄することができる。軸方向に延在する振動体を直管の内側に挿入することで、直管を直接振動させる場合と比べて洗浄効率を高めることができる。これにより、管内壁への汚れの付着を防止し、管内部を清掃するなどのメンテナンス工数を低減できる。
 振動体は、処理流路を流れる流体との音響インピーダンス差が直管より大きい材料で構成されてもよい。
 直管は、フッ素系樹脂材料で構成され、振動体は、金属材料で構成されてもよい。
 直管を内部に収容し、処理流路を流れる流体の流入口および流出口を有する筐体をさらに備えてもよい。筐体は、直管よりも振動体に近い音響インピーダンスを有する材料で構成されてもよい。
 超音波振動子は、筐体を挟んで直管の軸方向に光源と対向する位置に設けられてもよい。振動体は、筐体と超音波振動子の間に配置される板状部材と、板状部材から光源に向けて直管の軸方向に延在する棒状部材と、を含んでもよい。
 本発明によれば、使用に伴う管内壁の汚れを防止できる流体殺菌装置を提供できる。
実施の形態に係る流体殺菌装置の構成を概略的に示す断面図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施の形態に係る流体殺菌装置10の構成を概略的に示す図である。流体殺菌装置10は、直管12と、筐体20と、流入管31と、流出管32と、光源38と、超音波振動子40と、振動体42とを備える。流体殺菌装置10は、直管12で区画される処理流路28を流れる流体に紫外光を照射して殺菌処理を施すために用いられる。
 筐体20は、流入側端部21と、流出側端部22と、流入口23と、流出口24と、窓部材26とを有する。筐体20は、流入側端部21から流出側端部22に向けて軸方向に延びており、内部に直管12を収容する。流入側端部21には超音波振動子40が設けられる。流出側端部22には、光源38からの紫外光を透過する窓部材26が設けられる。窓部材26は、石英(SiO)やサファイア(Al)、非晶質のフッ素系樹脂といった紫外光の透過率が高い部材で構成される。
 流入口23は、流入側端部21の近傍に設けられる。流入口23には、筐体20の軸方向と交差または直交する方向に延びる流入管31が取り付けられている。流出口24は、流出側端部22の近傍に設けられている。流出口24には、筐体20の軸方向と交差または直交する方向に延びる流出管32が取り付けられている。
 直管12は、上流側端部13と、下流側端部14と、内壁面16と、外壁面17とを有する。直管12は、上流側端部13から下流側端部14に向けて軸方向に延びており、例えば内直径の3倍以上の長さを有する。直管12は、筐体20の内面34を被覆するライナであり、流入口23と流出口24の間の位置において筐体20の内部に収容され、処理流路28を区画する。直管12は、上流側端部13が流入口23の近傍に位置し、下流側端部14が流出口24の近傍に位置するように配置される。
 直管12は、フッ素系樹脂材料で構成され、例えば、全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)で構成される。PTFEは、化学的に安定した材料であり、耐久性、耐熱性および耐薬品性に優れた材料である。また、PTFEは、紫外光の反射率が高い材料である。そのため、PTFEで構成される直管12を設けることにより、光源38からの紫外光を内壁面16で反射させながら直管12の軸方向に伝搬させることができる。
 直管12は、内壁面16と外壁面17の間の厚さが均一となるように構成される。直管12の厚さは、3mm以上であり、好ましくは5mm以上である。直管12の厚さをある程度以上とすることにより、内壁面16に入射する紫外光の反射率を高めることができる。直管12がPTFEで構成される場合、直管12の厚さを3mm以上とすることで紫外光の拡散反射率が約90%以上となることが本発明者らの知見により分かっている。
 光源38は、紫外光を発する発光素子を含むいわゆるUV-LED(Ultra Violet-Light Emitting Diode)光源である。光源38は、その中心波長またはピーク波長が約200nm~350nmの範囲に深紫外光を出力する。光源38は、殺菌効率の高い波長である260nm~290nm付近の紫外光を発することが好ましい。このような波長を出力する発光素子として、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。
 光源38は、窓部材26の近傍に設けられ、窓部材26を介して処理流路28に軸方向に紫外光を照射するよう配置される。光源38は、発光素子の配光角を調整するための調整機構を含んでもよい。調整機構は、例えば、光源38に含まれる発光素子の指向角または配向角が60度以上、90度以上または120度以上である場合に、その出射角を調整して配向角φが30度以下となるようにする。調整機構は、レンズなどの透過型の光学系で構成されてもよいし、凹面鏡などの反射型の光学系で構成されてもい。
 調整機構は、配光角φを調整することにより、光源38から出力される紫外光の大半が直管12の内部に入射するようにする。調整機構は、処理流路28の内壁面16に入射する紫外光の入射角が75度以上となるようにしてもよい。特に内壁面16がPTFEで構成される場合、PTFEへの入射角が70度以上となると表面での反射率が非常に高くなることが本発明者らの知見により分かっている。調整機構により紫外光の配向角を調整することで、より高強度の紫外光が処理流路28のより遠くまで伝搬するようにできる。
