JP2006240491A - 自動二輪車の制御装置及び自動二輪車の駆動システム - Google Patents
自動二輪車の制御装置及び自動二輪車の駆動システム Download PDFInfo
- Publication number
- JP2006240491A JP2006240491A JP2005059227A JP2005059227A JP2006240491A JP 2006240491 A JP2006240491 A JP 2006240491A JP 2005059227 A JP2005059227 A JP 2005059227A JP 2005059227 A JP2005059227 A JP 2005059227A JP 2006240491 A JP2006240491 A JP 2006240491A
- Authority
- JP
- Japan
- Prior art keywords
- yaw moment
- motorcycle
- lateral force
- tire lateral
- generated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Automatic Cycles, And Cycles In General (AREA)
Abstract
【課題】 自動二輪車に生じるヨーモーメントに基づいて、自動二輪車をニュートラルステアに近付けるように制御することができる自動二輪車の制御装置及び自動二輪車の駆動システムを提供する。
【解決手段】 本発明に係る自動二輪車の制御装置100は、自動二輪車の横すべり角β、バンク角θ及び摩擦円データDに基づいて、後輪12に生じているタイヤ横力Fy’を演算するタイヤ横力演算部121と、自動二輪車がニュートラルステアとなる目標ヨーモーメント、及びタイヤ横力演算部121によって演算されたタイヤ横力Fy’に基づく補正ヨーモーメントMCを演算するヨーモーメント演算部122と、ヨーモーメント演算部122によって演算された補正ヨーモーメントMC、及び摩擦円データDを用いて、補正ヨーモーメントMCに対応する出力トルク指示値ITmを決定する出力トルク演算部123とを備える。
【選択図】 図3
Description
本発明は、自動二輪車の運動状態を制御する自動二輪車の制御装置及び自動二輪車の駆動システムに関し、特に、自動二輪車に生じるヨーモーメントに基づいて、自動二輪車をニュートラルステアに近付けるように制御する自動二輪車の制御装置及び自動二輪車の駆動システムに関する。
自動二輪車は、自動四輪車などと比較して不安定な車両であり、一般的に、ライダーが、オーバーステアやアンダーステアを発生させず、ニュートラルステアを維持することが難しい。
すなわち、自動二輪車では、ライダーの運転技能の差が、コーナリング時やレーンチェンジ時の安定性に大きく影響するため、自動二輪車の運動状態(例えば、オーバーステアやアンダーステア)に応じてライダーを補助し、自動二輪車をニュートラルステアに近付けるように制御することが強く望まれてきた。
このような自動二輪車の制御に関して、例えば、車速と前輪の操舵角とを用いて自動二輪車のバンク角を演算し、演算したバンク角に基づいて駆動力を制御、具体的には、エンジンに装着されている点火プラグの点火タイミングを調整する技術が開示されている(特許文献1参照)。
特開平5−637号公報(第17−18頁、第48−49図)
ところで、自動二輪車では、車両重心点の横すべり角β(スリップアングル)から生じる横力Fy(具体的には、コーナリングフォースFcf)と、キャンバー角φから生じる横力Fy(具体的には、キャンバースラストFcam)とが合わされた横力Fy(以下、タイヤ横力Fy’)が生じる。
しかしながら、上述した従来の技術では、単に演算した自動二輪車のバンク角に基づいて駆動力を制御しているだけであり、自動二輪車をニュートラルステアに近付けるような制御としては、さらに改善の余地があった。
自動二輪車をさらにニュートラルステアに近付けるためには、自動二輪車に生じるヨーモーメントに基づいて自動二輪車のパワーユニットの出力を制御することが考えられる。
しかしながら、自動二輪車では、ヨーモーメントを発生させるコーナリングフォースFcfとキャンバースラストFcamとを明確に区別することが難しい。このため、自動二輪車に生じるコーナリングフォースFcfまたはキャンバースラストFcamを用いてヨーモーメントを演算し、演算したヨーモーメントに基づいて自動二輪車をニュートラルステアに近付けるように制御することが容易でないといった状況があった。
そこで、本発明は、このような状況に鑑みてなされたものであり、自動二輪車に生じるヨーモーメントに基づいて、自動二輪車をニュートラルステアに近付けるように制御することができる自動二輪車の制御装置及び自動二輪車の駆動システムを提供することを目的とする。
上述した課題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、自動二輪車(自動二輪車10)の駆動車輪(後輪12)を駆動するパワーユニット(モータ14)に対して指示される前記パワーユニットの出力指示値(出力トルク指示値ITm)を、前記自動二輪車の運動状態に応じて制御する自動二輪車の制御装置(制御装置100)であって、前記自動二輪車のタイヤ横力(タイヤ横力Fy’)と駆動力(駆動力Fx)との合力の関係を示す摩擦円データ(摩擦円データD)を提供する摩擦円データ提供部(データ記憶部121C)と、前記自動二輪車の横すべり角(横すべり角β)、バンク角(バンク角θ)及び前記摩擦円データに基づいて、前記駆動車輪に生じている前記タイヤ横力を演算するタイヤ横力演算部(横力演算部121D)と、前記自動二輪車がニュートラルステアとなる目標ヨーモーメント(目標ヨーモーメントMT)、及び前記タイヤ横力演算部によって演算された前記タイヤ横力に基づく補正ヨーモーメント(補正ヨーモーメントMC)を演算するヨーモーメント演算部(ヨーモーメント演算部122)と、前記ヨーモーメント演算部によって演算された前記補正ヨーモーメント、及び前記摩擦円データを用いて、前記補正ヨーモーメントに対応する前記出力指示値を決定する出力指示値決定部(出力トルク演算部123)とを備えることを要旨とする。
