WO2018072727A1 - 一种空调除霜方法及装置 - Google Patents

一种空调除霜方法及装置 Download PDF

Info

Publication number
WO2018072727A1
WO2018072727A1 PCT/CN2017/106842 CN2017106842W WO2018072727A1 WO 2018072727 A1 WO2018072727 A1 WO 2018072727A1 CN 2017106842 W CN2017106842 W CN 2017106842W WO 2018072727 A1 WO2018072727 A1 WO 2018072727A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
air conditioner
relative humidity
ambient
Prior art date
Application number
PCT/CN2017/106842
Other languages
English (en)
French (fr)
Inventor
万永强
许永锋
熊美兵
李波
舒文涛
钱小龙
陈汝锋
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610915879.1A external-priority patent/CN106288243A/zh
Priority claimed from CN201710269632.1A external-priority patent/CN107044716B/zh
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP17861512.6A priority Critical patent/EP3531045A4/en
Publication of WO2018072727A1 publication Critical patent/WO2018072727A1/zh
Priority to US16/387,358 priority patent/US20190242604A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention mainly relates to the field of air conditioning technology, and in particular to a defrosting control method and apparatus for an air conditioner.
  • air conditioners are one of the essential household appliances in people's lives, but existing air conditioners are often accompanied by frosting of heat exchangers during operation. Once the heat exchanger is frosted, it will reduce the heat exchange efficiency of the air conditioner and hinder the heating capacity of the air conditioner.
  • the air conditioner needs to switch to the defrost mode, but the excessively frequent defrost sacrifices the heating capacity of the air conditioner and consumes more energy for the defrost operation.
  • the main object of the present invention is to provide a defrosting control method and apparatus for an air conditioner, which aims to solve the defects of frequent defrosting of an air conditioner in the prior art, which consumes a lot of energy.
  • a defrosting control method for an air conditioner includes the following steps:
  • the air conditioner is controlled to enter the defrost mode.
  • the obtaining the corresponding saturation temperature according to the detected heat exchanger refrigerant pressure is specifically:
  • the corresponding saturation temperature is obtained by querying or calculating.
  • the step of obtaining an ambient dew point temperature comprises:
  • the corresponding ambient dew point temperature is obtained by query or calculation according to the detected ambient temperature and the ambient wet bulb temperature.
  • the method further comprises:
  • the corresponding frosting critical temperature is obtained
  • the step of controlling the air conditioner to enter the defrost mode comprises:
  • the air conditioner When the air conditioner frosting time is greater than the preset time, the air conditioner is controlled to enter the defrost mode.
  • the present invention further provides a defrosting control device for an air conditioner, wherein the defrosting control device of the air conditioner includes:
  • a first detecting module for detecting a refrigerant pressure of the heat exchanger
  • Obtaining a module configured to obtain a corresponding saturation temperature according to the detected heat exchanger refrigerant pressure
  • the obtaining module is further configured to acquire an ambient dew point temperature
  • the control module is configured to control the air conditioner to enter the defrosting mode when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature.
  • the obtaining module is specifically configured to query or calculate a corresponding saturation temperature according to the detected heat exchanger refrigerant pressure.
  • the air conditioning defrosting device further includes a second detecting module for detecting an ambient temperature and an ambient wet bulb temperature;
  • the obtaining module is further configured to obtain a corresponding ambient dew point temperature by querying or calculating according to the detected ambient temperature and the ambient wet bulb temperature.
  • the obtaining module is further configured to obtain a corresponding frosting critical temperature by querying according to the detected ambient temperature and the ambient wet bulb temperature;
  • the defrosting control device of the air conditioner further includes an execution module, configured to perform whether the saturation temperature corresponding to the determination is less than 0 ° C and less than or equal to the ambient dew point temperature when the ambient dew point temperature is less than or equal to the frosting critical temperature.
  • control module comprises:
  • a frosting determining unit configured to determine that the air conditioner starts to frost when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature
  • the control unit is configured to control the air conditioner to enter the defrost mode when the air conditioner frosting time is greater than the preset time.
  • the invention detects the refrigerant pressure of the heat exchanger and obtains the saturation temperature corresponding to the refrigerant pressure of the heat exchanger according to the refrigerant pressure of the heat exchanger; compares the corresponding saturation temperature with the obtained ambient dew point temperature, and the corresponding saturation temperature is less than 0 °C, And less than or equal to the ambient dew point temperature, the air conditioner is controlled to enter the defrost mode, thereby ensuring that the air conditioner has frost and timely defrost, avoiding frost and frost, reducing energy consumption, and prolonging the service life of the air conditioner.