 超音波振動子40は、筐体20および振動体42に振動を与えて直管12、筐体20および窓部材26の内面に付着する汚れの除去を助ける。超音波振動子40は、振動体42を介して筐体20の流入側端部21に取り付けられる。超音波振動子40は、例えば30分や1時間などの所定の時間間隔ごとに間欠的に動作して直管12、筐体20および窓部材26の内面に付着する汚れが除去されるようにする。超音波振動子40は、流体殺菌装置10の使用時において連続的に動作してもよい。
 振動体42は、板状部材44と棒状部材46とを含む。板状部材44は、筐体20の外側に配置され、筐体20と超音波振動子40の間に設けられる。板状部材44は、主に筐体20に超音波振動子40からの振動を伝達する役割を果たす。棒状部材46は、筐体20の内部に配置され、直管12の中心軸に沿って軸方向に延在する。棒状部材46は、直管12の中心軸上に配置されてもよいし、直管12の中心軸からずれた位置に配置されてもよい。棒状部材46は、主に直管12の内側の処理流路28に超音波振動子40からの振動を伝達する役割を果たす。板状部材44および棒状部材46は、一体的に形成されてもよいし、別体として形成した後に接続されてもよい。
 棒状部材46は、流入側端部21に設けられる取付孔36に挿通されて板状部材44と繋がる。棒状部材46の先端部48は、下流側端部14の近傍、つまり、流出側端部22または窓部材26の近傍に達する。棒状部材46は、窓部材26と先端部48との間にわずかな隙間が設けられるように配置される。図示する例では、先端部48が下流側端部14と窓部材26の間に位置しており、直管12よりも棒状部材46の方が軸方向に長い。変形例では、下流側端部14の内側に棒状部材46が収まるように棒状部材46が設けられてもよく、先端部48が直管12の内側に位置してもよい。なお、棒状部材46は軸方向に長く延びることが好ましく、先端部48が上流側端部13よりも下流側端部14の近くに位置することが好ましい。
 振動体42は、超音波振動子40からの超音波を軸方向に遠くまで伝達させやすい材料で構成されることが好ましく、処理流路28を流れる流体との音響インピーダンス差が大きい材料で構成されることが好ましい。流体が水である場合、水との音響インピーダンス差が大きい金属材料で振動体42が構成されることが好ましく、特に、水への溶出性の少ないステンレスで構成されることが好ましい。音響インピーダンスを比較すると、水が1.5×10[kg/m/s]であるのに対し、ステンレスは45×10[kg/m/s]である。流体との音響インピーダンス差が大きい材料を用いることにより、処理流路28の流体中を伝搬する超音波が振動体42との界面にて高効率で反射され、軸方向により遠くまで超音波を伝達できる。一方、直管12を構成するPTFEは、2.5×10[kg/m/s]であり、水との音響インピーダンス差が小さい材料であると言える。そのため、直管12の内壁面16では超音波の反射がほとんど生じず、直管12は主に超音波の吸収体となる。
 同様にして、筐体20は、超音波振動子40からの超音波を軸方向に遠くまで伝達させやすい材料で構成されることが好ましく、処理流路28を流れる流体との音響インピーダンス差が大きい材料で構成されることが好ましい。いいかえれば、直管12よりも振動体42に近い音響インピーダンスを有する材料で構成されることが好ましい。筐体20は、金属材料で構成され、例えば、振動体42と同様にステンレスで構成される。筐体20をこのような材料で構成することで、筐体20の内面にて超音波を効率的に反射させ、軸方向に伝搬するようにできる。
 以上の構成によれば、流体殺菌装置10は、処理流路28を流れる流体に光源38からの紫外光を照射する。光源38からの紫外光は、フッ素系樹脂材料で構成される直管12の内壁面16で反射されながら軸方向に伝搬するため、軸方向の遠くまで高強度の紫外光を照射できる。流体殺菌装置10は、超音波振動子40により筐体20および振動体42を振動させる。処理流路28を流れる流体を伝わる超音波は、音響インピーダンスの高い筐体20および振動体42にて反射されながら軸方向に伝搬するため、軸方向の遠くまで高強度の振動を伝搬させることができる。これにより、直管12の内壁面16や筐体20および窓部材26の内面への汚れの付着を超音波振動により防ぎながら、処理流路28を流れる流体に高強度の紫外光を照射して殺菌処理を施すことができる。これにより、処理流路28を区画する内壁面への汚れの付着を防止し、内部を清掃するなどのメンテナンス工数を低減できる。
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 上述の実施の形態では、流入側端部21に超音波振動子40を設け、流出側端部22に光源38を設ける場合を示した。変形例においては、超音波振動子40と光源38の配置を逆にして、流入側端部21に光源38および窓部材26を配置し、流出側端部22に超音波振動子40を配置してもよい。この場合、振動体42の板状部材44が流出側端部22に配置され、棒状部材46が流出側端部22から流入側端部21に向けて延在してもよい。
 上述の実施の形態では、水などの流体に紫外光を照射して殺菌処理を施すための装置として説明した。変形例においては、紫外光の照射により流体に含まれる有機物を分解させる浄化処理に本装置を用いてもよい。
 10…流体殺菌装置、12…直管、20…筐体、23…流入口、24…流出口、28…処理流路、38…光源、40…超音波振動子、42…振動体、44…板状部材、46…棒状部材。
 本発明によれば、使用に伴う管内壁の汚れを防止しうる流体殺菌装置を提供できる。