このような特徴によれば、自動二輪車がニュートラルステアとなる目標ヨーモーメント、及び自動二輪車に実際に生じているタイヤ横力に基づく補正ヨーモーメントが演算される。
さらに、補正ヨーモーメント及び摩擦円データを用いて、補正ヨーモーメントに対応するパワーユニットへの出力指示値が決定される。このため、自動二輪車に生じるヨーモーメントに基づいて、自動二輪車をニュートラルステアに近付けるように制御することができる。
本発明の第2の特徴は、本発明の第1の特徴に係り、前記横すべり角、前記バンク角と対応付けられる前記駆動車輪のキャンバー角(キャンバー角φ)、及び前記駆動車輪に生じるキャンバースラスト(キャンバースラストFcam)の関係を示すキャンバースラストマップを記憶するマップ記憶部(データ記憶部121C)をさらに備え、前記タイヤ横力演算部は、前記キャンバースラストマップを用いて、前記タイヤ横力を演算することを要旨とする。
このような特徴によれば、マップ記憶部に記憶されているキャンバースラストマップに基づいて、自動二輪車に生じているキャンバースラストを確実に決定することができるため、キャンバースラストとコーナリングフォースとが合わされた自動二輪車のタイヤ横力を容易に演算することができる。
すなわち、このような特徴によれば、ヨーモーメントを発生させるコーナリングフォースFcfとキャンバースラストFcamとを明確に区別することが難しい自動二輪車において、ヨーモーメントに基づく制御を実現することができる。
本発明の第3の特徴は、本発明の第1または第2の特徴に係り、前記タイヤ横力演算部は、前記パワーユニットが発生している出力を示す発生出力値(モータ実電流値i)に基づいて前記駆動力を演算し、前記摩擦円データを用いて前記タイヤ横力を演算することを要旨とする。
本発明の第4の特徴は、本発明の第1乃至第3の特徴に係り、前記ヨーモーメント演算部は、前記目標ヨーモーメントを演算する目標ヨーモーメント演算部(目標ヨーモーメント演算部122B)と、前記タイヤ横力演算部によって演算された前記タイヤ横力に基づいて、前記自動二輪車に生じている発生ヨーモーメント(発生ヨーモーメントMACT)を演算する発生ヨーモーメント演算部(発生ヨーモーメント演算部122C)と、前記目標ヨーモーメントと前記発生ヨーモーメントとに基づいて、前記目標ヨーモーメントを補正した補正ヨーモーメントを演算する補正ヨーモーメント演算部(ヨーモーメント演算部122)とを備えることを要旨とする。
本発明の第5の特徴は、本発明の第4の特徴に係り、前記目標ヨーモーメント演算部は、前記自動二輪車の操舵角(操舵角δf)及び車速(車速V)を用いて、前記目標ヨーモーメントを演算することを要旨とする。
本発明の第6の特徴は、本発明の第1乃至第5の特徴に係り、前記パワーユニットは、電気モータであることを要旨とする。
本発明の第7の特徴は、自動二輪車の駆動車輪を駆動するパワーユニットと、前記パワーユニットに対して指示される前記パワーユニットの出力指示値に応じて、前記パワーユニットの出力を制御するパワーユニット制御装置と、前記自動二輪車の運動状態に応じて、前記出力指示値を制御する制御装置とを備え、前記制御装置は、前記自動二輪車のタイヤ横力と駆動力との合力の関係を示す摩擦円データを提供する摩擦円データ提供部と、前記自動二輪車の横すべり角、バンク角及び前記摩擦円データに基づいて、前記駆動車輪に生じている前記タイヤ横力を演算するタイヤ横力演算部と、前記自動二輪車がニュートラルステアとなる目標ヨーモーメント、及び前記タイヤ横力演算部によって演算された前記タイヤ横力に基づく補正ヨーモーメントを演算するヨーモーメント演算部と、前記ヨーモーメント演算部によって演算された前記補正ヨーモーメント、及び前記摩擦円データを用いて、前記補正ヨーモーメントに対応する前記出力指示値を決定する出力指示値決定部とを備える自動二輪車の駆動システムであることを要旨とする。
本発明の第8の特徴は、本発明の第7の特徴に係り、前記横すべり角、前記バンク角と対応付けられる前記駆動車輪のキャンバー角、及び前記駆動車輪に生じるキャンバースラストの関係を示すキャンバースラストマップを記憶するマップ記憶部をさらに備え、前記タイヤ横力演算部は、前記キャンバースラストマップを用いて、前記タイヤ横力を演算することを要旨とする。
本発明の第9の特徴は、本発明の第7または第8の特徴に係り、前記タイヤ横力演算部は、前記パワーユニットが発生している出力を示す発生出力値に基づいて、前記駆動力を演算し、前記摩擦円データを用いて、前記タイヤ横力を演算することを要旨とする。
本発明の第10の特徴は、本発明の第7乃至第9の特徴に係り、前記ヨーモーメント演算部は、前記目標ヨーモーメントを演算する目標ヨーモーメント演算部と、前記タイヤ横力演算部によって演算された前記タイヤ横力に基づいて、前記自動二輪車に生じている発生ヨーモーメントを演算する発生ヨーモーメント演算部と、前記目標ヨーモーメントと前記発生ヨーモーメントとに基づいて、前記目標ヨーモーメントを補正した補正ヨーモーメントを演算する補正ヨーモーメント演算部とを備えることを要旨とする。
本発明の第11の特徴は、本発明の第10の特徴に係り、前記目標ヨーモーメント演算部は、前記自動二輪車の操舵角及び車速を用いて、前記目標ヨーモーメントを演算することを要旨とする。
本発明の第12の特徴は、本発明の第7乃至第11の特徴に係り、前記パワーユニットは、電気モータであることを要旨とする。
