WO2018073912A1 - タイヤ力推定装置およびタイヤ力推定方法 - Google Patents

タイヤ力推定装置およびタイヤ力推定方法 Download PDF

Info

Publication number
WO2018073912A1
WO2018073912A1 PCT/JP2016/080960 JP2016080960W WO2018073912A1 WO 2018073912 A1 WO2018073912 A1 WO 2018073912A1 JP 2016080960 W JP2016080960 W JP 2016080960W WO 2018073912 A1 WO2018073912 A1 WO 2018073912A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
wheel
tire
vehicle body
road surface
Prior art date
Application number
PCT/JP2016/080960
Other languages
English (en)
French (fr)
Inventor
寿慧 徳永
和宏 市川
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2018546088A priority Critical patent/JP6823664B2/ja
Priority to US16/343,225 priority patent/US11370502B2/en
Priority to EP20209904.0A priority patent/EP3800116B1/en
Priority to PCT/JP2016/080960 priority patent/WO2018073912A1/ja
Priority to EP16919372.9A priority patent/EP3530559B1/en
Publication of WO2018073912A1 publication Critical patent/WO2018073912A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/412Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors

Definitions

  • the present invention relates to an apparatus and a method for estimating tire force in a vehicle turning in a bank state in which a vehicle body is tilted around a longitudinal axis.
  • Patent Document 1 discloses a device for estimating a wheel force acting between a wheel of a motorcycle and a road surface, that is, a tire force.
  • the resultant force (Fh) of centrifugal force and gravity acting on the motorcycle is the combined force of front wheel lateral force and front wheel vertical force acting on the front wheel from the road surface (Ff4), and rear wheel lateral force acting on the rear wheel from the road surface and
  • the wheel force is estimated based on the balance with the resultant force (Fr4) of the rear wheel vertical force.
  • the apparatus cannot accurately estimate the tire force under such a transient situation.
  • an object of the present invention is to improve estimation accuracy of tire force in a vehicle turning in a bank state.
  • a tire force estimation device is a tire force estimation device that estimates a tire force that is a force acting from a road surface on a wheel of a vehicle that turns in a state in which a vehicle body is tilted around a longitudinal axis.
  • a first tire force estimator is provided that estimates the force acting on the wheel from the road surface in accordance with a time change in the motion state of the vehicle body in a plane perpendicular to the longitudinal axis.
  • the product of the mass of the mass point and the time change of the motion state of the mass point is balanced with the force acting on the mass point, it corresponds to the time change of the motion state in the plane perpendicular to the longitudinal axis of the vehicle body.
  • the tire force acting on the wheel is estimated from the road surface. Since the tire force is estimated according to the time change of the motion state, the tire force can be accurately estimated even in a transient state in which the bank angle changes with time during turning.
  • the first tire force estimator estimates a vertical force and a lateral force acting on the wheel from the road surface using the first equation of motion, the second equation of motion, and the third equation of motion.
  • the relationship between the temporal change of the vertical motion state and the vertical force is represented, and the second equation of motion represents the balance between the time change of the lateral motion state of the vehicle body and the lateral force, and the third The equation of motion may represent the relationship between the time change of the motion state around the longitudinal axis of the vehicle body and the balance between the vertical force and the lateral force.
  • the first tire force estimation unit is configured to change the vertical movement state over time, the lateral movement state over time, and the longitudinal movement state over time based on a value related to the bank angle time change. May be obtained.
  • the vehicle has a front wheel and a rear wheel as the wheels, and the first tire force estimation unit moves from the road surface to the front wheel according to a time change of a motion state of a vehicle body in a plane perpendicular to the front-rear axis. And estimating the sum of the forces acting on the rear wheel, and distributing the sum of the forces from a road surface to a front wheel force acting on the front wheel and a rear wheel force acting on the rear wheel from the road surface, The rear wheel force may be estimated.
  • the first tire force estimator may distribute the sum of the forces to the front wheel force and the rear wheel force according to a time change of the longitudinal movement state of the vehicle body.
  • the first tire force estimation unit may change a distribution ratio between the front wheel force and the rear wheel force according to a bank angle.
  • a second tire force estimating unit configured to estimate a longitudinal force acting in the front-rear direction on the wheel from the road surface, the second tire force estimating unit configured to move the front wheel and the front wheel from the road surface based on a time change of a longitudinal movement state of a vehicle body; Estimating the sum of the front and rear forces acting on the rear wheels, estimating the front and rear forces acting on the front wheels from the road surface based on the braking force of the front wheels, and estimating the sum of the front and rear forces and the front wheel front and rear forces
  • the rear wheel longitudinal force acting on the rear wheel may be estimated from the road surface.
  • a tire force estimation device is a tire force estimation device that estimates a tire force that is a force acting from a road surface on a wheel of a vehicle that turns in a state in which a vehicle body is tilted around a longitudinal axis.
  • the vehicle has a front wheel and a rear wheel as the wheels, and the device includes a first tire force estimation unit that estimates a front wheel force acting on the front wheel from a road surface and a rear wheel force acting on the rear wheel from a road surface,
  • the first tire force estimator estimates the sum of forces acting on the virtual wheels from the road surface, and determines the sum of the forces as the front wheel force and the rear as a function of the temporal change in the longitudinal movement state of the vehicle body and the bank angle.
  • the front wheel force and the rear wheel force are estimated by distributing to wheel force.
  • a tire force estimation method is a method for estimating tire force, which is a force acting from a road surface on a vehicle wheel that turns in a bank state in which a vehicle body is tilted around a longitudinal axis, A vertical force acting in the vertical direction from the road surface to the wheel and a lateral force acting in the lateral direction from the road surface to the wheel are estimated according to the angle around the longitudinal axis of the vehicle body, the angular velocity, and the angular acceleration.
  • a tire force estimation method is a method for estimating tire force, which is a force acting from a road surface on wheels of a vehicle that turns in a bank state in which the vehicle body is tilted around a longitudinal axis,
  • the vehicle has front wheels and rear wheels as the wheels, and the method estimates a sum of forces acting in a vertical direction from the road surface to the virtual wheels, and according to a time change and a bank angle of the longitudinal movement state of the vehicle body.
  • the sum of the forces is distributed to a front wheel force acting on the front wheel and a rear wheel force acting on the rear wheel.
  • the term “wheel” refers to an assembly that includes a narrow wheel having a hub, rim and spokes, and a tire mounted on the rim and in contact with the road surface.
  • the term “front / rear axis” is an imaginary axis that passes through the front wheel contact point and the rear wheel contact point, extends in the vehicle front-rear direction, and is orthogonal to the vehicle width direction.
  • the “bank angle” is an inclination angle of the vehicle body and is an inclination angle around the longitudinal axis.
  • the “bank angle” is an inclination [deg] with respect to a direction perpendicular to the road surface in the extending direction of the vehicle center line in the vehicle width direction as viewed from the front.
  • the extending direction of the center line in the vehicle width direction extends in a direction perpendicular to the road surface, the vehicle body is in an upright state and the bank angle takes a zero value [deg].
  • the tire force estimation device 1 shown in FIG. 1 is mounted on a vehicle in this embodiment.
  • the tire force estimation device 1 estimates “tire force”, which is a force acting from the road surface on the wheels of a vehicle that turns in a bank state in which the vehicle body is tilted around the longitudinal axis. Further, when traveling straight ahead, the vehicle travels in an upright state in which the vehicle height direction is substantially coincident with a direction perpendicular to the road surface (generally a vertical direction).
  • the motorcycle has one front wheel and one rear wheel as wheels. In the motorcycle, at least one of the wheels is a driving wheel. In this embodiment, the rear wheel is a driving wheel, and the front wheel is a driven wheel and a steering wheel. Torque generated by a power source such as an engine or an electric motor is transmitted to the drive wheels. A braking force that uses the inertia of the driving source, such as a so-called engine braking force or regenerative braking force, acts on the driving wheels.
  • the motorcycle includes a front wheel brake device that brakes the front wheel and a rear wheel brake device that brakes the rear wheel. Both brake devices are hydraulic and apply a braking force substantially proportional to the brake pressure to the target wheel.
  • the tire force estimation device 1 has, as tire force, a “vertical force N” that works vertically upward from the road surface to the wheel, a “lateral force F y ” that works laterally from the road surface to the wheel, and a front-rear direction that acts from the road surface to the wheel.
  • the longitudinal force Fx can be estimated.
  • the vertical direction, the front-rear direction, and the horizontal direction are orthogonal to each other.
  • the front-rear direction is a direction extending along the aforementioned front-rear axis.
  • the lateral direction is a direction in which the axle extends in a straight traveling state.
  • the front-rear direction and the lateral direction change according to a change in the direction around the vertical axis of the vehicle body.
  • the tire force estimation device 1 can estimate the “front wheel force” acting on the front wheel from the road surface and the “rear wheel force” acting on the rear wheel from the road surface as the tire force.
  • the tire force estimation device 1 can estimate a “front wheel vertical force N f ” that works vertically upward from the road surface to the front wheel and a “rear wheel vertical force N r ” that works vertically upward from the road surface to the rear wheel. .
  • the tire force estimation device 1 can estimate a “front wheel lateral force F yf ” that acts laterally from the road surface to the front wheel and a “rear wheel lateral force F yr ” that acts laterally from the road surface to the rear wheel.
  • the tire force estimation device 1 can estimate a “front wheel longitudinal force F xf ” acting in the front-rear direction from the road surface to the front wheel and a “rear wheel longitudinal force F xr ” acting in the front-rear direction from the road surface to the rear wheel as the tire force.
  • the sum of “front wheel vertical force N f ” and “rear wheel vertical force N r ” may be referred to as “total vertical force N”.
  • the sum of “front wheel lateral force F yf ” and “rear wheel lateral force F yr ” may be referred to as “total lateral force F y ”.
  • the sum of “front wheel longitudinal force F xf ” and “rear wheel longitudinal force F xr ” may be referred to as “total longitudinal force F x ”.
  • the aforementioned “vertical force” implies “front wheel vertical force N f ”, “rear wheel vertical force N r ”, and “total vertical force N”. The same applies to the above-mentioned “lateral force” and “front / rear force”.
  • front wheel force implies “front wheel vertical force N f ”, “front wheel lateral force F yf ”, and “front wheel longitudinal force F xf ”, and further, the resultant force of two or more of these three forces (for example, the resultant force of the front wheel vertical force N f and the front wheel lateral force F yf) can also be implied.
  • “Rear wheel force” includes “rear wheel vertical force N r ”, “rear wheel lateral force F yr ”, and “rear wheel longitudinal force F xr ”, and more than two of these three forces. force (e.g., the resultant force of the rear wheel vertical force N r and the rear wheel lateral force F yr) may also imply.
  • the tire force estimation device 1 stores a storage unit that stores an estimation program related to a procedure of a method for estimating tire force, and an input that indicates a vehicle state such as a bank angle of the vehicle body (an inclination angle around the longitudinal axis of the vehicle body) and a longitudinal acceleration.
  • An input unit 1a to which a value is given, a calculation unit 1b that performs estimation of tire force with reference to an input value given to the input unit 1a and a program stored in the storage unit, and a calculation result (tire force of the calculation unit 1b) ) Is output to the outside, and is realized by a controller having an output unit 1c.
  • the storage unit may temporarily store an input value and an intermediate value acquired during program execution based on the input value.
  • the storage unit stores in advance information such as the estimated mass, which is an estimated value of the vehicle mass integrating the masses of the vehicle, passenger, and load, the distance from the center of gravity of the vehicle body to the road surface, and the geometric information of the vehicle body such as the wheelbase. May be. However, such information may be given to the input unit 1a from the outside of the tire force estimation device 1, or may be acquired as an intermediate value by the calculation unit 1b during execution of the estimation program.
  • the tire force estimation device 1 includes a first tire force estimation unit 11, a second tire force estimation unit 12, and a differential calculation unit 13 as functional blocks of the calculation unit 1b.
  • the tire force estimation device 1 is provided with the bank angle ⁇ , the vehicle speed (the longitudinal speed of the vehicle body) x ⁇ , and the front wheel brake pressure P f in the hydraulic front wheel brake device as input values.
  • Vehicle includes along with the tire force estimating device 1, the bank angle sensor 2 for detecting a bank angle beta, a vehicle speed sensor 3 for detecting a vehicle speed, the front wheel brake pressure sensor 4 for detecting the front wheel brake pressure P f.
  • the bank angle sensor 2 sequentially outputs the bank angle ⁇ of the vehicle body as time elapses so that the time change of the bank angle ⁇ can be grasped.
  • the vehicle speed sensor 3 sequentially outputs the vehicle speed as time elapses so that the time change of the vehicle speed can be grasped.
  • the differential calculation unit 13 is a time change of the bank angular velocity (first-order differential value of the bank angle ⁇ ) ⁇ ⁇ and the bank angular velocity ⁇ ⁇ which is the time change of the bank angle ⁇ .
  • Bank angular acceleration (second-order time differential value of bank angle ⁇ ) ⁇ ⁇ is obtained.
  • the vehicle includes a bank angular velocity sensor that detects the bank angular velocity ⁇ ⁇
  • the tire force estimation device 1 has an integration calculation unit that obtains the bank angle ⁇ based on the bank angular velocity ⁇ ⁇ given from the bank angular velocity sensor.
  • the vehicle may include an acceleration sensor that detects longitudinal acceleration x ⁇
