WO2020144946A1 - 生体情報検知装置 - Google Patents

生体情報検知装置 Download PDF

Info

Publication number
WO2020144946A1
WO2020144946A1 PCT/JP2019/045665 JP2019045665W WO2020144946A1 WO 2020144946 A1 WO2020144946 A1 WO 2020144946A1 JP 2019045665 W JP2019045665 W JP 2019045665W WO 2020144946 A1 WO2020144946 A1 WO 2020144946A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
biological
characteristic
unit
signal
Prior art date
Application number
PCT/JP2019/045665
Other languages
English (en)
French (fr)
Inventor
俊輔 柴田
齋藤 隆
山田 公一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980088303.4A priority Critical patent/CN113271845B/zh
Priority to DE112019006642.0T priority patent/DE112019006642T5/de
Publication of WO2020144946A1 publication Critical patent/WO2020144946A1/ja
Priority to US17/368,389 priority patent/US20210330197A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present disclosure relates to a biological information detection device.
  • Patent Document 1 Conventionally, from the time waveform of the signal detected by the piezoelectric element embedded in the portion of the backrest of the seat close to the passenger's heart, the signal detected by the piezoelectric element disposed near the mounting bracket of the seat A technique for subtracting a time waveform is described in Patent Document 1. By doing so, the vehicle noise included in the biological signal detected by the former piezoelectric element can be removed. Then, in Patent Document 1, the heart rate of the occupant is calculated from the biological signal from which the vehicle noise has been removed.
  • the present disclosure suppresses the influence of noise included in the output of the sensor that detects a biological signal in a different method from using a sensor that is arranged at a position where a biological signal cannot be detected, and the phase shift
  • the purpose is to calculate the biometric information while suppressing the influence.
  • a biological information detection device is configured to detect a biological signal for each of a plurality of biological signals input from a plurality of biological activity sensors that are arranged at different positions and detect a biological activity of a person.
  • a characteristic acquisition unit that acquires a frequency characteristic indicating the relationship between the frequency and strength of a signal, and a plurality of frequency characteristics acquired by the characteristic acquisition unit from the plurality of biological signals are combined, and a combination indicating a relationship between frequency and strength is obtained.
  • a synthesizing unit that obtains frequency characteristics, and a calculating unit that calculates biometric information that is information relating to the bioactivity based on the synthetic frequency characteristics obtained by the synthesizing unit are provided.
  • the present inventor has noticed that the frequency characteristics of non-noise components of the biological signal are generally stable. Then, if biological signals are detected by a plurality of biological activity sensors arranged at different positions, it is found that the frequency characteristics of noise included in the biological signals detected by the multiple biological activity sensors tend to be greatly different, I thought of using it.
  • FIG. 1 is an overall configuration diagram of a biological information detection system. It is a flowchart of the process which a process part performs. It is a figure which illustrates the conversion of a signal and the mode of composition. It is a flow chart of processing which a processing part performs in a 2nd embodiment. It is a figure which illustrates the calculation process of a weight. It is a flow chart of processing which a processing part performs in a 3rd embodiment. It is a flow chart of processing which a processing part performs in a 4th embodiment. It is a whole block diagram of the biological information detection system which concerns on 5th Embodiment. It is a flowchart of the process which a process part performs. It is a flow chart of the living body information detecting system concerning a 6th embodiment.
  • the biological information detection system As shown in FIG. 1, the biological information detection system according to the present embodiment is mounted on a vehicle and calculates and outputs the heart rate of a person 2 seated in a driver's seat of the vehicle as biological information.
  • the biometric information of the person 2 refers to information about the bioactivity of the person 2.
  • the biometric information detection system includes a biometric information detection device 4, a transmitter 11, a transmission antenna 12, a first reception antenna 13a, a second reception antenna 13b, and a receiver 14.
  • the transmitter 11 outputs a transmission signal of a predetermined frequency (for example, a frequency of 900 MHz band) to the transmission antenna 12.
  • the transmission antenna 12 is arranged on the front side in the vehicle traveling direction with respect to the driver's seat in the instrument panel in the vehicle compartment.
  • the transmission antenna 12 transmits a radio wave signal corresponding to the transmission signal from the transmitter 11 toward the upper half of the body of the person 2 seated in the driver's seat.
  • the first reception antenna 13a and the second reception antenna 13b are arranged to face the transmission antenna 12 with the person 2 and the driver's seat in between. Specifically, the first reception antenna 13a and the second reception antenna 13b are arranged at different positions in the vehicle width direction. For example, the first reception antenna 13a and the second reception antenna 13b may be embedded in the seat back of the vehicle. The first reception antenna 13a and the second reception antenna 13b are configured to be able to receive the radio wave signal transmitted from the transmission antenna 12. Each of the first reception antenna 13a and the second reception antenna 13b corresponds to a biological activity sensor.
  • the receiver 14 amplifies and outputs the radio signal received by the first receiving antenna 13a and the second receiving antenna 13b. Specifically, the receiver 14 amplifies the radio wave signal received by the first receiving antenna 13a and outputs it as the biometric signal P1 to the biometric information detection device 4. Further, the receiver 14 amplifies the radio wave signal received by the second receiving antenna 13b and outputs it to the biological information detecting device 4 as a biological signal P2.
  • the biological information detection device 4 includes an input unit 41, a storage unit 42, an output unit 43, and a processing unit 44.
  • the input unit 41 outputs the biological signals P1 and P2, which are analog signals input from the receiver 14, as digital signals to the processing unit 44.
  • the storage unit 42 includes a RAM, a ROM, a writable non-volatile storage medium, and the like. RAM, ROM, and writable non-volatile storage media are all non-transitional tangible storage media.
  • the output unit 43 outputs the signal input from the processing unit 44 to a device external to the biological information detection device 4.
  • the external device of the output destination may be, for example, an in-vehicle navigation device that performs route guidance or the like, an in-vehicle data communication module that communicates with the outside of the vehicle, or a mobile communication terminal carried by a person 2.
  • the processing unit 44 is a device that executes a process according to a program recorded in the ROM of the storage unit 42 or a writable nonvolatile storage medium, and uses the RAM of the storage unit 42 as a work area during execution. To do.
  • the transmitter 11 outputs a transmission signal having a predetermined frequency to the transmission antenna 12. Then, the transmission antenna 12 transmits a radio signal corresponding to the transmission signal from the transmitter 11 toward the driver's seat and the person 2.
  • a part of this radio wave signal passes through the body of the person 2 and is received by the first receiving antenna 13a and the second receiving antenna 13b.
  • the body of the person 2 functions as a dielectric for the radio signal. Therefore, when the radio wave signal passes through the body of the person 2, a dielectric loss occurs in the electric field strength of the radio wave signal.
  • the shape of the heart 2a changes as it expands and contracts. Therefore, in the radio signals W1 and W2 that pass through the heart 2a and reach the first receiving antenna 13a and the second receiving antenna 13b, respectively, as shown in FIG. Will change accordingly.
  • the strength of the radio signal received by the first receiving antenna 13a and the second receiving antenna 13b includes a component that changes in synchronization with the heartbeat in accordance with the heartbeat of the heart 2a. Therefore, the levels of the electric signals and the biological signals P1 and P2 output from the first receiving antenna 13a and the second receiving antenna 13b to the receiver 14 by receiving the radio signal are synchronized with the heartbeat in accordance with the heartbeat of the heart 2a. Including components that fluctuate.
  • the radio signals that do not pass through the body of the person 2 are, as shown in FIG. 1, diffracted waves W3, reflected waves W4, and the like of the first receiving antenna 13a and the second receiving antenna 13b. Only one of them may be received as a radio signal.
  • the diffracted wave W3 is a radio signal that goes around the left side of the person 2.
  • the reflected wave W4 is a radio wave signal reflected by the door 9 on the right side of the person 2.
  • the diffracted wave W3 and the reflected wave W4 include not only a signal necessary for calculating the biological information of the person 2, but also noise caused by vibration of the vehicle traveling, noise caused by disturbance from the outside of the vehicle, and the like. .. Therefore, the radio signal received by the first receiving antenna 13a and the radio signal received by the second receiving antenna 13b differ in the type and nature of noise contained therein. In a sense, the noise component appears randomly at each measurement location. This is because the positions of the first receiving antenna 13a and the second receiving antenna 13b are different from each other.
  • the first receiving antenna 13a and the second receiving antenna 13b each output a reception signal whose signal strength changes according to the electric field strength of the received radio signal.
  • the receiver 14 outputs the biological signal P1 in which the received signal input from the first receiving antenna 13a is amplified to the biological information detecting device 4. Further, the receiver 14 outputs the biological signal P2 in which the received signal input from the second receiving antenna 13b is amplified to the biological information detecting device 4.
  • the transmitter 11, the transmitting antenna 12, the first receiving antenna 13a, the second receiving antenna 13b, and the receiver 14 are continuously operated, so that the input unit 41 of the biological information detecting device 4 can be operated with time.
  • Biological signals P1 and P2 whose signal strength changes with the elapse of time are continuously input.
  • each of the biological signals P1 and P2 includes a signal component representing the heart rate, which is biological information, and noise irrelevant to the biological information.
  • the noise included in the biological signal P1 and the noise included in the biological signal P2 are different in type and property.
  • the input unit 41 outputs to the processing unit 44 a digital signal having a value according to the signal strength of the input biomedical signals P1 and P2. Therefore, the processing unit 44 receives the information about the intensity change of the biological signals P1 and P2 with the passage of time.
  • the information on the intensity change of the biological signals P1 and P2 with the passage of time is a time waveform, that is, a waveform in the time domain. More specifically, this time waveform includes information on the signal strength at each of a plurality of discrete sampling timings which are separated by a predetermined time interval.
  • the processing unit 44 executes the process shown in FIG. 2 by reading and executing a predetermined program from the ROM of the storage unit 42 or a writable nonvolatile storage medium.
  • FIG. 3 exemplifies the state of signal conversion realized by this processing.
  • the processing unit 44 calculates the heart rate of the person 2 based on the time waveforms of the biological signals P1 and P2. Specifically, the processing unit 44 first performs the processing of steps 110 and 120 once for each channel and for the total number of channels.
  • one channel is assigned to each receiving antenna. That is, the first receiving antenna 13a is assigned the first channel, and the second receiving antenna 13b is assigned the second channel.
  • step 110 corresponding to the first channel the processing unit 44 extracts the time waveform of the input biological signal P1 for a time section of a predetermined length. For example, only the time section from one second before to the present time is extracted. Subsequently, in step 120 corresponding to the first channel, the processing unit 44 performs a Fourier transform on the time waveform extracted in the immediately preceding step 110 to indicate the relationship between the frequency and the intensity of the biological signal P1 in the time section.
  • the frequency characteristic Q1 is acquired.
  • the frequency characteristic is a waveform in the frequency domain.
  • step 110 the processing unit 44 extracts the time waveform of the input biological signal P2 for the above-mentioned time section.
  • step 120 the processing unit 44 shows the relationship between the frequency and the intensity of the biological signal P2 in the time section by performing the discrete Fourier transform on the time waveform extracted in the immediately preceding step 110.
  • the frequency characteristic Q2 is acquired.
  • the processing unit 44 calculates the frequency characteristics Q1 and Q2 of the same frequency section in the plurality of channels from the time waveforms of the biological signals P1 and P2 in the same time section of the plurality of channels.
  • the frequency waveform obtained in step 120 of each channel more specifically includes signal strength information at each of a plurality of discrete frequencies spaced by a predetermined frequency interval.
  • the frequency characteristics Q1 and Q2 have a plurality of peaks as shown in FIG.
  • the peak means that the intensity is not less than a predetermined value and is maximum.
  • These peaks include peaks derived from the pulse of the heart 2a and peaks derived from other noises.
  • the peak at the frequency fs is the peak derived from the pulse of the heart 2a, and the peak at the frequency fa is the peak derived from the noise included in the diffracted wave W3.
  • the peak at the frequency fs is the peak derived from the pulse of the heart 2a, and the peak at the frequency fb is the peak derived from the noise included in the reflected wave W4.
  • the frequency of noise often differs when the position of the receiving antenna is different. This is because when the positions of the plurality of receiving antennas are different from each other, the types and properties of noises received by the plurality of receiving antennas are different.
  • the peak frequency fs originating from the heart 2a is likely to be the same regardless of the biological signal from any receiving antenna.
  • the heart 2a is calculated based on the frequency fa derived from noise. There is a high possibility that the pulse rate will be calculated. Further, when trying to calculate the pulse rate of the heart 2a based only on the frequency characteristic Q2, when the peak intensity of the frequency fb is higher than the peak intensity of the frequency fs, the heart 2a is calculated based on the frequency fb derived from noise. There is a high possibility that the pulse rate will be calculated. In the present embodiment, as will be described later, the pulse rate is calculated by using the combination of the frequency characteristic Q1 and the frequency characteristic Q2 in the frequency domain.
  • step 130 the frequency characteristics obtained in steps 110 and 120 for all the channels, that is, the frequency characteristic Q1 of the biological signal P1 and the frequency characteristic Q2 of the biological signal P2 are multiplied. Then, the relationship between the frequency and the intensity obtained as a result of the multiplication is set as the composite frequency characteristic Q. This multiplication corresponds to composition.
  • the intensity of the peaks that appear in only some of the frequency characteristics Q1 and Q2 used in the synthesis are weakened by this synthesis.
  • the peaks appearing in all the frequency characteristics Q1 and Q2 used in the combination are strengthened by this combination.
  • the peak of the frequency fs derived from the heartbeat of the heart 2a becomes the highest intensity peak.
  • step 140 the processing unit 44 specifies the frequency of the peak having the maximum intensity, that is, the peak frequency, of the peaks of the combined frequency characteristic Q obtained in the immediately preceding step 130.
  • the frequency fs is specified as the peak frequency.
  • step 150 the heart rate of the heart 2a is identified based on the peak frequency identified in the immediately preceding step 140. For example, when the peak frequency is 1 Hz, the heart rate is 60 times/minute, which is the result of multiplying it by 60.
  • step 160 the processing unit 44 outputs the heart rate calculated in the immediately preceding step 150 to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the biometric information that is information related to the biological activity is calculated.
  • the present inventor has noticed that the frequency characteristics of the component derived from the heartbeat, which is not noise, of the biological signal is generally stable. Looking at the biological signal in the time domain, if the noise component and the component derived from the heartbeat are received at different positions, the waveforms will be greatly different. However, in the frequency domain, the component derived from the heartbeat almost always has a peak at a frequency corresponding to the heart rate regardless of the position of the biological activity sensor. On the other hand, the peak frequency of the noise component differs greatly depending on the position of the biological activity sensor even when viewed in the frequency domain.
  • the inventor detects the biological signals with the first receiving antenna 13a and the second receiving antenna 13b arranged at different positions, the frequency characteristics of noise included in the biological signals detected with these antennas tend to be greatly different. I found that there is. And I thought of using it.
  • the idea is to synthesize the frequency characteristics Q1 and Q2 of the biological signals P1 and P2 from the first receiving antenna 13a and the second receiving antenna 13b, which are arranged at different positions as described above, not in the time domain but in the frequency domain. did.
  • the non-noise frequency portions of the biological signals P1 and P2 are mutually strengthened, and the noise frequency portions are not mutually strengthened. Therefore, in the combined frequency characteristic Q obtained by combining, the influence of noise is suppressed.
  • the phase shift does not affect noise suppression. If there is a gap between the time it takes for the radio signal W1 to reach the first receiving antenna 13a from the transmitter 11 and the time for the radio signal W2 to reach the second receiving antenna 13b from the transmitter 11 A phase shift occurs between the biological signal P1 and the biological signal P2 input to the unit 41. If the bio-signals P1 and P2 are combined in the time domain, the combination is performed with the deviation left, or a process for correcting the phase shift is required. In the former case, the calculation accuracy of the heart rate decreases. In the latter case, the extra processing load increases. On the other hand, since the frequency characteristics Q1 and Q2 show the intensity distribution in the frequency domain, they are not easily affected by the phase shift, so that the above-described effects can be obtained.