本発明の特徴によれば、自動二輪車に生じるヨーモーメントに基づいて、自動二輪車をニュートラルステアに近付けるように制御することができる自動二輪車の制御装置及び自動二輪車の駆動システムを提供することができる。
次に、本発明に係る自動二輪車の制御装置及び駆動システムの実施形態について、図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(1)自動二輪車10の概略構成
図1は、本実施形態に係る自動二輪車の制御装置及び駆動システムが搭載される自動二輪車10の概略斜視図である。
図1は、本実施形態に係る自動二輪車の制御装置及び駆動システムが搭載される自動二輪車10の概略斜視図である。
図1に示すように、自動二輪車10は、前輪11及び後輪12を有する自動二輪車であり、モータ14を用いて走行することができる。具体的には、モータ14は、ドライブベルト部13を介して後輪12を駆動する。
本実施形態において、自動二輪車の制御装置を構成する制御装置100は、シート17の下方に搭載されている。制御装置100には、自動二輪車10の運動状態を検出する各種センサによって構成されるセンサ部110が接続されている。
また、自動二輪車10には、制御装置100の車速Vを検出する車速センサ111が、前輪11近傍に装着されている。さらに、自動二輪車10には、前輪11の操舵角δfを検出する操舵角センサ112が、ヘッドパイプ(不図示)近傍に装着されている。
(2)自動二輪車の駆動システムの概略論理ブロック構成
図2は、本実施形態に係る自動二輪車の駆動システムの概略論理ブロック構成図である。本実施形態に係る自動二輪車の駆動システムは、(a)自動二輪車10の後輪12(駆動車輪)を駆動するモータ14(パワーユニット)、(b)モータ14に対して指示されるモータ14の出力トルク指示値ITmに応じてモータ14の出力を制御するインバータ15及びモータ制御部16(パワーユニット制御装置)、及び(c)自動二輪車10の運動状態に応じて、出力トルク指示値ITmを制御する制御装置100によって構成されている。
図2は、本実施形態に係る自動二輪車の駆動システムの概略論理ブロック構成図である。本実施形態に係る自動二輪車の駆動システムは、(a)自動二輪車10の後輪12(駆動車輪)を駆動するモータ14(パワーユニット)、(b)モータ14に対して指示されるモータ14の出力トルク指示値ITmに応じてモータ14の出力を制御するインバータ15及びモータ制御部16(パワーユニット制御装置)、及び(c)自動二輪車10の運動状態に応じて、出力トルク指示値ITmを制御する制御装置100によって構成されている。
また、制御装置100は、センサ部110及び車両制御部120によって構成されている。
センサ部110は、車速センサ111、操舵角センサ112、ヨーレートセンサ113、横加速度センサ114及び傾斜角センサ115によって構成されている。
車速センサ111は、上述したように、前輪11近傍に装着されており、自動二輪車10の車速Vを検出する。操舵角センサ112は、上述したように、ヘッドパイプ(不図示)近傍に装着されており、前輪11の操舵角δfを検出する。
ヨーレートセンサ113は、自動二輪車10に生じるヨーレートγを検出する。また、横加速度センサ114は、自動二輪車10に生じる横加速度gyを検出する。
傾斜角センサ115は、自動二輪車10に生じる傾斜角、具体的には、自動二輪車10のバンク角θを検出する。
車両制御部120は、センサ部110を構成する各センサから出力されたデータに基づいて、自動二輪車10の運動状態を判定し、自動二輪車10をニュートラルステアに近付けるように制御する。
具体的には、車両制御部120は、自動二輪車10の運動状態や、モータ14からフィードバックされるモータ実電流値iに基づいて、自動二輪車10がニュートラルステアに近付くような出力トルク指示値ITmを決定する。なお、出力トルク指示値ITmの具体的な決定方法については、後述する。
モータ制御部16は、車両制御部120によって出力された出力トルク指示値ITmに応じて、インバータ15に供給する出力電流値を制御する。インバータ15は、モータ制御部16によって出力された出力電流値に応じて、所定の周波数を有する矩形波状の交流電流を出力端子(U,V,W)を介してモータ14に供給する。
(3)車両制御部の論理ブロック構成
図3は、車両制御部120の論理ブロック構成を示している。また、図3には、車両制御部120と接続される各センサ、モータ14及びモータ制御部16が示されている。図3に示すように、車両制御部120は、タイヤ横力演算部121、ヨーモーメント演算部122及び出力トルク演算部123によって構成されている。以下、車両制御部120を構成する各論理ブロックの機能について説明する。
図3は、車両制御部120の論理ブロック構成を示している。また、図3には、車両制御部120と接続される各センサ、モータ14及びモータ制御部16が示されている。図3に示すように、車両制御部120は、タイヤ横力演算部121、ヨーモーメント演算部122及び出力トルク演算部123によって構成されている。以下、車両制御部120を構成する各論理ブロックの機能について説明する。
(3.1)タイヤ横力演算部
図4は、タイヤ横力演算部121の論理ブロック構成を示している。図4に示すように、タイヤ横力演算部121は、横すべり角演算部121A、バンク角演算部121B、データ記憶部121C及び横力演算部121Dによって構成されている。
図4は、タイヤ横力演算部121の論理ブロック構成を示している。図4に示すように、タイヤ横力演算部121は、横すべり角演算部121A、バンク角演算部121B、データ記憶部121C及び横力演算部121Dによって構成されている。
ここで、gyは横加速度、Vは車速、γはヨーレートである。なお、横すべり角演算部121Aは、操舵角センサ112によって出力される操舵角δf(図9参照)の値を用いて、操舵角δfを考慮した前輪11の横すべり角βを演算することもできる。