  • the tire force estimation device 1 may be given longitudinal acceleration x ⁇ from the acceleration sensor. If the straight traveling state can be determined, the bank angle and the bank angular acceleration can be obtained using the bank angular velocity sensor by determining that the bank angle in the straight traveling state is zero.
  • the second tire force estimation unit 12 estimates the longitudinal force acting in the longitudinal direction from the road surface to the wheel.
  • the “front / rear force” estimated by the second tire force estimation unit 12 includes a total front / rear force F x , a front wheel front / rear force F xf , and a rear wheel front / rear force F xr .
  • Second tire force estimating section 12 estimates the total longitudinal force F x in accordance with Equation (1).
  • m is the riding mass.
  • the time variation of the longitudinal movement amount of the vehicle body is assumed equal to the longitudinal force F x sum.
  • the riding mass m can be handled as a constant, and may be stored in advance in the storage unit of the tire force estimation device 1. In that case, after all, the second tire force estimation unit 12 estimates the total longitudinal force F x based on the temporal change of the longitudinal movement state of the vehicle body, that is, the longitudinal acceleration x ⁇ of the vehicle body.
  • the second tire force estimator 12 distributes the estimated total longitudinal force F x to the front wheel longitudinal force F xf and the rear wheel longitudinal force F xr , so that the front wheel longitudinal force F xf and the rear wheel longitudinal force F xr Is estimated.
  • the second tire force estimating unit 12 assumes that the front wheel longitudinal force F xf is equal to the front wheel braking force, and the front wheel braking force is proportional to the front wheel brake pressure P f according to the expression (2). Estimate the force F xf .
  • K is a proportional constant, and its numerical value can be obtained in advance (at the design stage of the tire force estimating apparatus 1) and is stored in advance in the storage unit of the tire force estimating apparatus 1.
  • the second tire force estimation unit 12 estimates the front wheel longitudinal force F xf based on the front wheel brake pressure P f input to the tire force estimation device 1.
  • a second tire force estimation unit 12 under the assumption that the total longitudinal force F x is the sum of the front wheel longitudinal force F xf and rear wheel longitudinal force F xr, rear wheel longitudinal force according to equation (3) Estimate F xr .
  • the second tire force estimating unit 12 estimates the rear wheel longitudinal force F xr by subtracting the front wheel longitudinal force F xf from the total longitudinal force F x .
  • the front wheel longitudinal force F xf is regarded as the front wheel braking force
  • the rear wheel longitudinal force F xr is generated by the forward driving force transmitted from the drive source, the braking force based on the inertia of the drive source, and the rear wheel brake device.
  • the rear wheel braking force is complex.
  • the tire force estimation device 1 of the present example by monitoring the longitudinal acceleration x ⁇ and the front wheel brake pressure P f , three forces of total longitudinal force F x , front wheel longitudinal force F xf and rear wheel longitudinal force F xr are obtained. Can be estimated. Since the method of passively estimating the rear wheel front / rear force F xr after obtaining the total front / rear force F x and the front wheel front / rear force F xf is adopted, an estimated value of three forces can be easily obtained.
  • the first tire force estimation unit 11 estimates the force acting on the wheel from the road surface in accordance with the temporal change of the motion state of the vehicle body in a plane perpendicular to the longitudinal axis of the vehicle body.
  • the “front-rear axis” here is a virtual axis extending in the front-rear direction through the front wheel grounding point and the rear wheel grounding point.
  • motion state it means both a translational motion state and a rotational motion state.
  • “Operating state” can imply “momentum” equivalent to the product of inertial mass and speed.
  • the “time change of the motion state” is equivalent to the product of the inertial mass and the acceleration in the motion direction in the translational motion, and is equivalent to the product of the inertia moment and the angular acceleration in the motion direction in the rotational motion.
  • the term “according to the time change of the motion state” is equivalent to “according to the acceleration in the motion direction” in translational motion and equivalent to “according to the angular acceleration in the motion direction” in rotational motion. Therefore, it can be said that the first tire force estimating unit 11 estimates the force acting on the wheel from the road surface according to the acceleration and / or angular acceleration of the vehicle body in a plane perpendicular to the longitudinal axis of the vehicle body.
  • the movement state of the vehicle body in a plane perpendicular to the longitudinal axis includes the vertical movement state, the lateral movement state, and the movement state around the longitudinal axis (see also equations (4) to (6)). ).
  • the vertical or lateral movement of the center of gravity of the vehicle body in other words, the vertical or lateral movement of the center of gravity of the vehicle body
  • the rotational movement around the front-rear axis is the time change of the bank angle itself.
  • the vehicle of this example turns while tilting around the front-rear axis, and the change in bank angle with time typically occurs at the start and end of turning.
  • the first tire force estimator 11 estimates the tire force in consideration of the temporal change in the motion state of the vehicle body caused by the change in the bank angle (the external force that acts on the wheels and the vehicle body due to the change in the bank angle over time). . Therefore, the estimation accuracy of the tire force is high during the transient traveling (for example, the start period and the end period of the turn traveling) in which the bank angle changes with time.
  • the forces estimated by the first tire force estimating unit 11 include a total vertical force N, a total lateral force F y , a front wheel vertical force N f , a front wheel lateral force F yf , a rear wheel vertical force N r , and a rear wheel lateral force F. yr is included.
  • the first tire force estimation unit 11 estimates both the vertical forces N, N f , N r and the lateral forces F y , F yf , F yr , but the vertical forces N, N f , N r lateral force F y, F yf, may be estimated at least one of F yr.
  • FIG. 3 is a diagram showing the principle of tire force estimation by the first tire force estimating unit 11.
  • a model in which the vehicle body is expressed by a simple rigid body and a mass point is assumed in a plane (YZ plane) perpendicular to the front-rear axis.
  • a vehicle generally has a plurality of wheels separated in the front-rear direction, whereas in the model shown in FIG. 3, the dimension in the front-rear direction is omitted. Therefore, in the model, “virtual wheels” that represent or integrate a plurality of wheels in the vehicle are assumed.
  • the tire force estimation device 1 is mounted on a motorcycle provided with one front wheel and one rear wheel, and the number of virtual wheels is one.
  • the mass point position is used as the position of the center of gravity of the vehicle body.
  • the first tire force estimation unit 11 includes a first equation of motion (the following equation (4)), a second equation of motion (the following equation (5)), and a third equation of motion (the following equation (6)) represented according to the model. )
  • a first equation of motion the following equation (4)
  • a second equation of motion the following equation (5)
  • a third equation of motion the following equation (6)
  • N is a vertical load acting on the vehicle from the road surface, and corresponds to “total vertical force”.
  • g is a gravitational acceleration.
  • IGx is the moment of inertia (roll moment of inertia) around the longitudinal axis of the vehicle body.
  • is the bank angle.
  • y G and z G are respectively the lateral position and vertical position of the vehicle center of gravity (y coordinate and z coordinate of the vehicle center of gravity position). The origin of the YZ plane is set at the tire ground contact point.
  • the first equation of motion (4) is an equation representing the balance between the temporal change in the vertical motion state of the vehicle body (see the left side) and the sum of the external forces applied to the center of gravity in the vertical direction (see the right side). In addition, vertical force and gravity are considered as external forces.
  • mg refers to the gravity acting on the center of gravity of the vehicle body.
  • z G ⁇ is a second-order time differential value of the vertical position z G of the vehicle body center of gravity, and is the vertical acceleration of the vehicle body center of gravity. As shown in the first equation of motion (4), the total vertical force N changes according to the vertical acceleration.
  • the second equation of motion (5) is an equation representing the balance between the temporal change in the lateral motion state of the vehicle body (see the left side) and the sum of the external forces applied to the center of gravity in the lateral direction (see the right side).
  • the lateral force (total lateral force F y ) is considered as the external force.
  • y G ... is a second-order time differential value of the lateral position y G of the vehicle body center of gravity, and is the lateral acceleration of the vehicle body center of gravity.
  • the total lateral force Fy changes according to the lateral acceleration.
  • the third equation of motion (6) shows the balance between the temporal change of the motion state around the longitudinal axis of the vehicle body (see the left side) and the sum of the moments of external force applied to the center of gravity of the vehicle body around the longitudinal axis (see the right side). This is an equation.
  • moments of external force moments based on vertical force and moments based on lateral force are considered.
  • the moment based on the vertical force is the product of the vertical force and the distance in the lateral direction from the tire ground contact point to the position of the center of gravity of the vehicle body (hereinafter referred to as “lateral direction gravity center distance”).
  • the moment based on the lateral force is a product of the lateral force and the distance in the vertical direction from the tire contact point to the vehicle body center of gravity (hereinafter referred to as “vertical center of gravity distance”).
  • the yz coordinate system with the origin at the tire ground contact point is considered, the lateral position (y coordinate) of the vehicle body center of gravity corresponds to the lateral center of gravity distance, and the vertical position (z coordinate) of the vehicle body center of gravity.
  • Equation (7) the second-order time differential value (vertical acceleration of the center of gravity of the vehicle body) z G ⁇ of the vertical position z G is expressed by Equation (9).
  • the tread surface of a vehicle having wheels on the left and right (for example, a four-wheeled vehicle) is flat, whereas in a tire that is mounted on a vehicle that turns in a bank state, the vehicle body is moved around the front and rear axes when turning. In order to make it easy to incline, the tread surface has a substantially semicircular front sectional view. “Crown diameter” is the radius of curvature of the tread surface of the tire. In this example, the cross-sectional shape of the tread surface is a true arc, and there is no tread pattern or spike.
  • h 0 is the distance from the center of the crown to the center of gravity of the vehicle body in a plane perpendicular to the longitudinal axis. Regardless of the bank angle ⁇ , the line connecting the center of the crown and the center of gravity of the vehicle body extends in the vehicle height direction. Therefore, for convenience of explanation, the distance h 0 is hereinafter referred to as “the height of the center of gravity”. Since the vehicle body is virtually assumed as a rigid body, the center of gravity height h 0 is constant.
  • the crown diameter of the front wheels and the crown diameter of the rear wheels may be different.
  • the crown diameter r of the virtual wheel for example, an average value of the front wheel crown diameter and the rear wheel crown diameter may be used.
  • the front wheel crown diameter may be substituted, or the rear wheel crown diameter may be substituted.
  • the total vertical force N and the total lateral force F y are related to the riding mass m, the center of gravity height h 0 in consideration of the crown diameter r, the roll inertia moment I Gx , the bank angle ⁇ , and the time change thereof. Can be estimated from the value.
  • the vehicle mass m, the crown diameter r, the center of gravity height h 0 , and the roll inertia moment IGx can be handled as constants together with the gravitational acceleration g, and are stored in advance in the storage unit of the tire force estimation device 1. Also good.
  • the “value relating to the time change of the bank angle ⁇ ” includes a time differential value of the bank angle ⁇ , for example, a first-order time differential value (bank angular velocity) and a second-order time differential value (bank angular acceleration).
  • the first tire force estimator 11 calculates the formula (10) based on the bank angle ⁇ given to the tire force estimator 1 and the bank angular velocity ⁇ ⁇ and the bank angular acceleration ⁇ ⁇ obtained by the derivative calculator 13. estimates the total vertical force N in accordance), to estimate the total lateral force F y in accordance with equation (11). As described above, in the tire force estimating apparatus 1 of this example, the total vertical force N and the total lateral force F y can be estimated only by monitoring the bank angle ⁇ and the value related to the time change.
  • the first tire force estimation unit 11 distributes the sum of the estimated forces to the front wheel force acting on the front wheel from the road surface and the rear wheel force acting on the rear wheel from the road surface. Estimate front wheel force and rear wheel force. In this example, the total vertical force N and the total lateral force F y are estimated as the “total force”. The first tire force estimating unit 11 distributes the total vertical force N to the front wheel vertical force N f and the rear wheel vertical force N r, the total lateral force F y and the front wheel lateral force F yf and rear wheel lateral force F yr To distribute.
  • the first tire force estimating unit 11 estimates the front wheel vertical force N f and the front wheel lateral force F yf as the front wheel force, and the rear wheel vertical force N r and the rear wheel lateral force F as the rear wheel force. Estimate yr .
  • the first tire force estimating unit 11 assumes that the total lateral force F y is the sum of the front wheel lateral force F yf and the rear wheel lateral force F yr, and uses the total lateral force F y as the front wheel lateral force. Distribute to force F yf and rear wheel lateral force F yr .
  • the first tire force estimating unit 11 distributes the total force to the front wheel force and the rear wheel force according to the time change of the longitudinal movement state of the vehicle body.
  • the time variation of the longitudinal movement state corresponds to the sum longitudinal force F x. Therefore, it can be said that the first tire force estimating unit 11 distributes the total force to the front wheel force and the rear wheel force according to the longitudinal acceleration x ⁇ according to the total longitudinal force F x . Further, the first tire force estimating unit 11 distributes the total force to the front wheel force and the rear wheel force according to the bank angle state.