  • the present invention also provides an air conditioner connected with a humidity detecting element for detecting outdoor humidity or relative humidity, a temperature detecting element for detecting an outdoor ambient temperature and an outdoor heat exchanger temperature; Also included is a memory, a processor, and an air conditioning defrosting control program stored on the memory and operable on the processor, the air conditioning defrosting control program being executed by the processor to implement any of the above The steps of the defrosting control method of the air conditioner.
  • the present invention also provides a computer readable storage medium having an air conditioning defrosting control program stored thereon, and the air conditioning defrosting control program is executed by a processor to implement any of the above The step of the defrosting control method of the air conditioner according to the item.
  • a primary object of the present invention is to provide an air conditioning defrosting control method for achieving a reasonable defrosting control of an air conditioner.
  • the air conditioning defrosting control method proposed by the present invention comprises the following steps:
  • the outdoor heat exchanger When the outdoor heat exchanger satisfies the preset frosting condition, the outdoor heat exchanger is defrosted.
  • the determining whether the outdoor heat exchanger satisfies a preset according to the current outdoor environment relative humidity, the current outdoor ambient temperature, the current outdoor heat exchanger temperature, and the continuous running time include:
  • the defrosting operation of the outdoor heat exchanger when the outdoor heat exchanger meets the preset frosting condition further comprises:
  • the method before the step of acquiring the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature, the method further includes:
  • the timing is started when the step of acquiring the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature is performed;
  • the outdoor environment relative humidity of the next cycle Whenever the timing time reaches the data acquisition period, the outdoor environment relative humidity of the next cycle, the outdoor ambient temperature of the next cycle, and the outdoor heat exchanger temperature of the next cycle are acquired.
  • the method before the step of detecting the continuous running time of the air conditioner in the relative humidity of the current outdoor environment, the method further includes:
  • the step of detecting the continuous running time of the air conditioner under the relative humidity of the current outdoor environment is continuously performed;
  • the method further includes:
  • the step of determining whether the outdoor heat exchanger satisfies a preset defrosting condition according to the continuous running time and the current frosting period includes:
  • the step of determining whether the outdoor heat exchanger satisfies the preset defrosting condition according to the continuous running time corresponding to the relative humidity of each outdoor environment and the frosting period corresponding to the relative humidity of each outdoor environment comprises:
  • Whether the outdoor heat exchanger satisfies the preset defrosting condition is determined according to whether the summation result reaches 1.
  • the step of determining whether the outdoor heat exchanger satisfies a preset frosting condition according to the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature comprises:
  • the method before the step of acquiring the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature, the method further includes:
  • the step of obtaining the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature is performed.
  • the present invention also provides an air conditioner connected with a humidity detecting element for detecting outdoor humidity or relative humidity, a temperature detecting element for detecting an outdoor ambient temperature and an outdoor heat exchanger temperature; Also included is a memory, a processor, and an air conditioning defrosting control program stored on the memory and operable on the processor, the air conditioning defrosting control program being executed by the processor to implement any of the above The steps of the air conditioning defrosting control method.
  • the present invention also provides a computer readable storage medium having an air conditioning defrosting control program stored thereon, and the air conditioning defrosting control program is executed by a processor to implement any of the above The steps of the air conditioning defrosting control method described in the item.
  • the outdoor heat exchanger performs the defrosting operation, and determines whether the defrosting operation is performed on the outdoor heat exchanger according to the parameters related to the frosting of the outdoor heat exchanger during the operation of the air conditioner and the continuous running time of the air conditioner under the current outdoor environmental humidity. Conducive to the realization of reasonable defrosting control of air conditioning.
  • FIG. 1 is a schematic flow chart of a first embodiment of a defrosting control method for an air conditioner of the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a defrosting control method for an air conditioner according to the present invention
  • FIG. 3 is a schematic flow chart of a third embodiment of a defrosting control method for an air conditioner according to the present invention.
  • step S40 is a schematic flow chart showing the refinement of step S40 in the defrosting control method of the air conditioner of the present invention
  • Figure 5 is a schematic diagram of functional modules of a first embodiment of a defrosting control device for an air conditioner of the present invention
  • FIG. 6 is a schematic diagram of functional modules of a second embodiment of a defrosting control device for an air conditioner according to the present invention.
  • Figure 7 is a schematic diagram of functional modules of a third embodiment of a defrosting control device for an air conditioner of the present invention.
  • Figure 8 is a schematic diagram showing the refinement function module of the control module in the defrosting control device of the air conditioner of the present invention.
  • FIG. 9 is a schematic flow chart of a first embodiment of a method for controlling defrosting of an air conditioner according to the present invention.
  • FIG. 10 is a schematic flow chart of a second embodiment of a method for controlling defrosting of an air conditioner according to the present invention.