バンク角演算部121Bは、自動二輪車10のバンク角θを演算する。本実施形態では、バンク角演算部121Bは傾斜角センサ115と接続されているため、傾斜角センサ115によって出力される傾斜角の値をそのままバンク角θとして用いる。
なお、バンク角演算部121Bには、傾斜角センサ115に代えて、ロールレートセンサを接続してもよい。この場合、バンク角演算部121Bは、ロールレートセンサによって出力されるロールレートrと、(式3)とを用いてバンク角θを演算することができる。
データ記憶部121Cは、横力演算部121Dにおいて用いられるキャンバースラストマップ及び摩擦円データDを記憶する。具体的には、データ記憶部121Cは、横すべり角β、バンク角θと対応付けられる後輪12(駆動車輪)のキャンバー角φ(図10参照)、及び後輪12に生じるキャンバースラストFcamの関係を示すキャンバースラストマップを記憶する。本実施形態において、データ記憶部121Cは、マップ記憶部を構成する。なお、キャンバー角φとは、図10に示すように、路面Rに対する垂直線P1が、後輪12の縦方向中心線P2(赤道線)となす角度である。
また、後輪12(駆動車輪)では、横すべり角βは、タイヤスリップアングル(SA)と同じと考えられる。さらに、前輪11(従動車輪)でも操舵角δfは小さいので、横すべり角βをタイヤスリップアングル(SA)と同じと考えられる。
ここで、図6は、データ記憶部121Cに記憶されるキャンバースラストマップの一例を示している。図6に示すように、キャンバースラストマップは、横すべり角β、キャンバー角φ及びキャンバースラストFcamの関係を示している。
また、図7は、タイヤスリップアングルSA(=横すべり角β)、キャンバー角φ(バンク角θ)及びタイヤ横力Fy’の関係を示している。図7において、ΔFは、キャンバースラストFcamに相当する。また、ΔFは、タイヤスリップアングルSAに関係なく、ほぼ一定である。つまり、キャンバースラストFcamは、横すべり角βとキャンバー角φとに依存していることが解かる。
本実施形態では、図7に示すような自動二輪車10の特性を予め測定しておき、測定結果から生成したキャンバースラストマップをデータ記憶部121Cに記憶させている。
また、データ記憶部121Cは、自動二輪車10のタイヤ横力Fy’と駆動力Fxとの合力の関係を示す摩擦円データD(図8参照)を記憶する。本実施形態において、データ記憶部121Cは、摩擦円データ提供部を構成する。
横力演算部121Dは、自動二輪車10の後輪12(駆動車輪)に生じているタイヤ横力Fy’を演算する。具体的には、横力演算部121Dは、自動二輪車10の横すべり角β、バンク角θ及び摩擦円データDに基づいて、後輪12に生じているタイヤ横力Fy’を演算する。本実施形態において、横力演算部121Dは、タイヤ横力演算部を構成する。
より具体的には、横力演算部121Dは、横すべり角演算部121Aによって出力された横すべり角βと、バンク角演算部121Bによって出力されたバンク角θとを取得する。
横力演算部121Dは、取得した横すべり角β、バンク角θ、及びデータ記憶部121Cに記憶されているキャンバースラストマップを用いて、後輪12のキャンバースラストFcamRを演算する。
なお、横力演算部121Dは、バンク角演算部121Bによって出力されたバンク角θをキャンバー角φと見なす。また、バンク角θをキャンバー角φと見なすことができない場合、横力演算部121Dは、所定の数式を用いてバンク角θからキャンバー角φを演算してもよい。
また、横力演算部121Dは、モータ14(パワーユニット)が発生している出力を示すモータ実電流値i(発生出力値)に基づいて後輪12の駆動力(前後力)FxRを演算し、摩擦円データDを用いて後輪12のタイヤ横力Fy’Rを演算する。
具体的には、横力演算部121Dは、モータ14からフィードバックされるモータ実電流値iを取得する。横力演算部121Dは、取得したモータ実電流値iと、(式4)とを用いてモータトルクTmを演算する。
Tm=Ki …(式4)
ここで、Kは、モータ14のトルク係数を示している。自動二輪車10では、後輪12がモータ14によって駆動されるため、(式5)を用いて後輪12の駆動力FxRを演算する。
ここで、Kは、モータ14のトルク係数を示している。自動二輪車10では、後輪12がモータ14によって駆動されるため、(式5)を用いて後輪12の駆動力FxRを演算する。
FxR=Tm/rR …(式5)
ここで、rRは後輪12の半径である。横力演算部121Dは、後輪12の駆動力FxRと、摩擦円データDとに基づいて、演算した駆動力FxRに対応する後輪12のタイヤ横力Fy’Rを演算する。
ここで、rRは後輪12の半径である。横力演算部121Dは、後輪12の駆動力FxRと、摩擦円データDとに基づいて、演算した駆動力FxRに対応する後輪12のタイヤ横力Fy’Rを演算する。
また、図9に示す二輪車モデルによれば、横加速度gy、前輪11のタイヤ横力Fy’F、及び後輪12のタイヤ横力Fy’Rには、(式6)のような関係がある。
m・gy=Fy’F+Fy’R …(式6)
ここで、mは自動二輪車10の車両重量、gyは横加速度である。さらに、後輪12のタイヤ横力Fy’Rは、(式7)のように表すことができる。
ここで、mは自動二輪車10の車両重量、gyは横加速度である。さらに、後輪12のタイヤ横力Fy’Rは、(式7)のように表すことができる。
Fy’R=FcamR+FcfR …(式7)
ここで、FcamRは後輪12のキャンバースラスト、FcfRは後輪12のコーンリングフォースである。このようにして、横力演算部121Dは、前輪11のタイヤ横力Fy’F、及び後輪12のタイヤ横力Fy’Rを求めることができる。
ここで、FcamRは後輪12のキャンバースラスト、FcfRは後輪12のコーンリングフォースである。このようにして、横力演算部121Dは、前輪11のタイヤ横力Fy’F、及び後輪12のタイヤ横力Fy’Rを求めることができる。