  • the first tire force estimation unit 11 distributes the total vertical force N according to the temporal change in the front-rear direction motion state (total front-rear force F x ) and the bank angle.
  • the first tire force estimating unit 11 distributes the total lateral force F y according to the temporal change (total front / rear force F x ) of the longitudinal movement state and the bank angle.
  • the first tire force estimating section 11 obtains a front wheel vertical force N f from total vertical force N according to equation (14), the vertical force N and the front wheel total accordance with Equation (12) Equation (15) obtained by modifying the seek the rear wheel vertical force N r from the vertical force N f. Further, the first tire force estimating unit 11 obtains the front wheel lateral force F yf from the total lateral force F y according to the equation (16), and the total lateral force F y and the front wheel lateral according to the equation (17) obtained by modifying the equation (13). The rear wheel lateral force F yr is obtained from the force F yf .
  • G N (x ⁇ , ⁇ ) in equation (14) and G Fy (x ⁇ , ⁇ ) in equation (16) are values obtained by a function having longitudinal acceleration x ⁇ and bank angle ⁇ as variables. is there.
  • G N (x ⁇ , ⁇ ) and G Fy (x ⁇ , ⁇ ) are defined by different functions, and take different values depending on the vehicle (its design parameters).
  • G N (x ⁇ , ⁇ ) and G Fy (x ⁇ , ⁇ ) have a larger positive longitudinal acceleration x ⁇ (forward acceleration) under the same bank angle ⁇ , ratio is lowered to the sum vertical force N of the front wheel vertical force N f, the ratio to the sum lateral force F y of the front wheel lateral force F yf is defined to be lower.
  • the larger the bank angle ⁇ the higher the ratio of the front wheel vertical force N f to the total vertical force N, and the ratio of the front wheel lateral force F yf to the total lateral force F y . Is defined to be high. In this way, by changing the distribution ratio between the front wheel force and the rear wheel force according to the bank angle ⁇ , the distribution ratio in the bank state can be made closer to the actual value, and the front wheel force and the The estimation accuracy of the rear wheel force is improved.
  • the tire force estimating device 1 includes the first tire force estimating unit 11 that estimates the force acting on the wheel from the road surface in accordance with the time change of the motion state of the vehicle body in a plane perpendicular to the longitudinal axis of the vehicle body.
  • a time change in the motion state of the center of gravity of the vehicle body in a plane perpendicular to the front-rear axis occurs, for example, with a change in bank angle (an inclination angle of the vehicle body around the front-rear axis).
  • the time change in the motion state of the vehicle body correlates with the external force acting on the vehicle body (the time change in vehicle body speed is proportional to the external force, and the time change in the vehicle body momentum balances with the external force).
  • This external force is dominated by the tire force acting on the wheel from the road surface.
  • the tire force can be accurately measured even under transient conditions in which the bank angle changes over time by taking into account the temporal change in the motion state of the vehicle body in a plane perpendicular to the longitudinal axis. Can be estimated.
  • the first tire force estimator 11 is based on three equations of motion: a first equation of motion (formula (4)), a second equation of motion (formula (5)), and a third equation of motion (formula (6)).
  • the first equation of motion (Equation (4)) is an equation representing the balance between the time change of the vertical motion state of the vehicle body and the vertical force.
  • the second equation of motion (Equation (5)) is an equation representing the balance between the temporal change in the lateral movement state of the vehicle body and the lateral force.
  • Equation (6) is an equation representing the balance between the temporal change of the motion state around the longitudinal axis of the vehicle body and the vertical force and lateral force.
  • the first tire force estimation unit 11 determines the vertical motion state based on values related to the time change of the bank angle ⁇ of the vehicle body (specifically, the bank angular velocity ⁇ ⁇ and the bank angular acceleration ⁇ ⁇ ).
  • a time change, a time change of the lateral movement state, and a time change of the movement state around the front-rear axis are acquired.
  • the first equation of motion (Equation (4)), the second equation of motion (Equation (5)), and the third equation of motion (Equation (6)) are values related to the time change of the bank angle ⁇ of the vehicle body. As a factor.
  • bank angle ⁇ or one of its time change related values can be acquired, other necessary values can be easily acquired by differential operation (or integration operation). Therefore, it is possible to estimate the two unknowns, the vertical force and the lateral force, by only acquiring one piece of input information.
  • the tire force estimation device 1 is mounted on a vehicle having front wheels and rear wheels as wheels.
  • the first tire force estimation unit 11 determines the time during which the vehicle is moving in a plane perpendicular to the front-rear axis (virtual axis extending in the front-rear direction passing through the front wheel contact point and the rear wheel contact point).
  • the total force acting on the front and rear wheels from the road surface is estimated, and the total force is distributed between the front wheel force acting on the front wheel from the road surface and the rear wheel force acting on the rear wheel from the road surface. Force and rear wheel force are estimated.
  • the first tire force estimation unit 11 distributes the total force to the front wheel force and the rear wheel force according to the time change of the longitudinal movement state of the vehicle body. Since the temporal change in the longitudinal motion state is equivalent to the product of the inertial mass and the longitudinal acceleration, the distribution ratio between the front wheel force and the rear wheel force changes according to the longitudinal acceleration. Even under transient conditions such as acceleration / deceleration, the sum is distributed in consideration of longitudinal acceleration, so that the estimation accuracy of front wheel force and rear wheel force is improved. In particular, at the start of turning, the bank angle increases with deceleration. At the end of turning, the bank angle decreases with acceleration. In this example, since both the bank angle and the longitudinal acceleration are taken into account, the estimation accuracy of the tire force at the start and end of turning is increased.
  • the estimation method used in the tire force estimation device 1 includes (1) a vehicle body information acquisition process, (2) a travel information acquisition process, (3) a total power estimation process, and (4) a front-rear distribution process.
  • Step (1) is a step for obtaining parameters other than the running state, such as the wheel base, the position of the center of gravity, the vehicle body mass, and the like, and is obtained from a sensor outside the device or a storage unit in the device Or obtained as an intermediate value by a calculation unit in the apparatus.
  • the vehicle body mass may be stored in advance in the storage unit as a constant, or may be estimated by the calculation unit based on a weight sensor or other sensor input value.
  • Step (2) is a step of acquiring a parameter indicating the running state, and is an intermediate value (above-mentioned) as an input value from a sensor outside the device (in the above example, sensor 2 to 4) or by a calculation unit 1b in the device. in the example, it is obtained as a bank angular velocity ⁇ ⁇ , etc.).
  • Step (3) is a step of estimating the total force (total vertical force, total lateral force, total front / rear force) based on the information acquired in steps (1) and (2).
  • step (4) based on the total force estimated in step (3), taking into account the information acquired in steps (1) and / or (2), the total force is calculated as front wheel force and rear wheel force. This is a step of estimating the front wheel force and the rear wheel force by distributing to The order of the step (1) and the step (2) is not limited.
  • the estimation method used in the first tire force estimation unit 11 it depends on the angle (bank angle ⁇ ), angular velocity (bank angular velocity ⁇ ⁇ ), angular acceleration (bank angular acceleration ⁇ ⁇ ) around the longitudinal axis of the vehicle body.
  • vertical force and lateral force are estimated.
  • the acceleration of the lateral component can be acquired. If the acceleration can be acquired, the inertial mass can be used as a proportional coefficient to easily estimate the vertical force as an external force acting on the vehicle body in the vertical direction and the lateral force acting as an external force acting on the vehicle body in the lateral direction.
  • the estimation method used in the first tire force estimation unit 11 virtual wheels that represent or integrate front wheels and rear wheels are assumed, and first, the sum of forces acting on the virtual wheels is estimated from the road surface. To do. Then, the total force is distributed to the front wheel force and the rear wheel force according to the bank angle and the longitudinal acceleration. Also, when estimating the force acting on the wheel from the road surface, the crown diameter is taken into consideration. For this reason, the estimation accuracy is further improved.
  • the tire force estimated in this way can be used for various purposes such as vehicle control and vehicle development / design support.
  • the tire force estimation device may be realized by a control device for engine control mounted on the vehicle body.
  • a control device for braking used for ABS (Anti-lock Braking System) or a control device used for meter display control may be used.
  • ABS Anti-lock Braking System
  • meter display control may be used.
  • it may be realized by a device capable of arithmetic processing mounted on the vehicle body.
  • the calculation formula is an example, and the calculation formula may be different in consideration of other influences.
  • gravity is considered as an external force that affects the estimation of tire force, but other external forces may be considered.
  • an external force term considering the influence of such an external force may be added to the calculation formula, or a correction coefficient that approaches the actual measurement result may be added.
  • air resistance generated during traveling and forward force in the direction of travel caused by tailwinds may be taken into account, and the sum of these external forces and tire forces is the time change in the motion state of the vehicle body. It appears.
  • the information may be used as the bank angle related information instead of the time change of the bank angle.
  • the bank angular velocity may be used, or the time change in the distance from the vehicle body center of gravity to the road surface may be used.
  • wheel speed information of the front wheels and rotation information of a rotating shaft (such as an engine valve camshaft or a driving wheel axle) that is rotationally driven by a driving source may be used.
  • the rear wheel longitudinal force is estimated based on the total longitudinal force and the front wheel longitudinal force, but the rear wheel longitudinal force may be estimated using other methods.
  • the driving force is obtained from a detected value such as the engine speed based on a predetermined performance curve (torque map), or the rear wheel braking force is obtained from a map relating to the braking force using the rear wheel brake pressure and inertia.
  • the rear wheel longitudinal force may be estimated without using the total longitudinal force and the front wheel longitudinal force.
  • Equations (10) and (11) are merely examples, and other values may be used.
  • the arithmetic expression may be set without considering the crown diameter.
  • an arithmetic expression may be set in consideration of an external force other than the tire force. For example, you may consider the influence of a crosswind. Further, it may be expressed by a Laplace function or a determinant.
  • a map having the roll angle, the roll angular velocity, and the roll angular acceleration as variables may be stored in advance without using an arithmetic expression, and the tire force on a plane perpendicular to the front-rear axis may be estimated according to the map.
  • any one of the roll angle, the roll angular velocity, and the roll angular acceleration may be omitted when the influence of any one is small.
  • the tire force is estimated according to at least one of the roll angular velocity and the roll angular acceleration, so that the tendency of the change in the tire force in the transient state can be easily estimated. The effect can be obtained.
  • an arithmetic expression can be theoretically obtained from geometric information. Further, an arithmetic expression may be set approximately based on a measurement result obtained in an experiment. Further, a map having the longitudinal acceleration and the bank angle as variables may be stored in advance without using the arithmetic expression, and the tire forces of the front and rear wheels may be distributed according to the map. Further, based on the total tire force described above, the tire force of the front and rear wheels can be distributed to reduce the detected value. However, the total tire force obtained using another estimation method can be expressed by the formula ( 14), (16), or an arithmetic expression or a map showing a similar tendency may be distributed to the tire forces of the front and rear wheels.
  • the present invention can also be applied to estimation of tire force in a bicycle or unicycle to which driving force is given by the driver.
  • the vertical force, lateral force, and longitudinal force are estimated, but the case where any one of them is estimated is also included in the present invention.
  • the present invention includes a case where a vertical force and a lateral force are obtained based on a change in bank angle with the exception of the longitudinal force.
  • the present invention includes a case where only one of a vertical force and a lateral force is output. It is also included in the present invention to estimate at least one of the total vertical force and the total lateral force without distributing back and forth.
  • the present invention also includes distribution to the front and rear wheels based on the vehicle body acceleration and the bank angle in a state where the total vertical force and the total lateral force are estimated by experiments, for example.
  • the tire force estimation device 1 is mounted on a vehicle, but includes a case where the tire force estimation device 1 is mounted outside the vehicle. That is, specific information about the vehicle such as the position of the center of gravity is acquired or stored, and the information corresponding to the vehicle speed from the vehicle, the information corresponding to the bank angle change, and the information corresponding to the front wheel brake pressure are traveling or traveling. It may be acquired later to estimate the tire force of the vehicle during traveling.
  • the tire force estimation device may be a dedicated processing device different from the in-vehicle ECU.
  • a processing device that includes a communication unit that can acquire vehicle information transmitted from the vehicle body and is mounted outside the vehicle may be used.
  • the estimated tire force is used for vehicle control, but the present invention is not limited to this. That is, the purpose of using the tire force estimated in the present invention is not limited, and the tire force estimated for purposes other than vehicle control may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