  • the processing unit 44 also multiplies the frequency characteristics Q1 and Q2 with each other to obtain the combined frequency characteristic Q.
  • the S/N ratio of the combined frequency characteristic is improved by obtaining the combined frequency characteristic by multiplying the plurality of frequency characteristics Q1 and Q2 with each other.
  • addition can be considered in addition to multiplication as the combination, but in the case of addition, the effect of strengthening the peak corresponding to the heartbeat by combining is lower than in the case of multiplication.
  • the processing unit 44 also combines the frequency characteristics Q1 and Q2 with the same frequency. This improves the S/N ratio of the composite frequency characteristic.
  • the frequency characteristics Q1 and Q2 may be multiplied with a slight shift in frequency, but in that case, the effect that the peaks corresponding to the heartbeat are strengthened by synthesis is lower than that in the case of synthesis with the same frequency.
  • NHTSA index level 3 or lower operates while the driver is monitoring the running of the vehicle, and the driver is responsible for driving.
  • NHTSA is an abbreviation for National Highway Traffic Safety Administration.
  • the sensors used to acquire these biometric information are usually worn on a finger or the like.
  • a non-contact sensor is advantageous because of the demands such as "does not hinder driving" and "requires constant measurement”.
  • the non-contact type sensor does not need to be in constant contact with the driver even if it is necessary to always measure.
  • a non-contact type sensor can also be used.
  • the heart rate output from the biological information detection device 4 of the present embodiment may be output to the awakening degree detection device that detects the awakening degree of the driver.
  • the non-contact type sensor is a non-contact type
  • the S/N tends to decrease due to noise components from the outside.
  • a method for removing the noise component there is a method as described in Patent Document 1 above, but it may be difficult to remove noise in the frequency band near the heartbeat due to phase shift. Since the biological information detection device 4 of the present embodiment synthesizes the frequency characteristics in the frequency domain, the biological information detection device 4 is more robust against phase shift than the method of Patent Document 1.
  • the processing unit 44 functions as a characteristic acquisition unit by executing Step 120, functions as a combining unit by executing Step 130, and functions as a calculation unit by executing Step 150. To do.
  • the processing unit 44 first performs the process for each channel and the processes of steps 131, 140, 150, and 160 in this order every time a time period of a predetermined length (for example, 1 second) elapses. Do it each time.
  • a time period of a predetermined length for example, 1 second
  • steps 110, 120, and 121 for each channel is as follows.
  • the processing unit 44 extracts the time waveform of the biological signal of the channel input from the input unit 41 in the time section.
  • step 120 the time waveform extracted in the immediately preceding step 110 is subjected to discrete Fourier transform to obtain the frequency characteristic indicating the relationship between the frequency and the intensity of the biological signal in the time section and the channel.
  • step 121 the weight ⁇ for each frequency corresponding to the amount of change over time in the frequency characteristic of the biological signal of the channel in the time period is calculated. This process will be specifically described below.
  • the processing unit 44 calculates the amount of temporal change in intensity of the frequency characteristics of the channel. This calculation is performed based on the frequency characteristic calculated in step 120 immediately before and the frequency characteristic calculated in step 120 for the same channel in the time section immediately before the time section. If step 121 of this time is the opportunity to execute the first step 121 for the same channel, the amount of change in intensity for each frequency is set to zero regardless of the frequency.
  • the processing unit 44 determines the frequency characteristic of the biological signal in the n-1th time section of the same channel from the frequency characteristic of the biological signal in the nth time section of the specific channel, Subtract the same frequencies.
  • n is a natural number.
  • the processing unit 44 calculates the absolute value of the subtraction result, and sets the absolute value as the temporal change amount R of the intensity for each frequency as shown in FIG.
  • the n-th time section is the time section newly passed this time
  • the (n-1)-th time section is the time section one before the time section newly passed this time.
  • the processing unit 44 sets the weight ⁇ for each frequency as the amount that decreases as the temporal change amount R increases, as shown in FIG. calculate.
  • the weight calculated in this way is a weight corresponding to the frequency characteristic of the biological signal of the channel in the time section.
  • the value of the weight ⁇ is always 0 or positive.
  • the weight ⁇ for each frequency corresponding to the frequency characteristic of the biological signal of each channel is calculated.
  • step 131 the frequency characteristics obtained in step 120 for all channels are multiplied by the weight ⁇ obtained in step 121 for all channels. Then, the relationship between the frequency and the intensity obtained as a result of the weighted multiplication is set as the composite frequency characteristic Q. This multiplication corresponds to composition.
  • Q1( ⁇ i ) is a frequency characteristic of the biological signal of the channel corresponding to the first receiving antenna 13a in the n-th time section.
  • Q2( ⁇ i ) is a frequency characteristic in the n-th time section of the biological signal of the channel corresponding to the second receiving antenna 13b.
  • ⁇ 1( ⁇ i ) is a weight ⁇ for each frequency ⁇ i in the n-th time section of the biological signal of the channel corresponding to the first receiving antenna 13a.
  • ⁇ 2( ⁇ i ) is a weight ⁇ for each frequency ⁇ i in the n-th time section of the biological signal of the channel corresponding to the second receiving antenna 13b.
  • the combined frequency characteristic Q is obtained by multiplying the frequency characteristic Q1, the frequency characteristic Q2, the weight ⁇ 1, and the weight ⁇ 2 in the same n-th time section at the same frequency in the frequency domain.
  • the value of the synthetic frequency characteristic Q is suppressed at the frequency where the value of the weight ⁇ is small, and the synthetic frequency characteristic is suppressed at the frequency where the value of the weight ⁇ is large.
  • the value of Q is emphasized.
  • step 140 the processing unit 44 specifies the peak frequency of the combined frequency characteristic Q obtained in the immediately preceding step 131, as in the first embodiment.
  • step 150 the heart rate of the heart 2a is specified based on the peak frequency specified in the immediately preceding step 140, as in the first embodiment.
  • step 160 the heart rate calculated in the immediately preceding step 150 is output to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the processing unit 44 for each of the frequency characteristics of the biological signal of the plurality of channels in the predetermined time section, based on the frequency characteristic of the biological signal of the same channel in the time section immediately before the time section, the strength. The amount of change over time for each frequency is calculated. Then, the processing unit 44 calculates the weight ⁇ for each frequency according to the temporal change amount. Then, the processing unit 44 combines the frequency characteristics of the plurality of channels in a state in which the plurality of weights ⁇ respectively corresponding to the plurality of channels are reflected to obtain the combined frequency characteristic Q.
  • the frequency characteristic of noise tends to vary greatly depending on the installation location of the first receiving antenna 13a and the second receiving antenna 13b, but also tends to vary significantly depending on the difference in the acquisition period of the biological signal. It is in.
  • the frequency characteristic of the component of the biological signal that reflects the heartbeat rather than noise is generally stable over time. The inventor paid attention to these points, and conceived that the frequency whose intensity largely fluctuates with time is considered to be derived from noise.
  • the processing unit 44 reflects the weight for each frequency according to the time-dependent change amount of the intensity based on the frequency characteristic in the period other than the predetermined time interval for each frequency in the combined frequency characteristic. This makes it possible to further improve the S/N ratio of the combined frequency characteristic by utilizing the characteristic of the biological signal in the frequency domain.
  • each of the plurality of calculated weights ⁇ is larger as the absolute value of the corresponding change over time at the same frequency is larger.
  • the corresponding temporal change amount means the temporal change amount used for calculating the weight ⁇ .
  • the processing unit 44 functions as a characteristic acquisition unit by executing Step 120, functions as a combining unit by executing Step 131, and functions as a calculation unit by executing Step 150. To do.
  • the processing unit 44 also functions as a change weight calculation unit by executing step 121.
  • the third embodiment will be described focusing on the differences from the first embodiment.
  • the present embodiment differs from the first embodiment in that the processing executed by the processing unit 44 is replaced with the processing of FIG. 2 from the processing of FIG.
  • the other configurations and operations of this embodiment are the same as those of the first embodiment.
  • the processing unit 44 acquires the frequency characteristic for each channel in step 120 in the same manner as in the first embodiment, and then in step 123 reads the heartbeat statistical value from the ROM of the storage unit 42 or a writable non-volatile storage medium. Be the weight ⁇ .
  • the heartbeat statistical value has a value for each frequency.
  • the value of the heart rate varies depending on the person. More specifically, the normal heart rate distribution follows a normal distribution with a certain average value ⁇ and variance ⁇ . The value for each frequency that represents this normal distribution is the heartbeat statistical value.
  • the heartbeat statistical value is determined in advance by an experiment or the like and is recorded in the ROM of the storage unit 42 or a writable nonvolatile storage medium.
  • step 131 the processing unit 44 multiplies the frequency characteristics obtained in step 120 for all channels by the weight ⁇ obtained in step 123 for all channels. Then, the relationship between the frequency and the intensity obtained as a result of the weighted multiplication is set as the composite frequency characteristic Q. This multiplication corresponds to composition.
  • the method of weighted multiplication is the same as in step 131 of the second embodiment.
  • step 140 the processing unit 44 specifies the peak frequency of the combined frequency characteristic Q obtained in the immediately preceding step 131, as in the first embodiment.
  • step 150 the heart rate of the heart 2a is specified based on the peak frequency specified in the immediately preceding step 140, as in the first embodiment.
  • step 160 the heart rate calculated in the immediately preceding step 150 is output to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the processing unit 44 sets the heartbeat statistical value corresponding to the distribution statistical value of the normal heart rate of a large number of people as the weight ⁇ for each of the frequency characteristics of the biological signals of the plurality of channels in the predetermined time interval. Then, the processing unit 44 combines the frequency characteristics of the plurality of channels in a state in which the plurality of weights ⁇ respectively corresponding to the plurality of channels are reflected to obtain the combined frequency characteristic Q.
  • the weighting ⁇ corresponding to the heartbeat statistical value is reflected on the plurality of frequency characteristics obtained by Fourier transforming the plurality of biological signals to obtain the combined frequency characteristic Q, and thereby the noise removal is stochastically performed. It can be performed.
  • the processing unit 44 functions as a characteristic acquisition unit by executing Step 120, functions as a combining unit by executing Step 131, and functions as a calculation unit by executing Step 150. To do.
  • the fourth embodiment will be described focusing on the differences from the first embodiment.
  • the present embodiment differs from the first embodiment in that the processing executed by the processing unit 44 is replaced with the processing of FIG. 2 from the processing of FIG.
  • the other configurations and operations of this embodiment are the same as those of the first embodiment.
  • the processing unit 44 first performs the processing for each channel and the processing of steps 130, 140, 150, and 160 in this order every time a time period of a predetermined length (for example, 1 second) elapses. Do it each time.
  • a time period of a predetermined length for example, 1 second
  • the processing of steps 110, 120, and 124 is performed once for each channel, and for the total number of channels.
  • steps 110, 120, and 124 for each channel is as follows.
  • the processing unit 44 extracts the time waveform of the biological signal of the channel input from the input unit 41 in the time section.
  • step 120 the time waveform extracted in the immediately preceding step 110 is subjected to discrete Fourier transform to obtain the frequency characteristic indicating the relationship between the frequency and the intensity of the biological signal in the time section and the channel.
  • the plurality of frequency characteristics are acquired.
  • a representative value of the frequency characteristic of is calculated.
  • the representative value means a statistical representative value, and may be, for example, an arithmetic mean value, a geometric mean value, or a median value.
  • the representative values of the plurality of frequency characteristics are representative values of the same frequencies.
  • step 124 the frequency characteristic itself acquired in the immediately preceding step 120 is used as the representative value.
  • the processing unit 44 After the processing of steps 110, 120, and 124 has been repeated for the number of channels, the processing unit 44 first performs the frequency characteristics obtained in step 124 for all the channels in step 130 in the same frequency. Multiply as in the form. Then, the relationship between the frequency and the intensity obtained as a result of the multiplication is set as the composite frequency characteristic Q. This multiplication corresponds to composition.
  • step 140 the processing unit 44 identifies the peak frequency of the combined frequency characteristic Q obtained in the immediately preceding step 130, as in the first embodiment.
  • step 150 the heart rate of the heart 2a is specified based on the peak frequency specified in the immediately preceding step 140, as in the first embodiment.
  • step 160 the heart rate calculated in the immediately preceding step 150 is output to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the processing unit 44 calculates representative values of a plurality of frequency characteristics acquired for two or more time intervals for each of the biological signals of the plurality of channels. Then, the processing unit 44 combines the calculated representative values of the plurality of channels to obtain the combined frequency characteristic Q. In this way, the S/N ratio of the composite frequency characteristic is improved by obtaining the composite frequency characteristic using the representative values of two or more time intervals.
  • the processing unit 44 functions as a characteristic acquisition unit by executing Steps 120 and 124, functions as a combining unit by executing Step 130, and calculates the calculation unit by executing Step 150. Function as.
  • the vehicle speed sensor 7 outputs a pulse signal synchronized with the rotation of the wheels of the vehicle.
  • the traveling speed of the vehicle can be specified from the output interval of the pulse signal.
  • the gyro sensor 8 outputs a signal according to the rotational angular velocity (for example, yaw rate) of the vehicle.
  • the processing unit 44 acquires signals output from the vehicle speed sensor 7 and the gyro sensor 8. In this way, the vehicle speed sensor 7 and the gyro sensor 8 both detect the traveling behavior of the vehicle and output a behavior signal according to the traveling behavior.
  • the processing unit 44 acquires the frequency characteristic for each channel in step 120 as in the first embodiment, and then calculates the weight ⁇ for each frequency according to the behavior signal in step 125.
  • the behavior signal is one or both of the signal output from the vehicle speed sensor 7 and the signal output from the gyro sensor 8.
  • the behavior signal includes noise derived from vibration generated in the vehicle during traveling.
  • the frequency waveform indicating the relationship between the frequency and the intensity of the behavior signal in the time section is acquired by performing a discrete Fourier transform on the time waveform of the behavior signal acquired in the predetermined time section. .. Then, the weight ⁇ for each frequency according to the frequency characteristic of the behavior signal is calculated. Specifically, the value of the weight ⁇ at each frequency is smaller as the intensity of the same frequency in the frequency characteristic of the behavior signal is higher. Since such a weight ⁇ has a small value at the frequency at which the vehicle vibrates, it can be used to reduce noise due to the vehicle vibration.
  • step 131 the processing unit 44 multiplies the frequency characteristics obtained in step 120 for all channels with the weight ⁇ obtained in step 125 for all channels. Then, the relationship between the frequency and the intensity obtained as a result of the weighted multiplication is set as the composite frequency characteristic Q. This multiplication corresponds to composition.
  • the method of weighted multiplication is the same as in step 131 of the second embodiment.
  • step 140 the processing unit 44 specifies the peak frequency of the combined frequency characteristic Q obtained in the immediately preceding step 131, as in the first embodiment.
  • step 150 the heart rate of the heart 2a is specified based on the peak frequency specified in the immediately preceding step 140, as in the first embodiment.
  • step 160 the heart rate calculated in the immediately preceding step 150 is output to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the processing unit 44 obtains a combined frequency characteristic Q by combining the frequency characteristics of the plurality of channels in a state where the weight ⁇ according to the traveling behavior of the vehicle is reflected.
  • the noise in the biological signals P1 and P2 often originates from the vibration generated according to the running behavior of the vehicle.
  • the S/N ratio of the composite frequency characteristic is further improved by using the composite frequency characteristic that reflects the weight according to the output from the vehicle behavior sensor (that is, the vehicle speed sensor 7, the gyro sensor 8).
  • the vehicle behavior sensor includes one or both of the vehicle speed sensor 7 and the gyro sensor 8.
  • the signals output from the vehicle speed sensor 7 and the gyro sensor 8 reflect the vibration applied to the vehicle during traveling.
  • the vibration applied to the vehicle is likely to appear as noise in the biological signal. Therefore, by including one or both of the vehicle speed sensor 7 and the gyro sensor 8 in the vehicle behavior sensor, it is possible to effectively remove the noise caused by the vibration of the vehicle.