Claims (5)

  1.  処理流路を区画する直管と、
     前記処理流路に向けて前記直管の軸方向に紫外光を照射する光源と、
     前記直管の内側において前記直管の軸方向に延在する振動体と、
     前記振動体を振動させる超音波振動子と、を備えることを特徴とする流体殺菌装置。
  2.  前記振動体は、前記処理流路を流れる流体との音響インピーダンス差が前記直管より大きい材料で構成されることを特徴とする請求項1に記載の流体殺菌装置。
  3.  前記直管は、フッ素系樹脂材料で構成され、前記振動体は、金属材料で構成されることを特徴とする請求項1または2に記載の流体殺菌装置。
  4.  前記直管を内部に収容し、前記処理流路を流れる流体の流入口および流出口を有する筐体をさらに備え、
     前記筐体は、前記直管よりも前記振動体に近い音響インピーダンスを有する材料で構成されることを特徴とする請求項1から3のいずれか一項に記載の流体殺菌装置。
  5.  前記超音波振動子は、前記筐体を挟んで前記直管の軸方向に前記光源と対向する位置に設けられ、
     前記振動体は、前記筐体と前記超音波振動子の間に配置される板状部材と、前記板状部材から前記光源に向けて前記直管の軸方向に延在する棒状部材と、を含むことを特徴とする請求項4に記載の流体殺菌装置。
PCT/JP2017/037203 2016-10-19 2017-10-13 流体殺菌装置 WO2018074360A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205529A JP6817021B2 (ja) 2016-10-19 2016-10-19 流体殺菌装置
JP2016-205529 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074360A1 true WO2018074360A1 (ja) 2018-04-26