タイヤ力推定装置は、車体の前後軸周りに傾斜した状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定する。タイヤ力推定装置は、前後軸に垂直な平面内での車体の運動量の時間変化に応じて、路面から車輪に働く力を推定する第1タイヤ力推定部を備える。

Description

タイヤ力推定装置およびタイヤ力推定方法
 本発明は、車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両におけるタイヤ力を推定する装置および方法に関する。
 特許文献1は、自動二輪車の車輪と路面との間に働く車輪力、すなわちタイヤ力を推定する装置を開示している。この装置は、自動二輪車に働く遠心力と重力との合力(Fh)が、路面から前輪に働く前輪横力および前輪上下力の合力(Ff4)と、路面から後輪に働く後輪横力および後輪上下力の合力(Fr4)との釣合いに基づいて、車輪力を推定している。
特開2015-85905号公報
 しかし、旋回走行の開始期や終了期のように、車体の前後軸周りの傾斜角、すなわちバンク角が時間経過に伴って変化していく過渡状況下では、上記釣合いは保たれない。したがって、上記装置は、このような過渡状況下でのタイヤ力を正確に推定できない。
 そこで本発明は、バンク状態で旋回する車両におけるタイヤ力の推定精度向上を目的としている。
 本発明の一形態に係るタイヤ力推定装置は、車体を前後軸周りに傾斜させた状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定するタイヤ力推定装置であって、前記前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、路面から車輪に働く力を推定する第1タイヤ力推定部を備える。
 前記構成によれば、質点の質量と、質点の運動状態の時間変化との積が、質点に働く力と釣り合うことから、車体の前後軸に垂直な平面内での運動状態の時間変化に応じて、路面から車輪に働くタイヤ力を推定する。運動状態の時間変化に応じてタイヤ力を推定するので、旋回時にバンク角が時間経過に伴って変化する過渡状態でも、タイヤ力を精度よく推定できる。
 前記第1タイヤ力推定部は、第1運動方程式、第2運動方程式および第3運動方程式を用いて、路面から車輪に働く鉛直力および横力を推定し、前記第1運動方程式が、車体の鉛直方向運動状態の時間変化と、鉛直力との釣り合いの関係を表し、前記第2運動方程式が、車体の横方向運動状態の時間変化と、横力との釣り合いの関係を表し、前記第3運動方程式が、車体の前後軸周り運動状態の時間変化と、鉛直力および横力との釣り合いの関係を表してもよい。
 前記第1タイヤ力推定部は、バンク角の時間変化と関連する値に基づいて、前記鉛直方向運動状態の時間変化、前記横方向運動状態の時間変化、および前記前後軸周り運動状態の時間変化を取得してもよい。
 前記車両が、前記車輪として前輪および後輪を有し、前記第1タイヤ力推定部は、前記前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、前記路面から前記前輪および前記後輪に働く前記力の総和を推定し、前記力の前記総和を路面から前記前輪に働く前輪力と路面から前記後輪に働く後輪力とに分配するようにして、前記前輪力および前記後輪力を推定してもよい。
 前記第1タイヤ力推定部は、車体の前後方向運動状態の時間変化に応じて、前記力の前記総和を前記前輪力と前記後輪力とに分配してもよい。
 前記第1タイヤ力推定部は、バンク角に応じて、前記前輪力と前記後輪力とへの分配比率を変化させてもよい。
 路面から前記車輪に前後方向に働く前後力を推定する第2タイヤ力推定部を備え、前記第2タイヤ力推定部は、車体の前後方向運動状態の時間変化に基づいて、路面から前記前輪および前記後輪に働く前後力の総和を推定し、前記前輪の制動力に基づいて、路面から前記前輪に働く前輪前後力を推定し、推定された前記前後力の前記総和と前記前輪前後力とに基づいて、路面から前記後輪に働く後輪前後力を推定してもよい。
 本発明の別形態に係るタイヤ力推定装置は、車体を前後軸周りに傾斜させた状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定するタイヤ力推定装置であって、前記車両は前記車輪として前輪および後輪を有し、前記装置は、路面から前記前輪に働く前輪力、および路面から前記後輪に働く後輪力を推定する第1タイヤ力推定部を備え、前記第1タイヤ力推定部は、路面から仮想車輪に働く力の総和を推定し、車体の前後方向運動状態の時間変化とバンク角とに応じて、前記力の前記総和を前記前輪力と前記後輪力とに分配することで、前記前輪力および前記後輪力を推定する。
 本発明の一形態に係るタイヤ力推定方法は、車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定する方法であって、車体の前後軸周りの角度、角速度および角加速度に応じて、路面から車輪に鉛直方向に働く鉛直力および路面から車輪に横方向に働く横力を推定する。
 本発明の別形態に係るタイヤ力推定方法は、車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定する方法であって、前記車両は前記車輪として前輪および後輪を有し、前記方法は、路面から仮想車輪に鉛直方向に働く力の総和を推定し、車体の前後方向運動状態の時間変化とバンク角とに応じて、前記力の前記総和を前記前輪に働く前輪力と前記後輪に働く後輪力とに分配する。
 本発明によれば、バンク状態で旋回する車両におけるタイヤ力の推定精度を向上できる。
実施形態に係るタイヤ力推定装置の構成を示すブロック図である。 前後力推定を示す概念図である。 鉛直力および横力推定の概念図である。 鉛直力前後分配および横力前後分配の概念図である。
 以下、図面を参照しながら実施形態について説明する。本書では、ニュートンの記法に従うドット符合を、変数を表すアルファベットの右に記載する場合がある。特段断らなければ、用語「車輪」は、ハブ、リムおよびスポークを有する狭義のホイールと、リムに装着されて路面と接するタイヤとを含んだ組立体を指す。用語「前後軸」は、仮想的な軸線であって、前輪の接地点と後輪の接地点とを通過し、車両前後方向に延び、かつ車幅方向に直交する軸線である。「バンク角」は、車体の傾斜角であって、前後軸周りの傾斜角である。別の言い方では、「バンク角」は、正面視で表される車体の車幅方向中心線の延在方向の、路面と垂直な方向に対する傾き[deg]である。車幅方向中心線の延在方向が路面と垂直な方向に延在しているとき、車体は直立状態、バンク角はゼロ値[deg]をとる。
 図1に示すタイヤ力推定装置1は、本実施例では車両に搭載される。タイヤ力推定装置1は、車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力である「タイヤ力」を推定する。また、直進走行する場合、車両は、車高方向を路面と垂直な方向(概して鉛直方向)とほぼ一致させた直立状態で走行する。
 (自動二輪車)
 このような車両の一例として、自動二輪車を挙げられる。自動二輪車は、車輪として、1つの前輪および1つの後輪を有する。自動二輪車では、少なくとも一方の車輪が駆動輪であり、本実施例では、後輪が駆動輪であり、前輪が従動輪かつ操舵輪である。駆動輪には、エンジンや電気モータなどの動力源で発生されたトルクが伝達される。駆動輪には、いわゆるエンジンブレーキ力や回生制動力など、駆動源の慣性を利用する制動力も作用する。自動二輪車は、前輪を制動する前輪ブレーキ装置、および後輪を制動する後輪ブレーキ装置を備えている。どちらのブレーキ装置も油圧式であり、対象とする車輪にブレーキ圧と概ね比例した制動力を付与する。
 (タイヤ力)
 まず、路面の勾配およびカントは考慮しないものとする。タイヤ力推定装置1は、タイヤ力として、路面から車輪に鉛直方向上向きに働く「鉛直力N」、路面から車輪に横方向に働く「横力F」、路面から車輪に前後方向に働く「前後力F」を推定できる。なお、鉛直方向、前後方向、および横方向は、互いに直交する。前後方向は、前述した前後軸に沿って延びる方向である。横方向は、直進走行状態において車軸が延びる方向である。車体の上下軸周りの向きの変化に応じて、前後方向および横方向は変化する。
 タイヤ力推定装置1は、タイヤ力として、路面から前輪に働く「前輪力」、路面から後輪に働く「後輪力」を推定できる。
 タイヤ力推定装置1は、タイヤ力として、路面から前輪に鉛直方向上向きに働く「前輪鉛直力N」、および路面から後輪に鉛直方向上向きに働く「後輪鉛直力N」を推定できる。タイヤ力推定装置1は、タイヤ力として、路面から前輪に横方向に働く「前輪横力Fyf」、および路面から後輪に横方向に働く「後輪横力Fyr」を推定できる。タイヤ力推定装置1は、タイヤ力として、路面から前輪に前後方向に働く「前輪前後力Fxf」、および路面から後輪に前後方向に働く「後輪前後力Fxr」を推定できる。
 以降、「前輪鉛直力N」と「後輪鉛直力N」との和を「総和鉛直力N」と称する場合がある。「前輪横力Fyf」と「後輪横力Fyr」との和を「総和横力F」と称する場合がある。「前輪前後力Fxf」と「後輪前後力Fxr」との和を「総和前後力F」と称する場合がある。前述した「鉛直力」は、「前輪鉛直力N」、「後輪鉛直力N」および「総和鉛直力N」を含意する。前述した「横力」および「前後力」についても、これと同様とする。
 前述した「前輪力」は、「前輪鉛直力N」、「前輪横力Fyf」および「前輪前後力Fxf」を含意し、更には、これら3力のうち2以上の力の合力(例えば、前輪鉛直力Nと前輪横力Fyfとの合力)も含意できる。「後輪力」は、「後輪鉛直力N」、「後輪横力Fyr」および「後輪前後力Fxr」を含意し、更には、これら3力のうち2以上の力の合力(例えば、後輪鉛直力Nと後輪横力Fyrとの合力)も含意できる。
