WO2018073939A1 - 測定プログラム、測定方法及び測定装置 - Google Patents

測定プログラム、測定方法及び測定装置 Download PDF

Info

Publication number
WO2018073939A1
WO2018073939A1 PCT/JP2016/081138 JP2016081138W WO2018073939A1 WO 2018073939 A1 WO2018073939 A1 WO 2018073939A1 JP 2016081138 W JP2016081138 W JP 2016081138W WO 2018073939 A1 WO2018073939 A1 WO 2018073939A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
frequency
occupant
peak
Prior art date
Application number
PCT/JP2016/081138
Other languages
English (en)
French (fr)
Inventor
隆行 山地
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/081138 priority Critical patent/WO2018073939A1/ja
Priority to JP2018546111A priority patent/JPWO2018073939A1/ja
Publication of WO2018073939A1 publication Critical patent/WO2018073939A1/ja
Priority to US16/376,457 priority patent/US20190231272A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present disclosure relates to a measurement program, a measurement method, and a measurement apparatus.
  • Patent Document 1 a technique for accurately measuring occupant information under an environment such as in a vehicle is known (see, for example, Patent Document 1).
  • an object of the present invention is to realize accurate measurement using radio waves.
  • a first signal from a first sensor that is provided at a first position corresponding to a height of the occupant's waist in a backrest portion of a seat on which the occupant sits, and capable of detecting movement with radio waves
  • Based on the first signal and the second signal a measurement result relating to a predetermined component included in the second signal is output.
  • a measurement program for causing a computer to execute processing is provided.
  • FIG. 2 is a block diagram illustrating an example of a hardware configuration of a measurement apparatus according to Embodiment 1.
  • FIG. It is a block diagram which shows an example of the one electromagnetic wave transmission / reception part.
  • 3 is a block diagram illustrating an example of a functional configuration of a measurement apparatus according to Embodiment 1.
  • FIG. It is a figure which shows an example of the analysis result which frequency-analyzed the waist
  • FIG. 6 is a block diagram illustrating an example of a functional configuration of a measurement apparatus according to Embodiment 2.
  • FIG. It is a figure which shows an example of the analysis result which frequency-analyzed the inertial sensor signal. It is explanatory drawing of the effect of Example 2.
  • FIG. It is a flowchart which shows the operation example of a measuring apparatus.
  • the measurement device measures occupant information (information on the occupant's heartbeat or respiration) using a sensor that uses radio waves for measurement, such as a Doppler sensor.
  • the Doppler sensor will be described prior to the description of the measuring apparatus.
  • the Doppler sensor irradiates an object with a radio wave such as a microwave and can capture the movement of the object from the amount of change in the reflected wave from the object.
  • a radio wave such as a microwave
  • the basic principle is that the Doppler effect is used, and the amount of reflection changes when the distance from the object that is radiated and reflected by radio waves changes, so the amount of reflection can be converted into a voltage value. It is taken as a signal.
  • a radio wave is applied to a living body, various information is included in a signal reflected from the living body due to the body surface, heartbeat, respiration, body movement, and the like.
  • FIG. 1A is a diagram showing an example of a mounting state of the Doppler sensor 70.
  • FIG. 1A schematically shows an occupant 5 sitting (sitting) on a seat 90 in a side view.
  • FIG. 1A schematically shows a Doppler sensor 70 provided on the seat 90 in a perspective view.
  • FIG. 1A (same for FIG. 1B described later) is for explaining the mounting position of the Doppler sensor 70, and the Doppler sensor 70 is schematically shown.
  • FIG. 1A shows X, Y, and Z axes as three orthogonal axes.
  • FIG. 1B is a plan view schematically showing a backrest portion on which the Doppler sensor 70 is mounted.
  • the seat 90 is attached to the vehicle.
  • Vehicles are motorcycles, automobiles (four wheels), trucks, buses, ships, aircraft, construction machines, and the like.
  • the occupant 5 is a vehicle occupant and a driver, but may be a passenger other than the driver.
  • a space (cabin, cockpit, etc.) in a vehicle is an example of an environment in which noise due to vibration or the like is likely to occur.
  • the vehicle is accompanied by a relatively intense movement such as a training aircraft (a relatively high acceleration occurs). Yes) it is a vehicle.
  • the present embodiment is suitable for a vehicle in which vibrations in use are generated in various modes and the vibrations are relatively large.
  • the seat 90 may be directly fixed to the vehicle floor 80, or may be slidably attached to the vehicle floor 80 via a slide mechanism (not shown).
  • a slide mechanism not shown
  • the occupant 5 can be restrained on the seat 90 by a seat belt (not shown) or the like.
  • the seat 90 includes a seat surface portion 91, a backrest portion 92, and a headrest portion 93.
  • the material of the seat 90 is arbitrary, and the surface layer may be fiber or leather.
  • the seat 90 may be a type in which the angle of the backrest portion 92 with respect to the seat surface portion 91 is variable (that is, a type capable of reclining) or a type incapable of reclining.
  • the seat 90 may include a damper (anti-vibration rubber or a spring) so as not to directly transmit an input such as vibration transmitted to the vehicle floor 80 to the occupant 5.
  • the backrest part 92 includes a lower part 921 and an upper part 922.
  • the lower portion 921 rises from the seat surface portion 91.
  • the lower portion 921 includes a portion that hits the waist (behind the lumbar spine) of the occupant 5 to be seated, and mainly supports the occupant 5's waist.
  • the upper part 922 includes a portion of the back of the seated occupant 5 that is located above the waist, and mainly supports the upper side of the back of the occupant 5 (behind the thoracic vertebrae).
  • Doppler sensors 70 are provided on the backrest 92.
  • the Doppler sensor 70 may be incorporated inside the surface layer of the backrest portion 92.
  • Doppler sensors 70-1 and 70-2 are referred to as Doppler sensors 70-1 and 70-2.
  • the Doppler sensor 70-1 (an example of the first sensor) is provided in the lower portion 921 of the backrest portion 92. That is, as shown in FIG. 1A, the Doppler sensor 70-1 is provided at a position corresponding to the waist height of the occupant 5 (an example of a first position). Functionally, the Doppler sensor 70-1 is provided in the lower portion 921 so that radio waves can be transmitted in the direction in which the occupant 5 is located. Therefore, the Doppler sensor 70-1 can detect the waist movement of the occupant 5 based on the reflected wave of the transmitted radio wave.
  • the Doppler sensor 70-1 is preferably provided at the center in the width direction (X direction in FIG. 1B) of the lower portion 921 of the backrest portion 92, as shown in FIG. 1B. Thereby, there is a high possibility that a radio wave hitting the waist of the occupant 5 seated on the seat 90 can be transmitted.
  • the direction of emission of radio waves by the Doppler sensor 70-1 is substantially perpendicular to the surface of the lower portion 921 at the mounting location.
  • the Doppler sensor 70-2 (an example of the second sensor) is provided on the upper portion 922 of the backrest portion 92. That is, as shown in FIG. 1A, the Doppler sensor 70-2 is provided at a position corresponding to the chest height of the occupant 5 (an example of a second position). Functionally, the Doppler sensor 70-2 is provided in the upper part 922 so that radio waves can be transmitted in the direction in which the chest of the occupant 5 is located. Therefore, the Doppler sensor 70-2 can detect the movement of the chest (including lungs, heart, etc.) of the occupant 5 based on the reflected wave of the transmitted radio wave.
  • the Doppler sensor 70-2 is preferably provided at the center in the width direction (X direction in FIG. 1B) of the upper portion 922 of the backrest portion 92, as shown in FIG. 1B. As a result, the possibility of transmitting radio waves hitting the chest of the occupant 5 seated on the seat 90 increases.
  • the direction of emission of radio waves by the Doppler sensor 70-2 is substantially perpendicular to the surface of the upper portion 922 at the mounting location.
  • FIG. 2 is an explanatory diagram of the configuration of one Doppler sensor 70.
  • FIG. 2 shows the occupant 5 together with one Doppler sensor 70 for explanation.
  • the Doppler sensor 70 includes a radio wave transmission / reception unit 25, and the radio wave transmission / reception unit 25 includes a radio wave transmission unit 1 and a radio wave reception unit 2. Details of the radio wave transmitting / receiving unit 25 will be described later with reference to FIG.
  • the radio wave transmission unit 1 irradiates the human body of the occupant 5 with radio waves.
  • the radio wave band is arbitrary. Examples of radio waves include ultra high frequency (UHF: Ultra High Frequency) and microwave (SHF: Super High Frequency). Still further, the radio wave may be in the 2.4G band, for example.
  • the radio wave receiver 2 receives a radio wave reflected from the occupant 5.
  • the Doppler sensor 70 shown in FIG. 2 corresponds to the Doppler sensor 70-2 in the positional relationship with the occupant 5, but the Doppler sensor 70-1 has the same configuration itself.
  • the radio wave transmission / reception unit 25 of the Doppler sensor 70-1 is referred to as a radio wave transmission / reception unit 25-1
  • the radio wave transmission / reception unit 25 of the Doppler sensor 70-2 is referred to as a radio wave transmission / reception unit 25-2.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the measurement apparatus 10 according to the first embodiment.
  • the measurement apparatus 10 forms an example of a measurement system in combination with Doppler sensors 70-1 and 70-2.
  • the measuring device 10 is formed by a computer (an example of a processing device).
  • the measuring apparatus 10 includes a CPU (Central Processing Unit) 11, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 13, a recording medium interface 14, and a display control connected via a bus 19. Part 15 is included.
  • the measurement apparatus 10 includes an input / output control unit 16 and a communication interface 17.
  • a recording medium such as an SD (Secure Digital) card (or memory card) 21 can be connected to the recording medium interface 14.
  • a display device 22 is connected to the display control unit 15.
  • An input / output device 24 is connected to the input / output control unit 16.
  • the input / output device 24 may be a touch panel, a speaker, or the like.
  • the functions of the display device 22 and the input / output device 24 may be realized by a touch panel.
  • the recording medium interface 14 and the SD card 21, the input / output control unit 16 and the input / output device 24, the display device 22 and the display control unit 15, and / or the wireless transmission / reception unit 26 may be omitted as appropriate.
  • the communication interface 17 is an interface for performing wired or wireless communication with the outside. Wireless communication is performed via a wireless communication network in a mobile phone, near field communication (NFC), Bluetooth (registered trademark), Wi-Fi (Wireless-Fidelity), infrared rays, and the like. May be realized.
  • Doppler sensors 70-1 and 70-2 are connected to the communication interface 17. The measuring apparatus 10 acquires sensor signals to be described later from the Doppler sensors 70-1 and 70-2 via the communication interface 17.
  • the CPU 11 has a function of controlling the entire operation of the measuring apparatus 10.
  • RAM12 and ROM13 form the memory
  • the program includes a program that causes the CPU 11 to perform measurement processing and function as a measurement device.
  • the storage unit may include the SD card 21.
  • the storage unit that stores the program is an example of a computer-readable storage medium.
  • the display device 22 has a function of displaying a measurement processing result and the like under the control of the display control unit 15.
  • FIG. 4 is a block diagram showing an example of the radio wave transmitting / receiving unit 25-1. The same applies to the radio wave transmitting / receiving unit 25-2.
  • the radio wave transmission / reception unit 25-1 includes a control unit 251, an oscillation circuit 252, antennas 253T and 253R, a detection circuit 254, a power supply circuit 255, and operational amplifiers (Operational Amplifiers) 256 and 258.
  • the transmission wave (radio wave) generated by the oscillation circuit 252 is demultiplexed by the antenna 253T and the detection circuit 254, and the transmission wave transmitted from the antenna 253T is irradiated to the occupant 5.
  • the transmitted wave applied to the occupant 5 is reflected, and the reflected wave of the transmitted wave from the occupant 5 is received by the antenna 253R.
  • the reflected wave indicated by the alternate long and short dash line received by the antenna 253R interferes with the transmission wave indicated by the solid line at the node N, and a combined wave (DC component) indicated by the alternate long and short dash line is output from the detection circuit 254.
  • the operational amplifier 256 outputs the sensor output obtained by amplifying the synthesized wave via the communication interface 17.
  • the sensor output from the operational amplifier 256 (see the Doppler sensor output in FIG. 4) is also referred to as a sensor signal.
  • the power supply circuit 255 includes a battery that supplies a power supply voltage to the control unit 251, the oscillation circuit 252, the detection circuit 254, and the operational amplifier 256.
  • the battery is, for example, a rechargeable battery.
  • the power supply circuit 255 may be externally connected to the radio wave transmitting / receiving unit 25-1.
  • the antennas 253T and 253R may be integrated as a transmission / reception antenna.
  • the radio wave transmission unit 1 includes at least an oscillation circuit 252 and an antenna 253T
  • the radio wave reception unit 2 includes at least an antenna 253R, a detection circuit 254, and an operational amplifier 256.
  • FIG. 5 is a block diagram illustrating an example of a functional configuration of the measuring apparatus 10 according to the first embodiment.
  • FIG. 5 also shows Doppler sensors 70-1 and 70-2.
  • the measuring apparatus 10 includes sensor signal acquisition units 101 and 102 and frequency analysis units 103 and 104.
  • the sensor signal acquisition unit 101 and the frequency analysis unit 103 are systems related to the Doppler sensor 70-1, and the sensor signal acquisition unit 102 and the frequency analysis unit 104 are systems related to the Doppler sensor 70-2.
  • the sensor signal acquisition units 101 and 102 and the frequency analysis units 103 and 104 can be realized by the CPU 11 illustrated in FIG. 4 executing one or more programs stored in the ROM 13.
  • the measuring apparatus 10 further includes a comparison unit 107, a heartbeat filter processing unit 108, a respiration filter processing unit 109, a heartbeat feature point specifying unit 110, a respiration feature point specifying unit 111, and an output unit 112.
  • the comparison unit 107, the heart rate filter processing unit 108, the respiration filter processing unit 109, the heart rate feature point specifying unit 110, the respiration feature point specifying unit 111, and the output unit 112 are one or more stored in the ROM 13 by the CPU 11 shown in FIG. This can be realized by executing the program.
  • the sensor signal acquisition unit 101 acquires (receives) a sensor signal (see the Doppler sensor output in FIG. 4) from the radio wave transmission / reception unit 25-1 of the Doppler sensor 70-1.
  • the sensor signal an example of the first signal
  • the waist sensor signal is acquired in a state where the occupant 5 is seated on the seat 90.
  • the sensor signal acquisition unit 102 acquires (receives) a sensor signal from the radio wave transmission / reception unit 25-2 of the Doppler sensor 70-2.
  • the sensor signal an example of the second signal
  • the chest sensor signal is acquired in a state where the occupant 5 is seated on the seat 90.
  • the frequency analysis unit 103 specifies the frequency at which the feature point is obtained based on the waist sensor signal. Specifically, the frequency analysis unit 103 acquires a power spectrum by performing frequency analysis on the waist sensor signal obtained from the sensor signal acquisition unit 101.
  • the frequency analysis is, for example, FFT (Fast Fourier Transform), and for example, an analysis result shown in FIG. 6 is obtained.
  • FIG. 6 is a diagram illustrating an example of an analysis result obtained by frequency analysis of the waist sensor signal. In FIG. 6, the horizontal axis represents frequency, and the vertical axis represents intensity (power).
  • the frequency analysis unit 103 specifies the frequency at which a peak greater than or equal to the predetermined threshold Th1 occurs from the analysis result as shown in FIG. 6 as the frequency at which the feature point is obtained (hereinafter referred to as “first peak frequency”).
  • the predetermined threshold Th1 is a threshold for extracting only a frequency at which a significant feature point is obtained, and is a fitness value. There may be a plurality of first peak frequencies.