  • the processing unit 44 functions as a characteristic acquisition unit by executing Step 120, functions as a combining unit by executing Step 131, and functions as a calculation unit by executing Step 150. To do.
  • the processing unit 44 also functions as a behavior weight calculation unit by executing step 125.
  • the processing unit 44 acquires the frequency characteristic for each channel in step 120 as in the first embodiment, and then calculates the S/N ratio of the frequency characteristic in step 126. Specifically, the value obtained by dividing the intensity of the maximum peak in the frequency characteristic by the average value of the intensities at frequencies other than the peak is set as the S/N ratio.
  • the maximum peak is a peak having the highest intensity.
  • step 127 the processing unit 44 compares the S/N ratio calculated in the immediately preceding step 125 with a predetermined reference value. Then, if the S/N ratio is equal to or greater than the reference value, the frequency characteristic is adopted as a target of synthesis described later. However, if the S/N ratio is smaller than the reference value, the frequency characteristic is not adopted as a target of synthesis described later.
  • step 132 the processing unit 44 multiplies the frequency characteristics determined to be adopted in step 127 among the frequency characteristics obtained in step 120 for all the channels.
  • the method of multiplication is the same as step 130 of the first embodiment.
  • step 132 if there are two or more frequency characteristics determined to be adopted, the multiplication is performed as described above, but if there is one frequency characteristic determined to be adopted, one of them is used as the multiplication result. Assuming that there is, the process of step 140 is performed.
  • step 140 the processing unit 44 identifies the peak frequency of the combined frequency characteristic Q obtained in the immediately preceding step 132, as in the first embodiment.
  • step 150 the heart rate of the heart 2a is specified based on the peak frequency specified in the immediately preceding step 140, as in the first embodiment.
  • step 160 the heart rate calculated in the immediately preceding step 150 is output to the output unit 43 as digital data.
  • the output unit 43 outputs the digital data of the heart rate input from the processing unit 44 in this way to a device external to the biological information detection device 4.
  • the processing unit 44 selects a frequency characteristic in which the S/N ratios of the plurality of frequency characteristics of the biological signals of the plurality of channels are equal to or higher than the reference value, and synthesizes the selected frequency characteristic to obtain a synthetic frequency characteristic. As described above, by selecting the frequency characteristic satisfying the condition that the S/N ratio is larger than the reference value and calculating the combined value, the calculation accuracy of the biometric information is improved.
  • the processing unit 44 functions as a characteristic acquisition unit by executing Step 120, functions as a combining unit by executing Step 132, and functions as a calculation unit by executing Step 150. To do.
  • the processing unit 44 also functions as a selection unit by executing steps 126 and 127.
  • the processing unit and the method described in the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. May be done.
  • the processing unit and the method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the processing unit and the method thereof described in the present disclosure are based on a combination of a processor and a memory programmed to execute one or a plurality of functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-described embodiments, the constituent elements of the embodiment are not necessarily essential unless explicitly stated as being essential or in principle considered to be essential. Further, in each of the above-mentioned embodiments, when numerical values such as the number of components of the embodiment, numerical values, amounts, ranges, etc. are mentioned, it is clearly limited to a particular number when explicitly stated as being essential. The number is not limited to the specific number, except in the case of being.
  • the sensor when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment information is received from the server or the cloud outside the vehicle. It is also possible to do so.
  • a plurality of values are exemplified for a certain amount, it is possible to adopt a value between the plurality of values, unless otherwise specified or when it is impossible in principle to do so. ..
  • Multiplication is disclosed as an example of combining frequency characteristics of a plurality of channels.
  • the method of synthesizing the frequency characteristics of a plurality of channels is not limited to multiplication, but addition may be performed or any combination of multiplication and addition may be used.
  • Modification 2 In the above embodiment, the frequency characteristics of a plurality of channels are combined at the same frequency. However, this does not have to be the case. For example, the frequency characteristics of a plurality of channels may be combined by slightly shifting the frequency.
  • step 121 of the second embodiment the processing unit 44 determines, based on the frequency characteristic calculated in the immediately preceding step 120 and the frequency characteristic calculated in the time section immediately before the time section, that channel.
  • the amount of change over time in the intensity of the biological signal is calculated.
  • the processing unit 44 based on the frequency characteristic calculated in the immediately preceding step 120 and the frequency characteristic calculated in the time section two or more before the time section, the frequency of the intensity of the biological signal of the channel.
  • the amount of change over time for each may be calculated.
  • the processing unit 44 may calculate the time-dependent change amount of the intensity of the biological signal of the channel for each frequency based on the frequency characteristics calculated in three or more time intervals.
  • step 121 of the second embodiment the processing unit 44 calculates the amount of change over time in the intensity of the biomedical signal of the channel based on the difference in the frequency characteristics of different time intervals of the same channel.
  • the processing unit 44 may calculate the temporal change amount of the intensity of the biological signal of one of the different channels for each frequency, based on the difference in the frequency characteristics of the different time sections of the different channels. Good.
  • step 124 the processing unit 44 determines the two frequencies based on the frequency characteristic acquired in the immediately preceding step 120 and the frequency characteristic in the time section immediately preceding the time section. A representative value of the characteristic is calculated. However, this does not have to be the case. For example, the processing unit 44 determines the representative values of the two frequency characteristics based on the frequency characteristics calculated in the immediately preceding step 120 and the frequency characteristics calculated in two or more time sections before the time section. It may be calculated. Further, for example, the processing unit 44 may calculate the representative values of the three or more frequency characteristics based on the frequency characteristics calculated in the three or more time intervals.
  • the processing unit 44 has the same weight calculated in step 125 even if the channel is different.
  • the weight calculated in step 125 may be different if the behavior signals used are the same or if the channels are different.
  • the processing unit 44 identifies the frequency having the lowest intensity among the peaks of the combined frequency characteristic Q obtained in the immediately preceding step 130 as the value for heart rate calculation.
  • the entire biological information detection system is mounted on the vehicle. However, part of the biological information detection system does not have to be mounted on the vehicle. In that case, a signal may be exchanged between a portion mounted on the vehicle and a portion not mounted on the vehicle in the biological information detection system by wireless communication or the like.
  • the entire biological information detection system may be installed outside the vehicle. That is, the biometric information detection system may be used not only for calculating biometric information of a vehicle occupant but also for calculating biometric information of a person outside the vehicle (for example, inside a building).
  • the biological activity sensor a radio-type biological activity sensor, that is, the first reception antenna 13a and the second reception antenna 13b are illustrated.
  • the biological activity sensor is not limited to this.
  • the biological activity sensor may be an ultrasonic sensor or a piezoelectric sensor embedded in a vehicle seat.
  • the biological activity sensor may be a non-contact type sensor such as these, or may not be a non-contact type sensor.
  • the biological information calculated by the processing unit 44 in the above embodiment is the heartbeat.
  • the biological information calculated by the processing unit 44 does not have to be the heartbeat.
  • the processing unit 44 may calculate the respiratory rate from the same biological signals P1 and P2.
  • the processing unit 44 may calculate the pulse rate by using another biological signal sensor. If the processing unit 44 calculates the biometric information on the bioactivity that is active in a substantially stable cycle, the technique of the above embodiment is useful.
  • the number of biological activity sensors and the number of channels may be three or more.
  • the number of biological activity sensors and the number of channels are three or more, and if there are two or more channels whose S/N ratio is the reference value or more, select those two or more. Can be synthesized.
  • the process of setting the heartbeat statistical value to the weight ⁇ in step 123 of FIG. 6 in the third embodiment may be executed before step 120 and after step 121 of the process of FIG. 4 in the second embodiment.
  • the weight ⁇ based on the heartbeat statistical value is calculated separately from the weight ⁇ according to the amount of change in intensity for each frequency.
  • both the weight ⁇ based on the heartbeat statistical value and the weight ⁇ corresponding to the amount of change in intensity for each frequency are reflected in the synthesis.
  • the process of calculating the representative value of the frequency characteristic in the plurality of time intervals in step 124 of FIG. 7 may be executed immediately after step 120 of FIGS. 4 and 6 in the second and third embodiments. .. In that case, in step 131 of FIGS. 4 and 6, composition using the representative value is performed.
  • the process of calculating the weight ⁇ according to the behavior signal in step 125 of FIG. 9 in the fifth embodiment is the same as the process of step 120 of the process of FIGS. 4, 6, and 7 in the second, third, and fourth embodiments. It may be executed immediately after. In that case, the weight ⁇ according to the behavior signal is calculated separately from the weights ⁇ of other types. In that case, in step 131 of FIGS. 4 and 6, the calculated weights ⁇ of all types are reflected in the composition. Further, in step 130 of FIG. 7, the weight ⁇ according to the behavior signal is reflected in the synthesis.
  • step 126 and 127 of FIG. 10 in the sixth embodiment is the same as the processing of step 120 in the processing of FIGS. 4, 6, 7, and 9 in the second, third, fourth, and fifth embodiments. It may be executed immediately after. In that case, in the processing of step 131 of FIGS. 4, 6, and 9, only the adopted frequency characteristic and the corresponding weight ⁇ are used for the synthesis. Further, in the processing of step 130 of FIG. 7, only the representative value of the adopted frequency characteristic is used for the synthesis.
  • the biological information detection device includes a plurality of biological activity sensors arranged at different positions to detect the biological activity of the person (2) (A characteristic acquisition unit (120, 124) that acquires, for each of the plurality of biological signals (P1, P2) respectively input from 13a, 13b), a frequency characteristic (Q1, Q2) indicating the relationship between the frequency and intensity of the biological signal.
  • a characteristic acquisition unit 120, 124 that acquires, for each of the plurality of biological signals (P1, P2) respectively input from 13a, 13b), a frequency characteristic (Q1, Q2) indicating the relationship between the frequency and intensity of the biological signal.
  • a calculating unit (150) that calculates biological information that is information related to the biological activity based on the combined frequency characteristic (Q) obtained by the combining unit.
  • the combining unit obtains the combined frequency characteristic by multiplying the plurality of frequency characteristics acquired by the characteristic acquisition unit from the plurality of biological signals. In this way, the S/N ratio of the combined frequency characteristic is improved by obtaining the combined frequency characteristic by multiplying the plurality of frequency characteristics by each other.
  • the synthesizer obtains the synthesized frequency characteristic by synthesizing a plurality of frequency characteristics acquired by the characteristic acquisition section from the plurality of biological signals at the same frequencies. In this way, the S/N ratio of the combined frequency characteristic is improved by combining a plurality of frequency characteristics with the same frequency to obtain the combined frequency characteristic.
  • the biological information detection device further includes a change weight calculation unit (121), and the characteristic acquisition unit is configured to perform the plurality of input from the plurality of biological activity sensors in a predetermined time section.
  • the time waveform showing the change over time of the intensity of the biological signal is converted to obtain the frequency characteristic indicating the relationship between the frequency and the intensity of the biological signal in the time section, and the change weight calculator
  • the change weight calculator For each of the frequency characteristics of the plurality of biological signals in the time section acquired by the characteristic acquisition unit, based on the frequency characteristics indicating the relationship between the frequency and the strength of the biological signal in a period other than the time period, For each frequency, the amount of change over time is calculated according to the amount of change over time, the weight for each frequency is calculated, and the synthesizing unit obtains a plurality of frequency characteristics from the plurality of biological signals by the characteristic obtaining unit.
  • the weight for each frequency is determined for the frequency characteristics calculated in the predetermined time interval, based on the amount of change over time for each frequency based on the frequency characteristics in the period other than the time interval.
  • the frequency characteristics of noise tend to vary greatly depending on the location where the biological activity sensor is installed, but also tend to vary significantly depending on the difference in the acquisition period of the biological signal.
  • the frequency characteristics of the non-noise component of the biological signal are generally stable over time. The inventor paid attention to these points, and conceived that the frequency whose intensity largely fluctuates with time is considered to be derived from noise.
  • the biological information detection device reflects, as described above, the weight for each frequency according to the amount of temporal change of the intensity based on the frequency characteristic in the period other than the predetermined time interval for each frequency, in the combined frequency characteristic. .. This makes it possible to further improve the S/N ratio of the combined frequency characteristic by utilizing the characteristic of the biological signal in the frequency domain.
  • each of the plurality of weights is larger as the absolute value of the corresponding change amount at the same frequency is larger. By doing so, the weight can be set as a more intuitive amount.
  • the characteristic acquisition unit for each of the two or more time intervals, for each of the plurality of biological signals, a time indicating a change over time in the intensity of the biological signal in the time interval.
  • the waveform is converted to acquire a frequency characteristic indicating the relationship between the frequency and the intensity of the biological signal in the time section, and the characteristic acquisition unit further includes, for each of the plurality of biological signals, the two or more time sections.
  • a representative value of the plurality of frequency characteristics acquired is calculated, and the combining unit obtains the combined frequency characteristic by combining the plurality of representative values of the biological signals calculated by the characteristic acquisition unit. In this way, the S/N ratio of the composite frequency characteristic is improved by obtaining the composite frequency characteristic using the representative values of two or more time intervals.
  • the biological information detection device includes a behavior weight calculation unit (125), the plurality of biological activity sensors are mounted on a vehicle, and the vehicle is mounted on the vehicle.
  • a vehicle behavior sensor (7, 8) that outputs a behavior signal according to the traveling behavior of the vehicle is installed, and the behavior weight calculation unit is configured to detect a plurality of biological signals of the plurality of biological signals acquired by the characteristic acquisition unit. For each of the frequency characteristics, a weight according to the behavior signal is calculated, and the combining unit calculates a plurality of frequency characteristics acquired by the characteristic acquisition unit from the plurality of biological signals, by the behavior weight calculation unit. Further, the plurality of weights of the plurality of biological signals are reflected, and the plurality of weights are combined to obtain the combined frequency characteristic.
  • the noise in the biometric signal often comes from the running behavior of the vehicle.
  • the S/N ratio of the composite frequency characteristic can be further improved by using the composite frequency characteristic that reflects the weight according to the output from the vehicle behavior sensor.
  • the vehicle behavior sensor includes a vehicle speed sensor.
  • the signal output from the vehicle speed sensor reflects the vibration applied to the vehicle during traveling.
  • the vibration applied to the vehicle is likely to appear as noise in the biological signal. Therefore, by including the vehicle speed sensor in the vehicle behavior sensor, the noise caused by the vibration of the vehicle can be effectively removed.
  • the vehicle behavior sensor includes a gyro sensor.
  • the signal output from the gyro sensor reflects the vibration applied to the vehicle during traveling.
  • the vibration applied to the vehicle is likely to appear as noise in the biological signal. Therefore, the vehicle behavior sensor including the gyro sensor can effectively remove the noise caused by the vibration of the vehicle.
  • a selection unit (126, which selects a frequency characteristic having an S/N ratio of a reference value or more among the plurality of frequency characteristics of the plurality of biological signals acquired by the characteristic acquisition unit. 127), the combining unit combines the frequency characteristics selected by the selecting unit to obtain the combined frequency characteristic. As described above, by selecting the frequency characteristic satisfying the condition that the S/N ratio is larger than the reference value and calculating the combined value, the calculation accuracy of the biometric information is improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Signal Processing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