(3.2)ヨーモーメント演算部
図5は、ヨーモーメント演算部122の論理ブロック構成を示している。ヨーモーメント演算部122は、自動二輪車10がニュートラルステアとなる目標ヨーモーメントMT、及び横力演算部121Dによって演算された後輪12のタイヤ横力Fy’Rに基づく補正ヨーモーメントMCを演算する。
図5は、ヨーモーメント演算部122の論理ブロック構成を示している。ヨーモーメント演算部122は、自動二輪車10がニュートラルステアとなる目標ヨーモーメントMT、及び横力演算部121Dによって演算された後輪12のタイヤ横力Fy’Rに基づく補正ヨーモーメントMCを演算する。
図5に示すように、ヨーモーメント演算部122は、フィードフォワード・ヨーモーメント演算部122A、目標ヨーモーメント演算部122B、発生ヨーモーメント演算部122C及びPIDコントローラ122Dによって構成されている。
フィードフォワード・ヨーモーメント演算部122Aは、ヨーモーメント演算部122による制御に遅延が生じないようにするものであり、(式8)を用いて、フィードフォワードモーメントMffを演算する。
Mff=Gff(V)・δf …(式8)
ここで、Gff(V)はフィードフォワードゲイン、Vは車速、δfは操舵角である。
ここで、Gff(V)はフィードフォワードゲイン、Vは車速、δfは操舵角である。
目標ヨーモーメント演算部122Bは、自動二輪車10がニュートラルステアとなる目標ヨーモーメントMT(フィードフォワードモーメントMff)を演算する。具体的には、フィードフォワード・ヨーモーメント演算部122Aは、(式9)を用いて目標ヨーモーメントMTを演算する。
MT=GNS(V)・δf …(式9)
ここで、GNS(V)はニュートラルステアゲイン、Vは車速、δfは操舵角である。
ここで、GNS(V)はニュートラルステアゲイン、Vは車速、δfは操舵角である。
発生ヨーモーメント演算部122Cは、横力演算部121Dによって演算されたタイヤ横力に基づいて、自動二輪車10に生じている発生ヨーモーメントMACTを演算する。具体的には、発生ヨーモーメント演算部122Cは、(式10)を用いて、発生ヨーモーメントMACTを演算する。
MACT=Fy’F・lF+Fy’R・lR …(式10)
ここで、図9に示すように、lFは、自動二輪車10の重心CGから前輪11の回転中心までの距離、lRは、自動二輪車10の重心CGから後輪12の回転中心までの距離である。
ここで、図9に示すように、lFは、自動二輪車10の重心CGから前輪11の回転中心までの距離、lRは、自動二輪車10の重心CGから後輪12の回転中心までの距離である。
PIDコントローラ122Dは、目標ヨーモーメントMTと発生ヨーモーメントMACTとをフィードバックさせるコントローラであり、目標ヨーモーメントMT及び発生ヨーモーメントMACTの値に基づいて、目標ヨーモーメントMTを補正した補正ヨーモーメントMCを演算する。本実施形態では、フィードフォワード・ヨーモーメント演算部122A、バンク角演算部121B、発生ヨーモーメント演算部122C及びPIDコントローラ122D、すなわち、ヨーモーメント演算部122によって、補正ヨーモーメント演算部が構成される。
具体的には、目標ヨーモーメント演算部122Bによって出力された目標ヨーモーメントMT(≒フィードフォワードモーメントMff)と、発生ヨーモーメント演算部122Cによって出力された発生ヨーモーメントMACTとがPIDコントローラ122Dに入力される。
PIDコントローラ122Dは、発生ヨーモーメントMACTとの差である誤差ヨーモーメントMEを出力する。出力された誤差ヨーモーメントMEは、フィードフォワード・ヨーモーメント演算部122Aによって出力されたフィードフォワードモーメントMffに加えられ、補正ヨーモーメントMCとして、出力トルク演算部123に出力される(図3参照)。
(3.3)出力トルク演算部
図3に示すように、出力トルク演算部123は、ヨーモーメント演算部122によって演算された補正ヨーモーメントMC、及びタイヤ横力演算部121によって出力された摩擦円データDを用いて、補正ヨーモーメントMCに対応するモータ14の出力トルク指示値ITm(出力指示値)を決定する。本実施形態において、出力トルク演算部123は、出力指示値決定部を構成する。
図3に示すように、出力トルク演算部123は、ヨーモーメント演算部122によって演算された補正ヨーモーメントMC、及びタイヤ横力演算部121によって出力された摩擦円データDを用いて、補正ヨーモーメントMCに対応するモータ14の出力トルク指示値ITm(出力指示値)を決定する。本実施形態において、出力トルク演算部123は、出力指示値決定部を構成する。
具体的には、出力トルク演算部123は、補正ヨーモーメントMC、及び上述した(式9)を用いて、補正ヨーモーメントMCに応じたタイヤ横力Fy’(具体的には、Fy’R)を演算する。
出力トルク演算部123は、補正ヨーモーメントMCに応じたタイヤ横力Fy’及び摩擦円データDに基づいて、補正ヨーモーメントMCに応じたタイヤ横力Fy’に対応する駆動力Fx(具体的には、FxR)を決定する。
出力トルク演算部123は、決定した駆動力Fxを発生させるために必要なモータ14の出力トルク指示値ITmをモータ制御部16に出力する。
(自動二輪車の駆動システムの動作概要)
次に、上述した自動二輪車の駆動システムの動作概要について、図8に示した摩擦円データDを参照して説明する。図8は、自動二輪車10におけるタイヤ横力Fy’と駆動力Fx(制動力)との合力の関係を示す摩擦円データDの一例を示している。
次に、上述した自動二輪車の駆動システムの動作概要について、図8に示した摩擦円データDを参照して説明する。図8は、自動二輪車10におけるタイヤ横力Fy’と駆動力Fx(制動力)との合力の関係を示す摩擦円データDの一例を示している。