  • FIG. 11 is a schematic flow chart of a seventh embodiment of a method for controlling defrosting of an air conditioner according to the present invention.
  • FIG. 12 is a schematic flow chart of an eighth embodiment of an air conditioning defrosting control method according to the present invention.
  • FIG. 13 is a schematic flow chart of a ninth embodiment of an air conditioning defrosting control method according to the present invention.
  • Figure 14 is a schematic structural view of an outdoor unit system of an air conditioner according to the present invention.
  • Figure 15 is a block diagram showing the structure of an air conditioner according to an embodiment of the present invention.
  • Label name Label name 1 Liquid side shutoff valve 2 Gas measuring shut-off valve 3 Temperature detecting element 4 Humidity detecting element 5 Four-way valve 6 High pressure sensor 7 Low pressure sensor 8 compressor 9 Check valve 10 Water separator 11 Gas-liquid separator 12 Outdoor heat exchanger 13 Expansion valve
  • the defrosting control method of the air conditioner includes:
  • Step S101 detecting a refrigerant pressure of the heat exchanger
  • the heat exchanger of the air conditioner includes an indoor heat exchanger and an outdoor heat exchanger.
  • the outdoor heat exchanger acts as a condenser to condense
  • the indoor heat exchanger acts as an evaporator to evaporate
  • the outdoor heat exchanger acts as an evaporator for evaporation
  • the indoor heat exchanger acts as a condenser for condensation.
  • the indoor unit needs to be defrosted to detect the pressure of the refrigerant in the indoor heat exchanger.
  • the outdoor unit needs to be defrosted to detect the refrigerant pressure of the outdoor heat exchanger.
  • the pressure sensor detects one of the heat exchanger inlet refrigerant pressure, the outlet refrigerant pressure, and the intermediate refrigerant pressure.
  • Step S101 obtaining a corresponding saturation temperature according to the detected heat exchanger refrigerant pressure
  • the saturation temperature refers to the temperature that the liquid and steam have when they are in a state of dynamic equilibrium, that is, saturation. In the saturated state, the temperature of the liquid and the vapor are equal. When the saturation temperature is constant, the saturation pressure is also constant; conversely, when the saturation pressure is constant, the saturation temperature is also constant. As the pressure rises, a new state of equilibrium is formed at the new temperature. In this embodiment, the corresponding saturation temperature is obtained according to the actually detected heat exchanger refrigerant pressure. Compared with the direct detection of the temperature of the heat exchanger, the refrigerant pressure of the heat exchanger is less affected by the ambient temperature. Therefore, by detecting the refrigerant pressure of the heat exchanger and obtaining the saturation temperature corresponding thereto, the obtained temperature value is more accurate.
  • the saturation temperature and the heat exchanger temperature are relatively close, and the saturation temperature can be used instead of the heat exchanger temperature to judge. Specifically, when the air conditioner is running, the indoor saturated temperature is obtained according to the detected refrigerant pressure of the indoor heat exchanger; when the air conditioner is heating, the outdoor saturated temperature is obtained according to the detected outdoor heat exchanger refrigerant pressure.
  • Step S103 acquiring an environmental dew point temperature
  • the environmental dew point temperature refers to the temperature at which the air is cooled to saturation under the condition that the water vapor content and the air pressure are not changed, that is, the temperature at which the water vapor in the air becomes dewdrop.
  • the temperature is the same as the ambient dew point temperature; when the water vapor does not reach saturation, the temperature is higher than the ambient dew point temperature, and the temperature drops below the dew point is a necessary condition for condensation of water vapor.
  • the ambient dew point temperature of the current environment is obtained to determine whether the water vapor has a condition of condensation. Specifically, when the air conditioning and cooling operation is performed, the indoor environment dew point temperature is obtained; when the air conditioning is heating, the outdoor environment dew point temperature is obtained accordingly.
  • Step S104 when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature, the air conditioner is controlled to enter the defrost mode.
  • the device After obtaining the saturation temperature and the ambient dew point temperature, compare the values between the two, and also determine whether the saturation temperature is less than 0 °C, only when the saturation temperature is less than 0 ° C, and less than or equal to the ambient dew point temperature, indicating the air conditioning heat transfer
  • the device has frosting and controls the air conditioner to enter the defrost mode. Otherwise, the air conditioner is normally operated to ensure that the air conditioner has frost and timely defrosting, avoiding frost and defrosting, reducing energy consumption and prolonging the service life of the air conditioner.
  • the obtaining the corresponding saturation temperature according to the detected heat exchanger refrigerant pressure is specifically: querying or calculating the corresponding saturation temperature according to the detected heat exchanger refrigerant pressure.