生体情報検知装置は、互いに異なる位置に配置されて人(2)の生体活動を検出する複数の生体活動センサ(13a、13b)からそれぞれ入力された複数の生体信号(P1、P2)の各々について、当該生体信号の周波数と強度の関係を示す周波数特性(Q1、Q2)を取得する特性取得部(120、124)と、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を合成して、周波数と強度の関係を示す合成周波数特性を得る合成部(130、131、132)と、前記合成部によって得られた前記合成周波数特性(Q)に基づいて、前記生体活動に関する情報である生体情報を算出する算出部(150)と、を備える。

Description

生体情報検知装置 関連出願への相互参照
 本出願は、2019年1月10日に出願された日本特許出願番号2019-2912号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、生体情報検知装置に関するものである。
 従来、座席の背もたれ部の搭乗者の心臓に近い部分に埋設された圧電素子で検出される信号の時間波形から、座席の取付金具の付近に配設されている圧電素子で検出される信号の時間波形を減算する技術が、特許文献1に記載されている。このようにすることで、前者の圧電素子で検出された生体信号に含まれる車両ノイズを除去することができる。そして、特許文献1では、車両ノイズが除去された生体信号から、搭乗者の心拍数が算出されている。
特許第3098843号公報
 しかし、発明者の検討によれば、上記のような技術では、生体信号を検出できる位置に配置されたセンサに加え、生体信号を検出できない位置に配置されたセンサを配置する必要がある。したがって、生体信号を検出できない位置を決めるという技術的困難が伴う。しかも、上記のような技術では、時間波形の差分を利用しているので、両方の信号の位相ずれの影響でノイズ除去ができない可能性がある。これらのことは、心拍数以外の生体情報を算出する場合でも同様である。
 本開示は、生体信号を検出できない位置に配置されたセンサを利用するのとは別の方法で、生体信号を検出するセンサの出力に含まれるノイズの影響を抑制して、かつ、位相ずれの影響を抑制して、生体情報を算出することを目的とする。
 本開示の1つの観点によれば、生体情報検知装置は、互いに異なる位置に配置されて人の生体活動を検出する複数の生体活動センサからそれぞれ入力された複数の生体信号の各々について、当該生体信号の周波数と強度の関係を示す周波数特性を取得する特性取得部と、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を合成して、周波数と強度の関係を示す合成周波数特性を得る合成部と、前記合成部によって得られた前記合成周波数特性に基づいて、前記生体活動に関する情報である生体情報を算出する算出部と、を備える。
 本発明者は、生体信号のうちノイズでない成分の周波数特性は概ね安定していることに着目した。そして、異なる位置に配置された複数の生体活動センサで生体信号を検出すれば、それら複数の生体活動センサで検出された生体信号に含まれるノイズの周波数特性は大きく異なる傾向にあることを見出し、それを利用することを着想した。
 すなわち、上記のように互いに異なる位置に配置された複数の生体活動センサからの生体信号の周波数特性を周波数ドメインで合成することで、生体信号のノイズでない部分は強め合い、ノイズの部分は強め合わない。したがって、合成によって得られた上記合成周波数特性では、ノイズの影響が抑制されている。しかも、周波数特性が合成されているので、位相ずれがノイズ抑制に影響することがない。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
生体情報検知システムの全体構成図である。 処理部が実行する処理のフローチャートである。 信号の変換および合成の様子を例示する図である。 第2実施形態において処理部が実行する処理のフローチャートである。 重みの算出過程を例示する図である。 第3実施形態において処理部が実行する処理のフローチャートである。 第4実施形態において処理部が実行する処理のフローチャートである。 第5実施形態に係る生体情報検知システムの全体構成図である。 処理部が実行する処理のフローチャートである。 第6実施形態に係る生体情報検知システムのフローチャートである。
 (第1実施形態)
 以下、第1実施形態について説明する。図1に示すように、本実施形態に係る生体情報検知システムは、車両に搭載され、車両の運転席に着座する人2の心拍数を生体情報として算出して出力する。人2の生体情報とは、人2の生体活動に関する情報をいう。この生体情報検知システムは、生体情報検知装置4、発信機11、送信アンテナ12、第1受信アンテナ13a、第2受信アンテナ13b、受信機14を備えている。
 発信機11は、所定の周波数(例えば900MHz帯の周波数)の送信信号を送信アンテナ12に出力する。送信アンテナ12は、車室内のインストルメントパネルのうち運転席に対して車両進行方向前側に配置されている。送信アンテナ12は、発信機11からの送信信号に応じた電波信号を、運転席に着座した人2の体の上半身に向けて送信する。
 第1受信アンテナ13aおよび第2受信アンテナ13bは、人2および運転席を挟んで送信アンテナ12と対向して配置されている。具体的には、第1受信アンテナ13aおよび第2受信アンテナ13bは、車両幅方向に互いに異なる位置に配置されている。例えば、第1受信アンテナ13aおよび第2受信アンテナ13bは、車両のシートバックに埋め込まれていてもよい。第1受信アンテナ13aおよび第2受信アンテナ13bは、送信アンテナ12から送信された電波信号を受信できる構成となっている。第1受信アンテナ13a、第2受信アンテナ13bは、それぞれが、生体活動センサに対応する。
 受信機14は、第1受信アンテナ13a、第2受信アンテナ13bが受信した電波信号を増幅して出力する。具体的には、受信機14は、第1受信アンテナ13aが受信した電波信号を増幅して生体信号P1として生体情報検知装置4に出力する。また受信機14は、第2受信アンテナ13bが受信した電波信号を増幅して生体信号P2として生体情報検知装置4に出力する。
 生体情報検知装置4は、入力部41、記憶部42、出力部43、処理部44を含んでいる。入力部41は、受信機14から入力されたアナログ信号である生体信号P1、P2をデジタル信号として処理部44に出力する。記憶部42は、RAM、ROM、書き込み可能な不揮発性記憶媒体等を含む。RAM、ROM、書き込み可能な不揮発性記憶媒体は、いずれも非遷移的実体的記憶媒体である。出力部43は、処理部44から入力された信号を生体情報検知装置4の外部の装置に出力する。出力先の外部の装置は、例えば、経路案内等を行う車載ナビゲーション装置でもよいし、車両の外部と通信を行う車載データ通信モジュールでもよいし、人2が携帯する携帯通信端末でもよい。
 処理部44は、記憶部42のROMまたは書き込み可能な不揮発性記憶媒体に記録されたプログラムに従った処理を実行する装置であり、実行の際には、記憶部42のRAMを作業領域として使用する。
 以下、以上のような構成の生体情報検知システムの作動について説明する。発信機11は、所定の周波数の送信信号を送信アンテナ12に出力する。すると、送信アンテナ12は、発信機11からの送信信号に応じた電波信号を運転席および人2に向けて送信する。
 この電波信号のうち一部は、人2の体を透過して第1受信アンテナ13a、第2受信アンテナ13bに受信される。電波信号に対して人2の体は誘電体として機能する。このため、人2の体を電波信号が透過する際に電波信号の電界強度に誘電体損失が生じる。そして、心臓2aは、拡張、収縮に伴ってその形状が変化する。このため、図1に示すような心臓2aを透過してそれぞれ第1受信アンテナ13a、第2受信アンテナ13bに至る電波信号W1、W2において、電界強度に生じる誘電体損失は、心臓2aの心拍に応じて変化する。
 したがって、第1受信アンテナ13a、第2受信アンテナ13bが受信する電波信号の強度は、心臓2aの心拍に応じて心拍に同期して変化する成分を含む。したがって、電波信号を受信することで第1受信アンテナ13a、第2受信アンテナ13bから受信機14に出力される電気信号のレベルおよび生体信号P1、P2は、心臓2aの心拍に応じて心拍に同期して変動する成分を含む。
 一方、送信アンテナ12からの電波信号のうち人2の体を透過しない電波信号は、図1に示すように、回折波W3、反射波W4等として第1受信アンテナ13a、第2受信アンテナ13bのうち一方のみに電波信号として受信される場合がある。回折波W3は、人2の左側を回り込む電波信号である。反射波W4は、人2の右側のドア9で反射する電波信号である。
 これら回折波W3、反射波W4は、人2の生体情報を算出するために必要な信号のみならず、車両の走行による振動に起因するノイズ、車両の外部からの擾乱等に起因するノイズを含む。したがって、第1受信アンテナ13aで受ける電波信号と、第2受信アンテナ13bで受ける電波信号とでは、含まれるノイズの種類および性質が異なる。ある意味、ノイズ成分は計測箇所毎にランダムに現れる。これは、第1受信アンテナ13aと第2受信アンテナ13bの位置が互いに対して異なるからである。
 このように電波信号が受信されると、第1受信アンテナ13a、第2受信アンテナ13bは、それぞれ、受信した電波信号の電界強度によって信号強度が変化する受信信号を出力する。受信機14は、第1受信アンテナ13aから入力された受信信号が増幅された生体信号P1を生体情報検知装置4に出力する。また受信機14は、第2受信アンテナ13bから入力された受信信号が増幅された生体信号P2を生体情報検知装置4に出力する。
 以上のように発信機11、送信アンテナ12、第1受信アンテナ13a、第2受信アンテナ13b、受信機14が継続して作動することにより、生体情報検知装置4の入力部41には、時間の経過と共に信号強度が変化する生体信号P1、P2が継続的に入力される。そして、生体信号P1、P2の各々には、生体情報である心拍数を表す信号成分と、生体情報とは無関係のノイズとが含まれる。そして、生体信号P1に含まれるノイズと生体信号P2に含まれるノイズとでは、種類および性質が異なる。
 上述の通り、入力部41は、入力された生体信号P1、P2の信号強度に応じた値のデジタル信号を処理部44に出力する。したがって、処理部44には、時間経過に伴う生体信号P1、P2の強度変化の情報が入力される。時間経過に伴う生体信号P1、P2の強度変化の情報は、時間波形すなわち時間ドメインにおける波形である。この時間波形は、より詳しくは所定の時間間隔だけ空いた離散的な複数のサンプリングタイミングの各々における信号強度の情報を含んでいる。
 処理部44は、記憶部42のROMまたは書き込み可能な不揮発性記憶媒体から所定のプログラムを読み込んで実行することにより、図2に示す処理を実行する。図3に、この処理によって実現される信号の変換の様子を例示する。
 処理部44は、この図2の処理により、これら生体信号P1、P2の時間波形に基づいて、人2の心拍数を算出する。具体的には、処理部44は、まず、ステップ110、120の処理を、チャネル毎に1回ずつ、全部でチャネル数分だけ、行う。ここで、チャネルは、受信アンテナ毎に1つ割り当てられるものである。つまり、第1受信アンテナ13aには1番目のチャネルが割り当てられ、第2受信アンテナ13bには2番目のチャネルが割り当てられる。
 1番目のチャネルに対応するステップ110では、処理部44は、入力された生体信号P1の時間波形を所定の長さの時間区間分、抽出する。例えば、1秒前から現時点までの時間区間分だけ抽出する。続いて1番目のチャネルに対応するステップ120では、処理部44は、直前のステップ110で抽出した時間波形を離散フーリエ変換することで、当該時間区間における生体信号P1の周波数と強度の関係を示す周波数特性Q1を取得する。周波数特性は、周波数ドメインにおける波形である。
 2番目のチャネルに対応するステップ110では、処理部44は、入力された生体信号P2の時間波形を上述の時間区間分、抽出する。続いて2番目のチャネルに対応するステップ120では、処理部44は、直前のステップ110で抽出した時間波形を離散フーリエ変換することで、当該時間区間における生体信号P2の周波数と強度の関係を示す周波数特性Q2を取得する。
 このように、処理部44は、複数のチャネルにおける同じ時間区間内の生体信号P1、P2の時間波形から、当該複数のチャネルにおける同じ周波数区間の周波数特性Q1、Q2を算出する。このようにして各チャネルのステップ120で得られた周波数波形は、より詳しくは所定の周波数間隔だけ空いた離散的な複数の周波数の各々における信号強度の情報を含んでいる。
 これら周波数特性Q1、Q2は、図3に示すように、複数のピークを有する。ここで、ピークとは、強度が所定値以上であり、かつ、極大となっているものをいう。これらのピークは、心臓2aの脈拍に由来するピークと、その他のノイズに由来するピークが存在する。
 図3の例では、周波数特性Q1では、周波数fsにおけるピークが心臓2aの脈拍に由来するピークであり、周波数faにおけるピークが回折波W3に含まれるノイズに由来するピークである。また、周波数特性Q2では、周波数fsにおけるピークが心臓2aの脈拍に由来するピークであり、周波数fbにおけるピークが反射波W4に含まれるノイズに由来するピークである。
 このように、ノイズの周波数は、受信アンテナの位置が異なる場合には異なることが多い。それは、複数の受信アンテナの位置が互いに異なっている場合、それら複数の受信アンテナで受信するノイズの種類や性質が異なるからである。一方、心臓2aに由来するピークの周波数fsは、どの受信アンテナからの生体信号でも同じになる可能性が高い。
 もし、周波数特性Q1のみに基づいて心臓2aの脈拍数を算出しようとすると、周波数faのピークの強度が周波数fsのピークの強度よりも高い場合、ノイズに由来する周波数faに基づいて心臓2aの脈拍数を算出してしまう可能性が高い。また、周波数特性Q2のみに基づいて心臓2aの脈拍数を算出しようとすると、周波数fbのピークの強度が周波数fsのピークの強度よりも高い場合、ノイズに由来する周波数fbに基づいて心臓2aの脈拍数を算出してしまう可能性が高い。本実施形態では、後述の通り、周波数特性Q1と周波数特性Q2の周波数ドメインでの合成を利用して脈拍数を算出する。