  • FIG. 6 illustrates peaks P 11 and P 12 as an example of peaks that are equal to or greater than the predetermined threshold Th1.
  • the peaks P 11 and P 12 (the same applies to the other peaks P 13 , P 14 , and P 15 less than the predetermined threshold Th1) are peaks caused by noise components, as will be described later.
  • the peaks P 11 and P 12 are feature points that are caused by the movement of the occupant 5 relative to the seat 90 (the movement of the hips).
  • the movement of the occupant 5 relative to the seat 90 that causes the peaks P 11 and P 12 can be caused by the movement and vibration of the vehicle itself, the movement of the occupant 5 itself, and the like.
  • the frequency analysis unit 104 specifies the frequency at which the feature point is obtained based on the chest sensor signal. Specifically, the frequency analysis unit 104 acquires a power spectrum by performing frequency analysis on the chest sensor signal obtained from the sensor signal acquisition unit 102.
  • FIG. 7 shows an example of a chest sensor signal. In FIG. 7, the horizontal axis represents time, and the vertical axis represents the sensor value.
  • the frequency analysis is FFT, for example, and an analysis result shown in FIG. 8 is obtained, for example.
  • FIG. 8 is a diagram showing an example of an analysis result obtained by frequency analysis of the chest sensor signal of FIG.
  • the horizontal axis represents frequency and the vertical axis represents intensity (power).
  • the waveform C1 shown in FIG. 6 is indicated by a two-dot chain line for comparison.
  • the frequency analysis unit 104 identifies a frequency at which a peak greater than or equal to the predetermined threshold Th2 is generated from the analysis result as shown in FIG. 8 as a frequency at which a feature point is obtained (hereinafter referred to as “second peak frequency”).
  • the predetermined threshold Th2 is a threshold for extracting only a frequency at which a significant feature point is obtained, and is a fitness value.
  • the predetermined threshold Th2 may be the same as the predetermined threshold Th1.
  • a frequency at which an intensity peak occurs as a result of frequency analysis such as the first peak frequency or the second peak frequency, is also referred to as “peak frequency”.
  • FIG. 8 illustrates peaks P 0 , P 1 , P 2 , and P 3 as an example of peaks that are equal to or greater than the predetermined threshold Th2.
  • Peak P 0 is a peak due to breathing (body surface or lung displacement associated with breathing of occupant 5)
  • peak P 1 includes a heartbeat (body surface or heart associated with pulsation of occupant 5's heart). It is a peak due to organ displacement.
  • the other peaks P 2 and P 3 (the same applies to the peaks P 4 and P 5 less than the predetermined threshold Th2) are peaks caused by noise components. That is, the peaks P 2 and P 3 are characteristic points that are generated due to the movement (chest movement) of the occupant 5 with respect to the seat 90.
  • the movement of the occupant 5 with respect to the seat 90 that causes the peaks P 2 and P 3 is caused by the movement and vibration of the vehicle itself, the movement of the occupant 5 itself, and the like.
  • the frequency analysis unit 104 identifies each frequency related to the peaks P 0 , P 1 , P 2 , and P 3 as the second peak frequency.
  • the comparison unit 107 compares the first peak frequency specified by the frequency analysis unit 103 with the second peak frequency specified by the frequency analysis unit 104. Then, the comparison unit 107, from among the plurality of second peak frequency are extracted and a second peak frequency according to the peak P 0 due to respiration and a second peak frequency according to the peak P 1 due to the heartbeat.
  • the second peak frequency related to the peak P 0 caused by respiration is also referred to as “breathing frequency”
  • the second peak frequency related to the peak P 1 caused by heartbeat is also referred to as “heartbeat frequency”.
  • the comparison unit 107 determines the respiratory activity included in the second peak frequency based on the comparison result between the first peak frequency specified by the frequency analysis unit 103 and the second peak frequency specified by the frequency analysis unit 104. Specify (extract) the frequency and the frequency of the heartbeat.
  • the comparison unit 107 extracts a second peak frequency significantly different from the first peak frequency from the plurality of second peak frequencies, and based on the extracted second peak frequency, the respiration frequency And specify (extract) the frequency of the heartbeat.
  • the frequency of respiration is generally in the range of 0.1 to 0.3 Hz
  • the frequency of heartbeats is generally in the range of 0.8 to 3 Hz. Therefore, the comparison unit 107 sets the second peak frequency within the range of 0.1 to 0.3 Hz from among the plurality of second peak frequencies and significantly different from the first peak frequency to the respiration frequency. As specified.
  • the comparison unit 107 has the second harmonic component.
  • the peak frequency may be specified as the breathing frequency.
  • the comparison unit 107 uses, as a heartbeat frequency, a second peak frequency that is within a range of 0.8 to 3 Hz and is significantly different from the first peak frequency among a plurality of second peak frequencies. Identify. When there are two or more second peak frequencies that are in the range of 0.8 to 3 Hz and significantly different from the first peak frequency, the comparison unit 107 outputs the second peak frequency having a harmonic component. May be specified as the heartbeat frequency.
  • the peak P 0, P 1, of the P 2, the second peak frequency f 0 of the P 3, f 1, f 2 , f 3, the second peak frequency f 0 , F 1 are significantly different from the first peak frequencies f 11 , f 12 associated with the peaks P 11 , P 12 .
  • the second peak frequencies f 2 and f 3 are substantially the same as the first peak frequencies f 11 and f 12 , respectively. This is because the second peak frequencies f 2 and f 3 are the peak frequencies related to the feature points due to the same movement as the first peak frequencies f 11 and f 12 (the movement of the occupant 5 with respect to the seat 90). .
  • the Doppler sensor 70-1 can detect the movement of the occupant 5 with respect to the seat 90, whereas the Doppler sensor 70-2 includes the movement related to the breathing of the occupant 5 in addition to the movement, and The movement related to the heartbeat of the occupant 5 can also be detected. Accordingly, among the three peak frequencies related to the movement of the occupant 5 with respect to the seat 90, the movement related to breathing, and the movement related to heartbeat, the second peak frequency includes the three peak frequencies, whereas the first peak frequency. Includes only the peak frequency related to the movement of the occupant 5 relative to the seat 90.
  • the comparison unit 107 can accurately specify the breathing frequency and the heartbeat frequency based on the comparison result between the first peak frequency and the second peak frequency.
  • the heartbeat filter processing unit 108 filters the chest sensor signal based on the heartbeat frequency specified by the comparison unit 107. Specifically, the filter processing unit 32 extracts the waveform of the frequency component related to the heartbeat from the chest sensor signal.
  • the filter process is, for example, a band-pass filter (BPF) process, and is performed to extract a heartbeat that fluctuates every beat. At this time, the band-pass filter may have a bandwidth of 0.2 Hz centering on the heartbeat frequency, for example.
  • a signal obtained by filtering the chest sensor signal with a bandpass filter centered on the heartbeat frequency is referred to as a “heartbeat filtering signal”.
  • FIG. 9 shows an example of a heartbeat filtering signal.
  • the heartbeat filtering signal shown in FIG. 9 is obtained by filtering the chest sensor signal of FIG.
  • the horizontal axis represents time
  • the vertical axis represents sensor values.
  • the heartbeat feature point specifying unit 110 specifies a feature point related to the heartbeat in the heartbeat filtering signal.
  • the method for specifying the feature points related to the heartbeat is arbitrary. For example, a feature point related to a heartbeat appears as a peak (each peak like Pa to Pd in FIG. 9) in the heartbeat filtering signal.
  • the heartbeat feature point specifying unit 110 specifies each peak in the heartbeat filtering signal as each feature point related to the heartbeat. Each peak in the heartbeat filtering signal can be specified by, for example, differentiating the heartbeat filtering signal.
  • the heartbeat feature point specifying unit 110 generates heartbeat information based on information representing the time of each peak in the heartbeat filtering signal.
  • the heartbeat information may be information representing the time of each peak in the heartbeat filtering signal, or may be information derived based on the time of each peak in the heartbeat filtering signal.
  • the heart rate information may be information representing a heart rate interval.
  • the heartbeat interval can be calculated as the time interval of each peak in the heartbeat filtering signal.
  • the respiration filter processing unit 109 filters the chest sensor signal based on the respiration frequency specified by the comparison unit 107. Specifically, the filter processing unit 32 extracts a waveform of a frequency component related to respiration from the chest sensor signal.
  • the filter process is, for example, a band pass filter process.
  • the band-pass filter may have a bandwidth of 0.2 Hz with the respiration frequency as a center, for example.
  • a signal obtained by filtering the chest sensor signal with a bandpass filter centered on the respiration frequency is referred to as a “respiration filtering signal”.
  • the respiration feature point identification unit 111 identifies respiration feature points in the respiration filtering signal.
  • a method for specifying a feature point related to respiration is arbitrary. For example, the feature point related to respiration appears as a peak in the respiration filtering signal, like the feature point related to heartbeat described above.
  • the respiration feature point specifying unit 111 specifies each peak in the respiration filtering signal as each feature point related to respiration. Each peak in the respiratory filtering signal can be specified by, for example, differentiating the respiratory filtering signal.
  • the respiration feature point identification unit 111 generates respiration information based on information representing the time of each peak in the respiration filtering signal.
  • the respiration information may be information representing the time of each peak in the respiration filtering signal, or may be information derived based on the time of each peak in the respiration filtering signal.
  • the output unit 112 outputs the heartbeat information and the respiratory information obtained by the heartbeat feature point specifying unit 110 and the breathing feature point specifying unit 111, for example, on the display device 22.
  • the output (transmission) destination of the heart rate information and the respiration information is not limited to the display device 22, and may be a remote monitoring computer (not shown) or the like, for example.
  • FIG. 10 shows an output example of the interval between heartbeats. In FIG. 10, the horizontal axis represents time, and the vertical axis represents the heartbeat interval [unit: seconds].
  • the output unit 112 may output a result of performing a predetermined frequency analysis on the waveform of the heartbeat interval as shown in FIG.
  • the predetermined frequency analysis may be, for example, FFT or an autoregressive model (AR model: autoregressive model).
  • the movement of the occupant 5 with respect to the seat 90 tends to have a lot of upper body movement.
  • the movement of the upper body is different between the lumbar region and the chest region, the movement of the thoracic spine is often accompanied by the movement of the lumbar spine, and the movement is almost the same. That is, when the upper body of the occupant 5 moves, the chest side moves more greatly than the waist side, but the way of movement is almost the same.
  • the thoracic vertebrae are about 3-5 times as strong as the noise component.
  • the occupant 5 has almost no extension (warping back) or turning, and the bending and lateral bending increase.
  • bending is likely to occur due to speed changes such as accelerator and brake.
  • Side bending tends to occur due to movement from side to side under the influence of curves, road surface steps and bumps.
  • the chest side moves more greatly than the waist side, but the way of movement is almost the same.
  • the driver when the occupant 5 is a driver of a car or the like, the driver unconsciously performs a fine steering wheel operation while driving, and the movement becomes a noise component. However, in the same way as in the case of bending and lateral bending, the movement is almost the same between the waist and the chest.
  • the peak frequency caused by the movement of the occupant 5 relative to the seat 90 (the peak frequency caused by the noise component) can be accurately identified by comparing the waist sensor signal and the chest sensor signal. That is, by comparing the waist sensor signal and the chest sensor signal, it is possible to generate highly accurate heartbeat information and respiration information even in an environment where noise is likely to occur.
  • the heartbeat information and the respiration information are derived based on the waist sensor signal and the chest sensor signal, the heartbeat information and the respiration information with high accuracy can be obtained even in an environment where noise is likely to occur. Can be generated.
  • FIG. 11 is a flowchart showing an operation example of the measurement apparatus 10. The process illustrated in FIG. 11 may be executed at predetermined intervals while the measuring apparatus 10 is operating, for example.
  • the sensor signal acquisition unit 101 and the sensor signal acquisition unit 102 receive the waist sensor signal and the chest sensor signal from the Doppler sensors 70-1 and 70-2, respectively.
  • the sensor signal acquisition unit 101 and the sensor signal acquisition unit 102 respectively receive a waist sensor signal and a chest sensor signal for a predetermined period ⁇ T from a predetermined time before to the current time.
  • the predetermined period ⁇ T is, for example, 7 seconds.
  • step S1102 the frequency analysis unit 103 performs frequency analysis on the waist sensor signal obtained in step S1100.
  • the frequency analysis unit 103 identifies the first peak frequency as a result of the frequency analysis.
  • the method for specifying the first peak frequency is as described above.
  • step S1104 the frequency analysis unit 104 performs frequency analysis on the chest sensor signal obtained in step S1100.
  • the frequency analysis unit 104 identifies the second peak frequency as a result of the frequency analysis.
  • the method for specifying the second peak frequency is as described above.
  • step S1106 the comparison unit 107 has a second peak frequency obtained in step S1104 in the range of 0.8 to 3 Hz and significantly different from the first peak frequency obtained in step S1102. Two peak frequencies are identified as the heartbeat frequency.
  • step S1108 the comparison unit 107 is within the range of 0.1 to 0.3 Hz from the second peak frequency obtained in step S1104, and is significantly different from the first peak frequency obtained in step S1102.
  • a different second peak frequency is identified as the breathing frequency.
  • step S1110 the heartbeat filter processing unit 108 performs bandpass filter processing on the chest sensor signal obtained in step S1100 with the heartbeat frequency specified in step S1106 as the center. Thereby, the heartbeat filtering signal based on the chest sensor signal obtained in step S1100 is obtained.
  • step S1112 the respiratory filter processing unit 109 performs bandpass filtering on the chest sensor signal obtained in step S1100 with the respiratory frequency specified in step S1108 as the center. As a result, a respiratory filtering signal related to the chest sensor signal obtained in step S1100 is obtained.
  • step S1114 the heartbeat feature point specifying unit 110 specifies each peak in the heartbeat filtering signal obtained in step S1110 as each feature point related to the heartbeat. Then, the heartbeat feature point specifying unit 110 generates heartbeat information based on each feature point related to the heartbeat.
  • step S1116 the respiratory feature point specifying unit 111 specifies each peak in the respiratory filtering signal obtained in step S1112 as each feature point related to respiration. And the respiration feature point specific
  • step S1118 the output unit 112 outputs the heartbeat information and the respiratory information generated in steps S1114 and S1116.
  • highly accurate heartbeat information and respiration information can be output based on, for example, the waist sensor signal and the chest sensor signal in real time. Therefore, it is possible to accurately monitor the state of the passenger in the vehicle in real time.
  • step S1106 and step S1108 may be reversed
  • step S1110 and step S1112 may be reversed
  • step S1114 and step S1116 may be reversed.