図8において、実横力Fy’1は、上述したタイヤ横力演算部121において演算されたタイヤ横力Fy’と対応する。
理論横力Fy’3は、ヨーモーメント演算部122において演算された目標ヨーモーメントMT(フィードフォワードモーメントMff)に基づくタイヤ横力Fy’と対応する。
誤差横力Fy’2は、ヨーモーメント演算部122において演算された誤差ヨーモーメントMEに基づくタイヤ横力Fy’と対応する。
ここで、センサ部110によって出力された操舵角δf及び車速Vに基づいて、自動二輪車10がニュートラルステアとなる理論的なタイヤ横力Fy’である理論横力Fy’3は、駆動力Fxとの合力によって示される摩擦円Cにしたがって、理論駆動力Fx1と対応する。
しかしながら、タイヤ横力演算部121において演算された自動二輪車10に実際に生じているタイヤ横力Fy’は、実横力Fy’1である。そこで、制御装置100は、実横力Fy’1及び摩擦円Cにしたがって、実横力Fy’1が生じている場合に自動二輪車10をニュートラルステアに近付ける実駆動力Fx2を決定する。
さらに、制御装置100は、実駆動力Fx2に基づいて、モータ14のモータトルクTmを制御する。
(作用・効果)
以上説明した本実施形態に係る自動二輪車の駆動システム(制御装置100、モータ14、インバータ15及びモータ制御部16)によれば、自動二輪車10がニュートラルステアとなる目標ヨーモーメントMT、及び自動二輪車10に実際に生じているタイヤ横力Fy’に基づく発生ヨーモーメントMACT及び補正ヨーモーメントMCが演算される。
以上説明した本実施形態に係る自動二輪車の駆動システム(制御装置100、モータ14、インバータ15及びモータ制御部16)によれば、自動二輪車10がニュートラルステアとなる目標ヨーモーメントMT、及び自動二輪車10に実際に生じているタイヤ横力Fy’に基づく発生ヨーモーメントMACT及び補正ヨーモーメントMCが演算される。
さらに、補正ヨーモーメントMC及び摩擦円データDを用いて、補正ヨーモーメントMCに対応するモータ14への出力トルク指示値ITmが決定される。
このため、自動二輪車10の発生ヨーモーメントMACTに基づいて、自動二輪車10をニュートラルステアに近付けるように制御することができる。
本実施形態に係る自動二輪車の駆動システムによれば、データ記憶部121Cに記憶されているキャンバースラストマップに基づいて、自動二輪車10に生じているキャンバースラストFcamを確実に決定することができるため、キャンバースラストFcamとコーナリングフォースFcfとが合わされた自動二輪車10のタイヤ横力Fy’を容易に演算することができる。
すなわち、本実施形態に係る自動二輪車の駆動システムによれば、ヨーモーメントを発生させるコーナリングフォースFcfとキャンバースラストFcamとを明確に区別することが難しい自動二輪車において、ヨーモーメントに基づく制御を実現することができる。
(その他の実施形態)
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
例えば、上述した本発明の実施形態では、データ記憶部121Cに記憶されている摩擦円データDやキャンバースラストマップを用いる形態としたが、摩擦円データDやキャンバースラストマップを記憶せず、数式を用いて駆動力Fx、タイヤ横力Fy’またはキャンバースラストFcamを演算するようにしてもよい。
また、上述した本発明の実施形態では、パワーユニットとして電気モータ(モータ14)を用いる形態としたが、本発明は、電気モータに限らず他のパワーユニット(例えば、エンジン)にも適用することができる。
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
10…自動二輪車、11…前輪、12…後輪、13…ドライブベルト部、14…モータ、15…インバータ、16…モータ制御部、17…シート、100…制御装置、110…センサ部、111…車速センサ、112…操舵角センサ、113…ヨーレートセンサ、114…横加速度センサ、115…傾斜角センサ、120…車両制御部、121…タイヤ横力演算部、121A…横すべり角演算部、121B…バンク角演算部、121C…データ記憶部、121D…横力演算部、122…ヨーモーメント演算部、122A…フィードフォワード・ヨーモーメント演算部、122B…目標ヨーモーメント演算部、122C…発生ヨーモーメント演算部、122D…PIDコントローラ、123…出力トルク演算部、C…摩擦円、CG…重心P1…垂直線、P2…縦方向中心線、R…路面
Claims (12)
- 自動二輪車の駆動車輪を駆動するパワーユニットに対して指示される前記パワーユニットの出力指示値を、前記自動二輪車の運動状態に応じて制御する自動二輪車の制御装置であって、
前記自動二輪車のタイヤ横力と駆動力との合力の関係を示す摩擦円データを提供する摩擦円データ提供部と、
前記自動二輪車の横すべり角、バンク角及び前記摩擦円データに基づいて、前記駆動車輪に生じている前記タイヤ横力を演算するタイヤ横力演算部と、
前記自動二輪車がニュートラルステアとなる目標ヨーモーメント、及び前記タイヤ横力演算部によって演算された前記タイヤ横力に基づく補正ヨーモーメントを演算するヨーモーメント演算部と、
前記ヨーモーメント演算部によって演算された前記補正ヨーモーメント、及び前記摩擦円データを用いて、前記補正ヨーモーメントに対応する前記出力指示値を決定する出力指示値決定部と
を備える自動二輪車の制御装置。 - 前記横すべり角、前記バンク角と対応付けられる前記駆動車輪のキャンバー角、及び前記駆動車輪に生じるキャンバースラストの関係を示すキャンバースラストマップを記憶するマップ記憶部をさらに備え、
前記タイヤ横力演算部は、前記キャンバースラストマップを用いて、前記タイヤ横力を演算する請求項1に記載の自動二輪車の制御装置。 - 前記タイヤ横力演算部は、前記パワーユニットが発生している出力を示す発生出力値に基づいて前記駆動力を演算し、前記摩擦円データを用いて前記タイヤ横力を演算する請求項1または2に記載の自動二輪車の制御装置。