 ステップ110、120の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ130に進む。ステップ130では、すべてのチャネルについてステップ110、120で得られた周波数特性、すなわち、生体信号P1の周波数特性Q1および生体信号P2の周波数特性Q2を、乗算する。そして、その乗算の結果得られた周波数と強度の関係を、合成周波数特性Qとする。この乗算が合成に対応する。
 具体的には、合成周波数特性Q(ν)は、Q(ν)=Q1(ν)×Q2(ν)という式によって得られる。ここで、Q1(ν)は、周波数特性Q1を上述の離散的な複数の周波数ν(ただしi=1、2、…n、nは離散的な複数の周波数の総数)の関数としての表現である。また、Q2(ν)は、周波数特性Q2を当該離散的な複数の周波数ν(ただしi=1、2、…n、nは離散的な複数の周波数の総数)の関数としての表現である。つまり、合成周波数特性Qは、周波数ドメインにおいて、周波数特性Q1と周波数特性Q2を同じ周波数同士で乗算することで得られる。
 このようにして得られた合成周波数特性Qでは、合成に用いられた周波数特性Q1、Q2のうち、一部の周波数特性にしか表れないピークは、この合成によって強度が弱められる。これに対し、合成周波数特性Qでは、合成に用いられた周波数特性Q1、Q2のすべてに表れるピークは、この合成によって強め合う。その結果、図1に示すように、心臓2aの心拍に由来する周波数fsのピークが、最も強度の高いピークとなる。
 続いてステップ140では、処理部44は、直前のステップ130で得られた合成周波数特性Qのピークのうち、強度が最大となるピークの周波数を、すなわちピーク周波数を、特定する。図3の例では、周波数fsをピーク周波数として特定する。
 続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を特定する。例えば、ピーク周波数が1Hzであった場合、心拍数はそれに60を乗算した結果の60回/分となる。
 続いてステップ160では、処理部44は、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上説明した通り、複数の周波数特性Q1、Q2を合成して得た合成周波数特性Qに基づいて、生体活動に関する情報である生体情報を算出する。本発明者は、生体信号のうち、ノイズでない心拍由来の成分の周波数特性は概ね安定していることに着目した。生体信号を時間ドメインで見れば、ノイズの成分も心拍由来の成分も違う位置で受ければ大きく違う波形になる。しかし、周波数ドメインで見れば、心拍由来の成分は殆どの場合生体活動センサの位置によらず心拍数に対応した周波数でピークになる。これに対し、ノイズ成分は周波数ドメインで見ても生体活動センサの位置によってピーク周波数が大きく異なる。
 そして発明者は、異なる位置に配置された第1受信アンテナ13a、第2受信アンテナ13bで生体信号を検出すれば、それらアンテナで検出された生体信号に含まれるノイズの周波数特性は大きく異なる傾向にあることを見出した。そして、それを利用することを着想した。
 すなわち、上記のように互いに異なる位置に配置された第1受信アンテナ13a、第2受信アンテナ13bからの生体信号P1、P2の周波数特性Q1、Q2を時間ドメインでなく周波数ドメインで合成することを着想した。これにより、生体信号P1、P2のノイズでない周波数部分は強め合い、ノイズの周波数部分は強め合わない。したがって、合成によって得られた合成周波数特性Qでは、ノイズの影響が抑制されている。
 しかも、周波数ドメインで周波数特性Q1、Q2が合成されているので、位相ずれがノイズ抑制に影響することがない。電波信号W1が発信機11から第1受信アンテナ13aに到達するまでの時間と、電波信号W2が発信機11から第2受信アンテナ13bに到達するまでの時間との間にずれがあると、入力部41に入力される生体信号P1と生体信号P2の間に位相ずれが生じる。もし、時間ドメインで生体信号P1、P2の合成が行われれば、このずれが残ったままで合成が行われてしまうか、あるいは、位相ズレを補正するための処理が必要になる。前者の場合、心拍数の算出精度が低下する。後者の場合、余分な処理負荷が増大する。これに対し、周波数特性Q1、Q2は、周波数ドメインにおける強度分布を示しているので、位相ズレの影響を受けにくいので、上記のような効果が得られる。
 また、処理部44は、周波数特性Q1、Q2を互いに乗算して合成周波数特性Qを得る。このように、複数の周波数特性Q1、Q2を互いに乗算させることで合成周波数特性を得ることにより、合成周波数特性のS/N比が向上する。例えば、合成としては乗算以外にも加算が考えられるが、加算の場合は、心拍に相当するピークが合成によって強め合う効果が、乗算の場合よりも低い。
 また、処理部44は、周波数特性Q1、Q2を、同じ周波数同士で合成する。これにより、合成周波数特性のS/N比が向上する。周波数特性Q1、Q2を、少し周波数をずらして乗算してもよいが、その場合は、心拍に相当するピークが合成によって強め合う効果が、同じ周波数同士で合成する場合に比べれば、低下する。
 NHTSA指標レベル3以下の自動運転システムは、ドライバが車両の走行を監視している状態で作動し、運転責任はドライバが負う。NHTSAは、National Highway Traffic Safety Administrationの略である。
 一方、自動運転システムによりドライバの心理的負担が減り、覚醒度が低下することが多くの学会で報告されている。そのため、近年、ドライバの覚醒度を検出し、その結果に応じて警告表示等をするシステムの開発が検討されている。そのドライバの覚醒度を検出するための情報として多く用いられるのが、ドライバの心拍数や呼吸数等の生体情報である。
 これらの生体情報を取得するために用いるセンサは、通常、指等に装着されるのが主である。しかし、対象がドライバの場合、「運転の妨げにならない」、「常時計測が必要」といった要請から、非接触式のセンサが有利である。非接触式のセンサは、常時計測する必要があっても常時ドライバに接触している必要がない。ただし、非接触式のセンサも利用可能である。
 非接触式のセンサとしては、本実施形態のような電波式のセンサがある。したがって、本実施形態の生体情報検知装置4から出力された心拍数は、ドライバの覚醒度を検出する覚醒度検出装置に出力されてもよい。
 非接触式のセンサは、非接触式であるが故に、外部からのノイズ成分により、S/Nが低下しがちである。そのノイズ成分を除去する手法として、上記特許文献1のような手法があるが、位相ずれにより、心拍付近の周波数帯のノイズを除去することが困難である場合がある。本実施形態の生体情報検知装置4は、周波数特性を周波数ドメインで合成しているので、特許文献1の手法に比べて、位相ずれに対して堅牢である。
 なお、本実施形態では、処理部44は、ステップ120を実行することで特性取得部として機能し、ステップ130を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。
 (第2実施形態)
 次に第2実施形態について、第1実施形態との違いを中心に説明する。本実施形態は、第1実施形態に対して、処理部44が実行する処理が、図2の処理から図4の処理に置き換わっている。それ以外の本実施形態の構成および作動は、第1実施形態と同じである。
 以下、図4の処理の内容について説明する。図2と図4で同じ符号が付されたステップは、以下に別言する部分を除いて、同じである。
 処理部44は、図4の処理において、まず、所定の長さ(例えば1秒)の時間区間が経過する毎に、チャネル毎処理、ステップ131、140、150、160の処理を、この順に1回ずつ行う。1回のチャネル毎処理では、ステップ110、120、121の処理を、チャネル毎に1回ずつ、全部でチャネル数分だけ、行う。
 各時間区間が経過した際の、チャネル毎処理、ステップ131、140、150、160の処理は、以下の通りである。
 まず、チャネル毎処理について説明する。各チャネルを対象とする、ステップ110、120、121の処理は、以下の通りである。ステップ110では、処理部44は、当該時間区間において入力部41から入力された当該チャネルの生体信号の時間波形を抽出する。続いてステップ120では、直前のステップ110で抽出した時間波形を離散フーリエ変換することで、当該時間区間および当該チャネルにおける生体信号の周波数と強度の関係を示す周波数特性を取得する。
 続いてステップ121では、当該時間区間における当該チャネルの生体信号の周波数特性の経時変化量に対応する、周波数毎の重みωを算出する。この処理について、以下具体的に説明する。
 まず処理部44は、当該チャネルの周波数特性における、強度の周波数毎の経時変化量を、算出する。この算出は、直前のステップ120で算出した周波数特性と、当該時間区間よりも1つ前の時間区間において同じチャネルについてステップ120で算出された周波数特性とに基づいて、行われる。なお、今回のステップ121が、同じチャネルについて最初のステップ121の実行機会であった場合は、強度の周波数毎の経時変化量は、周波数に関わらず、ゼロとする。
 例えば、図5に例示するように、処理部44は、特定のチャネルのn番目の時間区間における生体信号の周波数特性から、同じチャネルのn-1番目の時間区間における生体信号の周波数特性を、同じ周波数同士で減算する。ここで、nは自然数である。そして処理部44は、その減算結果の絶対値を算出し、当該絶対値を、図5に示すような強度の周波数毎の経時変化量Rとする。n番目の時間区間は、今回新たに過ぎた時間区間であり、n-1番目の時間区間は、今回新たに過ぎた時間区間よりも1つ前の時間区間である。
 そして処理部44は、このようにして算出した強度の周波数毎の経時変化量Rに基づいて、図5に示すように、経時変化量Rが大きいほど小さくなる量として、周波数毎の重みωを算出する。このようにして算出された重みは、当該時間区間における、当該チャネルの生体信号の周波数特性に対応する重みである。なお、重みωの値は、常に0または正である。以上で、ステップ121の処理が完了する。
 このようなステップ110、120、121の処理が、複数のチャネルの可能な組み合わせの各々について行われることで、各チャネルの生体信号の周波数特性に対応する周波数毎の重みωが算出される。
 ステップ110、120、121の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ131に進む。ステップ131では、すべてのチャネルについてステップ120で得られた周波数特性を、すべてのチャネルについてステップ121で得られた重みωの重み付きで、乗算する。そして、その重み付きの乗算の結果得られた周波数と強度の関係を、合成周波数特性Qとする。この乗算が合成に対応する。
 具体的には、合成周波数特性Q(ν)は、Q(ν)=ω1(ν)×Q1(ν)×ω2(ν)×Q2(ν)という式によって得られる。
 ここで、Q1(ν)は、第1受信アンテナ13aに対応するチャネルの生体信号の、n番目の時間区間における、周波数特性である。また、Q2(ν)は、第2受信アンテナ13bに対応するチャネルの生体信号の、n番目の時間区間における、周波数特性である。また、ω1(ν)は、第1受信アンテナ13aに対応するチャネルの生体信号の、n番目の時間区間における、周波数ν毎の重みωである。また、ω2(ν)は、第2受信アンテナ13bに対応するチャネルの生体信号の、n番目の時間区間における、周波数ν毎の重みωである。
 つまり、合成周波数特性Qは、同じn番目の時間区間における周波数特性Q1と周波数特性Q2と重みω1と重みω2とを、周波数ドメインにおいて、同じ周波数同士で乗算することで得られる。
 このように、周波数に依存する重みωを反映した合成を行うことで、重みωの値が小さい周波数では、合成周波数特性Qの値は抑制され、重みωの値が大きい周波数では、合成周波数特性Qの値は強調される。
 続いてステップ140では、処理部44は、直前のステップ131で得られた合成周波数特性Qのピーク周波数を、第1実施形態と同様に、特定する。続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を、第1実施形態と同様に、特定する。続いてステップ160では、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上の通りの処理により、第1実施形態と同様の効果を得ることができる。また、処理部44は、所定の時間区間における複数のチャネルの生体信号の周波数特性の各々について、その時間区間よりも1つ前の時間区間における同じチャネルの生体信号の周波数特性に基づいて、強度の周波数毎の経時変化量を算出する。そして処理部44は、当該経時変化量に応じて、周波数毎の重みωを算出する。そして処理部44は、複数のチャネルの周波数特性を、複数のチャネルにそれぞれ対応する複数の重みωが反映された状態で合成して、合成周波数特性Qを得る。
 上述の通り、ノイズの周波数特性は第1受信アンテナ13a、第2受信アンテナ13bの設置箇所の違いによって大きく異なる傾向にあるが、そればかりでなく、生体信号の取得期間の違いによっても大きく異なる傾向にある。一方、生体信号のうちノイズでなく心拍を反映する成分の周波数特性は、経時的にも概ね安定している。発明者はこれらの点に着目し、経時的に強度が大きく変動する周波数はノイズ由来であると見なすことを着想した。
 そしてそのために、処理部44は、上述の通り、所定の時間区間以外の期間における周波数特性に基づく強度の周波数毎の経時変化量に応じた、周波数毎の重みを、合成周波数特性に反映させる。これにより、周波数ドメインにおける生体信号の特性を利用して、合成周波数特性のS/N比をより向上させることができる。
 また、算出される複数の重みωの各々は、対応する経時変化量の同じ周波数における値の絶対値が大きいほど、大きい。ここで、対応する経時変化量とは、当該重みωを算出するために用いられた経時変化量のことをいう。このようにすることで、より直感的な量として重みωを設定することができる。