  • step S1106, step S1110, and step S1114, and step S1108, step S1112, and step S1116 may be executed as a set for each set in that order.
  • the measurement apparatus 10A according to the second embodiment is different from the measurement apparatus 10 according to the first embodiment described above in that an inertial sensor is used in addition to the Doppler sensor 70.
  • an inertial sensor is used in addition to the Doppler sensor 70.
  • components that are the same as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the inertial sensor 60 will be described prior to the description of the measuring apparatus 10A according to the second embodiment.
  • FIG. 12 is a diagram illustrating an example of the mounting state of the inertial sensor 60.
  • FIG. 12 is for explaining the mounting position of the inertial sensor 60, and the inertial sensor 60 is schematically shown in perspective.
  • the inertial sensor 60 is, for example, an acceleration sensor or a gyro sensor.
  • the acceleration sensor detects acceleration in each of three orthogonal directions (X, Y, and Z axes shown in FIG. 12).
  • the inertial sensor 60 is a gyro sensor, the gyro sensor detects an angular velocity or an angular acceleration around each of three orthogonal axes.
  • the inertial sensor 60 is provided in the backrest portion 92 of the seat 90. As shown in FIG. 12, the inertial sensor 60 may be provided separately from the Doppler sensor 70 or may be built in the Doppler sensor 70. However, the inertial sensor 60 is preferably provided on the upper portion 922 of the backrest portion 92 as a position where the movement of the seat 90 can be easily detected. In this case, the inertial sensor 60 may be incorporated in the Doppler sensor 70-2.
  • the measurement apparatus 10A according to the second embodiment is the same as the measurement apparatus 10 according to the first embodiment described above in the hardware configuration shown in FIG. 3 and the radio wave transmission / reception unit 25-1 shown in FIG.
  • the measurement apparatus 10A according to the second embodiment forms an example of a measurement system in combination with the Doppler sensors 70-1 and 70-2 and the inertial sensor 60.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the measurement apparatus 10A according to the second embodiment.
  • FIG. 13 shows Doppler sensors 70-1 and 70-2 and inertial sensor 60 together.
  • the inertial sensor 60 is connected to the communication interface 17 (see FIG. 3).
  • the measurement apparatus 10A acquires each sensor signal from the Doppler sensors 70-1 and 70-2 and the inertial sensor 60 via the communication interface 17.
  • the measurement apparatus 10A according to the second embodiment is different from the measurement apparatus 10 according to the first embodiment in that a sensor signal acquisition unit 120 and a frequency analysis unit 121 are added, and the comparison unit 107 is replaced with a comparison unit 107A. .
  • the sensor signal acquisition unit 120 acquires (receives) a sensor signal from the inertial sensor 60.
  • the sensor signal from the inertial sensor 60 is also referred to as “inertial sensor signal”.
  • the frequency analysis unit 121 specifies the frequency at which the feature point is obtained based on the inertial sensor signal. Specifically, the frequency analysis unit 121 acquires a power spectrum by performing frequency analysis on the inertial sensor signal obtained from the sensor signal acquisition unit 120. Similarly, the frequency analysis is FFT, for example, and an analysis result shown in FIG. 14 is obtained, for example.
  • FIG. 14 is a diagram illustrating an example of an analysis result obtained by performing frequency analysis on the inertial sensor signal. In FIG. 14, the horizontal axis represents frequency, and the vertical axis represents intensity (power).
  • the frequency analysis unit 121 identifies the frequency at which a peak greater than or equal to the predetermined threshold Th3 is generated from the analysis result as illustrated in FIG. 14 as a frequency at which a feature point is obtained (hereinafter referred to as “third peak frequency”).
  • the predetermined threshold Th3 is a threshold for extracting only a frequency at which a significant feature point is obtained, and is a fitness value.
  • the predetermined threshold Th3 may be the same as the predetermined threshold Th1 described above.
  • There may be a plurality of third peak frequencies. Peaks P 21 , P 22 and P 23 shown in FIG. 14 are peaks caused by noise components. That is, P 21 , P 22 , and P 23 are feature points that are generated due to the movement (vibration or the like) of the seat 90 itself.
  • the frequency analysis unit 121 identifies the frequencies f 21 , f 22 , and f 23 related to the peaks P 21 , P 22 , and P 23 as the third peak frequency.
  • the frequency analysis unit 121 may specify the third peak frequency for each acceleration signal of the acceleration signal related to each axis included in the inertial sensor signal, or only the acceleration signal related to the specific axis.
  • the third peak frequency may be specified using For example, the frequency analysis unit 121 may specify the third peak frequency based on the acceleration signals related to the X axis and the Z axis included in the inertial sensor signal. Alternatively, the frequency analysis unit 121 may specify the third peak frequency based on the acceleration signal related to the X axis or the Z axis included in the inertial sensor signal. However, preferably, the frequency analysis unit 121 specifies the third peak frequency based on at least the acceleration signal related to the Z axis. This is because the vehicle generally tends to generate vibration in the Z direction.
  • the comparison unit 107A compares the first peak frequency specified by the frequency analysis unit 103, the second peak frequency specified by the frequency analysis unit 104, and the third peak frequency specified by the frequency analysis unit 121. Then, the comparison unit 107A specifies (extracts) the breathing frequency and the heartbeat frequency from among the plurality of second peak frequencies. That is, the comparison unit 107A specifies (extracts) the breathing frequency and the heartbeat frequency based on the comparison result of the first peak frequency, the second peak frequency, and the third peak frequency.
  • the comparison unit 107A extracts a second peak frequency that is significantly different from both the first peak frequency and the third peak frequency from the plurality of second peak frequencies, and sets the extracted second peak frequency to the extracted second peak frequency. Based on this, the frequency of breathing and the frequency of heartbeat are specified (extracted). For example, the comparison unit 107A includes a second peak that is within a range of 0.1 to 0.3 Hz and is significantly different from both the first peak frequency and the third peak frequency among the plurality of second peak frequencies. The frequency is specified as the breathing frequency. When there are two or more second peak frequencies that are in the range of 0.1 to 0.3 Hz and significantly different from both the first peak frequency and the third peak frequency, the comparing unit 107A determines the harmonics.
  • the second peak frequency having a wave component may be specified as the breathing frequency.
  • the comparison unit 107A has a second peak frequency that is within a range of 0.8 to 3 Hz from among the plurality of second peak frequencies and is significantly different from both the first peak frequency and the third peak frequency. Is specified as the heartbeat frequency.
  • the comparison unit 107A determines the harmonic component.
  • the second peak frequency having may be identified as the heartbeat frequency.
  • the same effects as those of the first embodiment described above can be obtained. That is, according to the second embodiment, since heart rate information and respiration information are derived based on the waist sensor signal and the chest sensor signal, it is possible to generate highly accurate heart rate information and respiration information even in an environment where noise is likely to occur. .
  • a noise component caused by the movement of the seat 90 itself can be mixed.
  • the Doppler sensor 70-2 itself vibrates in the same manner, and the position where the radio wave from the Doppler sensor 70-2 hits the occupant 5 changes at a period corresponding to the vibration.
  • the position where the radio wave from the Doppler sensor 70-2 hits the occupant 5 changes, the distance between the Doppler sensor 70-2 and the occupant 5 changes due to minute unevenness or the like of the part of the occupant 5 at the position. It can appear as a noise component in the sensor signal.
  • Such a noise component may be mixed in the waist sensor signal, but the peak frequency may not be generated in the frequency analysis related to the waist sensor signal. This is because the Doppler sensor 70-1 is disposed in the lower portion 921 closer to the support point with the seat surface portion 91 than the upper portion 922 in the backrest portion 92, and therefore the displacement due to vibration of the seat 90 itself is very small. Because there is. Therefore, it may be difficult to specify the noise component due to the movement of the seat 90 itself based only on the comparison between the first peak frequency and the second peak frequency (see FIG. 15 described later).
  • the inertial sensor 60 can detect the movement of the seat 90 itself, the peak frequency related to the noise component caused by the movement of the seat 90 itself can be specified from the inertial sensor signal. Therefore, according to the second embodiment, the inertial sensor signal is used in addition to the waist sensor signal and the chest sensor signal. Therefore, even when a noise component due to the movement of the seat 90 itself is mixed, highly accurate heartbeat information and Respiratory information can be generated.
  • the seat 90 includes a damper so that vibration is not directly transmitted to the occupant 5, and the vibration frequency of the vibration of the vehicle main body (for example, the vehicle body or the vehicle body) is different from the vibration transmitted to the occupant 5. .
  • the vibration frequency of the vibration of the vehicle main body for example, the vehicle body or the vehicle body
  • all the peak frequencies resulting from the noise component cannot be specified only by the third peak frequency based on the frequency analysis result relating to the inertial sensor signal from the inertial sensor 60.
  • Example 2 since the waist sensor signal is used together, a peak frequency that cannot be specified by the inertial sensor 60 (peak frequency caused by a noise component) can be specified, and highly accurate heartbeat information and respiration information can be generated. .
  • FIG. 15 is an explanatory diagram of the effect of the second embodiment.
  • FIG. 15 shows, in order from the top, graphs representing the frequency analysis results for the chest sensor signal, the frequency analysis results for the waist sensor signal, and the frequency analysis results for the inertial sensor signal (acceleration signal in the Z-axis direction). It is.
  • the horizontal axis represents frequency
  • the vertical axis represents intensity (power)
  • the respective graphs have the same scale.
  • the frequency analysis result shown in FIG. 15 shows the result of frequency analysis relating to each sensor signal acquired in a scene different from the chest sensor signal shown in FIG.
  • lines L1 to L8 are lines representing each frequency that takes a peak as a result of frequency analysis on the chest sensor signal.
  • the peaks represented by the lines L1 to L8 include peaks that are less than the predetermined threshold Th1.
  • the frequencies related to the lines L2 and L4 to L8 relate to noise components.
  • the frequencies related to the lines L2, L6, and L8 among the lines L2 and L4 to L8 can be specified based on the result of the frequency analysis on the waist sensor signal.
  • the frequencies related to L2, L6, and L8 that is, the frequencies related to lines L4, L5, and L7 among the lines L2 and L4 to L8, the frequency analysis for the waist sensor signal is performed. Cannot be identified based on the results.
  • the frequencies related to the lines L4, L5, and L7 can be specified based on the result of frequency analysis on the inertial sensor signal.
  • the frequency of the noise component that cannot be specified based on the result of the frequency analysis for the waist sensor signal (that is, the frequency associated with the lines L4, L5, and L7) is the result of the frequency analysis for the inertial sensor signal as shown in FIG. It can be seen that it can be specified based on Therefore, it can be seen that more accurate heartbeat information and respiration information can be generated by using the inertial sensor signal.
  • FIG. 16 is a flowchart showing an operation example of the measurement apparatus 10A. The process illustrated in FIG. 16 may be executed at predetermined intervals during the operation of the measurement apparatus 10A, for example.
  • the sensor signal acquisition unit 101 and the sensor signal acquisition unit 102 receive the waist sensor signal and the chest sensor signal from the Doppler sensors 70-1 and 70-2, respectively. Further, the sensor signal acquisition unit 120 receives an inertial sensor signal from the inertial sensor 60.
  • the sensor signal acquisition unit 101, the sensor signal acquisition unit 102, and the sensor signal acquisition unit 120 each receive sensor signals for a predetermined period ⁇ T from a predetermined time before to the current time.
  • the predetermined period ⁇ T is, for example, 7 seconds.
  • Step S1602 and step S1604 are the same as step S1102 and step S1104 shown in FIG.
  • step S1605 the frequency analysis unit 121 performs frequency analysis on the inertial sensor signal obtained in step S1600.
  • the frequency analysis unit 121 identifies the third peak frequency as a result of the frequency analysis.
  • the method for specifying the third peak frequency is as described above.
  • the comparison unit 107A identifies the heartbeat frequency from the second peak frequency obtained in step S1604. Specifically, the comparison unit 107A has a second peak frequency within the range of 0.8 to 3 Hz and significantly different from both the first peak frequency and the third peak frequency obtained in steps S1602 and S1605. Is specified as the heartbeat frequency.
  • the comparison unit 107A specifies a respiration frequency from the second peak frequency obtained in step S1604. Specifically, the comparison unit 107A has a second frequency that is in the range of 0.1 to 0.3 Hz and is significantly different from both the first peak frequency and the third peak frequency obtained in steps S1602 and S1605. The peak frequency is identified as the breathing frequency.
  • Step S1610 through step S1618 are substantially the same as step S1110 through step S1118 shown in FIG.
  • highly accurate heartbeat information and respiration information can be output based on, for example, a lumbar sensor signal, a chest sensor signal, and an inertial sensor signal in real time. Therefore, it is possible to accurately monitor the state of the passenger in the vehicle in real time.
  • both heartbeat information and respiration information are generated as examples of biological information, but the present invention is not limited thereto. Only one of heart rate information and respiration information may be generated. For example, when only the heartbeat information is generated, the respiration filter processing unit 109 and the respiration feature point specifying unit 111 may be omitted in FIG.
  • the heartbeat information and the respiration information are generated based on the respiration filtering signal and the heartbeat filtering signal, respectively, but the present invention is not limited thereto.
  • the heart rate information and the respiration information may be generated without generating the respiration filtering signal and the heart rate filtering signal based on the respiration frequency and the heart rate frequency specified by the comparison unit 107.
  • the heart rate information and the respiration information may be generated based on a difference signal obtained by subtracting the waist sensor signal from the chest sensor signal.
  • the difference signal S (t) may be generated as follows based on the waist sensor signal S 1 (t) and the chest sensor signal S 2 (t), for example.
  • S 1 (t) s n1 (t)
  • S 2 (t) s 11 (t) + s 12 (t) + s n2 (t)
  • S (t) S 2 (t) ⁇ k ⁇ S 1 (t)
  • s 11 (t) and s 12 (t) represent components relating to heartbeat and respiration, respectively.
  • s n1 (t) and s n2 (t) represent noise components.
  • k is a coefficient and is a fitness value, but may be in the range of 3 to 5, for example.
  • the thoracic vertebra has a strength (power) related to the noise component that is about 3 to 5 times larger.
  • the difference signal S (t) becomes a signal ( ⁇ s 11 (t) + s 12 (t)) in which the noise component in the chest sensor signal S 2 (t) is substantially canceled, so that the difference signal S (t ) Can generate accurate heartbeat information and respiration information.
  • accurate heartbeat information and respiration information can be generated based on the peak frequency obtained by performing frequency analysis on the difference signal S (t).
  • the waist sensor signal and the chest sensor signal may be subjected to frequency analysis after low-pass filter processing.
  • the cutoff frequency of the low-pass filter process is determined according to the search range of the peak frequency, but may be 5 Hz, for example.