 (タイヤ力推定装置)
 タイヤ力推定装置1は、タイヤ力を推定する方法の手順に関した推定プログラムを格納する記憶部と、車体のバンク角(車体の前後軸周りの傾斜角)や前後方向加速度といった車両状態を示す入力値が与えられる入力部1aと、入力部1aに与えられる入力値および記憶部に記憶されるプログラムを参照してタイヤ力の推定を実行する演算部1bと、演算部1bの演算結果(タイヤ力)を外部に出力する出力部1cとを有する制御器によって実現される。なお、記憶部は、入力値、および入力値に基づいてプログラム実行中に取得される中間値を一時的に記憶してもよい。このような制御器の一例として、車載ECU(Electric Control Unit)を挙げられる。記憶部は、車両、搭乗者および積載物の質量を統合した乗車質量の推定値である推定質量、車体重心から路面までの距離、ホイールベース等の車体の幾何学的情報などの情報を予め記憶してもよい。ただし、このような情報は、タイヤ力推定装置1の外部から入力部1aに与えられてもよいし、推定プログラムの実行中に演算部1bによって中間値として取得されてもよい。
 タイヤ力推定装置1は、演算部1bの機能ブロックとして、第1タイヤ力推定部11、第2タイヤ力推定部12、および微分演算部13を備える。
 本実施形態では、タイヤ力推定装置1は、入力値として、バンク角β、車速(車体の前後速度)x、および油圧式前輪ブレーキ装置における前輪ブレーキ圧Pが与えられる。車両は、タイヤ力推定装置1と併せて、バンク角βを検出するバンク角センサ2、車速を検出する車速センサ3、前輪ブレーキ圧Pを検出する前輪ブレーキ圧センサ4を備える。バンク角センサ2は、バンク角βの時間変化を把握可能に、時間経過に応じて車体のバンク角βを逐次出力する。車速センサ3は、車速の時間変化を把握可能に、時間経過に応じて車速を逐次出力する。微分演算部13は、入力されたバンク角βに基づいて、バンク角βの時間変化であるバンク角速度(バンク角βの一階時間微分値)β、およびバンク角速度βの時間変化であるバンク角加速度(バンク角βの二階時間微分値)β・・を求める。微分演算部13は、入力された車速xに基づいて、車速xの時間変化である前後加速度(車速xの一階時間微分値)x・・を求める。
 ただし、これは一例である。車両がバンク角速度βを検出するバンク角速度センサを備え、タイヤ力推定装置1が、バンク角速度センサから与えられたバンク角速度βに基づいてバンク角βを求める積分演算部を有していてもよい。車両が前後加速度x・・を検出する加速度センサを備え、タイヤ力推定装置1が加速度センサからの前後加速度x・・を与えられてもよい。直進走行状態を判定可能であれば、直進走行状態でのバンク角をゼロと判断することで、バンク角速度センサを用いて、バンク角およびバンク角加速度を求めることができる。
 (前後力F,第2タイヤ力推定部)
 説明の便宜上、第2タイヤ力推定部12から説明する。図1および2に示すように、第2タイヤ力推定部12は、路面から車輪に前後方向に働く前後力を推定する。第2タイヤ力推定部12によって推定される「前後力」には、総和前後力F、前輪前後力Fxf、後輪前後力Fxrが含まれる。第2タイヤ力推定部12は、式(1)に従って総和前後力Fを推定する。
Figure JPOXMLDOC01-appb-M000001
 ここで、mは、乗車質量である。式(1)に示すとおり、本例では、車体の前後方向運動量の時間変化が総和前後力Fと等しいものとしている。乗車質量mは定数として取り扱うことができ、タイヤ力推定装置1の記憶部に予め記憶されていてもよい。その場合、結局、第2タイヤ力推定部12は、車体の前後方向運動状態の時間変化、すなわち、車体の前後加速度x・・に基づき、総和前後力Fを推定する。
 第2タイヤ力推定部12は、推定された総和前後力Fを前輪前後力Fxfと後輪前後力Fxrとに分配することで、前輪前後力Fxfと後輪前後力Fxrとを推定する。第2タイヤ力推定部12は、前輪前後力Fxfは前輪制動力と同等であり、前輪制動力は前輪ブレーキ圧Pと比例関係にあるとの想定の下、式(2)に従って前輪前後力Fxfを推定する。
Figure JPOXMLDOC01-appb-M000002
 ここで、Kは比例定数であり、その数値は事前に(タイヤ力推定装置1の設計段階で)求めることができ、タイヤ力推定装置1の記憶部に予め記憶されている。このように、第2タイヤ力推定部12は、タイヤ力推定装置1に入力される前輪ブレーキ圧Pに基づき、前輪前後力Fxfを推定する。
 次に、第2タイヤ力推定部12は、総和前後力Fが前輪前後力Fxfと後輪前後力Fxrとの和であるとの想定の下、式(3)に従って後輪前後力Fxrを推定する。
Figure JPOXMLDOC01-appb-M000003
 このように、第2タイヤ力推定部12は、総和前後力Fから前輪前後力Fxfを減算することによって、後輪前後力Fxrを推定する。前輪前後力Fxfが前輪制動力とみなされる一方、後輪前後力Fxrは、駆動源から伝達される前進方向駆動力、駆動源の慣性に基づく制動力、および後輪ブレーキ装置により発生される後輪制動力などの複合である。
 本例のタイヤ力推定装置1においては、前後方向加速度x・・および前輪ブレーキ圧Pを監視することで、総和前後力F、前輪前後力Fxfおよび後輪前後力Fxrの3力を推定できる。総和前後力Fおよび前輪前後力Fxfを求めてから後輪前後力Fxrを受動的に推定するという手法を採るので、3力の推定値を簡便に得ることができる。
 (鉛直力N,横力F,第1タイヤ力推定部)
 次に、第1タイヤ力推定部11について説明する。図1および3に示すように、第1タイヤ力推定部11は、車体の前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、路面から車輪に働く力を推定する。ここでの「前後軸」は、前輪接地点および後輪接地点を通過して前後方向に延びる仮想的な軸線である。単に「運動状態」という場合、並進運動での運動状態も、回転運動での運動状態も含意する。また、「運転状態」は、慣性質量と速度との積と同等の「運動量」を含意できる。「運動状態の時間変化」は、並進運動においては、慣性質量と運動方向における加速度との積と同等であり、回転運動では、慣性モーメントと運動方向における角加速度との積と同等である。用語「運動状態の時間変化に応じて」は、並進運動では「運動方向における加速度に応じて」と同等であり、回転運動では「運動方向における角加速度に応じて」と同等である。よって、第1タイヤ力推定部11は、車体の前後軸に垂直な平面内での車体の加速度および/または角加速度に応じて、路面から車輪に働く力を推定する、とも言える。
 「前後軸に垂直な平面内での車体の運動状態」には、鉛直方向の運動状態、横方向の運動状態、前後軸周りの運動状態が含まれる(式(4)~(6)も参照)。横滑りなく上下凹凸のない路面に接地した状態を保って走行している車両において、車体重心の鉛直方向または横方向における運動(換言すれば、車体重心の鉛直方向または横方向における移動)は、バンク角(車体の前後軸周りの傾斜角)の時間変化によって生じる。前後軸周りの回転運動は、バンク角の時間変化そのものである。本例の車両は、前述のとおり前後軸周りに傾斜した状態で旋回し、バンク角の時間変化は、典型的には、旋回走行の開始期および終了期に生じる。
 第1タイヤ力推定部11は、バンク角の変化によって生じる車体の運動状態の時間変化(バンク角の時間変化に起因して車輪、ひいては車体に働く外力)を考慮して、タイヤ力を推定する。そのため、バンク角が時間経過に伴って変化していく過渡走行中(例えば、旋回走行の開始期および終了期)でのタイヤ力の推定精度が高い。
 第1タイヤ力推定部11によって推定される力には、総和鉛直力N、総和横力F、前輪鉛直力N、前輪横力Fyf、後輪鉛直力N、後輪横力Fyrが含まれる。本例では、第1タイヤ力推定部11が、鉛直力N,N,Nおよび横力F,Fyf,Fyrの両方を推定するが、鉛直力N,N,Nと横力F,Fyf,Fyrの少なくともいずれか一方を推定してもよい。
 図3は、第1タイヤ力推定部11によるタイヤ力推定原理を示す図である。図3に示すように、第1タイヤ力推定部11の推定では、前後軸に垂直な平面(YZ平面)内で、車体を簡易的な剛体と質点とで表現したモデルが想定される。車両は一般に前後方向に離れた複数の車輪を有するのに対し、図3に示すモデルでは、前後方向の次元が省略されている。そこで、当該モデルでは、車両内の複数の車輪を代表あるいは統合した「仮想車輪」が想定される。本例では、タイヤ力推定装置1が前輪および後輪を1つずつ設けた自動二輪車に搭載されるものと想定されており、仮想車輪は1輪である。なお、質点位置は車体重心位置として用いる。
 第1タイヤ力推定部11は、当該モデルに従って表される第1運動方程式(下式(4))、第2運動方程式(下式(5))、および第3運動方程式(下式(6))を用いて、仮想車輪に働く鉛直力および横力を推定する。仮想車輪に働く鉛直力は、総和鉛直力Nに相当し、仮想車輪に働く横力は、総和横力Fに相当する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ここで、Nは、路面から車両に働く鉛直荷重であり、「総和鉛直力」に相当する。gは、重力加速度である。IGxは、車体の前後軸周りの慣性モーメント(ロール慣性モーメント)である。βはバンク角である。y、zはそれぞれ、車両重心の横方向位置と鉛直方向位置(車両重心位置のy座標とz座標)である。なお、YZ平面の原点はタイヤ接地点に設定されている。
 第1運動方程式(4)は、車体の鉛直方向運動状態の時間変化(左辺参照)と、鉛直方向に対して重心に与えられる外力の総和(右辺参照)との釣合いの関係を表す方程式であり、外力として鉛直力と重力とが考慮されている。第1運動方程式(4)において、mgは、車体重心に作用する重力を指す。z ・・は、車体重心の鉛直方向位置zの二階時間微分値であって、車体重心の鉛直方向加速度である。第1運動方程式(4)に示されるとおり、鉛直方向加速度に応じて総和鉛直力Nは変わる。