 なお、本実施形態では、処理部44は、ステップ120を実行することで特性取得部として機能し、ステップ131を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。また、処理部44は、ステップ121を実行することで変化重み算出部として機能する。
 (第3実施形態)
 次に第3実施形態について、第1実施形態との違いを中心に説明する。本実施形態は、第1実施形態に対して、処理部44が実行する処理が、図2の処理から図6の処理に置き換わっている。それ以外の本実施形態の構成および作動は、第1実施形態と同じである。
 以下、図4の処理の内容について説明する。図2と図4で同じ符号が付されたステップは、以下に別言する部分を除いて、同じである。処理部44は、各チャネルについてステップ120で第1実施形態と同様に周波数特性を取得した後、ステップ123で、心拍統計値を記憶部42のROMまたは書き込み可能な不揮発性記憶媒体から読み出し、それを重みωとする。心拍統計値は、周波数毎に値を有する。
 ここで、心拍統計値について説明する。心拍数は、人によって値が異なる。より具体的には、平常時の心拍数の分布は、ある決まった平均値μおよび分散σの正規分布に従う。この正規分布を表す周波数毎の値が、心拍統計値である。心拍統計値は、あらかじめ実験等によって定められて、記憶部42のROMまたは書き込み可能な不揮発性記憶媒体に記録される。
 ステップ110、120、123の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ131に進む。処理部44は、ステップ131で、すべてのチャネルについてステップ120で得られた周波数特性を、すべてのチャネルについてステップ123で得られた重みωの重み付きで、乗算する。そして、その重み付きの乗算の結果得られた周波数と強度の関係を、合成周波数特性Qとする。この乗算が合成に対応する。重み付きの乗算の手法は、第2実施形態のステップ131と同じである。
 続いてステップ140では、処理部44は、直前のステップ131で得られた合成周波数特性Qのピーク周波数を、第1実施形態と同様に、特定する。続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を、第1実施形態と同様に、特定する。続いてステップ160では、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上の通りの処理により、第1実施形態と同様の効果を得ることができる。また、処理部44は、所定の時間区間における複数のチャネルの生体信号の周波数特性の各々について、多数の人の平常時の心拍数の分布統計値に相当する心拍統計値を重みωとする。そして処理部44は、複数のチャネルの周波数特性を、複数のチャネルにそれぞれ対応する複数の重みωが反映された状態で合成して、合成周波数特性Qを得る。
 このように、複数の生体信号をフーリエ変換することで得られた複数の周波数特性に、心拍統計値に相当する重みωを反映させて、合成周波数特性Qを得ることで、確率的にノイズ除去を行うことができる。
 なお、本実施形態では、処理部44は、ステップ120を実行することで特性取得部として機能し、ステップ131を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。
 (第4実施形態)
 次に第4実施形態について、第1実施形態との違いを中心に説明する。本実施形態は、第1実施形態に対して、処理部44が実行する処理が、図2の処理から図7の処理に置き換わっている。それ以外の本実施形態の構成および作動は、第1実施形態と同じである。
 以下、図7の処理の内容について説明する。図2と図7で同じ符号が付されたステップは、以下に別言する部分を除いて、同じである。
 処理部44は、図7の処理において、まず、所定の長さ(例えば1秒)の時間区間が経過する毎に、チャネル毎処理、ステップ130、140、150、160の処理を、この順に1回ずつ行う。1回のチャネル毎処理では、ステップ110、120、124の処理を、チャネル毎に1回ずつ、全部でチャネル数分だけ、行う。
 各時間区間が経過した際の、チャネル毎処理、ステップ130、140、150、160の処理は、以下の通りである。
 まず、チャネル毎処理について説明する。各チャネルを対象とする、ステップ110、120、124の処理は、以下の通りである。ステップ110では、処理部44は、当該時間区間において入力部41から入力された当該チャネルの生体信号の時間波形を抽出する。続いてステップ120では、直前のステップ110で抽出した時間波形を離散フーリエ変換することで、当該時間区間および当該チャネルにおける生体信号の周波数と強度の関係を示す周波数特性を取得する。
 続いてステップ124では、直前のステップ120で取得した周波数特性と、当該時間区間よりも1つ前の時間区間について同じチャネルに関してステップ120で取得した周波数特性とに基づいて、周波数毎に、それら複数の周波数特性の代表値を算出する。代表値とは、統計的な代表値をいい、例えば、相加平均値でもよし、相乗平均値でもよいし、中央値でもよい。また、複数の周波数特性の代表値は、同じ周波数同士の代表値である。
 なお、当該時間区間が、最初の時間区間である場合は、ステップ124では、直前のステップ120で取得した周波数特性そのものを、代表値とする。
 ステップ110、120、124の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ130で、すべてのチャネルについてステップ124で得られた周波数特性を、同じ周波数同士で、第1実施形態と同様に、乗算する。そして、その乗算の結果得られた周波数と強度の関係を、合成周波数特性Qとする。この乗算が合成に対応する。
 続いてステップ140では、処理部44は、直前のステップ130で得られた合成周波数特性Qのピーク周波数を、第1実施形態と同様に、特定する。続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を、第1実施形態と同様に、特定する。続いてステップ160では、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上の通りの処理により、第1実施形態と同様の効果を得ることができる。また、処理部44は、複数のチャネルの生体信号の各々について、2つ以上の時間区間につき取得した複数の周波数特性の代表値を算出する。そして処理部44は、算出した複数のチャネルの複数の代表値を合成して合成周波数特性Qを得る。このように、2つ以上の時間区間の代表値を用いて合成周波数特性を得ることで、合成周波数特性のS/N比が向上する。
 なお、本実施形態では、処理部44は、ステップ120、124を実行することで特性取得部として機能し、ステップ130を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。
 (第5実施形態)
 次に第5実施形態について、第1実施形態との違いを中心に説明する。本実施形態は、第1実施形態に対して、図8に示すように、車速センサ7およびジャイロセンサ8が追加されている。また、処理部44が実行する処理が、図2の処理から図9の処理に置き換わっている。それ以外の本実施形態の構成および作動は、第1実施形態と同じである。
 車速センサ7は、車両の車輪の回転に同期したパルス信号を出力する。パルス信号の出力間隔から、車両の走行速度を特定することが可能である。ジャイロセンサ8は、車両の回転角速度(たとえばヨーレート)に応じた信号を出力する。処理部44は、これら車速センサ7、ジャイロセンサ8から出力される信号を取得する。このように、車速センサ7、ジャイロセンサ8は、いずれも、車両の走行挙動を検出し、当該走行挙動に応じた挙動信号を出力する。
 以下、図9の処理の内容について説明する。図2と図9で同じ符号が付されたステップは、以下に別言する部分を除いて、同じである。処理部44は、各チャネルについてステップ120で第1実施形態と同様に周波数特性を取得した後、ステップ125で、挙動信号に応じた周波数毎の重みωを算出する。挙動信号は、車速センサ7から出力された信号およびジャイロセンサ8から出力された信号のうち一方または両方である。挙動信号は、走行時に車両に発生する振動に由来するノイズを含んでいる。
 具体的には、ステップ125では、当該所定時間区間内において取得された挙動信号の時間波形を離散フーリエ変換することで、当該時間区間における挙動信号の周波数と強度の関係を示す周波数特性を取得する。そして、その挙動信号の周波数特性に応じた周波数毎の重みωを算出する。具体的には、当該重みωの各周波数における値は、挙動信号の周波数特性における同じ周波数の強度が大きいほど、小さい。このような重みωは、車両が振動する周波数で値が小さいので、車両の振動に由来するノイズを低減するために用いることができる。
 ステップ110、120、125の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ131に進む。処理部44は、ステップ131で、すべてのチャネルについてステップ120で得られた周波数特性を、すべてのチャネルについてステップ125で得られた重みωの重み付きで、乗算する。そして、その重み付きの乗算の結果得られた周波数と強度の関係を、合成周波数特性Qとする。この乗算が合成に対応する。重み付きの乗算の手法は、第2実施形態のステップ131と同じである。
 続いてステップ140では、処理部44は、直前のステップ131で得られた合成周波数特性Qのピーク周波数を、第1実施形態と同様に、特定する。続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を、第1実施形態と同様に、特定する。続いてステップ160では、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上の通りの処理により、第1実施形態と同様の効果を得ることができる。また、処理部44は、複数のチャネルの周波数特性を、車両の走行挙動に応じた重みωが反映された状態で、合成して、合成周波数特性Qを得る。
 第1受信アンテナ13a、第2受信アンテナ13bが車両に搭載されているので、生体信号P1、P2中のノイズは車両の走行挙動に応じて発生する振動に由来するものが多い。そのような場合、車両挙動センサ(すなわち、車速センサ7、ジャイロセンサ8)からの出力に応じた重みを反映する合成周波数特性を用いることで、合成周波数特性のS/N比をより向上させることができる。
 また、車両挙動センサは車速センサ7、ジャイロセンサ8のうち一方または両方を含む。車速センサ7、ジャイロセンサ8から出力される信号は、走行時の車両に加わる振動を反映したものになる。そして、車両に加わる振動は、生体信号中のノイズとしても現れ易い。したがって、車両挙動センサが車速センサ7およびジャイロセンサ8の一方または両方を含むことにより、車両の振動に起因するノイズを効果的に除去することができる。
 なお、本実施形態では、処理部44は、ステップ120を実行することで特性取得部として機能し、ステップ131を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。また処理部44は、ステップ125を実行することで挙動重み算出部として機能する。
 (第6実施形態)
 次に第6実施形態について、第1実施形態との違いを中心に説明する。本実施形態は、第1実施形態に対して、処理部44が実行する処理が、図2の処理から図10の処理に置き換わっている。それ以外の本実施形態の構成および作動は、第1実施形態と同じである。
 以下、図10の処理の内容について説明する。図2と図10で同じ符号が付されたステップは、以下に別言する部分を除いて、同じである。処理部44は、各チャネルについてステップ120で第1実施形態と同様に周波数特性を取得した後、ステップ126で、当該周波数特性のS/N比を算出する。具体的には、当該周波数特性における最大のピークの強度を、当該ピーク以外の周波数における強度の平均値で除算した値を、当該S/N比とする。ここで、最大のピークとは、最も強度が大きいピークをいう。
 続いて処理部44は、ステップ127において、直前のステップ125で算出したS/N比と所定の基準値とを比較する。そして、当該S/N比が基準値以上であれば、当該周波数特性を、後述の合成の対象として採用する。しかし、当該S/N比が基準値より小さければ、当該周波数特性を、後述の合成の対象として不採用とする。
 ステップ110、120、123の処理のチャンネル数分の繰り返しが終了した後、処理部44は、ステップ132に進む。処理部44は、ステップ132で、すべてのチャネルについてステップ120で得られた周波数特性のうち、ステップ127で採用すると決定された周波数特性を互いに乗算する。乗算の手法は、第1実施形態のステップ130と同じである。
 なお、ステップ132では、採用すると決定された周波数特性が2つ以上であれば、上述の通り乗算を行うが、採用すると決定された周波数特性が1つであれば、その1つを乗算結果であると見なして、ステップ140移行の処理を行う。
 続いてステップ140では、処理部44は、直前のステップ132で得られた合成周波数特性Qのピーク周波数を、第1実施形態と同様に、特定する。続いてステップ150では、直前のステップ140で特定したピーク周波数に基づいて心臓2aの心拍数を、第1実施形態と同様に、特定する。続いてステップ160では、直前のステップ150で算出した心拍数を出力部43にデジタルデータとして出力する。出力部43は、このようにして処理部44から入力された心拍数のデジタルデータを、生体情報検知装置4の外部の装置に出力する。
 以上の通りの処理により、第1実施形態と同様の効果を得ることができる。また処理部44は、複数のチャネルの生体信号の複数の周波数特性のS/N比が基準値以上の周波数特性を選択し、選択された周波数特性を合成して合成周波数特性を得る。このように、S/N比が基準値よりも大きいという条件を満たした周波数特性を選んで合成値を算出することで、生体情報の算出精度が高まる。