Abstract

乗員が腰かける座席の背もたれ部における前記乗員の腰の高さに相当する第1位置に設けられ電波で動きを検出可能な第1センサから第1信号を、前記背もたれ部における前記乗員の胸の高さに相当する第2位置に設けられ電波で動きを検出可能な第2センサから第2信号を、それぞれ取得し、前記第1信号と、前記第2信号とに基づいて、前記第2信号に含まれる所定の成分に係る測定結果を出力する、処理をコンピュータに実行させる測定プログラムが開示される。

Description

測定プログラム、測定方法及び測定装置
 本開示は、測定プログラム、測定方法及び測定装置に関する。
 従来から、車両内のような環境下で乗員の情報を精度良く測定しようとする技術が知られている(例えば、特許文献1参照)。
WO2010/107091号パンフレット WO2010/107093号パンフレット 特開2011-30869号公報
 しかしながら、上記のような従来技術は、電波を用いた精度の良い測定を実現するために適用することが難しい。例えば振動が発生し易い環境下に乗員が存在する場合、センサ信号に含まれうる該振動に係る成分(ノイズ成分)に起因して、所望の成分に係る測定結果の精度を高めることが難しい。
 そこで、1つの側面では、本発明は、電波を用いた精度の良い測定を実現することを目的とする。
 本開示の一局面によれば、乗員が腰かける座席の背もたれ部における前記乗員の腰の高さに相当する第1位置に設けられ電波で動きを検出可能な第1センサから第1信号を、前記背もたれ部における前記乗員の胸の高さに相当する第2位置に設けられ電波で動きを検出可能な第2センサから第2信号を、それぞれ取得し、
 前記第1信号と、前記第2信号とに基づいて、前記第2信号に含まれる所定の成分に係る測定結果を出力する、
 処理をコンピュータに実行させる測定プログラムが提供される。
 電波を用いた精度の良い測定を実現することが可能となる。
ドップラセンサの搭載状態の一例を示す図である。 ドップラセンサの搭載された背もたれ部を模式的に示す平面図である。 一のドップラセンサの構成の説明図である。 実施例1による測定装置のハードウェア構成の一例を示すブロック図である。 一の電波送受信部の一例を示すブロック図である。 実施例1による測定装置の機能構成の一例を示すブロック図である。 腰部センサ信号を周波数解析した解析結果の一例を示す図である。 胸部センサ信号の一例を示す図である。 胸部センサ信号を周波数解析した解析結果の一例を示す図である。 心拍フィルタリング信号の一例を示す図である。 心拍の間隔の出力例を示す図である。 測定装置の動作例を示すフローチャートである。 慣性センサの搭載状態の一例を示す図である。 実施例2による測定装置の機能構成の一例を示すブロック図である。 慣性センサ信号を周波数解析した解析結果の一例を示す図である。 実施例2の効果の説明図である。 測定装置の動作例を示すフローチャートである。
 以下、添付図面を参照しながら各実施例について詳細に説明する。
 以下の実施例において、測定装置は、ドップラセンサのような測定に電波を利用するセンサを用いて、乗員の情報(乗員の心拍又は呼吸に関する情報)を測定する。
 ここでは、まず、測定装置の説明に先立って、ドップラセンサについて説明する。
 ドップラセンサは、マイクロ波のような電波を物体に照射し、該物体からの反射波の変化量から該物体の動きを捉えることできる。基本的な原理としては、ドップラ効果を利用しており、電波を照射し反射している物体との距離が変化すると、反射量が変化されるので、該反射量を電圧値に変換することで信号として捉えるものである。尚、電波を生体に当てた場合、体表面や心拍、呼吸、体動などに起因して該生体から反射してくる信号にさまざまな情報が含まれることになる。
 図1Aは、ドップラセンサ70の搭載状態の一例を示す図である。図1Aは、座席90に腰掛ける(着座する)乗員5が側面視で模式的に示される。また、図1Aには、座席90に設けられるドップラセンサ70が透視図で模試的に示される。図1A(後出の図1Bも同様)は、ドップラセンサ70の搭載位置の説明用であり、ドップラセンサ70は概略的に示される。また、図1Aには、直交する3軸として、X,Y及びZの各軸が示される。乗り物の静止状態(航空機の場合は陸上での静止状態)において、XY平面は、水平面に対応し、Z軸は、鉛直方向(重力方向)に対応する。図1Bは、ドップラセンサ70の搭載された背もたれ部を模式的に示す平面図である。
 座席90は、乗り物に取り付けられる。乗り物は、自動二輪車、自動車(4輪)、トラック、バス、船舶、航空機、建設機械等である。乗員5は、乗り物の乗員であり、運転者であるが、運転者以外の搭乗者であってもよい。乗り物内の空間(キャビンやコックピット等)は、振動等に起因したノイズが発生し易い環境の一例である。本実施例では、後述のように、ノイズが発生し易い環境でも精度の良い測定を実現できるため、乗り物は、例えば訓練用の航空機のような比較的激しい動きを伴う(比較的高い加速度が発生する)乗り物である場合が好適である。また、本実施例は、使用状態における振動が多様なモードで発生し且つ該振動が比較的大きい乗り物に好適である。
 座席90は、乗り物のフロア80に直接的に固定されてもよいし、乗り物のフロア80にスライド機構(図示せず)を介してスライド可能に取り付けられてもよい。尚、乗員5は、座席90に着座した状態では、座席90にシートベルト(図示せず)等により拘束されうる。
 座席90は、座面部91と、背もたれ部92と、ヘッドレスト部93とを含む。尚、座席90の素材は任意であり、表層は繊維であっても皮であってもよい。また、座席90は、座面部91に対する背もたれ部92の角度が可変なタイプ(即ちリクライニングが可能なタイプ)であってもよいし、リクライニングが不能なタイプであってもよい。また、座席90は、乗り物のフロア80に伝達される振動などの入力を、乗員5に直接伝達させないためにダンパ(防振ゴムやバネ)を含んでもよい。
 背もたれ部92は、下部921と、上部922とを含む。下部921は、座面部91から立ち上がる。下部921は、着座する乗員5の腰(腰椎の背後)に当たる部位を含み、主に乗員5の腰を支持する。上部922は、着座する乗員5の背中における腰よりも上側に当たる部位を含み、乗員5の背中の上側(胸椎の背後)を主に支持する。
 ドップラセンサ70は、背もたれ部92に2カ所設けられる。ドップラセンサ70は、背もたれ部92の表層よりも内側に内蔵されてもよい。以下では、2つのドップラセンサ70を区別する際は、ドップラセンサ70-1,70-2と称する。
 ドップラセンサ70-1(第1センサの一例)は、背もたれ部92の下部921に設けられる。即ち、ドップラセンサ70-1は、図1Aに示すように、乗員5の腰の高さに相当する位置(第1位置の一例)に設けられる。機能的には、ドップラセンサ70-1は、乗員5の腰が位置する方向に電波を送信できるように、下部921に設けられる。従って、ドップラセンサ70-1は、送信した電波の反射波に基づいて乗員5の腰の動きを検出可能である。
 ドップラセンサ70-1は、好ましくは、図1Bに示すように、背もたれ部92の下部921の幅方向(図1BのX方向)の中央部に設けられる。これにより、座席90に着座した乗員5の腰に当たる電波を送信できる可能性が高くなる。ドップラセンサ70-1による電波の出射方向は、搭載箇所における下部921の表面に対して略垂直方向である。
 ドップラセンサ70-2(第2センサの一例)は、背もたれ部92の上部922に設けられる。即ち、ドップラセンサ70-2は、図1Aに示すように、乗員5の胸の高さに相当する位置(第2位置の一例)に設けられる。機能的には、ドップラセンサ70-2は、乗員5の胸が位置する方向に電波を送信できるように、上部922に設けられる。従って、ドップラセンサ70-2は、送信した電波の反射波に基づいて乗員5の胸(肺や、心臓等を含む)の動きを検出可能である。
 ドップラセンサ70-2は、好ましくは、図1Bに示すように、背もたれ部92の上部922の幅方向(図1BのX方向)の中央部に設けられる。これにより、座席90に着座した乗員5の胸に当たる電波を送信できる可能性が高くなる。ドップラセンサ70-2による電波の出射方向は、搭載箇所における上部922の表面に対して略垂直方向である。
 図2は、一のドップラセンサ70の構成の説明図である。図2には、説明用に、一のドップラセンサ70と共に、乗員5が併せて示される。
 ドップラセンサ70は、電波送受信部25を含み、電波送受信部25は、電波送信部1及び電波受信部2を含む。電波送受信部25の詳細は、図4を参照して後述する。
 電波送信部1は、乗員5の人体に電波を照射する。電波の帯域は、任意である。電波の一例として極超短波(UHF:Ultra High Frequency)やマイクロ波(SHF:Super High Frequency)が挙げられる。またさらに、電波は例えば2.4G帯であってよい。電波受信部2は、乗員5からの電波の反射波を受信する。
 尚、図2に示すドップラセンサ70は、乗員5との位置関係で、ドップラセンサ70-2に対応するが、ドップラセンサ70-1も構成自体は同じである。以下では、ドップラセンサ70-1の電波送受信部25は、電波送受信部25-1と称し、ドップラセンサ70-2の電波送受信部25は、電波送受信部25-2と称する。
 次に、ドップラセンサ70-1,70-2を用いて測定を行う測定装置の幾つかの実施例について順に説明する。
[実施例1]
 図3は、実施例1による測定装置10のハードウェア構成の一例を示すブロック図である。尚、測定装置10は、ドップラセンサ70-1,70-2との組み合わせで、測定システムの一例を形成する。
 測定装置10は、コンピュータ(処理装置の一例)により形成される。図3に示す例では、測定装置10は、バス19で接続されたCPU(Central Processing Unit)11、RAM(Random Access Memory)12、ROM(Read Only Memory)13、記録媒体インターフェイス14、及び表示制御部15を含む。また、測定装置10は、入出力制御部16、及び通信インターフェイス17を有する。記録媒体インターフェイス14には、SD(Secure Digital)カード(または、メモリカード)21などの記録媒体が接続可能である。表示制御部15には、表示装置22が接続されている。入出力制御部16には、入出力デバイス24が接続されている。入出力デバイス24は、タッチパネル、スピーカなどであってよい。表示装置22及び入出力デバイス24の機能は、タッチパネルで実現されてもよい。尚、記録媒体インターフェイス14及びSDカード21、入出力制御部16及び入出力デバイス24、表示装置22及び表示制御部15、及び/又は、無線送受信部26は、適宜、省略されてもよい。
 通信インターフェイス17は、外部と有線又は無線で通信を行うためのインターフェイスである。尚、無線での通信は、携帯電話における無線通信網や、近距離無線通信(NFC:Near Field Communication)、ブルーツース(Bluetooth、登録商標)、Wi-Fi(Wireless-Fidelity)、赤外線等を介して実現されてよい。通信インターフェイス17には、ドップラセンサ70-1,70-2が接続される。測定装置10は、通信インターフェイス17を介して、ドップラセンサ70-1,70-2から後述のセンサ信号を取得する。
 CPU11は、測定装置10全体の動作を制御する機能を有する。RAM12及びROM13は、CPU11が実行するプログラムや各種データを格納する記憶部を形成する。プログラムは、CPU11に測定処理を実行させて測定装置として機能させるプログラムを含む。記憶部には、SDカード21が含まれてもよい。プログラムを格納する記憶部は、コンピュータ読取可能な記憶媒体の一例である。
 表示装置22は、表示制御部15の制御下で、測定処理の結果などを表示する機能を有する。
 図4は、電波送受信部25-1の一例を示すブロック図である。電波送受信部25-2についても同様であってよい。