- 前記ヨーモーメント演算部は、
前記目標ヨーモーメントを演算する目標ヨーモーメント演算部と、
前記タイヤ横力演算部によって演算された前記タイヤ横力に基づいて、前記自動二輪車に生じている発生ヨーモーメントを演算する発生ヨーモーメント演算部と、
前記目標ヨーモーメントと前記発生ヨーモーメントとに基づいて、前記目標ヨーモーメントを補正した補正ヨーモーメントを演算する補正ヨーモーメント演算部と
を備える請求項1乃至3の何れか一項に記載の自動二輪車の制御装置。 - 前記目標ヨーモーメント演算部は、前記自動二輪車の操舵角及び車速を用いて、前記目標ヨーモーメントを演算する請求項4に記載の自動二輪車の制御装置。
- 前記パワーユニットは、電気モータである請求項1乃至5の何れか一項に記載の自動二輪車の制御装置。
- 自動二輪車の駆動車輪を駆動するパワーユニットと、
前記パワーユニットに対して指示される前記パワーユニットの出力指示値に応じて、前記パワーユニットの出力を制御するパワーユニット制御装置と、
前記自動二輪車の運動状態に応じて、前記出力指示値を制御する制御装置と
を備え、
前記制御装置は、
前記自動二輪車のタイヤ横力と駆動力との合力の関係を示す摩擦円データを提供する摩擦円データ提供部と、
前記自動二輪車の横すべり角、バンク角及び前記摩擦円データに基づいて、前記駆動車輪に生じている前記タイヤ横力を演算するタイヤ横力演算部と、
前記自動二輪車がニュートラルステアとなる目標ヨーモーメント、及び前記タイヤ横力演算部によって演算された前記タイヤ横力に基づく補正ヨーモーメントを演算するヨーモーメント演算部と、
前記ヨーモーメント演算部によって演算された前記補正ヨーモーメント、及び前記摩擦円データを用いて、前記補正ヨーモーメントに対応する前記出力指示値を決定する出力指示値決定部と
を備える自動二輪車の駆動システム。 - 前記横すべり角、前記バンク角と対応付けられる前記駆動車輪のキャンバー角、及び前記駆動車輪に生じるキャンバースラストの関係を示すキャンバースラストマップを記憶するマップ記憶部をさらに備え、
前記タイヤ横力演算部は、前記キャンバースラストマップを用いて、前記タイヤ横力を演算する請求項7に記載の自動二輪車の駆動システム。 - 前記タイヤ横力演算部は、前記パワーユニットが発生している出力を示す発生出力値に基づいて、前記駆動力を演算し、前記摩擦円データを用いて、前記タイヤ横力を演算する請求項7または8に記載の自動二輪車の駆動システム。
- 前記ヨーモーメント演算部は、
前記目標ヨーモーメントを演算する目標ヨーモーメント演算部と、
前記タイヤ横力演算部によって演算された前記タイヤ横力に基づいて、前記自動二輪車に生じている発生ヨーモーメントを演算する発生ヨーモーメント演算部と、
前記目標ヨーモーメントと前記発生ヨーモーメントとに基づいて、前記目標ヨーモーメントを補正した補正ヨーモーメントを演算する補正ヨーモーメント演算部と
を備える請求項7乃至9の何れか一項に記載の自動二輪車の駆動システム。 - 前記目標ヨーモーメント演算部は、前記自動二輪車の操舵角及び車速を用いて、前記目標ヨーモーメントを演算する請求項10に記載の自動二輪車の駆動システム。
- 前記パワーユニットは、電気モータである請求項7乃至11の何れか一項に記載の自動二輪車の駆動システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059227A JP2006240491A (ja) | 2005-03-03 | 2005-03-03 | 自動二輪車の制御装置及び自動二輪車の駆動システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005059227A JP2006240491A (ja) | 2005-03-03 | 2005-03-03 | 自動二輪車の制御装置及び自動二輪車の駆動システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006240491A true JP2006240491A (ja) | 2006-09-14 |
Family
ID=37047318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005059227A Pending JP2006240491A (ja) | 2005-03-03 | 2005-03-03 | 自動二輪車の制御装置及び自動二輪車の駆動システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006240491A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013175680A1 (ja) * | 2012-05-25 | 2013-11-28 | ヤマハ発動機株式会社 | 車両 |
US9346510B2 (en) | 2011-07-28 | 2016-05-24 | Yamaha Hatsudoki Kabushiki Kaisha | Attitude controller and saddle riding type vehicle having the same |
US9594094B2 (en) | 2014-04-16 | 2017-03-14 | Yamaha Hatsudoki Kabushiki Kaisha | Lateral force estimation system, method of estimating lateral force and vehicle |
JP2019105909A (ja) * | 2017-12-11 | 2019-06-27 | 川崎重工業株式会社 | リーン型乗物の走行情報蓄積方法、走行情報処理プログラム及び走行情報蓄積装置 |