 なお、本実施形態では、処理部44は、ステップ120を実行することで特性取得部として機能し、ステップ132を実行することで合成部として機能し、ステップ150を実行することで算出部として機能する。また処理部44は、ステップ126、127を実行することで選択部として機能する。
 (他の実施形態)
 本開示に記載の処理部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の処理部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の処理部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。
 (変形例1)
 上記実施形態では、複数のチャネルの周波数特性の合成の一例として、乗算を開示している。しかし、複数のチャネルの周波数特性の合成手法としては、乗算に限らず、加算でもよいし、乗算と加算の任意の組み合わせでもよい。
 (変形例2)
 上記実施形態では、複数のチャネルの周波数特性の合成を、同じ周波数同士で行っている。しかし、必ずしもこのようになっておらずともよい。例えば、複数のチャネルの周波数特性の合成を、少し周波数をずらして行ってもよい。
 (変形例3)
 上記第2実施形態のステップ121では、処理部44は、直前のステップ120で算出した周波数特性と、当該時間区間よりも1つ前の時間区間において算出された周波数特性とに基づいて、当該チャネルの生体信号の強度の周波数毎の経時変化量を、算出する。しかし、必ずしもこのようになっておらずともよい。例えば、処理部44は、直前のステップ120で算出した周波数特性と、当該時間区間よりも2つ以上前の時間区間において算出された周波数特性とに基づいて、当該チャネルの生体信号の強度の周波数毎の経時変化量を、算出してもよい。また例えば、処理部44は、3つ以上の時間区間において算出した周波数特性に基づいて、当該チャネルの生体信号の強度の周波数毎の経時変化量を、算出してもよい。
 (変形例4)
 上記第2実施形態のステップ121では、処理部44は、同じチャネルの異なる時間区間の周波数特性の差に基づいて、当該チャネルの生体信号の強度の周波数毎の経時変化量を、算出する。しかし、処理部44は、ステップ121で、異なるチャネルの異なる時間区間の周波数特性の差に基づいて、それら異なるチャネルのいずれかの生体信号の強度の周波数毎の経時変化量を、算出してもよい。
 (変形例5)
 上記第4実施形態では、処理部44は、ステップ124で、直前のステップ120で取得した周波数特性と、当該時間区間よりも1つ前の時間区間の周波数特性とに基づいて、それら2つの周波数特性の代表値を算出する。しかし、必ずしもこのようになっておらずともよい。例えば、処理部44は、直前のステップ120で算出した周波数特性と、当該時間区間よりも2つ以上前の時間区間において算出された周波数特性とに基づいて、それら2つの周波数特性の代表値を算出してもよい。また例えば、処理部44は、3つ以上の時間区間において算出した周波数特性に基づいて、それら3つ以上の周波数特性の代表値を算出してもよい。
 (変形例6)
 上記第5実施形態では、処理部44は、ステップ125で算出される重みは、チャンネルが違っていても同じである。しかし、ステップ125で算出される重みは、使用する挙動信号が同じであっても、チャンネルが違っていれば違うようになっていてもよい。
 (変形例7)
 上記第2実施形態では、強度の経時変化量が大きい周波数ほど重みωの値が小さくなっているが、逆に、強度の経時変化量が大きい周波数ほど重みωの値が大きくなっていてもよい。この場合、処理部44は、ステップ140では、直前のステップ130で得られた合成周波数特性Qのピークのうち、強度が最低となる周波数を、心拍数算出のための値として特定する。
 (変形例8)
 上記実施形態では、生体情報検知システムの全体が車両に搭載されている。しかし、生体情報検知システムの一部は車両に搭載されていなくてもよい。その場合、生体情報検知システムのうち車両に搭載されている部分と車両に搭載されていない部分とは、無線通信等で信号をやりとりしてもよい。あるいは、生体情報検知システムの全体が車両の外部に設置されてもよい。つまり、生体情報検知システムは、車両の乗員の生体情報を算出する用途のみならず、車両の外部(例えば建造物の内部)にいる人の生体情報を算出する用途に用いられてもよい。
 (変形例9)
 上記実施形態では、生体活動センサとして、電波式の生体活動センサ、すなわち、第1受信アンテナ13a、第2受信アンテナ13bが例示されている。しかし、生体活動センサは、このようなものに限られない。例えば、生体活動センサは、超音波式のセンサであってもよいし、車両の座席に埋め込まれた圧電式のセンサであってもよい。また、生体活動センサは、これらのような非接触式のセンサであってもよいし、非接触式のセンサでなくともよい。
 (変形例10)
 上記実施形態で処理部44が算出する生体情報は、心拍である。しかし、処理部44が算出する生体情報は、心拍でなくてもよい。例えば、処理部44は、同じ生体信号P1、P2から、呼吸数を算出してもよい。あるいは、処理部44は、他の生体信号センサを用いて、脈拍数を算出してもよい。処理部44は、概ね安定した周期で活動する生体活動に関する生体情報を算出するのであれば、上記実施形態のような技術が有益である。
 (変形例11)
 上記実施形態では、生体活動センサは2個設けられ、それ故チャネルも2個である。しかし、生体活動センサの数およびチャネルの数は、3以上であってもよい。例えば、第6実施形態で、生体活動センサの数およびチャネルの数が3以上である場合、S/N比が基準値以上であるチャネルが2つ以上あれば、それら2つ以上を選択して合成することができる。
 (変形例12)
 第3実施形態において図6のステップ123で心拍統計値を重みωとする処理は、第2実施形態において、図4の処理のステップ120の前かつステップ121の後で実行されてもよい。その場合、心拍統計値に基づく重みωは、周波数毎の強度の変化量に応じた重みωとは別に算出される。その場合、図4のステップ131では、心拍統計値に基づく重みωと周波数毎の強度の変化量に応じた重みωの両方が合成に反映される。
 (変形例13)
 第4実施形態において図7のステップ124で複数時間区間の周波数特性の代表値を算出する処理は、第2、第3実施形態において図4、図6のステップ120の直後に実行されてもよい。その場合、図4、図6のステップ131では、当該代表値を用いた合成が行われる。
 (変形例14)
 第5実施形態において図9のステップ125で挙動信号に応じた重みωを算出する処理は、第2、第3、第4実施形態において、図4、図6、図7の処理のステップ120の直後に実行されてもよい。その場合、挙動信号に応じた重みωは、他種の重みωとは別に算出される。その場合、図4、図6のステップ131では、算出された全種類の重みωが合成に反映される。また、図7のステップ130では、挙動信号に応じた重みωが合成に反映される。
 (変形例15)
 第6実施形態において図10のステップ126、127で行われる処理は、第2、第3、第4、第5実施形態において、図4、図6、図7、図9の処理のステップ120の直後に実行されてもよい。その場合、図4、図6、図9のステップ131の処理では、採用された周波数特性およびそれに対応する重みωのみが合成に用いられる。また、図7のステップ130の処理では、採用された周波数特性の代表値のみが合成に用いられる。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、生体情報検知装置は、互いに異なる位置に配置されて人(2)の生体活動を検出する複数の生体活動センサ(13a、13b)からそれぞれ入力された複数の生体信号(P1、P2)の各々について、当該生体信号の周波数と強度の関係を示す周波数特性(Q1、Q2)を取得する特性取得部(120、124)と、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を合成して、周波数と強度の関係を示す合成周波数特性を得る合成部(130、131、132)と、前記合成部によって得られた前記合成周波数特性(Q)に基づいて、前記生体活動に関する情報である生体情報を算出する算出部(150)と、を備える。
 また、第2の観点によれば、前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を互いに乗算して前記合成周波数特性を得る。このように、複数の周波数特性を互いに乗算させることで合成周波数特性得ることにより、合成周波数特性のS/N比が向上する。
 また、第3の観点によれば、前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、同じ周波数同士で合成して前記合成周波数特性を得る。このように、複数の周波数特性を同じ周波数同士で合成して合成周波数特性を得ることにより、合成周波数特性のS/N比が向上する。
 また、第4の観点によれば、生体情報検知装置は、変化重み算出部(121)を更に備え、前記特性取得部は、所定の時間区間において前記複数の生体活動センサから入力された前記複数の生体信号の各々について、当該生体信号の強度の経時変化を示す時間波形を変換して、当該生体信号の前記時間区間における周波数と強度の関係を示す周波数特性を取得し、前記変化重み算出部は、前記特性取得部によって取得された前記時間区間における前記複数の生体信号の周波数特性の各々について、前記時間区間以外の期間における生体信号の周波数と強度の関係を示す周波数特性に基づいて、強度の周波数毎の経時変化量を算出し、前記経時変化量に応じて、周波数毎の重みを算出し、前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、前記変化重み算出部によって算出された前記複数の生体信号にそれぞれ対応する複数の重みが反映された状態で、合成して、前記合成周波数特性を得る。
 このように、所定の時間区間において算出された周波数特性について、当該時間区間以外の期間における周波数特性に基づく周波数毎の経時変化量に基づいて、周波数毎の重みが決められる。上述の通り、ノイズの周波数特性は生体活動センサの設置箇所の違いによって大きく異なる傾向にあるが、そればかりでなく、生体信号の取得期間の違いによっても大きく異なる傾向にある。一方、生体信号のうちノイズでない成分の周波数特性は、経時的にも概ね安定している。発明者はこれらの点に着目し、経時的に強度が大きく変動する周波数はノイズ由来であると見なすことを着想した。
 そしてそのために、生体情報検知装置は、上述の通り、所定の時間区間以外の期間における周波数特性に基づく強度の周波数毎の経時変化量に応じた、周波数毎の重みを、合成周波数特性に反映させる。これにより、周波数ドメインにおける生体信号の特性を利用して、合成周波数特性のS/N比をより向上させることができる。
 また、第5の観点によれば、前記複数の重みの各々は、対応する変化量の同じ周波数における値の絶対値が大きいほど、大きい。このようにすることで、より直感的な量として重みを設定することができる。
 また、第6の観点によれば、前記特性取得部は、2つ以上の時間区間の個々につき、前記複数の生体信号の各々について、当該時間区間における当該生体信号の強度の経時変化を示す時間波形を変換して、当該時間区間における当該生体信号の周波数と強度の関係を示す周波数特性を取得し、更に前記特性取得部は、前記複数の生体信号の各々について、前記2つ以上の時間区間につき取得した複数の周波数特性の代表値を算出し、前記合成部は、前記特性取得部によって算出された前記複数の生体信号の複数の代表値を合成して前記合成周波数特性を得る。このように、2つ以上の時間区間の代表値を用いて合成周波数特性を得ることで、合成周波数特性のS/N比が向上する。
 また、第7の観点によれば、生体情報検知装置は、挙動重み算出部(125)を備え、前記複数の生体活動センサは車両に搭載されており、前記車両には、前記車両に搭載されて車両の走行挙動に応じた挙動信号を出力する車両挙動センサ(7、8)が搭載されており、前記挙動重み算出部は、前記特性取得部によって取得された前記複数の生体信号の複数の周波数特性の各々について、前記挙動信号に応じた重みを算出し、前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、前記挙動重み算出部によって算出された前記複数の生体信号の複数の重みが反映された状態で、合成して、前記合成周波数特性を得る。
 生体活動センサが車両に搭載されている場合、生体信号中のノイズは車両の走行挙動に由来するものが多い。そのような場合、車両挙動センサからの出力に応じた重みを反映する合成周波数特性を用いることで、合成周波数特性のS/N比をより向上させることができる。
 また、第8の観点によれば、前記車両挙動センサは車速センサを含む。車速センサから出力される信号は、走行時の車両に加わる振動を反映したものになる。そして、車両に加わる振動は、生体信号中のノイズとしても現れ易い。したがって、車両挙動センサが車速センサを含むことにより、車両の振動に起因するノイズを効果的に除去することができる。
 また、第9の観点によれば、前記車両挙動センサはジャイロセンサを含む。ジャイロセンサから出力される信号は、走行時の車両に加わる振動を反映したものになる。そして、車両に加わる振動は、生体信号中のノイズとしても現れ易い。したがって、車両挙動センサがジャイロセンサを含むことにより、車両の振動に起因するノイズを効果的に除去することができる。
 また、第10の観点によれば、前記特性取得部によって取得された前記複数の生体信号の複数の周波数特性のうち、S/N比が基準値以上の周波数特性を選択する選択部(126、127)を備え、前記合成部は、前記選択部によって選択された周波数特性を合成して前記合成周波数特性を得る。このように、S/N比が基準値よりも大きいという条件を満たした周波数特性を選んで合成値を算出することで、生体情報の算出精度が高まる。