 第2運動方程式(5)は、車体の横方向運動状態の時間変化(左辺参照)と、横方向に対して重心に与えられる外力の総和(右辺参照)との釣合いの関係を表す方程式であり、外力として横力(総和横力F)が考慮されている。y ・・は、車体重心の横方向位置yの二階時間微分値であって、車体重心の横方向加速度である。第2運動方程式(5)に示されるとおり、横方向加速度に応じて総和横力Fyは変わる。
 第3運動方程式(6)は、車体の前後軸周りの運動状態の時間変化(左辺参照)と、前後軸周りに車体重心に与えられる外力のモーメントの総和(右辺参照)との釣合いの関係を表す方程式である。外力のモーメントとして、鉛直力に基づくモーメントと、横力に基づくモーメントとが考慮されている。鉛直力に基づくモーメントは、鉛直力と、タイヤ接地点から車体重心位置までの横方向における距離(以下、「横方向重心距離」という)との積である。横力に基づくモーメントは、横力と、タイヤ接地点から車体重心位置までの鉛直方向における距離(以下、「鉛直方向重心距離」という)との積である。本例では、タイヤ接地点に原点をおいたyz座標系が考慮されており、車体重心の横方向位置(y座標)が、横方向重心距離に相当し、車体重心の鉛直方向位置(z座標)が、鉛直方向重心距離に相当している。
 ここで、タイヤは常に接地していると仮定し、タイヤ接地点の鉛直方向位置を0で一定と考える。仮想車輪のクラウン径rを考慮すると、車体重心の鉛直方向位置zは、式(7)で表され、車体重心の横方向位置yは、式(8)で表される。また、式(7)より、鉛直方向位置zの二階時間微分値(車体重心の鉛直方向加速度)z ・・は、式(9)で表される。なお、左右に車輪を有する車両(例えば、四輪自動車)のトレッド面は扁平であるのに対して、バンク状態で旋回する車両に装着されるタイヤにおいては、旋回走行時に車体を前後軸周りに傾斜させやすくするため、トレッド面が略半円形状の正面視断面を有する。「クラウン径」は、タイヤのトレッド面の曲率半径である。本例では、トレッド面の断面形状が真円弧であり、また、トレッドパターンおよびスパイクは無いものとしている。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、hは、前後軸に垂直な平面内におけるクラウン中心から車体重心までの距離である。バンク角βによらず、クラウン中心と車体重心とを結ぶ線は、車高方向に延びることになるので、以下、説明便宜上、当該距離hを「重心高さ」と呼ぶ。車体が剛体として仮想されているので、重心高さhは一定である。
 なお、タイヤ力推定装置1を搭載する車両では、前輪のクラウン径と後輪のクラウン径とが異なる場合がある。そのような場合、仮想車輪のクラウン径rは、例えば、前輪クラウン径と後輪クラウン径との平均値を用いてもよい。あるいは、前輪クラウン径が代用されてもよいし、後輪クラウン径が代用されてもよい。
 式(4)、(9)より、総和鉛直力Nは、式(10)で表すことができる。式(5)、(6)、(9)より総和横力Fは、式(11)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 このように、総和鉛直力Nおよび総和横力Fは、乗車質量m、クラウン径rが考慮された重心高さh、ロール慣性モーメントIGx、バンク角β、およびその時間変化に関連する値から推定できる。そのうち、乗車質量m、クラウン径r、重心高さh、ロール慣性モーメントIGxについては、重力加速度gと共に、定数として取り扱うことができ、タイヤ力推定装置1の記憶部に予め記憶されていてもよい。なお、「バンク角βの時間変化に関連する値」には、バンク角βの時間微分値、例えば、一階時間微分値(バンク角速度)および二階時間微分値(バンク角加速度)が含まれる。
 第1タイヤ力推定部11は、タイヤ力推定装置1に与えられたバンク角βと、微分演算部13によって取得されたバンク角速度βおよびバンク角加速度β・・とに基づいて、式(10)に従って総和鉛直力Nを推定し、式(11)に従って総和横力Fを推定する。このとおり、本例のタイヤ力推定装置1においては、バンク角βおよびその時間変化に関連する値を監視するだけで、総和鉛直力Nおよび総和横力Fを推定できる。
 図1、4Aおよび4Bに示すように、第1タイヤ力推定部11は、推定された力の総和を路面から前輪に働く前輪力と路面から後輪に働く後輪力とに分配することで、前輪力および後輪力を推定する。本例では、総和鉛直力Nと総和横力Fとが「力の総和」として推定されている。第1タイヤ力推定部11は、総和鉛直力Nを前輪鉛直力Nと後輪鉛直力Nとに分配し、総和横力Fを前輪横力Fyfと後輪横力Fyrとに分配する。これにより、第1タイヤ力推定部11は、前輪力としての前輪鉛直力Nおよび前輪横力Fyfを推定し、また、後輪力としての後輪鉛直力Nおよび後輪横力Fyrを推定する。具体的には、第1タイヤ力推定部11は、式(12)に示すとおり、総和鉛直力Nが前輪鉛直力Nと後輪鉛直力Nとの和であるとして、総和鉛直力Nを前輪鉛直力Nと後輪鉛直力Nとに分配する。第1タイヤ力推定部11は、式(13)に示すとおり、総和横力Fが前輪横力Fyfと後輪横力Fyrとの和であるとして、総和横力Fを前輪横力Fyfと後輪横力Fyrとに分配する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 第1タイヤ力推定部11は、車体の前後方向運動状態の時間変化に応じて、力の総和を前輪力と後輪力とに分配する。また、前後方向運動状態の時間変化は、前述のとおり、総和前後力Fに相当する。よって、第1タイヤ力推定部11は、総和前後力Fに応じて、前後加速度x・・に応じて、力の総和を前輪力と後輪力とに分配する、とも言える。更に、第1タイヤ力推定部11は、バンク角状態に応じて、力の総和を前輪力と後輪力とに分配する。
 本例では、第1タイヤ力推定部11は、前後方向運動状態の時間変化(総和前後力F)、およびバンク角に応じて、総和鉛直力Nを分配する。第1タイヤ力推定部11は、前後方向運動状態の時間変化(総和前後力F)、およびバンク角に応じて、総和横力Fを分配する。
 具体的には、第1タイヤ力推定部11は、式(14)に従って総和鉛直力Nから前輪鉛直力Nを求め、式(12)を変形した式(15)に従って総和鉛直力Nおよび前輪鉛直力Nから後輪鉛直力Nを求める。また、第1タイヤ力推定部11は、式(16)に従って総和横力Fから前輪横力Fyfを求め、式(13)を変形した式(17)に従って総和横力Fおよび前輪横力Fyfから後輪横力Fyrを求める。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 ここで、pは、ホイールベース(後輪車軸から前輪車軸までの前後方向距離)、bは、後輪車軸から車体重心までの前後方向距離である。式(14)におけるG(x・・,β)、および式(16)におけるGFy(x・・,β)は、前後加速度x・・およびバンク角βを変数とする関数によって求まる値である。G(x・・,β)およびGFy(x・・,β)は、互いに異なる関数によって定義されており、車両(その設計パラメータ)に応じて異なる値をとる。
 例えば、G(x・・,β)およびGFy(x・・,β)は、バンク角βが同一の条件下において、正の前後加速度x・・(前進方向の加速度)が大きいほど、前輪鉛直力Nの総和鉛直力Nに対する割合が低くなり、前輪横力Fyfの総和横力Fに対する割合が低くなるように定義される。正の前後加速度x・・が同一の条件下において、バンク角βが大きいほど、前輪鉛直力Nの総和鉛直力Nに対する割合が高くなり、前輪横力Fyfの総和横力Fに対する割合が高くなるように定義される。このように、バンク角βに応じて前輪力と後輪力とへの分配比率を異ならせることで、バンク状態における分配比率を実際の値に近づけることができ、過渡状況下での前輪力および後輪力の推定精度が向上する。
 (作用)
 上記のとおり、タイヤ力推定装置1は、車体の前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、路面から車輪に働く力を推定する第1タイヤ力推定部11を備えている。前後軸に垂直な平面内での車体重心の運動状態の時間変化は、例えば、バンク角(前後軸周りの車体の傾斜角)の変化に伴って生じる。そして、運動の第2法則より、車体の運動状態の時間変化は車体に働く外力と相関する(車体速度の時間変化と外力は比例し、車体の運動量の時間変化は外力と釣り合う)。この外力は、路面から車輪に働くタイヤ力が支配的である。このようなことから、前後軸に垂直な平面内での車体の運動状態の時間変化を考慮することにより、バンク角が時間経過と共に変化していくような過渡状況下でも、タイヤ力を精度よく推定できる。
 特に、第1タイヤ力推定部11は、第1運動方程式(式(4))、第2運動方程式(式(5))、第3運動方程式(式(6))の3つの運動方程式から、路面から車輪に働く鉛直力および横力を推定する。第1運動方程式(式(4))は、車体の鉛直方向運動状態の時間変化と、鉛直力との釣り合いの関係を表す方程式である。第2運動方程式(式(5))は、車体の横方向運動状態の時間変化と、横力との釣り合いの関係を表す方程式である。第3運動方程式(式(6))が、車体の前後軸周り運動状態の時間変化と、鉛直力および横力との釣り合いの関係を表す方程式である。3つの運動方程式を用いることで、2つの未知数である鉛直力および横力を推定できる。
 特に、第1タイヤ力推定部11は、車体のバンク角βの時間変化と関連する値(具体的には、バンク角速度βやバンク角加速度β・・)に基づいて、鉛直方向運動状態の時間変化、横方向運動状態の時間変化、および前後軸周り運動状態の時間変化を取得する。換言すれば、第1運動方程式(式(4))、第2運動方程式(式(5))、第3運動方程式(式(6))が、車体のバンク角βの時間変化と関連する値を因子に持つ。バンク角βまたはその時間変化関連値の一つを取得できれば、微分演算(または積分演算)により、他に必要な値は容易に取得できる。よって、入力情報を一つ取得するだけで、2つの未知数である鉛直力および横力を推定できる。