 電波送受信部25-1は、制御部251、発振回路252、アンテナ253T,253R、検波回路254、電源回路255、及びオペアンプ(Operational Amplifier)256,258を有する。発振回路252で生成された送信波(電波)は、アンテナ253T及び検波回路254に分波され、アンテナ253Tから送信された送信波は乗員5に照射される。乗員5に照射された送信波は反射され、乗員5からの送信波の反射波はアンテナ253Rで受信される。アンテナ253Rで受信した一点鎖線で示す反射波は、ノードNにおいて実線で示す送信波と干渉し合い、検波回路254からは一点鎖線で示す合成波(DC成分)が出力される。オペアンプ256は、合成波を増幅したセンサ出力を通信インターフェイス17を介して出力する。オペアンプ256からのセンサ出力(図4のドップラセンサ出力参照)は、センサ信号とも称される。
 電源回路255は、制御部251、発振回路252、検波回路254、及びオペアンプ256に電源電圧を供給する電池を含む。電池は、例えば充電可能な電池である。なお、電源回路255は、電波送受信部25-1に対して外部接続されていても良いことは言うまでもない。また、アンテナ253T,253Rは、送受信アンテナとして一体化されてもよい。
 尚、図4の例では、電波送信部1は少なくとも発振回路252及びアンテナ253Tを含み、電波受信部2は少なくともアンテナ253R、検波回路254及びオペアンプ256を含む。
 図5は、実施例1による測定装置10の機能構成の一例を示すブロック図である。図5には、ドップラセンサ70-1,70-2も併せて示される。
 測定装置10は、センサ信号取得部101,102と、周波数解析部103,104とを含む。センサ信号取得部101及び周波数解析部103は、ドップラセンサ70-1に係る系統であり、センサ信号取得部102及び周波数解析部104は、ドップラセンサ70-2に係る系統である。センサ信号取得部101,102、及び周波数解析部103,104は、図4に示すCPU11がROM13に記憶された1つ以上のプログラムを実行することで実現できる。
 測定装置10は、更に、比較部107と、心拍フィルタ処理部108と、呼吸フィルタ処理部109と、心拍特徴点特定部110と、呼吸特徴点特定部111と、出力部112とを含む。比較部107、心拍フィルタ処理部108、呼吸フィルタ処理部109、心拍特徴点特定部110、呼吸特徴点特定部111、及び出力部112は、図4に示すCPU11がROM13に記憶された1つ以上のプログラムを実行することで実現できる。
 センサ信号取得部101は、ドップラセンサ70-1の電波送受信部25-1からのセンサ信号(図4のドップラセンサ出力参照)を取得(受信)する。以下、電波送受信部25-1からのセンサ信号(第1信号の一例)を、「腰部センサ信号」とも称する。以下では、腰部センサ信号は、座席90に乗員5が着座した状態で取得されているものとする。
 センサ信号取得部102は、ドップラセンサ70-2の電波送受信部25-2からのセンサ信号を取得(受信)する。以下、電波送受信部25-2からのセンサ信号(第2信号の一例)を、「胸部センサ信号」とも称する。以下では、胸部センサ信号は、座席90に乗員5が着座した状態で取得されているものとする。
 周波数解析部103は、腰部センサ信号に基づいて、特徴点が得られる周波数を特定する。具体的には、周波数解析部103は、センサ信号取得部101から得られる腰部センサ信号を周波数解析することでパワースペクトルを取得する。周波数解析は、例えばFFT(Fast Fourier Transform)であり、例えば図6に示す解析結果が得られる。図6は、腰部センサ信号を周波数解析した解析結果の一例を示す図である。図6では、横軸が周波数を表し、縦軸が強度(パワー)を表す。
 周波数解析部103は、図6に示すような解析結果から所定閾値Th1以上のピークが発生する周波数を、特徴点が得られる周波数(以下、「第1ピーク周波数」と称する)として特定する。所定閾値Th1は、有意な特徴点が得られる周波数だけを抽出するための閾値であり、適合値である。尚、第1ピーク周波数は、複数存在しうる。図6には、所定閾値Th1以上のピークの一例としてピークP11、P12が図示されている。ピークP11、P12(所定閾値Th1未満の他のピークP13、P14、P15も同様)は、後述するが、ノイズ成分に起因したピークである。即ち、ピークP11、P12は、座席90に対する乗員5の動き(腰の動き)に起因して生じる特徴点である。かかるピークP11、P12を生じさせるような座席90に対する乗員5の動きは、乗り物自体の運動や振動、乗員5自体の動き等に起因して生じうる。
 周波数解析部104は、胸部センサ信号に基づいて、特徴点が得られる周波数を特定する。具体的には、周波数解析部104は、センサ信号取得部102から得られる胸部センサ信号を周波数解析することでパワースペクトルを取得する。図7は、胸部センサ信号の一例を示す。図7では、横軸が時間を表し、縦軸がセンサ値を表す。周波数解析は、同様に、例えばFFTであり、例えば図8に示す解析結果が得られる。図8は、図7の胸部センサ信号を周波数解析した解析結果の一例を示す図である。図8では、横軸が周波数を表し、縦軸が強度(パワー)を表す。図8には、対照用に、図6に示した波形C1が2点鎖線で示される。
 周波数解析部104は、図8に示すような解析結果から所定閾値Th2以上のピークが発生する周波数を、特徴点が得られる周波数(以下、「第2ピーク周波数」と称する)として特定する。所定閾値Th2は、有意な特徴点が得られる周波数だけを抽出するための閾値であり、適合値である。所定閾値Th2は、所定閾値Th1と同じであってもよい。尚、第2ピーク周波数は、複数存在しうる。尚、以下では、第1ピーク周波数や第2ピーク周波数のような、周波数解析の結果として強度のピークが発生する周波数を「ピーク周波数」とも称する。
 図8には、所定閾値Th2以上のピークの一例としてピークP、P、P、Pが図示されている。ピークPは、呼吸(乗員5の呼吸に伴う体の表面または肺の変位)に起因したピークであり、ピークPは、心拍(乗員5の心臓の鼓動に伴う体の表面または心臓を含む臓器の変位)に起因したピークである。他のピークP、P(所定閾値Th2未満のピークP、Pも同様)は、ノイズ成分に起因したピークである。即ち、ピークP、Pは、座席90に対する乗員5の動き(胸の動き)に起因して生じる特徴点である。かかるピークP、Pを生じさせるような座席90に対する乗員5の動きは、乗り物自体の運動や振動、乗員5自体の動き等に起因して生じる。図8に示す例では、例えば、周波数解析部104は、ピークP、P、P、Pに係る各周波数を、第2ピーク周波数として特定する。
 比較部107は、周波数解析部103で特定された第1ピーク周波数と、周波数解析部104で特定された第2ピーク周波数とを比較する。そして、比較部107は、複数の第2ピーク周波数のうちから、呼吸に起因したピークPに係る第2ピーク周波数と、心拍に起因したピークPに係る第2ピーク周波数とを抽出する。以下、呼吸に起因したピークPに係る第2ピーク周波数を「呼吸の周波数」とも称し、心拍に起因したピークPに係る第2ピーク周波数を「心拍の周波数」とも称する。即ち、比較部107は、周波数解析部103で特定された第1ピーク周波数と、周波数解析部104で特定された第2ピーク周波数との比較結果に基づいて、第2ピーク周波数に含まれる呼吸の周波数及び心拍の周波数を特定(抽出)する。
 具体的には、比較部107は、複数の第2ピーク周波数のうちから、第1ピーク周波数とは有意に異なる第2ピーク周波数を抽出し、抽出した第2ピーク周波数に基づいて、呼吸の周波数及び心拍の周波数を特定(抽出)する。呼吸の周波数は、一般的に、0.1~0.3Hzの範囲内に収まり、心拍の周波数は、一般的に、0.8~3Hzの範囲内に収まる。従って、比較部107は、複数の第2ピーク周波数のうちから、0.1~0.3Hzの範囲内であり、且つ、第1ピーク周波数とは有意に異なる第2ピーク周波数を、呼吸の周波数として特定する。尚、0.1~0.3Hzの範囲内であり、且つ、第1ピーク周波数とは有意に異なる第2ピーク周波数が2つ以上あるときは、比較部107は、高調波成分を有する第2ピーク周波数を、呼吸の周波数として特定してよい。同様に、比較部107は、複数の第2ピーク周波数のうちから、0.8~3Hzの範囲内であり、且つ、第1ピーク周波数とは有意に異なる第2ピーク周波数を、心拍の周波数として特定する。尚、0.8~3Hzの範囲内であり、且つ、第1ピーク周波数とは有意に異なる第2ピーク周波数が2つ以上あるときは、比較部107は、高調波成分を有する第2ピーク周波数を、心拍の周波数として特定してよい。
 例えば図6及び図8に示す例では、ピークP、P、P、Pに係る各第2ピーク周波数f、f、f、fのうち、第2ピーク周波数f、fが、ピークP11、P12に係る各第1ピーク周波数f11、f12とは有意に異なる。換言すると、第2ピーク周波数f、fが第1ピーク周波数f11、f12とそれぞれ略同じである。これは、第2ピーク周波数f、fは、第1ピーク周波数f11、f12と同じ動き(座席90に対する乗員5の動き)に起因して特徴点に係るピーク周波数であるためである。具体的には、ドップラセンサ70-1は、座席90に対する乗員5の動きを検知できるのに対して、ドップラセンサ70-2は、同動きに加えて、乗員5の呼吸に係る動き、及び、乗員5の心拍に係る動きをも検知できる。従って、座席90に対する乗員5の動き、呼吸に係る動き及び心拍に係る動きに係る3つのピーク周波数のうち、第2ピーク周波数は、同3つのピーク周波数を含むのに対して、第1ピーク周波数は、座席90に対する乗員5の動きに係るピーク周波数しか含まない。このため、複数の第2ピーク周波数のうちから、第1ピーク周波数とは異なる第2ピーク周波数が、呼吸の周波数及び心拍の周波数に対応する可能性が高いことが分かる。このようにして、比較部107は、第1ピーク周波数と、第2ピーク周波数との比較結果に基づいて、呼吸の周波数及び心拍の周波数を精度良く特定できる。
 心拍フィルタ処理部108は、比較部107により特定された心拍の周波数に基づいて、胸部センサ信号をフィルタ処理する。具体的には、フィルタ処理部32は、胸部センサ信号から、心拍に係る周波数成分の波形を抽出する。フィルタ処理は、例えばバンドパスフィルタ(BPF:Band-Pass Filter)処理であり、一拍毎に揺らいでいる心拍を抽出するために行われる。この際、バンドパスフィルタは、例えば心拍の周波数を中心として0.2Hzの帯域幅を有してよい。以下、胸部センサ信号を心拍の周波数を中心としたバンドパスフィルタでフィルタ処理することで得られる信号を「心拍フィルタリング信号」と称する。図9は、心拍フィルタリング信号の一例を示す。図9に示す心拍フィルタリング信号は、図7の胸部センサ信号をフィルタ処理することで得られる。図9では、横軸が時間を表し、縦軸がセンサ値を表す。
 心拍特徴点特定部110は、心拍フィルタリング信号における心拍に係る特徴点を特定する。心拍に係る特徴点の特定方法は、任意である。例えば、心拍に係る特徴点は、心拍フィルタリング信号におけるピーク(図9のPa~Pdのような各ピーク)として現れる。心拍特徴点特定部110は、心拍フィルタリング信号における各ピークを、心拍に係る各特徴点として特定する。尚、心拍フィルタリング信号における各ピークは、心拍フィルタリング信号を例えば微分処理することで特定できる。心拍特徴点特定部110は、心拍フィルタリング信号における各ピークの時間を表す情報に基づいて、心拍情報を生成する。尚、心拍情報は、心拍フィルタリング信号における各ピークの時間を表す情報自体であってもよいし、心拍フィルタリング信号における各ピークの時間に基づいて導出される情報であってもよい。例えば、心拍情報は、心拍の間隔を表す情報であってもよい。この場合、心拍の間隔は、心拍フィルタリング信号における各ピークの時間間隔として算出できる。
 呼吸フィルタ処理部109は、比較部107により特定された呼吸の周波数に基づいて、胸部センサ信号をフィルタ処理する。具体的には、フィルタ処理部32は、胸部センサ信号から、呼吸に係る周波数成分の波形を抽出する。フィルタ処理は、例えばバンドパスフィルタ処理である。この際、バンドパスフィルタは、例えば呼吸の周波数を中心として0.2Hzの帯域幅を有してよい。以下、胸部センサ信号を呼吸の周波数を中心としたバンドパスフィルタでフィルタ処理することで得られる信号を「呼吸フィルタリング信号」と称する。