Claims (10)

  1.  互いに異なる位置に配置されて人(2)の生体活動を検出する複数の生体活動センサ(13a、13b)からそれぞれ入力された複数の生体信号(P1、P2)の各々について、当該生体信号の周波数と強度の関係を示す周波数特性(Q1、Q2)を取得する特性取得部(120、124)と、
     前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を合成して、周波数と強度の関係を示す合成周波数特性を得る合成部(130、131、132)と、
     前記合成部によって得られた前記合成周波数特性(Q)に基づいて、前記生体活動に関する情報である生体情報を算出する算出部(150)と、を備えた生体情報検知装置。
  2.  前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を互いに乗算して前記合成周波数特性を得る、請求項1に記載の生体情報検知装置。
  3.  前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、同じ周波数同士で合成して前記合成周波数特性を得る請求項1または2に記載の生体情報検知装置。
  4.  変化重み算出部(121)を更に備え、
     前記特性取得部は、所定の時間区間において前記複数の生体活動センサから入力された前記複数の生体信号の各々について、当該生体信号の強度の経時変化を示す時間波形を変換して、当該生体信号の前記時間区間における周波数と強度の関係を示す周波数特性を取得し、
     前記変化重み算出部は、前記特性取得部によって取得された前記時間区間における前記複数の生体信号の周波数特性の各々について、前記時間区間以外の期間における生体信号の周波数と強度の関係を示す周波数特性に基づいて、強度の周波数毎の経時変化量を算出し、前記経時変化量に応じて、周波数毎の重みを算出し、
     前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、前記変化重み算出部によって算出された前記複数の生体信号にそれぞれ対応する複数の重みが反映された状態で、合成して、前記合成周波数特性を得る、請求項1ないし3のいずれか1つに記載の生体情報検知装置。
  5.  前記複数の重みの各々は、対応する変化量の同じ周波数における値の絶対値が大きいほど、大きい、請求項4に記載の生体情報検知装置。
  6.  前記特性取得部は、2つ以上の時間区間の個々につき、前記複数の生体信号の各々について、当該時間区間における当該生体信号の強度の経時変化を示す時間波形を変換して、当該時間区間における当該生体信号の周波数と強度の関係を示す周波数特性を取得し、
     更に前記特性取得部は、前記複数の生体信号の各々について、前記2つ以上の時間区間につき取得した複数の周波数特性の代表値を算出し、
     前記合成部は、前記特性取得部によって算出された前記複数の生体信号の複数の代表値を合成して前記合成周波数特性を得る、請求項1ないし5のいずれか1つに記載の生体情報検知装置。
  7.  挙動重み算出部(125)を備え、
     前記複数の生体活動センサは車両に搭載されており、
     前記車両には、前記車両に搭載されて車両の走行挙動に応じた挙動信号を出力する車両挙動センサ(7、8)が搭載されており、
     前記挙動重み算出部は、前記特性取得部によって取得された前記複数の生体信号の複数の周波数特性の各々について、前記挙動信号に応じた重みを算出し、
     前記合成部は、前記複数の生体信号から前記特性取得部によって取得された複数の周波数特性を、前記挙動重み算出部によって算出された前記複数の生体信号の複数の重みが反映された状態で、合成して、前記合成周波数特性を得る、請求項1ないし6のいずれか1つに記載の生体情報検知装置。
  8.  前記車両挙動センサは車速センサを含む請求項7に記載の生体情報検知装置。
  9.  前記車両挙動センサはジャイロセンサを含む請求項7または8に記載の生体情報検知装置。
  10.  前記特性取得部によって取得された前記複数の生体信号の複数の周波数特性のうち、S/N比が基準値以上の周波数特性を選択する選択部(126、127)を備え、
     前記合成部は、前記選択部によって選択された周波数特性を合成して前記合成周波数特性を得る、請求項1ないし9のいずれか1つに記載の生体情報検知装置。
PCT/JP2019/045665 2019-01-10 2019-11-21 生体情報検知装置 WO2020144946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980088303.4A CN113271845B (zh) 2019-01-10 2019-11-21 生物体信息检测装置
DE112019006642.0T DE112019006642T5 (de) 2019-01-10 2019-11-21 Biologische-Informationen-Detektionsvorrichtung
US17/368,389 US20210330197A1 (en) 2019-01-10 2021-07-06 Biological information detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-002912 2019-01-10
JP2019002912A JP7139959B2 (ja) 2019-01-10 2019-01-10 生体情報検知装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/368,389 Continuation US20210330197A1 (en) 2019-01-10 2021-07-06 Biological information detection device

Publications (1)

Publication Number Publication Date
WO2020144946A1 true WO2020144946A1 (ja) 2020-07-16

Family

ID=71520705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045665 WO2020144946A1 (ja) 2019-01-10 2019-11-21 生体情報検知装置

Country Status (5)

Country Link
US (1) US20210330197A1 (ja)
JP (1) JP7139959B2 (ja)
CN (1) CN113271845B (ja)
DE (1) DE112019006642T5 (ja)
WO (1) WO2020144946A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100191128A1 (en) * 2008-10-17 2010-07-29 Yale University Volume Status Monitor: Peripheral Venous Pressure, Hypervolemia and Coherence Analysis
JP2010178933A (ja) * 2009-02-06 2010-08-19 Tokyo Metropolitan Univ 身体情報測定装置および身体情報測定システム
US20100241010A1 (en) * 2007-12-07 2010-09-23 University Of Florida Research Foundation, Inc Complex Signal Demodulation and Angular Demodulation for Non-contact Vital Sign Detection
WO2014196119A1 (ja) * 2013-06-06 2014-12-11 セイコーエプソン株式会社 生体情報処理装置および生体情報処理方法
WO2016143489A1 (ja) * 2015-03-12 2016-09-15 株式会社メガチップス 脈拍測定装置
WO2018073939A1 (ja) * 2016-10-20 2018-04-26 富士通株式会社 測定プログラム、測定方法及び測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100963253B1 (ko) * 2008-03-10 2010-06-10 (주)에이치쓰리시스템 맥박 신호에서 잡음을 제거하기 위한 방법 및 장치와기록매체
JP2016182165A (ja) * 2015-03-25 2016-10-20 株式会社三菱ケミカルホールディングス 生体信号処理装置、生体信号処理プログラム、生体信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体、生体信号処理方法
JP6491920B2 (ja) * 2015-03-25 2019-03-27 クリムゾンテクノロジー株式会社 生体信号処理装置及び生体信号処理方法
CN105286845A (zh) * 2015-11-29 2016-02-03 浙江师范大学 一种适用于可穿戴式心率测量设备的运动噪声消除方法
US10746700B2 (en) 2017-05-12 2020-08-18 Magee Scientific Corporation System and method for particulate matter analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100241010A1 (en) * 2007-12-07 2010-09-23 University Of Florida Research Foundation, Inc Complex Signal Demodulation and Angular Demodulation for Non-contact Vital Sign Detection
US20100191128A1 (en) * 2008-10-17 2010-07-29 Yale University Volume Status Monitor: Peripheral Venous Pressure, Hypervolemia and Coherence Analysis
JP2010178933A (ja) * 2009-02-06 2010-08-19 Tokyo Metropolitan Univ 身体情報測定装置および身体情報測定システム
WO2014196119A1 (ja) * 2013-06-06 2014-12-11 セイコーエプソン株式会社 生体情報処理装置および生体情報処理方法
WO2016143489A1 (ja) * 2015-03-12 2016-09-15 株式会社メガチップス 脈拍測定装置
WO2018073939A1 (ja) * 2016-10-20 2018-04-26 富士通株式会社 測定プログラム、測定方法及び測定装置

Also Published As

Publication number Publication date
JP7139959B2 (ja) 2022-09-21
CN113271845A (zh) 2021-08-17
DE112019006642T5 (de) 2021-11-11
US20210330197A1 (en) 2021-10-28
JP2020110304A (ja) 2020-07-27
CN113271845B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP7093918B2 (ja) 自動車乗員のバイタルサインの非接触の検知および監視システム
JP2020531063A5 (ja)
US8548578B2 (en) Living body state monitor apparatus
EP3119639B1 (en) Method and system for unattended child detection
EP1392149B1 (en) Driver alertness monitoring system
JP5919722B2 (ja) 生体信号推定装置及びプログラム
WO2018073939A1 (ja) 測定プログラム、測定方法及び測定装置
JP2012533741A (ja) 超音波測定装置及び超音波信号の評価方法
US20120197138A1 (en) Biological parameter monitoring method, computer-readable storage medium and biological parameter monitoring device
JP4950537B2 (ja) 移動物体検出装置
EP3378706B1 (en) Vehicular notification device and vehicular notification method
JP2012530409A (ja) 無線通信システムにおける環境評価
JP2007033155A (ja) 移動物体検出装置
JP6519344B2 (ja) 心拍間隔特定プログラム、心拍間隔特定装置、及び心拍間隔特定方法
WO2020144946A1 (ja) 生体情報検知装置
JP2007147540A (ja) 車両用障害物検知装置および車両用障害物検知方法
US20200245875A1 (en) Heartbeat detection device, heartbeat detection method, and program
JP2016220816A (ja) 車両用生体情報検知方法及びその装置
JP2019201698A (ja) 生体検知装置
CN101645167A (zh) 帧相关系数控制及帧相关处理方法、装置及超声成像系统
WO2018167897A1 (ja) 生体情報検出装置、及び、生体情報検出プログラム
JP7226152B2 (ja) 人のrriを算出するための測定システム
JP7238630B2 (ja) 生体情報検知システム
WO2020195899A1 (ja) 生体情報検知装置
JP2019126663A (ja) 信号処理装置、プログラム、および信号処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908917

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908917

Country of ref document: EP

Kind code of ref document: A1