  • the saturation temperature corresponding to the refrigerant pressure of the plurality of heat exchangers is first set, and the corresponding saturation temperature value is browsed according to the detected heat exchanger refrigerant pressure when needed; the corresponding formula of the pressure and the saturation temperature may also be set, according to The detected refrigerant pressure of the heat exchanger calculates the corresponding saturation temperature.
  • the above step S103 includes:
  • Step S1031 detecting an ambient temperature and an ambient wet bulb temperature
  • Step S1032 obtaining a corresponding environmental dew point temperature by querying or calculating according to the detected ambient temperature and the ambient wet bulb temperature.
  • the wet bulb temperature refers to the temperature of the air when the water vapor in the air reaches saturation in the same depreciated air state.
  • the amount of water vapor in the air is temperature dependent, and the corresponding ambient dew point temperature is obtained from the detected ambient temperature and ambient wet bulb temperature.
  • preset the ambient dew point temperature corresponding to the plurality of ambient temperatures and the ambient wet bulb temperature and if necessary, browse and query the corresponding environmental dew point temperature according to the detected ambient temperature and the ambient wet bulb temperature; or set the ambient temperature and the environment to be wet.
  • the corresponding formula of the ball temperature and the ambient dew point temperature, and the corresponding environmental dew point temperature is calculated according to the detected ambient temperature and the ambient wet bulb thermometer.
  • the indoor ambient temperature and the indoor ambient wet bulb temperature are detected. According to the detected indoor ambient temperature and the indoor ambient wet bulb temperature, the corresponding indoor environment dew point temperature is obtained through query or calculation; when the air conditioner is heating, the outdoor ambient temperature is detected. And the outdoor ambient wet bulb temperature, according to the detected outdoor ambient temperature and the outdoor ambient wet bulb temperature, the corresponding outdoor environmental dew point temperature is obtained by query or calculation.
  • the method further includes:
  • Step S1033 querying the corresponding frosting critical temperature according to the detected ambient temperature and the ambient wet bulb temperature;
  • step S1034 when the ambient dew point temperature is less than or equal to the frosting critical temperature, whether the saturation temperature corresponding to the determination is less than 0 ° C and less than or equal to the ambient dew point temperature is performed.
  • the corresponding frosting critical temperature is also obtained according to the two temperature values. Specifically, the frosting critical temperature corresponding to the plurality of ambient temperatures and the ambient wet bulb temperature is preset, and the frosting critical temperature corresponding to the query is browsed according to the detected ambient temperature and the ambient wet bulb temperature as needed.
  • the indoor ambient temperature and the indoor ambient wet bulb temperature are detected, and the corresponding indoor frosting critical temperature is obtained by query according to the detected indoor ambient temperature and the indoor ambient wet bulb temperature; when the air conditioning is heating, the outdoor ambient temperature is detected and The outdoor ambient wet bulb temperature is obtained by querying the corresponding outdoor frosting critical temperature according to the detected outdoor ambient temperature and the outdoor ambient wet bulb temperature.
  • the ambient dew point temperature is lower than the frosting critical temperature, it indicates that the frosting condition is reached, and the saturation temperature and the environmental dew point temperature are further determined.
  • step S104 includes:
  • Step S1041 determining that the air conditioner starts to frost when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature;
  • Step S1042 accumulating the frosting time of the air conditioner
  • Step S1043 when the air conditioner frosting time is greater than the preset time, the air conditioner is controlled to enter the defrosting mode.
  • a preset time is set in advance.
  • the saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature
  • the air conditioner starts to frost
  • the frosting time is accumulated, and the accumulated frosting time is judged.
  • the frosting time is greater than the preset time, it means that the frost reaches a certain thickness, then the air conditioner is controlled to enter the defrost mode for defrosting, to avoid defrosting when a frost is formed, to save energy and prolong the service life of the air conditioner.
  • the present invention also provides a defrosting control device for an air conditioner.
  • the defrosting control device for an air conditioner provided by the present invention includes:
  • a first detecting module 10 configured to detect a refrigerant pressure of the heat exchanger
  • the heat exchanger of the air conditioner includes an indoor heat exchanger and an outdoor heat exchanger.
  • the outdoor heat exchanger acts as a condenser to condense
  • the indoor heat exchanger acts as an evaporator to evaporate
  • the outdoor heat exchanger acts as an evaporator for evaporation
  • the indoor heat exchanger acts as a condenser for condensation.
  • the indoor unit needs to be defrosted to detect the pressure of the refrigerant in the indoor heat exchanger.
  • the outdoor unit needs to be defrosted to detect the refrigerant pressure of the outdoor heat exchanger.