 呼吸特徴点特定部111は、呼吸フィルタリング信号における呼吸に係る特徴点を特定する。呼吸に係る特徴点の特定方法は、任意である。例えば、呼吸に係る特徴点は、上述した心拍に係る特徴点と同様、呼吸フィルタリング信号におけるピークとして現れる。呼吸特徴点特定部111は、呼吸フィルタリング信号における各ピークを、呼吸に係る各特徴点として特定する。尚、呼吸フィルタリング信号における各ピークは、呼吸フィルタリング信号を例えば微分処理することで特定できる。呼吸特徴点特定部111は、呼吸フィルタリング信号における各ピークの時間を表す情報に基づいて、呼吸情報を生成する。尚、呼吸情報は、呼吸フィルタリング信号における各ピークの時間を表す情報自体であってもよいし、呼吸フィルタリング信号における各ピークの時間に基づいて導出される情報であってもよい。
 出力部112は、心拍特徴点特定部110及び呼吸特徴点特定部111で得られた心拍情報及び呼吸情報を、例えば表示装置22上に出力する。心拍情報及び呼吸情報の出力(送信)先は、表示装置22に限られず、例えば遠隔に位置する監視用コンピューター(図示せず)等であってもよい。図10は、心拍の間隔の出力例を示す。図10では、横軸が時間を表し、縦軸が心拍間隔[単位:秒]を表す。出力部112は、図10に示すような心拍間隔の波形に対して所定の周波数解析を行った結果を出力してもよい。所定の周波数解析は、例えばFFTや、自己回帰モデル(AR model:Autoregressive model)などであってよい。
 ところで、乗り物の内部のような、ノイズが発生し易い環境下では、胸部センサ信号には、乗り物自体の運動や振動、乗員5自体の動き等に起因して生じる様々なノイズ成分が混入されやすい。ドップラセンサ70と乗員5での反射点との距離の変化(心拍及び呼吸に起因した同変化を除く変化)は、全て胸部センサ信号においてノイズ成分として現れ得る。即ち、胸部センサ信号に混入されうるノイズ成分は、ドップラセンサ70-2と乗員5の間の距離変化であって、外乱に起因した距離変化が主要因である。従って、ノイズが発生し易い環境下では、外乱起因による距離変化が様々な態様で生じるため、胸部センサ信号のみに基づいて、精度の高い心拍情報や呼吸情報を生成することは難しい。
 この点、乗員5が座席90に腰かけている状態では、座席90に対する乗員5の動きは、上半身の動きが多い傾向にある。上半身の動きは、腰部と胸部とで異なるものの、胸椎の動きは腰椎の動きを伴うことが多く、動き方はほぼ同等である。即ち、乗員5の上体が動く場合は、腰側と比較して胸側の方が大きく動くが、動き方はほぼ同等である。尚、腰椎と胸椎では、胸椎の方が、ノイズ成分に係る強度(パワー)が3-5倍程度大きい。
 より具体的には、乗員5が座席90に腰かけている状態では、乗員5の動きの種類として、伸展(後ろに反る)や回旋はほとんどなく、屈曲と側屈が多くなる。例えば、車の運転において、屈曲は、アクセル、ブレーキなどの速度変化で生じやすい。また、側屈はカーブや路面の段差や凸凹などの影響を受けて左右に動くことで生じやすい。かかる屈曲と側屈の場合は、腰側と比較して胸側の方が大きく動くが、動き方はほぼ同等である。
 また、乗員5が車等の運転者である場合、運転中、運転者は無意識に細かなハンドル操作を行っており、その動きがノイズ成分となる。しかしながら、このような動きも、屈曲と側屈の場合と同様、腰側と胸側とでは動き方はほぼ同等である。
 従って、腰部センサ信号及び胸部センサ信号を比較することで、座席90に対する乗員5の動きに起因したピーク周波数(ノイズ成分に起因したピーク周波数)を精度良く特定できることが分かる。即ち、腰部センサ信号及び胸部センサ信号を比較することで、ノイズが発生し易い環境下でも精度の高い心拍情報や呼吸情報を生成できる。このように、実施例1によれば、心拍情報及び呼吸情報は、腰部センサ信号及び胸部センサ信号に基づいて導出されるので、ノイズが発生し易い環境下でも精度の高い心拍情報や呼吸情報を生成できる。
 次に、図11を参照して、測定装置10の動作例について説明する。
 図11は、測定装置10の動作例を示すフローチャートである。図11に示す処理は、例えば、測定装置10の稼働中、所定周期毎に実行されてよい。
 ステップS1100では、センサ信号取得部101及びセンサ信号取得部102は、それぞれ、ドップラセンサ70-1,70-2から腰部センサ信号及び胸部センサ信号を受信する。例えば、センサ信号取得部101及びセンサ信号取得部102は、それぞれ、所定時間前から現時点までの所定期間ΔTの腰部センサ信号及び胸部センサ信号を受信する。所定期間ΔTは、例えば7秒である。
 ステップS1102では、周波数解析部103は、ステップS1100で得た腰部センサ信号に対して周波数解析を行う。周波数解析部103は、周波数解析の結果、第1ピーク周波数を特定する。第1ピーク周波数の特定方法は上述のとおりである。
 ステップS1104では、周波数解析部104は、ステップS1100で得た胸部センサ信号に対して周波数解析を行う。周波数解析部104は、周波数解析の結果、第2ピーク周波数を特定する。第2ピーク周波数の特定方法は上述のとおりである。
 ステップS1106では、比較部107は、ステップS1104で得た第2ピーク周波数のうちから、0.8~3Hzの範囲内であり、且つ、ステップS1102で得た第1ピーク周波数とは有意に異なる第2ピーク周波数を、心拍の周波数として特定する。
 ステップS1108では、比較部107は、ステップS1104で得た第2ピーク周波数のうちから、0.1~0.3Hzの範囲内であり、且つ、ステップS1102で得た第1ピーク周波数とは有意に異なる第2ピーク周波数を、呼吸の周波数として特定する。
 ステップS1110では、心拍フィルタ処理部108は、ステップS1100で得た胸部センサ信号を、ステップS1106で特定した心拍の周波数を中心としてバンドパスフィルタ処理する。これにより、ステップS1100で得た胸部センサ信号に係る心拍フィルタリング信号が得られる。
 ステップS1112では、呼吸フィルタ処理部109は、ステップS1100で得た胸部センサ信号を、ステップS1108で特定した呼吸の周波数を中心としてバンドパスフィルタ処理する。これにより、ステップS1100で得た胸部センサ信号に係る呼吸フィルタリング信号が得られる。
 ステップS1114では、心拍特徴点特定部110は、ステップS1110で得た心拍フィルタリング信号における各ピークを、心拍に係る各特徴点として特定する。そして、心拍特徴点特定部110は、心拍に係る各特徴点に基づいて、心拍情報を生成する。
 ステップS1116では、呼吸特徴点特定部111は、ステップS1112で得た呼吸フィルタリング信号における各ピークを、呼吸に係る各特徴点として特定する。そして、呼吸特徴点特定部111は、呼吸に係る各特徴点に基づいて、呼吸情報を生成する。
 ステップS1118では、出力部112は、ステップS1114及びステップS1116で生成された心拍情報及び呼吸情報を出力する。
 図11に示す処理によれば、例えばリアルタイムで、腰部センサ信号及び胸部センサ信号に基づいて、精度の高い心拍情報及び呼吸情報を出力できる。従って、乗り物内の乗員の状態をリアルタイムに精度良く監視することも可能となる。
 尚、図11では、特定の順で処理が実行されているが、処理の順序は適宜変更可能である。例えば、ステップS1106及びステップS1108の処理順は逆であってもよいし、ステップS1110及びステップS1112の処理順は逆であってもよいし、ステップS1114及びステップS1116の処理順は逆であってもよい。即ち、ステップS1106,ステップS1110、及びステップS1114と、ステップS1108,ステップS1112、及びステップS1116とは、それぞれ一のセットとして、それぞれセットごとに該順序で実行されればよい。
 [実施例2]
 実施例2による測定装置10Aは、ドップラセンサ70に加えて、慣性センサを用いる点が、上述した実施例1による測定装置10とは異なる。実施例2において、上述した実施例1と同様である構成要素については、同一の参照符号を付して説明を省略する。
 ここでは、まず、実施例2による測定装置10Aの説明に先立って、慣性センサ60について説明する。
 図12は、慣性センサ60の搭載状態の一例を示す図である。図12は、慣性センサ60の搭載位置の説明用であり、慣性センサ60は概略的に透視で示される。
 慣性センサ60は、例えば加速度センサ又はジャイロセンサである。慣性センサ60が加速度センサの場合、加速度センサは、直交する3軸(図12に示すX,Y及びZ軸)のそれぞれの方向の加速度を検出する。慣性センサ60がジャイロセンサの場合、ジャイロセンサは、直交する3軸のそれぞれまわりの角速度又は角加速度を検出する。
 慣性センサ60は、座席90の背もたれ部92に設けられる。慣性センサ60は、図12に示すように、ドップラセンサ70とは別に設けられてもよいし、ドップラセンサ70に内蔵されてもよい。但し、慣性センサ60は、好ましくは、座席90の動きを検出し易い位置として、背もたれ部92の上部922に設けられる。この場合、慣性センサ60は、ドップラセンサ70-2に内蔵されてもよい。
 実施例2による測定装置10Aは、上述した実施例1による測定装置10に対して、図3に示したハードウェア構成自体や、図4に示した電波送受信部25-1は同じである。尚、実施例2による測定装置10Aは、ドップラセンサ70-1,70-2及び慣性センサ60との組み合わせで、測定システムの一例を形成する。
 図13は、実施例2による測定装置10Aの機能構成の一例を示すブロック図である。図13には、ドップラセンサ70-1,70-2と、慣性センサ60とが併せて示される。慣性センサ60は、通信インターフェイス17(図3参照)に接続される。測定装置10Aは、通信インターフェイス17を介して、ドップラセンサ70-1,70-2及び慣性センサ60から各センサ信号を取得する。
 実施例2による測定装置10Aは、上述した実施例1による測定装置10に対して、センサ信号取得部120及び周波数解析部121が追加され、比較部107が比較部107Aで置換された点が異なる。
 センサ信号取得部120は、慣性センサ60からのセンサ信号を取得(受信)する。以下、慣性センサ60からのセンサ信号を、「慣性センサ信号」とも称する。
 周波数解析部121は、慣性センサ信号に基づいて、特徴点が得られる周波数を特定する。具体的には、周波数解析部121は、センサ信号取得部120から得られる慣性センサ信号を周波数解析することでパワースペクトルを取得する。周波数解析は、同様に、例えばFFTであり、例えば図14に示す解析結果が得られる。図14は、慣性センサ信号を周波数解析した解析結果の一例を示す図である。図14では、横軸が周波数を表し、縦軸が強度(パワー)を表す。
 周波数解析部121は、図14に示すような解析結果から所定閾値Th3以上のピークが発生する周波数を、特徴点が得られる周波数(以下、「第3ピーク周波数」と称する)として特定する。所定閾値Th3は、有意な特徴点が得られる周波数だけを抽出するための閾値であり、適合値である。所定閾値Th3は、上述した所定閾値Th1と同じであってもよい。尚、第3ピーク周波数は、複数存在しうる。図14に示すピークP21、P22、P23は、ノイズ成分に起因したピークである。即ち、P21、P22、P23は、座席90自体の動き(振動等)に起因して生じる特徴点である。図14に示す例では、例えば、周波数解析部121は、ピークP21、P22、P23に係る各周波数f21、f22、f23を、第3ピーク周波数として特定する。
 尚、周波数解析部121は、慣性センサ信号に含まれる各軸に係る加速度信号について、それぞれの加速度信号に対して、第3ピーク周波数を特定してもよいし、特定の軸に係る加速度信号のみを用いて、第3ピーク周波数を特定してもよい。例えば、周波数解析部121は、慣性センサ信号に含まれるX軸及びZ軸に係る加速度信号に基づいて、第3ピーク周波数を特定してもよい。或いは、周波数解析部121は、慣性センサ信号に含まれるX軸又はZ軸に係る加速度信号に基づいて、第3ピーク周波数を特定してもよい。但し、好ましくは、周波数解析部121は、少なくともZ軸に係る加速度信号に基づいて、第3ピーク周波数を特定する。これは、一般的に、乗り物においてはZ方向の振動が発生し易いためである。
 比較部107Aは、周波数解析部103で特定された第1ピーク周波数と、周波数解析部104で特定された第2ピーク周波数と、周波数解析部121で特定された第3ピーク周波数とを比較する。そして、比較部107Aは、複数の第2ピーク周波数のうちから、呼吸の周波数と心拍の周波数を特定(抽出)する。即ち、比較部107Aは、1ピーク周波数と、第2ピーク周波数と、第3ピーク周波数との比較結果に基づいて、呼吸の周波数と心拍の周波数を特定(抽出)する。