 タイヤ力推定装置1は、車輪として前輪および後輪を有する車両に搭載される。その場合において、第1タイヤ力推定部11は、前後軸(前輪接地点と後輪接地点とを通過する前後方向に延びる仮想的な軸線)に垂直な平面内での車体の運動状態の時間変化に応じて、路面から前輪および後輪に働く力の総和を推定し、力の総和を路面から前輪に働く前輪力と路面から後輪に働く後輪力とに分配するようにして、前輪力および後輪力を推定している。このように、まず、車輪全体に働く力の総和を推定してから、その総和を前輪力と後輪力とに分配するという手法を採る。前輪力と後輪力とをそれぞれ別々に推定し、前輪力と後輪力とを加算して総和を推定する場合と比較して、推定演算負荷および推定精度低下を軽減できる。
 第1タイヤ力推定部11は、車体の前後方向運動状態の時間変化に応じて、力の総和を前輪力と後輪力とに分配する。前後方向運動状態の時間変化は、慣性質量と前後加速度の積と同等であるから、前輪力と後輪力との分配比率が前後加速度に応じて変わることになる。加減速しているような過渡状況下にあっても、前後加速度を考慮して総和が分配されるので、前輪力および後輪力の推定精度が向上する。特に、旋回走行の開始期には、減速を伴ってバンク角が大きくなる。旋回走行の終了期には、加速を伴ってバンク角が小さくなる。本例では、バンク角および前後加速度の両方を考慮するので、旋回走行の開始期および終了期におけるタイヤ力の推定精度が高くなる。
 このタイヤ力推定装置1において用いられている推定方法は、(1)車体情報取得工程、(2)走行情報取得工程、(3)総和力推定行程、および(4)前後分配行程を有する。工程(1)は、ホイールベース、重心位置、車体質量など、演算に必要なパラメータであって走行状態以外のパラメータを取得する工程であり、装置外のセンサから取得され、あるいは装置内の記憶部から取得され、あるいは装置内の演算部によって中間値として取得される。例えば、車体質量は、定数として記憶部に予め記憶されていてもよいし、重量センサその他のセンサ入力値に基づいて演算部により推定されてもよい。工程(2)は、走行状態を示すパラメータを取得する工程であり、装置外のセンサ(上記例では、センサ2~4)から入力値として、あるいは、装置内の演算部1bによって中間値(上記例では、バンク角速度βなど)として取得される。工程(3)は、工程(1)および(2)で取得された情報に基づいて、総和力(総和鉛直力、総和横力、総和前後力)を推定する工程である。工程(4)は、工程(3)で推定された総和力に基づき、工程(1)および/または(2)で取得された情報を考慮に入れて、総和力を前輪力と後輪力とに分配することによって、前輪力および後輪力を推定する工程である。工程(1)と工程(2)の順序は問わない。
 第1タイヤ力推定部11で用いている推定方法によれば、車体の前後軸周りの角度(バンク角β)、角速度(バンク角速度β)、角加速度(バンク角加速度β・・)に応じて、鉛直力および横力が推定されている。前後軸に垂直な平面においては、車体の前後軸周りの角度およびその時間変化関連値に三角関数を適用することで、車体が前後軸周りに傾斜または回転しているときに発生する鉛直方向成分の加速度および横方向成分の加速度を取得できる。加速度を取得できれば、慣性質量を比例係数として、車体に鉛直方向に働く外力としての鉛直力、および車体の横方向に働く外力としての横力を簡便に推定できる。
 また、第1タイヤ力推定部11で用いられている推定方法によれば、前輪および後輪を代表または統合した仮想車輪が想定されており、まず、路面から仮想車輪に働く力の総和を推定する。それから、バンク角と前後加速度とに応じて、力の総和を前輪力と後輪力とに分配している。また、路面から車輪に働く力を推定するに際し、クラウン径を考慮している。このため、推定精度は一層向上している。
 このように推定されたタイヤ力は、車両制御、車両の開発設計支援など、種々目的で利用可能である。
 これまで本発明の実施形態について説明したが、上記実施形態は本発明の趣旨の範囲内で適宜変更、追加、または削除可能である。
 タイヤ力推定装置は、車体に搭載されるエンジン制御用の制御装置によって実現されてもよい。エンジン制御用以外、例えばABS(Anti-lock Braking System)などに用いられる制動用の制御装置や、メータ表示制御に用いられる制御装置によって実現されてもよい。このように車体に搭載される演算処理可能な装置によって実現されてもよい。
 計算式は、一例であり、他の影響を考慮して計算式が異なっていてもよい。上記では、タイヤ力の推定に影響を及ぼす外力として重力を考慮したが、その他の外力が考慮されてもよい。その際、計算式に、このような外力の影響を考慮した外力項を追加したり、また、現実の測定結果に近付くような補正係数が追加されてもよい。なお、他の外力として、走行時に発生する空気抵抗や、追い風による進行方向への前進力を考慮してもよく、このような外力とタイヤ力との総和が、車体の運動状態の時間変化となって現れる。
 バンク角の時間変化の取得に関し、過渡状態であっても、演算に用いるバンク角の時間変化に対して相関があり、かつ、その相関関係が既知の情報、あるいはバンク角の時間変化の傾向を推定可能な情報であれば、その情報をバンク角関連情報として、バンク角の時間変化に代えて用いてもよい。例えば、上述した時間経過に応じて得られるバンク角のほか、バンク角速度でもよいし、車体重心から路面までの距離の時間変化を用いてもよい。
 車体の加速度の取得に関しても同様であり、車体の加速度を推定可能であれば、他の情報を用いてもよい。例えば、前輪の車輪速情報、駆動源により回転駆動される回転軸(エンジン動弁用カム軸、駆動輪車軸など)の回転情報を用いてもよい。
 上述した実施例では、総和前後力および前輪前後力に基づいて、後輪前後力を推定したが、後輪前後力の推定について他の方法を用いて推定してもよい。例えば、予め定められる性能曲線(トルクマップ)に基づいてエンジン回転数などの検出値から駆動力を求めたり、後輪ブレーキ圧および慣性を利用した制動力に関するマップから後輪制動力を求めたりして、総和前後力や前輪前後力を用いずに後輪前後力を推定してもよい。
 式(10)および(11)は、例示に過ぎず、他の値を用いることもできる。例えば、クラウン径の影響が小さい場合には、クラウン径を考慮せずに演算式を設定してもよい。また、タイヤ力以外の外力を考慮して演算式を設定してもよい。例えば、横風の影響を考慮してもよい。また、ラプラス関数や行列式によって表現してもよい。また、演算式を用いずに、ロール角、ロール角速度、ロール角加速度を変数とするマップを予め記憶しておき、そのマップに従って前後軸に垂直な平面でのタイヤ力を推定してもよい。また、ロール角、ロール角速度、ロール角加速度については、いずれか一方の影響が小さい場合には、いずれか一方を省略してもよい。また、上述した演算式とは異なっても、ロール角速度およびロール角加速度の少なくともいずれか一方に応じてタイヤ力を推定することで、過渡状態でのタイヤ力の変化の傾向を推定しやすいという作用効果を得られる。
 式(14)および(16)については、幾何学的な情報から理論的に演算式を求めることができる。また、実験に得られる計測結果に基づいて近似的に演算式を設定してもよい。また、演算式を用いずに、前後加速度およびバンク角を変数とするマップを予め記憶しておき、そのマップにしたがって前後輪のタイヤ力を分配してもよい。また、上述した総和タイヤ力に基づいて、前後輪のタイヤ力を分配することで、検出される値を小さくすることができるが、他の推定方法を用いて得られる総和タイヤ力を、式(14)、(16)または同様の傾向を示す演算式、マップを用いて前後輪のタイヤ力に分配してもよい。
 自動二輪車以外でも、バンク状態での旋回走行が可能な乗物のタイヤ力の推定に好適に用いられる。例えば、前輪または後輪のいずれかが複数の車輪の乗物、例えば、前輪が二輪の三輪車でも推定できる。また、運転者によって駆動力が与えられる自転車や一輪車におけるタイヤ力の推定にも本発明を適用可能である。
 鉛直力、横力、前後力をそれぞれ推定したが、それらのいずれか1つを推定する場合も本発明に含まれる。例えば、バンク角の時間変化に基づいて、前後力を除いて、鉛直力と横力とを求める場合も本発明に含まれる。また、鉛直力と横力とのいずれか一方のみを出力する場合も本発明に含まれる。また、前後に分配せずに、総和鉛直力および総和横力の少なくともいずれか一方を推定することについても本発明に含まれる。また、上述する方法以外、例えば実験によって総和鉛直力および総和横力を推定した状態で、車体加速度およびバンク角に基づいて前後輪に分配することも本発明に含まれる。
 タイヤ力推定装置1は、車両に搭載されるとしたが、車両外に搭載される場合も含む。すなわち、重心位置などの車両に関する固有の情報を取得または記憶しておき、車両から車速と対応する情報と、バンク角変化に対応する情報と、前輪ブレーキ圧に対応する情報とを走行中または走行後に取得して、走行時の車両のタイヤ力を推定してもよい。例えば、タイヤ力推定装置は、車載ECUと異なる専用の処理装置であってもよい。例えば、車体から送信される車両情報を取得可能な通信部を備え、車両外に搭載される処理装置であってもよい。
 上述した実施例では、推定されたタイヤ力は、車両制御に用いられるとしたが、本発明はこれに限られない。すなわち、本発明で推定されたタイヤ力の利用の目的については制限されず、車両制御以外の目的で推定されたタイヤ力を利用してもよい。
 手動による推定も本発明に含まれ、必ずしも処理装置による演算で自動的にタイヤ力が推定されなくてもよい。
1 タイヤ力推定装置
11 第1タイヤ力推定部
12 第2タイヤ力推定部