Family

ID=62018403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037203 WO2018074360A1 (ja) 2016-10-19 2017-10-13 流体殺菌装置

Country Status (2)

Country Link
JP (1) JP6817021B2 (ja)
WO (1) WO2018074360A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049005A (ja) * 2019-09-24 2021-04-01 東芝ライテック株式会社 流体殺菌装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108665U (ja) * 1973-01-11 1974-09-17
JP2001524355A (ja) * 1997-12-03 2001-12-04 シー. ダーウィン,ローレンス 超音波装置を組み込んだ水殺菌システム
JP2007289880A (ja) * 2006-04-26 2007-11-08 Contig I:Kk 超音波殺菌装置及びこれを備える循環式浴槽水浄化装置
JP2008080191A (ja) * 2006-09-26 2008-04-10 Elekon Kagaku Kk 超音波殺菌装置
JP2009066478A (ja) * 2007-09-11 2009-04-02 Toshiba Corp 紫外線照射水処理装置
JP2014076425A (ja) * 2012-10-10 2014-05-01 Sharp Corp 気液混合液生成装置、微細気泡水の製造方法、微細気泡液および電子機器
WO2015046014A1 (ja) * 2013-09-24 2015-04-02 旭有機材工業株式会社 紫外線殺菌装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108665U (ja) * 1973-01-11 1974-09-17
JP2001524355A (ja) * 1997-12-03 2001-12-04 シー. ダーウィン,ローレンス 超音波装置を組み込んだ水殺菌システム
JP2007289880A (ja) * 2006-04-26 2007-11-08 Contig I:Kk 超音波殺菌装置及びこれを備える循環式浴槽水浄化装置
JP2008080191A (ja) * 2006-09-26 2008-04-10 Elekon Kagaku Kk 超音波殺菌装置
JP2009066478A (ja) * 2007-09-11 2009-04-02 Toshiba Corp 紫外線照射水処理装置
JP2014076425A (ja) * 2012-10-10 2014-05-01 Sharp Corp 気液混合液生成装置、微細気泡水の製造方法、微細気泡液および電子機器
WO2015046014A1 (ja) * 2013-09-24 2015-04-02 旭有機材工業株式会社 紫外線殺菌装置

Also Published As

Publication number Publication date
JP6817021B2 (ja) 2021-01-20
JP2018064772A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
JP6675287B2 (ja) 流体殺菌装置
US7763177B2 (en) System and method for ultrasonic cleaning of ultraviolet disinfection system
CN108472396B (zh) 流体杀菌装置
JP6698496B2 (ja) 紫外光照射装置
WO2017051774A1 (ja) 流体殺菌装置
WO2017056902A1 (ja) 照射装置および流体殺菌方法
CN109395118B (zh) 流动流体消毒方法和消毒器
US6818128B2 (en) Apparatus for directing ultrasonic energy
US11142469B2 (en) Water treatment apparatus
JP2016214842A (ja) 液体および設備の内部表面のための処理システム
JP6193873B2 (ja) 汚損軽減装置及び方法
JP2001524355A (ja) 超音波装置を組み込んだ水殺菌システム
JP2015500461A6 (ja) 汚損軽減装置及び方法
WO2018074360A1 (ja) 流体殺菌装置
CN111320230A (zh) 用于为流体消毒的装置
WO2018037938A1 (ja) 流水殺菌装置および流水殺菌方法
JP2017104830A (ja) 流体殺菌装置
US10759679B2 (en) Fluid sterilization device
JP6771399B2 (ja) 照射装置
JP4247150B2 (ja) 超音波殺菌分解装置
WO2013043047A1 (en) Device and method for disinfecting a liquid with acoustic waves and uv radiation
JP7043172B2 (ja) 照射装置
JP7132992B2 (ja) 照射装置
RU82212U1 (ru) Устройство для обеззараживания жидкости
RU2232723C2 (ru) Ламповый модуль и способ его очистки

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861845

Country of ref document: EP

Kind code of ref document: A1