  • the pressure sensor can be used to detect one of the heat exchanger inlet refrigerant pressure, the outlet refrigerant pressure, and the intermediate refrigerant pressure.
  • the obtaining module 20 is configured to obtain a corresponding saturation temperature according to the detected heat exchanger refrigerant pressure
  • the saturation temperature refers to the temperature that the liquid and steam have when they are in a state of dynamic equilibrium, that is, saturation. In the saturated state, the temperature of the liquid and the vapor are equal. When the saturation temperature is constant, the saturation pressure is also constant; conversely, when the saturation pressure is constant, the saturation temperature is also constant. As the pressure rises, a new state of equilibrium is formed at the new temperature. In this embodiment, the corresponding saturation temperature is obtained according to the actually detected heat exchanger refrigerant pressure. Compared with the direct detection of the temperature of the heat exchanger, the refrigerant pressure of the heat exchanger is less affected by the ambient temperature. Therefore, by detecting the refrigerant pressure of the heat exchanger and obtaining the saturation temperature corresponding thereto, the obtained temperature value is more accurate.
  • the saturation temperature and the heat exchanger temperature are relatively close, and the saturation temperature can be used instead of the heat exchanger temperature to judge. Specifically, when the air conditioner is running, the indoor saturated temperature is obtained according to the detected refrigerant pressure of the indoor heat exchanger; when the air conditioner is heating, the outdoor saturated temperature is obtained according to the detected outdoor heat exchanger refrigerant pressure.
  • the obtaining module 20 is further configured to acquire an ambient dew point temperature
  • the environmental dew point temperature refers to the temperature at which the air is cooled to saturation under the condition that the water vapor content and the air pressure are not changed, that is, the temperature at which the water vapor in the air becomes dewdrop.
  • the temperature is the same as the ambient dew point temperature; when the water vapor does not reach saturation, the temperature is higher than the ambient dew point temperature, and the temperature drops below the dew point is a necessary condition for condensation of water vapor.
  • the ambient dew point temperature of the current environment is obtained to determine whether the water vapor has a condition of condensation. Specifically, when the air conditioning and cooling operation is performed, the indoor environment dew point temperature is obtained; when the air conditioning is heating, the outdoor environment dew point temperature is obtained accordingly.
  • the control module 30 is configured to control the air conditioner to enter the defrosting mode when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature.
  • the device After obtaining the saturation temperature and the ambient dew point temperature, compare the values between the two, and also determine whether the saturation temperature is less than 0 °C, only when the saturation temperature is less than 0 ° C, and less than or equal to the ambient dew point temperature, indicating the air conditioning heat transfer
  • the device has frosting and controls the air conditioner to enter the defrost mode. Otherwise, the air conditioner is normally operated to ensure that the air conditioner has frost and timely defrosting, avoiding frost and defrosting, reducing energy consumption and prolonging the service life of the air conditioner.
  • the obtaining module 20 is specifically configured to query or calculate a corresponding saturation temperature according to the detected heat exchanger refrigerant pressure.
  • the saturation temperature corresponding to the refrigerant pressure of the plurality of heat exchangers is first set, and the corresponding saturation temperature value is browsed according to the detected heat exchanger refrigerant pressure when needed; the corresponding formula of the pressure and the saturation temperature may also be set, according to The detected refrigerant pressure of the heat exchanger calculates the corresponding saturation temperature.
  • the defrosting control device of the air conditioner further includes a second detecting module 40, configured to detect an ambient temperature and an ambient wet bulb temperature;
  • the obtaining module 20 is further configured to obtain a corresponding ambient dew point temperature by querying or calculating according to the detected ambient temperature and the ambient wet bulb temperature.
  • the wet bulb temperature refers to the temperature of the air when the water vapor in the air reaches saturation in the same depreciated air state.
  • the amount of water vapor in the air is temperature dependent, and the corresponding ambient dew point temperature is obtained from the detected ambient temperature and ambient wet bulb temperature.
  • preset the ambient dew point temperature corresponding to the plurality of ambient temperatures and the ambient wet bulb temperature and if necessary, browse and query the corresponding environmental dew point temperature according to the detected ambient temperature and the ambient wet bulb temperature; or set the ambient temperature and the environment to be wet.
  • the corresponding formula of the ball temperature and the ambient dew point temperature, and the corresponding environmental dew point temperature is calculated according to the detected ambient temperature and the ambient wet bulb thermometer.
  • the indoor ambient temperature and the indoor ambient wet bulb temperature are detected. According to the detected indoor ambient temperature and the indoor ambient wet bulb temperature, the corresponding indoor environment dew point temperature is obtained through query or calculation; when the air conditioner is heating, the outdoor ambient temperature is detected. And the outdoor ambient wet bulb temperature, according to the detected outdoor ambient temperature and the outdoor ambient wet bulb temperature, the corresponding outdoor environmental dew point temperature is obtained by query or calculation.