Claims (10)

  1.  車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定するタイヤ力推定装置であって、
     前記前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、路面から車輪に働く力を推定する第1タイヤ力推定部を備える、タイヤ力推定装置。
  2.  前記第1タイヤ力推定部は、第1運動方程式、第2運動方程式および第3運動方程式を用いて、路面から車輪に働く鉛直力および横力を推定し、
     前記第1運動方程式が、車体の鉛直方向運動状態の時間変化と、鉛直力との釣り合いの関係を表し、
     前記第2運動方程式が、車体の横方向運動状態の時間変化と、横力との釣り合いの関係を表し、
     前記第3運動方程式が、車体の前後軸周り運動状態の時間変化と、鉛直力および横力との釣り合いの関係を表す、請求項1に記載のタイヤ力推定装置。
  3.  前記第1タイヤ力推定部は、車体のバンク角の時間変化と関連する値に基づいて、前記鉛直方向運動状態の時間変化、前記横方向運動状態の時間変化、および前記前後軸周り運動状態の時間変化を取得する、請求項2に記載のタイヤ力推定装置。
  4.  前記車両が、前記車輪として前輪および後輪を有し、
     前記第1タイヤ力推定部は、前記前後軸に垂直な平面内での車体の運動状態の時間変化に応じて、前記路面から前記前輪および前記後輪に働く前記力の総和を推定し、前記力の前記総和を路面から前記前輪に働く前輪力と路面から前記後輪に働く後輪力とに分配するようにして、前記前輪力および前記後輪力を推定する、請求項1ないし3のいずれか1項に記載のタイヤ力推定装置。
  5.  前記第1タイヤ力推定部は、車体の前後方向運動状態の時間変化に応じて、前記力の前記総和を前記前輪力と前記後輪力とに分配する、請求項4に記載のタイヤ力推定装置。
  6.  前記第1タイヤ力推定部は、バンク角に応じて、前記前輪力と前記後輪力とへの分配比率を変化させる、請求項5に記載のタイヤ力推定装置。
  7.  路面から前記車輪に前後方向に働く前後力を推定する第2タイヤ力推定部を備え、
     前記第2タイヤ力推定部は、
      車体の前後方向運転状態の時間変化に基づいて、路面から前記前輪および前記後輪に働く前後力の総和を推定し、
      前記前輪の制動力に基づいて、路面から前記前輪に働く前輪前後力を推定し、
      推定された前記前後力の前記総和と前記前輪前後力とに基づいて、路面から前記後輪に働く後輪前後力を推定する、請求項1乃至6のいずれか1項に記載のタイヤ力推定装置。
  8.  車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に働く力であるタイヤ力を推定するタイヤ力推定装置であって、前記車両は前記車輪として前輪および後輪を有し、前記装置は、
     路面から前記前輪に働く前輪力、路面から前記後輪に働く後輪力を推定する第1タイヤ力推定部を備え、
     前記第1タイヤ力推定部は、
      路面から仮想車輪に働く力の総和を推定し、
      車体の前後方向運動状態の時間変化とバンク角とに応じて、前記力の前記総和を前記前輪力と前記後輪力とに分配することで、前記前輪力および前記後輪力を推定する、タイヤ力推定装置。
  9.  車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定する方法であって、
     車体の前後軸周りの角度、角速度および角加速度に応じて、路面から車輪に鉛直方向に働く鉛直力および路面から車輪に横方向に働く横力を推定する、タイヤ力推定方法。
  10.  車体を前後軸周りに傾斜させた状態であるバンク状態で旋回する車両の車輪に路面から働く力であるタイヤ力を推定する方法であって、前記車両は前記車輪として前輪および後輪を有し、前記方法は、
     路面から仮想車輪に働く力の総和を推定し、
     車体の前後方向運動状態の時間変化とバンク角とに応じて、前記力の前記総和を前記前輪に働く前輪力と前記後輪に働く後輪力とに分配する、タイヤ力推定方法。
PCT/JP2016/080960 2016-10-19 2016-10-19 タイヤ力推定装置およびタイヤ力推定方法 WO2018073912A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018546088A JP6823664B2 (ja) 2016-10-19 2016-10-19 タイヤ力推定装置およびタイヤ力推定方法
US16/343,225 US11370502B2 (en) 2016-10-19 2016-10-19 Tire force estimating device and tire force estimating method
EP20209904.0A EP3800116B1 (en) 2016-10-19 2016-10-19 Tire force estimating device and tire force estimating method
PCT/JP2016/080960 WO2018073912A1 (ja) 2016-10-19 2016-10-19 タイヤ力推定装置およびタイヤ力推定方法
EP16919372.9A EP3530559B1 (en) 2016-10-19 2016-10-19 Tire force estimation device and tire force estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080960 WO2018073912A1 (ja) 2016-10-19 2016-10-19 タイヤ力推定装置およびタイヤ力推定方法

Publications (1)

Publication Number Publication Date
WO2018073912A1 true WO2018073912A1 (ja) 2018-04-26

Family

ID=62018912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080960 WO2018073912A1 (ja) 2016-10-19 2016-10-19 タイヤ力推定装置およびタイヤ力推定方法

Country Status (4)

Country Link
US (1) US11370502B2 (ja)
EP (2) EP3530559B1 (ja)
JP (1) JP6823664B2 (ja)
WO (1) WO2018073912A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945286A1 (en) 2020-07-29 2022-02-02 Kawasaki Jukogyo Kabushiki Kaisha Travel route generation system, travel route generation program, and travel route generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028237A (ja) * 2011-07-27 2013-02-07 Denso Corp 車両制御装置、車両制御プログラム、および車両制御方法
JP2015085905A (ja) 2013-11-01 2015-05-07 ヤマハ発動機株式会社 鞍乗り型車両および車輪力取得装置
WO2015159476A1 (ja) * 2014-04-16 2015-10-22 ヤマハ発動機株式会社 横力推定システム、横力推定方法および車両

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3795835B2 (ja) * 2002-06-05 2006-07-12 本田技研工業株式会社 二輪車の走行シミュレーションプログラム
US6904351B1 (en) 2004-03-17 2005-06-07 Delphi Technologies, Inc. Operating a vehicle control system
WO2006077211A1 (de) * 2005-01-21 2006-07-27 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zur regelung der brems- und/oder der antriebskräfte eines einspurigen fahrzeugs
JP2006240491A (ja) * 2005-03-03 2006-09-14 Bridgestone Corp 自動二輪車の制御装置及び自動二輪車の駆動システム
JP2007147520A (ja) * 2005-11-29 2007-06-14 Toyota Motor Corp 車輪状態推定装置および車両制御装置
JP5484845B2 (ja) * 2009-09-24 2014-05-07 本田技研工業株式会社 電動車両
JP5361691B2 (ja) * 2009-12-11 2013-12-04 三菱電機株式会社 自動二輪車のバンク角推定装置及び方法
WO2012067234A1 (ja) * 2010-11-19 2012-05-24 ヤマハ発動機株式会社 自動二輪車、及びその制御装置
JP5840108B2 (ja) * 2012-11-01 2016-01-06 本田技研工業株式会社 移動体
JP6081238B2 (ja) * 2013-03-12 2017-02-15 本田技研工業株式会社 移動体
JP6379457B2 (ja) * 2013-08-23 2018-08-29 株式会社アドヴィックス 自動二輪車両における路面摩擦係数推定装置およびそれを用いたアンチロックブレーキ制御装置
JP6148592B2 (ja) * 2013-10-15 2017-06-14 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両
JP5945572B2 (ja) * 2014-09-03 2016-07-05 ヤマハ発動機株式会社 駆動力制御システムおよび鞍乗り型車両
CN106427957B (zh) * 2015-08-11 2019-03-29 比亚迪股份有限公司 基于四轮驱动的电动汽车稳定控制系统及方法及电动汽车
JP6651320B2 (ja) * 2015-09-30 2020-02-19 川崎重工業株式会社 乗物のバンク角検出装置
JP2016137893A (ja) * 2016-04-04 2016-08-04 ヤマハ発動機株式会社 車速決定システム、安定制御システム及びそれを備えた鞍乗り型車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028237A (ja) * 2011-07-27 2013-02-07 Denso Corp 車両制御装置、車両制御プログラム、および車両制御方法
JP2015085905A (ja) 2013-11-01 2015-05-07 ヤマハ発動機株式会社 鞍乗り型車両および車輪力取得装置
WO2015159476A1 (ja) * 2014-04-16 2015-10-22 ヤマハ発動機株式会社 横力推定システム、横力推定方法および車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3530559A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945286A1 (en) 2020-07-29 2022-02-02 Kawasaki Jukogyo Kabushiki Kaisha Travel route generation system, travel route generation program, and travel route generation method

Also Published As

Publication number Publication date
EP3530559A4 (en) 2020-06-24
EP3530559B1 (en) 2021-07-21
US20190242767A1 (en) 2019-08-08
JPWO2018073912A1 (ja) 2019-08-29
JP6823664B2 (ja) 2021-02-03
US11370502B2 (en) 2022-06-28
EP3800116B1 (en) 2023-12-06
EP3530559A1 (en) 2019-08-28
EP3800116A1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6666995B2 (ja) 左右傾斜輪付リーン車両用リーン姿勢制御装置および左右傾斜輪付リーン車両
JP5914448B2 (ja) 鞍乗り型車両および車輪力取得装置
CN107933563B (zh) 用于确定地面与车辆轮胎之间摩擦的方法和系统
US10710597B2 (en) Method and system for computing a road friction estimate
JP4895132B2 (ja) 車両の横滑り防止ブレーキ制御システムと制御方法
JP6715341B2 (ja) ステアリングトルク推定装置
WO2010113799A1 (ja) 車両横滑り運動状態量推定装置
JP6067929B2 (ja) 横力推定システム、横力推定方法および車両
US11194346B2 (en) Angular speed acquisition device for acquiring angular speed about road surface perpendicular axis of leaning vehicle
TW201630764A (zh) 用於測定二輪車的傾斜角度的方法
KR102533560B1 (ko) 차량 운동 상태 추정 장치, 차량 운동 상태 추정 방법 그리고 차량
JP5185873B2 (ja) 車両横滑り運動状態量推定装置
WO2018073912A1 (ja) タイヤ力推定装置およびタイヤ力推定方法
JP2011145266A (ja) 車両の前後加速度修正装置を備えた車両の諸元推定装置、及び車両の前後加速度修正装置
WO2024048532A1 (ja) リーン車両
CN113226881B (zh) 车辆运动状态推断装置、车辆运动状态推断方法以及车辆
JP6024463B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919372

Country of ref document: EP

Effective date: 20190520