 具体的には、比較部107Aは、複数の第2ピーク周波数のうちから、第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数を抽出し、抽出した第2ピーク周波数に基づいて、呼吸の周波数及び心拍の周波数を特定(抽出)する。例えば、比較部107Aは、複数の第2ピーク周波数のうちから、0.1~0.3Hzの範囲内であり、且つ、第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数を、呼吸の周波数として特定する。尚、0.1~0.3Hzの範囲内であり、且つ、第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数が2つ以上あるときは、比較部107Aは、高調波成分を有する第2ピーク周波数を、呼吸の周波数として特定してよい。同様に、比較部107Aは、複数の第2ピーク周波数のうちから、0.8~3Hzの範囲内であり、且つ、第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数を、心拍の周波数として特定する。尚、0.8~3Hzの範囲内であり、且つ、第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数が2つ以上あるときは、比較部107Aは、高調波成分を有する第2ピーク周波数を、心拍の周波数として特定してよい。
 実施例2によれば、上述した実施例1と同様の効果が奏される。即ち、実施例2によれば、心拍情報及び呼吸情報は、腰部センサ信号及び胸部センサ信号に基づいて導出されるので、ノイズが発生し易い環境下でも精度の高い心拍情報や呼吸情報を生成できる。
 ところで、胸部センサ信号には、座席90に対する乗員5の動き以外にも、座席90自体の動き(それに伴う慣性センサ60の動き)に起因したノイズ成分が混入しうる。例えば、座席90自体がZ方向に振動すると、ドップラセンサ70-2自体が同様に振動し、ドップラセンサ70-2からの電波が乗員5に当たる位置が、振動に応じた周期で変化する。ドップラセンサ70-2からの電波が乗員5に当たる位置が変化すると、該位置における乗員5の部位の微小な凹凸等に起因してドップラセンサ70-2と乗員5の間の距離変化が生じ、胸部センサ信号においてノイズ成分として現れ得る。かかるノイズ成分は、腰部センサ信号にも混入しうるが、腰部センサ信号に係る周波数解析ではピーク周波数を生じさせない場合がある。これは、ドップラセンサ70-1は、背もたれ部92において、上部922よりも座面部91との支持点に近い下部921に配置されるが故に、座席90自体の振動等に起因した変位が微小であるためである。従って、座席90自体の動きに起因したノイズ成分は、第1ピーク周波数と第2ピーク周波数との比較のみに基づいて特定することが難しい場合がありうる(後出の図15参照)。
 この点、慣性センサ60は、座席90自体の動きを検知できるので、慣性センサ信号からは、座席90自体の動きに起因したノイズ成分に係るピーク周波数を特定できる。従って、実施例2によれば、腰部センサ信号及び胸部センサ信号に加えて、慣性センサ信号が用いられるので、座席90自体の動きに起因したノイズ成分が混入した場合でも、精度の高い心拍情報や呼吸情報を生成できる。
 尚、上述のように、座席90は、乗員5に振動を直接伝達させないためにダンパを含んでおり、乗り物の本体(例えば車体や機体)の振動と乗員5に伝わる振動とは振動周波数が異なる。このため、慣性センサ60からの慣性センサ信号に係る周波数解析結果に基づく第3ピーク周波数だけではノイズ成分に起因した全てのピーク周波数を特定できない。この点、実施例2では、腰部センサ信号が併せて用いられるので、慣性センサ60では特定できないピーク周波数(ノイズ成分に起因したピーク周波数)を特定でき、精度の高い心拍情報や呼吸情報を生成できる。
 図15は、実施例2の効果の説明図である。図15には、上から順に、胸部センサ信号に対する周波数解析の結果、腰部センサ信号に対する周波数解析の結果、及び慣性センサ信号(Z軸方向の加速度信号)に対する周波数解析の結果を表す各グラフが示される。図15では、横軸が周波数を表し、縦軸が強度(パワー)を表し、各グラフは、同一のスケールである。尚、図15に示す周波数解析の結果は、図7に示した胸部センサ信号とは別のシーンで取得された各センサ信号に係る周波数解析の結果を示す。
 図15では、ラインL1~L8は、胸部センサ信号に対する周波数解析の結果として、ピークを取る各周波数を表すラインである。尚、説明用のため、図15では、ラインL1~L8が表すピークは、上述の所定閾値Th1未満のピークも含んでいる。
 ラインL1~L8のうち、ラインL1は、呼吸の周波数に対応し、ラインL3は、心拍の周波数に対応する。従って、ラインL1~L8のうち、ラインL2及びL4~L8に係る周波数は、ノイズ成分に係る。図15に示すように、ラインL2及びL4~L8のうち、ラインL2、L6、及びL8に係る周波数は、腰部センサ信号に対する周波数解析の結果に基づいて特定できることが分かる。換言すると、図15に示すように、ラインL2及びL4~L8のうち、L2、L6、及びL8に係る周波数以外(即ちラインL4,L5,L7に係る周波数)は、腰部センサ信号に対する周波数解析の結果に基づいて特定できない。他方、ラインL2及びL4~L8のうち、ラインL4,L5,L7に係る周波数は、慣性センサ信号に対する周波数解析の結果に基づいて特定できる。このように、腰部センサ信号に対する周波数解析の結果に基づいて特定できないノイズ成分の周波数(即ちラインL4,L5,L7に係る周波数)は、図15に示すように、慣性センサ信号に対する周波数解析の結果に基づいて特定できることが分かる。従って、慣性センサ信号を利用することで、更に精度の高い心拍情報や呼吸情報を生成できることが分かる。
 次に、図16を参照して、測定装置10Aの動作例について説明する。
 図16は、測定装置10Aの動作例を示すフローチャートである。図16に示す処理は、例えば、測定装置10Aの稼働中、所定周期毎に実行されてよい。
 ステップS1600では、センサ信号取得部101及びセンサ信号取得部102は、それぞれ、ドップラセンサ70-1,70-2から腰部センサ信号及び胸部センサ信号を受信する。また、センサ信号取得部120は、慣性センサ60から慣性センサ信号を受信する。例えば、センサ信号取得部101、センサ信号取得部102、及び、センサ信号取得部120は、それぞれ、所定時間前から現時点までの所定期間ΔTの各センサ信号を受信する。所定期間ΔTは、例えば7秒である。
 ステップS1602及びステップS1604は、それぞれ、図11に示したステップS1102及びステップS1104と同様であり、説明を省略する。
 ステップS1605では、周波数解析部121は、ステップS1600で得た慣性センサ信号に対して周波数解析を行う。周波数解析部121は、周波数解析の結果、第3ピーク周波数を特定する。第3ピーク周波数の特定方法は上述のとおりである。
 ステップS1606では、比較部107Aは、ステップS1604で得た第2ピーク周波数のうちから、心拍の周波数を特定する。具体的には、比較部107Aは、0.8~3Hzの範囲内であり、且つ、ステップS1602及びステップS1605で得た第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数を、心拍の周波数として特定する。
 ステップS1608では、比較部107Aは、ステップS1604で得た第2ピーク周波数のうちから、呼吸の周波数を特定する。具体的には、比較部107Aは、0.1~0.3Hzの範囲内であり、且つ、ステップS1602及びステップS1605で得た第1ピーク周波数及び第3ピーク周波数のいずれとも有意に異なる第2ピーク周波数を、呼吸の周波数として特定する。
 ステップS1610乃至ステップS1618は、それぞれ、図11に示したステップS1110乃至ステップS1118と実質的に同様であり、説明を省略する。
 図16に示す処理によれば、例えばリアルタイムで、腰部センサ信号、胸部センサ信号、及び慣性センサ信号に基づいて、精度の高い心拍情報及び呼吸情報を出力できる。従って、乗り物内の乗員の状態をリアルタイムに精度良く監視することも可能となる。
 尚、図16では、特定の順で処理が実行されているが、図11でも説明したように、処理の順序は適宜変更可能である。
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
 例えば、上述した実施例1(実施例2も同様)では、生体情報の一例として心拍情報及び呼吸情報の双方が生成されているが、これに限られない。心拍情報及び呼吸情報の一方のみが生成されてもよい。例えば、心拍情報のみが生成される場合、図5において、呼吸フィルタ処理部109及び呼吸特徴点特定部111は省略されてもよい。
 また、上述した実施例1(実施例2も同様)では、呼吸フィルタリング信号及び心拍フィルタリング信号に基づいて、心拍情報及び呼吸情報がそれぞれ生成されるが、これに限られない。例えば、比較部107により特定された呼吸の周波数及び心拍の周波数に基づいて、呼吸フィルタリング信号及び心拍フィルタリング信号を生成することなく、心拍情報及び呼吸情報を生成してもよい。この場合、例えば比較部107により特定された心拍の周波数がf心拍であるとき、心拍情報は、該周波数f心拍自体を表してもよいし、周波数f心拍に基づいて導出できる情報(1分当たり心拍数=60×f心拍)を表してもよい。同様に、例えば比較部107により特定された呼吸の周波数がf呼吸であるとき、呼吸情報は、該周波数f呼吸自体を表してもよいし、周波数f呼吸に基づいて導出できる情報(1分当たり呼吸回数=60×f心拍)を表してもよい。
 また、上述した実施例1(実施例2も同様)では、腰部センサ信号及び胸部センサ信号に対して周波数解析を行うことで得られる第1ピーク周波数及び第2ピーク周波数に基づいて、心拍情報及び呼吸情報がそれぞれ生成されるが、これに限られない。例えば、胸部センサ信号から腰部センサ信号を差し引くことで得られる差分信号に基づいて、心拍情報及び呼吸情報がそれぞれ生成されてもよい。この場合、差分信号S(t)は、腰部センサ信号S(t)及び胸部センサ信号S(t)に基づいて、例えば以下の通り生成されてもよい。
(t)=sn1(t)
(t)=s11(t)+s12(t)+sn2(t)
S(t)=S(t)-k×S(t)
ここで、s11(t)及びs12(t)は、それぞれ、心拍及び呼吸に係る成分を表す。また、sn1(t)及びsn2(t)は、ノイズ成分を表す。kは係数であり、適合値であるが、例えば3~5の範囲内であってよい。これは、上述のように、腰椎と胸椎では、胸椎の方が、ノイズ成分に係る強度(パワー)が3~5倍程度大きいことによる。これにより、差分信号S(t)は、胸部センサ信号S(t)におけるノイズ成分が略キャンセルされた信号(≒s11(t)+s12(t))となるので、差分信号S(t)に基づいて、精度の良い心拍情報及び呼吸情報を生成できる。例えば、差分信号S(t)をに対して周波数解析を行うことで得られるピーク周波数に基づいて、精度の良い心拍情報及び呼吸情報を生成できる。
 また、上述した実施例1(実施例2も同様)において、腰部センサ信号及び胸部センサ信号は、ローパスフィルタ処理されてから周波数解析されてもよい。この場合、ローパスフィルタ処理の遮断周波数は、ピーク周波数の探索範囲に応じて決定されるが、例えば5Hzであってもよい。
1 電波送信部
2 電波受信部
5 乗員
10、10A 測定装置
22 表示装置
24 入出力デバイス
25 電波送受信部
26 無線送受信部
32 フィルタ処理部
60 慣性センサ
70(70-1,70-2) ドップラセンサ
80 フロア
90 座席
91 座面部
92 背もたれ部
93 ヘッドレスト部
101 センサ信号取得部
102 センサ信号取得部
103 周波数解析部
104 周波数解析部
107、107A 比較部
108 心拍フィルタ処理部
109 呼吸フィルタ処理部
110 心拍特徴点特定部
111 呼吸特徴点特定部
112 出力部
120 センサ信号取得部
121 周波数解析部
251 制御部
252 発振回路
253R アンテナ
253T アンテナ
254 検波回路
255 電源回路
921 下部
922 上部