  • the acquisition module 20 is further configured to detect the environment according to the second embodiment of the defrosting control apparatus of the air conditioner of the present invention.
  • the temperature and ambient wet bulb temperature are obtained by querying to obtain a corresponding frosting critical temperature;
  • the defrosting control device of the air conditioner further includes an execution module 50, configured to perform whether the saturation temperature corresponding to the determination is less than 0 ° C and less than or equal to the ambient dew point temperature when the ambient dew point temperature is less than or equal to the frosting critical temperature.
  • the corresponding environment is obtained by query or calculation according to the detected ambient temperature and the ambient wet bulb temperature.
  • the corresponding frosting critical temperature is also obtained based on the two temperature values. Specifically, the frosting critical temperature corresponding to the plurality of ambient temperatures and the ambient wet bulb temperature is preset, and the frosting critical temperature corresponding to the query is browsed according to the detected ambient temperature and the ambient wet bulb temperature as needed.
  • the indoor ambient temperature and the indoor ambient wet bulb temperature are detected, and the corresponding indoor frosting critical temperature is obtained by query according to the detected indoor ambient temperature and the indoor ambient wet bulb temperature; when the air conditioning is heating, the outdoor ambient temperature is detected and The outdoor ambient wet bulb temperature is obtained by querying the corresponding outdoor frosting critical temperature according to the detected outdoor ambient temperature and the outdoor ambient wet bulb temperature.
  • the ambient dew point temperature is lower than the frosting critical temperature, it indicates that the frosting condition is reached, and the saturation temperature and the environmental dew point temperature are further determined.
  • control module 30 of the defrosting control device of the air conditioner of the present invention includes:
  • the frosting determining unit 31 is configured to determine that the air conditioner starts frosting when the corresponding saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature;
  • a time accumulation unit 32 configured to accumulate air conditioner frosting time
  • the control unit 33 is configured to control the air conditioner to enter the defrosting mode when the air conditioner frosting time is greater than the preset time.
  • a preset time is set in advance.
  • the saturation temperature is less than 0 ° C and less than or equal to the ambient dew point temperature
  • the air conditioner starts to frost
  • the frosting time is accumulated, and the accumulated frosting time is judged.
  • the frosting time is greater than the preset time, it means that the frost reaches a certain thickness, then the air conditioner is controlled to enter the defrost mode for defrosting, to avoid defrosting when a frost is formed, to save energy and prolong the service life of the air conditioner.
  • a first embodiment of the present invention provides an air conditioning defrosting control method, which includes the following steps:
  • Step S201 obtaining a current outdoor environment relative humidity, a current outdoor ambient temperature, and a current outdoor heat exchanger temperature
  • Step S202 detecting a continuous running time of the air conditioner in a relative humidity of the current outdoor environment
  • Step S203 Determine, according to the current outdoor environment relative humidity, the current outdoor ambient temperature, the current outdoor heat exchanger temperature, and the continuous running time, whether the outdoor heat exchanger satisfies a preset defrosting condition. ;
  • Step S204 performing a defrosting operation on the outdoor heat exchanger when the outdoor heat exchanger satisfies the preset frosting condition.
  • the technical solution of the present invention by obtaining the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature, parameters related to frosting of the outdoor heat exchanger during the operation of the air conditioner are determined, thereby According to these parameters and the continuous running time of the air conditioner in the relative humidity of the current outdoor environment, it can be judged whether the outdoor heat exchanger satisfies the preset defrosting condition, and when the outdoor heat exchanger can satisfy the preset frosting condition, the pair is started.
  • the outdoor heat exchanger performs the defrosting operation according to the parameters related to the frosting of the outdoor heat exchanger during the operation of the air conditioner and the humidity of the air conditioner in the current outdoor environment.
  • the continuous running time determines whether the defrosting operation of the outdoor heat exchanger is performed, which is beneficial to realize reasonable defrosting control of the air conditioner.
  • the outdoor environment relative humidity may be measured by a relative humidity detecting component, or may be obtained by measuring a humidity by a humidity measuring device, or converting the table, and the outdoor ambient temperature and the outdoor heat exchanger may be configured by setting corresponding temperature detecting components. Measured.
  • the wet bulb temperature and the dry bulb temperature may be measured by using a dry and wet bulb hygrometer, wherein the dry bulb temperature is an outdoor ambient temperature, and the outdoor environment is obtained by the outdoor ambient temperature and the wet bulb temperature. Relative humidity of the environment.