EP3530559A4 (en) * | 2016-10-19 | 2020-06-24 | Kawasaki Jukogyo Kabushiki Kaisha | DEVICE FOR CALCULATING TIRE FORCE AND METHOD FOR CALCULATING TIRE FORCE |
-
2005
- 2005-03-03 JP JP2005059227A patent/JP2006240491A/ja active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9346510B2 (en) | 2011-07-28 | 2016-05-24 | Yamaha Hatsudoki Kabushiki Kaisha | Attitude controller and saddle riding type vehicle having the same |
EP2738075B1 (en) * | 2011-07-28 | 2018-03-28 | Yamaha Hatsudoki Kabushiki Kaisha | Posture control device and straddle-type vehicle provided therewith |
WO2013175680A1 (ja) * | 2012-05-25 | 2013-11-28 | ヤマハ発動機株式会社 | 車両 |
EP2857301A4 (en) * | 2012-05-25 | 2015-06-17 | Yamaha Motor Co Ltd | VEHICLE |
JPWO2013175680A1 (ja) * | 2012-05-25 | 2016-01-12 | ヤマハ発動機株式会社 | 車両 |
US9594094B2 (en) | 2014-04-16 | 2017-03-14 | Yamaha Hatsudoki Kabushiki Kaisha | Lateral force estimation system, method of estimating lateral force and vehicle |
EP3530559A4 (en) * | 2016-10-19 | 2020-06-24 | Kawasaki Jukogyo Kabushiki Kaisha | DEVICE FOR CALCULATING TIRE FORCE AND METHOD FOR CALCULATING TIRE FORCE |
JP2019105909A (ja) * | 2017-12-11 | 2019-06-27 | 川崎重工業株式会社 | リーン型乗物の走行情報蓄積方法、走行情報処理プログラム及び走行情報蓄積装置 |
JP7015161B2 (ja) | 2017-12-11 | 2022-02-02 | カワサキモータース株式会社 | リーン型乗物の走行情報蓄積方法、走行情報処理プログラム及び走行情報蓄積装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010200598B2 (en) | Turning motion assistance device for electric vehicle | |
JP4161923B2 (ja) | 車両安定化制御システム | |
JP6162762B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP5418512B2 (ja) | 二輪車、二輪車用姿勢安定化装置及び二輪車用姿勢安定化方法 | |
US9020699B2 (en) | Method and braking system for influencing driving dynamics by means of braking and driving operations | |
JP2008285066A (ja) | 加加速度情報を用いた車両のヨーモーメント制御装置 | |
JP2011183904A (ja) | 車両の運動制御装置 | |
JP2008067436A (ja) | 車両の制御装置及び制御方法 | |
JP2007209068A (ja) | 電動車両の駆動力制御装置、自動車及び電動車両の駆動力制御方法 | |
CN111356628A (zh) | 车辆 | |
JP2006240491A (ja) | 自動二輪車の制御装置及び自動二輪車の駆動システム | |
US10625777B2 (en) | Attitude control system | |
JP6577850B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP4990384B2 (ja) | 加加速度情報を用いた車両の運動制御方法 | |
KR101294057B1 (ko) | 토크벡터링 시스템을 이용한 쏠림 제어 방법 | |
JP2006187047A (ja) | 4輪独立駆動車の駆動力制御装置 | |
JP5180610B2 (ja) | 車両の駆動力制御装置 | |
JP4935022B2 (ja) | 車両の左右トルク配分制御装置 | |
JP6329308B2 (ja) | 車両の制御装置及び車両の制御方法 | |
JP2010259294A (ja) | 電気自動車の車両制御装置 | |
JP5407402B2 (ja) | 車両用操舵制御装置及び車両用操舵制御方法 | |
JP4949319B2 (ja) | 車両の駆動力制御装置 | |
JP2019093850A (ja) | 車両 | |
JP2009126388A (ja) | 車両用運動制御装置 | |
JP2007223390A (ja) | 車両の挙動制御装置 |