Claims (18)

  1.  乗員が腰かける座席の背もたれ部における前記乗員の腰の高さに相当する第1位置に設けられ電波で動きを検出可能な第1センサから第1信号を、前記背もたれ部における前記乗員の胸の高さに相当する第2位置に設けられ電波で動きを検出可能な第2センサから第2信号を、それぞれ取得し、
     前記第1信号と、前記第2信号とに基づいて、前記第2信号に含まれる所定の成分に係る測定結果を出力する、
     処理をコンピュータに実行させる測定プログラム。
  2.  前記測定結果は、前記第1信号を周波数解析して特徴点が得られる第1ピーク周波数と、前記第2信号を周波数解析して特徴点が得られる第2ピーク周波数との比較結果に基づいて、生成される、請求項1に記載に測定プログラム。
  3.  前記第2ピーク周波数が複数存在する場合、前記測定結果は、複数の前記第2ピーク周波数のうちの、前記第1ピーク周波数とは異なる一の第2ピーク周波数に基づいて、生成される、請求項2に記載に測定プログラム。
  4.  前記座席に設けられる慣性センサからの信号を取得する処理を更に実行させ、
     前記測定結果は、前記第1信号を周波数解析して特徴点が得られる第1ピーク周波数と、前記第2信号を周波数解析して特徴点が得られる第2ピーク周波数と、前記慣性センサからの信号を周波数解析して特徴点が得られる第3ピーク周波数との比較結果に基づいて、生成される、請求項1に記載に測定プログラム。
  5.  前記第2ピーク周波数が複数存在する場合、前記測定結果は、複数の前記第2ピーク周波数のうちの、前記第1ピーク周波数及び前記第3ピーク周波数のいずれとも異なる一の第2ピーク周波数に基づいて、生成される、請求項4に記載に測定プログラム。
  6.  前記慣性センサは、水平方向及び鉛直方向のうち少なくともいずれか一方の成分の加速度を検出する加速度センサを含む、請求項4又は5に記載に測定プログラム。
  7.  前記慣性センサは、前記第2位置と同じ位置に、又は、前記第1位置よりも前記第2位置に近い位置に、設けられる、請求項6に記載に測定プログラム。
  8.  前記測定結果は、前記第2信号にフィルタ処理を実行して得られる前記一の第2ピーク周波数に係る成分の波形に基づいて、生成される、請求項3又は5に記載に測定プログラム。
  9.  前記フィルタ処理は、前記一の第2ピーク周波数を中心としたバンドパスフィルタ処理を含む、請求項8に記載に測定プログラム。
  10.  前記測定結果は、前記波形における特徴点の間隔に基づいて生成される、請求項8に記載に測定プログラム。
  11.  前記測定結果は、前記一の第2ピーク周波数に基づいて生成される、請求項3又は5に記載に測定プログラム。
  12.  前記所定の成分は、前記乗員の心拍又は呼吸に係る成分である、請求項1~11のうちのいずれか1項に記載の測定プログラム。
  13.  前記所定の成分は、前記乗員の心拍及び呼吸に係る成分であり、
     前記測定結果は、前記乗員の心拍に係る第1測定結果と、前記乗員の呼吸に係る第2測定結果とを含み、
     前記第1測定結果及び前記第2測定結果は、それぞれ異なる前記一の第2ピーク周波数に基づいて生成される、請求項3、5、8~11のうちのいずれか1項に記載の測定プログラム。
  14.  前記第1センサは、前記乗員の腰が位置する方向に電波を送信し該電波の反射波に基づいて前記第1信号を出力するドップラセンサであり、
     前記第2センサは、前記乗員の胸が位置する方向に電波を送信し該電波の反射波に基づいて前記第2信号を出力するドップラセンサである、請求項1~13のうちのいずれか1項に記載の測定プログラム。
  15.  前記座席は、乗り物の座席である、請求項1~14のうちのいずれか1項に記載の測定プログラム。
  16.  乗員が腰かける座席の背もたれ部における前記乗員の腰の高さに相当する第1位置に設けられ電波で動きを検出可能な第1センサから第1信号を、前記背もたれ部における前記乗員の胸の高さに相当する第2位置に設けられ電波で動きを検出可能な第2センサから第2信号を、それぞれ取得し、
     前記第1信号と、前記第2信号とに基づいて、前記第2信号に含まれる所定の成分に係る測定結果を出力することを含む、コンピュータにより実行される測定方法。
  17.  乗員が腰かける座席の背もたれ部における前記乗員の腰の高さに相当する第1位置に設けられ電波で動きを検出可能な第1センサから第1信号を、前記背もたれ部における前記乗員の胸の高さに相当する第2位置に設けられ電波で動きを検出可能な第2センサから第2信号を、それぞれ取得し、
     前記第1信号と、前記第2信号とに基づいて、前記第2信号に含まれる所定の成分に係る測定結果を出力する処理装置を含む、測定装置。
  18.  乗員が腰かける座席の背もたれ部に設けられ、前記乗員の腰が位置する方向に電波を送信し該電波で動きを検出可能な第1センサと、
     前記背もたれ部に設けられ、前記乗員の胸が位置する方向に電波を送信し該電波で動きを検出可能な第2センサと、
     前記第1センサからの第1信号と、前記第2センサからの第2信号とに基づいて、所定の成分に係る測定結果を出力する処理装置とを含む、測定システム。
PCT/JP2016/081138 2016-10-20 2016-10-20 測定プログラム、測定方法及び測定装置 WO2018073939A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/081138 WO2018073939A1 (ja) 2016-10-20 2016-10-20 測定プログラム、測定方法及び測定装置
JP2018546111A JPWO2018073939A1 (ja) 2016-10-20 2016-10-20 測定プログラム、測定方法及び測定装置
US16/376,457 US20190231272A1 (en) 2016-10-20 2019-04-05 Measuring apparatus, measuring method, and non-transitory computer-readable storage medium for storing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081138 WO2018073939A1 (ja) 2016-10-20 2016-10-20 測定プログラム、測定方法及び測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/376,457 Continuation US20190231272A1 (en) 2016-10-20 2019-04-05 Measuring apparatus, measuring method, and non-transitory computer-readable storage medium for storing program

Publications (1)

Publication Number Publication Date
WO2018073939A1 true WO2018073939A1 (ja) 2018-04-26

Family

ID=62018280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081138 WO2018073939A1 (ja) 2016-10-20 2016-10-20 測定プログラム、測定方法及び測定装置

Country Status (3)

Country Link
US (1) US20190231272A1 (ja)
JP (1) JPWO2018073939A1 (ja)
WO (1) WO2018073939A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144946A1 (ja) * 2019-01-10 2020-07-16 株式会社デンソー 生体情報検知装置
CN111497772A (zh) * 2019-01-29 2020-08-07 格拉默公司 利用加速度信号的座位占用检测系统与方法
JP2020141997A (ja) * 2019-03-08 2020-09-10 株式会社デンソー 生体情報検出装置
WO2020195899A1 (ja) * 2019-03-22 2020-10-01 株式会社デンソー 生体情報検知装置
JP2021071326A (ja) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 信号処理システム、及びセンサシステム
US11332040B2 (en) 2019-01-29 2022-05-17 Grammer Ag Seat occupancy detection with acceleration signal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10572088B2 (en) * 2016-08-30 2020-02-25 Tactual Labs Co. Vehicular components comprising sensors
US11931112B2 (en) 2019-08-12 2024-03-19 Bard Access Systems, Inc. Shape-sensing system and methods for medical devices
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
US11525670B2 (en) * 2019-11-25 2022-12-13 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
WO2021263023A1 (en) 2020-06-26 2021-12-30 Bard Access Systems, Inc. Malposition detection system
US11883609B2 (en) 2020-06-29 2024-01-30 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
EP4178431A1 (en) 2020-07-10 2023-05-17 Bard Access Systems, Inc. Continuous fiber optic functionality monitoring and self-diagnostic reporting system
EP4188212A1 (en) 2020-08-03 2023-06-07 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126064A (ja) * 2001-10-22 2003-05-07 Yamatake Corp 呼吸異常検出装置
JP2005270570A (ja) * 2004-03-26 2005-10-06 Canon Inc 生体情報モニタ装置
JP2009055997A (ja) * 2007-08-30 2009-03-19 Honda Motor Co Ltd 生体振動周波数検出装置及び車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083205A (ja) * 2008-09-29 2010-04-15 Denso Corp 衝突警戒車両認知支援装置
EP2346404A4 (en) * 2008-10-24 2013-12-18 Hill Rom Services Inc DEVICES FOR SUPPORTING AND MONITORING A PERSON
JP5935593B2 (ja) * 2012-08-22 2016-06-15 富士通株式会社 心拍推定装置及び方法、並びにプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126064A (ja) * 2001-10-22 2003-05-07 Yamatake Corp 呼吸異常検出装置
JP2005270570A (ja) * 2004-03-26 2005-10-06 Canon Inc 生体情報モニタ装置
JP2009055997A (ja) * 2007-08-30 2009-03-19 Honda Motor Co Ltd 生体振動周波数検出装置及び車両

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144946A1 (ja) * 2019-01-10 2020-07-16 株式会社デンソー 生体情報検知装置
CN111497772A (zh) * 2019-01-29 2020-08-07 格拉默公司 利用加速度信号的座位占用检测系统与方法
US11292364B2 (en) * 2019-01-29 2022-04-05 Grammer Ag Seat occupancy detection with acceleration signal
US11332040B2 (en) 2019-01-29 2022-05-17 Grammer Ag Seat occupancy detection with acceleration signal
JP2020141997A (ja) * 2019-03-08 2020-09-10 株式会社デンソー 生体情報検出装置
JP7156103B2 (ja) 2019-03-08 2022-10-19 株式会社デンソー 生体情報検出装置
WO2020195899A1 (ja) * 2019-03-22 2020-10-01 株式会社デンソー 生体情報検知装置
JP2021071326A (ja) * 2019-10-29 2021-05-06 パナソニックIpマネジメント株式会社 信号処理システム、及びセンサシステム

Also Published As

Publication number Publication date
JPWO2018073939A1 (ja) 2019-06-24
US20190231272A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2018073939A1 (ja) 測定プログラム、測定方法及び測定装置
CN110944878B (zh) 车辆乘员的生命体征的非接触式检测与监视系统
CN105799615B (zh) 改进驾驶员体验的系统和方法
US20190133511A1 (en) Occupant motion sickness sensing
KR102649497B1 (ko) 차량에서의 생리학적 감지를 위한 장치, 시스템, 및 방법
CN109381220A (zh) 车载非接触式心跳及呼吸感测系统
JP2017190076A (ja) バックル及び車載システム
JP2017181225A (ja) 乗員検知装置
JP2021113046A (ja) 車体運動および乗員体験を制御するための方法およびシステム
JP2020531063A5 (ja)
CN113302076A (zh) 用于车辆碰撞后支持的系统、装置和方法
US10568578B2 (en) Multi-source doppler radar system for monitoring cardiac and respiratory functions and positioning of vehicle seat occupant
US11067661B2 (en) Information processing device and information processing method
WO2013037399A1 (en) System and method for detecting a vital-related signal pattern
JP2013085702A (ja) 生体信号推定装置及びプログラム
WO2020202159A1 (en) System for determining object status and method thereof
WO2020053148A1 (en) Removing noise caused by vehicular movement from sensor signals using deep neural networks
JP2016220816A (ja) 車両用生体情報検知方法及びその装置
JP2014108751A (ja) 搭乗予定者識別システム、搭乗予定者識別方法
JP2020146235A (ja) 生体情報出力装置、生体情報出力方法、生体情報出力プログラムおよび記録媒体
JP2018029762A (ja) 生体情報検出装置
WO2018167897A1 (ja) 生体情報検出装置、及び、生体情報検出プログラム
JP7469648B2 (ja) 心拍数検出装置、心拍数検出装置を備えたシート、及び心拍数検出方法
EP3439923B1 (de) Verfahren zur bestimmung einer aufprallstärke
WO2018051539A1 (ja) スマートキーレスエントリーシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919540

Country of ref document: EP

Kind code of ref document: A1