  • the temperature of the outdoor heat exchanger of the air conditioner is usually below 0 ° C.
  • the temperature of the outdoor heat exchanger of the air conditioner is usually above 30 ° C, therefore, according to the current outdoor heat exchanger temperature It can be judged whether the air conditioner is in the heating mode. If it is in the heating mode, it is necessary to further judge whether the outdoor heat exchanger should be defrosted.
  • the basis for further judgment is: the current outdoor environment relative humidity, the current outdoor environment The temperature and the current outdoor heat exchanger temperature, the above three data can be used to determine whether the outdoor heat exchanger reaches the frosting condition, and further determine whether the outdoor heat exchanger needs to be defrosted according to the continuous running time.
  • the step S203 includes:
  • Step S2031 Determine, according to the current outdoor environment relative humidity, the current outdoor ambient temperature, and the current outdoor heat exchanger temperature, whether the outdoor heat exchanger satisfies a preset frosting condition;
  • Step S2032 when the outdoor heat exchanger satisfies a preset frosting condition, determining a current frosting period of the outdoor heat exchanger according to the current outdoor environment relative humidity and the current outdoor heat exchanger temperature;
  • Step S2033 determining whether the outdoor heat exchanger satisfies a preset defrosting condition according to the continuous running time and the current frosting period.
  • the outdoor ambient temperature and the outdoor ambient relative humidity and the current outdoor heat exchanger temperature it is possible to determine whether there is a possibility of frosting in the outdoor heat exchanger. For example, when the outdoor heat exchanger temperature exceeds 0 ° C, it can be considered that the outdoor heat exchanger does not have frosting conditions. When the outdoor heat exchanger temperature is below 0 °C, combined with the outdoor ambient temperature and the outdoor ambient relative humidity, it can be judged whether the outdoor heat exchanger has frosting conditions.
  • a mapping relationship table may be stored in the system.
  • the mapping relationship table stores a one-to-one correspondence between the relative humidity of the outdoor environment and the frosting period. After obtaining the relative humidity of the outdoor environment, according to the mapping relationship table, the corresponding correspondence may be determined.
  • the frosting cycle After obtaining the relative humidity of the outdoor environment, according to the mapping relationship table, the corresponding correspondence may be determined.
  • the step S204 further includes:
  • Step S2041 Perform a defrosting operation on the outdoor heat exchanger when the continuous running time reaches the current frosting period.
  • the system operates at 90% relative humidity.
  • the relative humidity corresponds to the frosting period T1 of 45 min. Since the continuous running time is 15 min, the frosting period is not reached. Therefore, the judgment system is not Frosting, no defrosting control can be performed.
  • the continuous running time of the air conditioner under the current outdoor relative humidity is continuously detected.
  • the defrosting control is started.
  • the second embodiment of the air conditioning defrosting control method of the present invention, in the fourth embodiment of the air conditioning defrosting control method of the present invention, before the step S201, further includes:
  • Step S205 acquiring a preset data acquisition period
  • step S206 is performed to start timing
  • step S207 each time the timing time reaches the data acquisition period, the outdoor environment relative humidity of the next cycle, the outdoor ambient temperature of the next cycle, and the outdoor heat exchanger temperature of the next cycle are acquired according to the step S101.
  • the previous cycle and the next cycle in this document refer to two adjacent data acquisition cycles. Since the outdoor environment and outdoor heat exchanger temperature are constantly changing, the frosting cycle will also change continuously, with only one measured outdoor environment and outdoor heat exchanger temperature and detecting the continuous running time of the air conditioner under this data, except Cream control may not achieve the best results. In order to further improve the accuracy of the defrosting control, the outdoor environment relative humidity, the outdoor ambient temperature and the outdoor heat exchanger temperature can be periodically obtained. Therefore, the system can detect the change of the frosting condition in time and quickly adjust to enter the defrosting control. The timing.
  • the data acquisition period is short, it is beneficial to timely sense the change of the frosting condition, thereby realizing timely and effective defrosting control.
  • the data acquisition period can be below 5 minutes.
  • the data acquisition cycle should not be too short.
  • the fourth embodiment of the air conditioning defrosting control method of the present invention, in the fifth embodiment of the air conditioning defrosting control method of the present invention, before step S202, further includes:
  • Step S208 determining whether the outdoor environment relative humidity of the next cycle is equal to the outdoor environment relative humidity of the previous cycle
  • Step S2081 when the outdoor environment relative humidity of the next cycle is equal to the outdoor environment relative humidity of the previous cycle, the step S202 is continued;
  • step S2082 when the outdoor environment relative humidity of the next cycle is not equal to the outdoor environment relative humidity of the previous cycle, the continuous running time of the air conditioner under the outdoor environment relative humidity of the next cycle is detected according to the step S202.
  • the outdoor environment relative humidity of the next cycle is equal to the outdoor environment relative humidity of the previous cycle, and according to the judgment result, it can be determined whether it is necessary to accumulate the air conditioning running time under the relative humidity of the previous outdoor environment.
  • the continuous running time under the relative humidity data may be accumulated.
  • the previous cycle is The outdoor environment is stored for a continuous running time under relative humidity, and begins to detect the continuous running time of the air conditioner in the outdoor environment relative humidity of the next cycle.
  • the amount of time accumulated each time is the duration of the data acquisition period.
  • a timer can be used for data acquisition control, and another timer can be used to detect the continuous running time of the air conditioner in the relative humidity of the current outdoor environment.
  • the method further includes:
  • Step S209 acquiring a frosting period corresponding to each outdoor environment relative humidity before the current data acquisition period and the current data acquisition period, and a continuous running time corresponding to each outdoor environment relative humidity;
  • the step S2033 includes:
  • step S2033a it is determined whether the outdoor heat exchanger satisfies the preset defrosting condition according to the continuous running time corresponding to the relative humidity of each outdoor environment and the frosting period corresponding to the relative humidity of each outdoor environment.
  • the first period set of data acquisition is entered from 12:00, and the system operates at 90% relative humidity between 12:00 and 12:15, and the relative humidity corresponds to frosting.
  • the period T1 is 45 min.
  • the system continuous running time t1 is only 5 minutes, and the frosting period T1 corresponding to the current relative humidity is not reached. Therefore, the defrosting control is not performed and directly Get the number of the second round According to the data obtained in the second round, the relative data remains unchanged. Therefore, the continuous running time t1 can be continued until the fourth data acquisition period (12:15) is reached.
  • the relative humidity data is changed (at this time, the relative data is 80%)
  • the continuous operation time t1 is stopped, and the continuous operation time t2 of the air conditioner under the condition of 80% relative humidity is accumulated.
  • the system was operated at 80% relative humidity, which corresponds to a frosting period T2 of 60 min.
  • 80% relative humidity corresponds to a frosting period T2 of 60 min.
  • the step S2033a includes:
  • Step S2033b obtaining a ratio of a continuous running time and a frosting period corresponding to the relative humidity of the same outdoor environment
  • Step S2033c obtaining a summation result of the ratio corresponding to each outdoor environment relative humidity
  • step S2033d according to whether the summation result reaches 1, it is determined whether the outdoor heat exchanger satisfies a preset defrosting condition.
  • the system should also obtain the relative humidity of each of the outdoor environments when detecting the continuous running time under the new relative humidity.
  • the system is operated at 90% relative humidity.
  • the relative humidity corresponds to a frosting period T1 of 45 minutes, and the system operates at 80% relative humidity for a period of 12:15-12:35.
  • the relative humidity corresponds to a frosting period T2 of 60 min.
  • the first summation result obtained is:
  • the third summation result obtained is:
  • the eighth summation result obtained is:
  • the step S2031 includes :
  • Step S2031 determining a current frosting critical temperature of the outdoor heat exchanger according to the current outdoor environment relative humidity and the current outdoor heat exchanger;
  • Step S2031 determining whether the outdoor heat exchanger satisfies a preset frosting condition according to the current frosting critical temperature and the current outdoor heat exchanger temperature.
  • the current dew point temperature can be determined based on the outdoor ambient temperature and the outdoor ambient relative humidity. As long as the outdoor heat exchanger temperature is below the dew point temperature, there is a possibility of frost formation. The reason why there is only frosting is because the frosting is also referred to the system's continuous running time under suitable frost conditions.
  • the frosting critical temperature value in the outdoor environment temperature and the outdoor environment relative humidity is pre-stored in the system, in order to enable the system to more accurately determine that the outdoor heat exchanger reaches the frosting condition, in this embodiment, Preferably, the frosting critical temperature is less than or equal to the dew point temperature. When the outdoor heat exchanger temperature is less than or equal to the frosting critical temperature, the outdoor heat exchanger is considered to meet the preset frosting condition and begin to frost.
  • Step S2010 obtaining a current running state of the air conditioner, and determining whether the current operating state of the air conditioner is a heating state;
  • step S201 is performed.
  • the outdoor heat exchanger According to the temperature of the outdoor heat exchanger, it can be judged whether the air conditioner is in a heating state. Only when the air conditioner is in the heating state, the outdoor heat exchanger has the possibility of frost formation, and it is necessary to judge whether the defrosting is required.
  • the current running state of the air conditioner is directly obtained, and when the current running state of the air conditioner is the heating state, the subsequent startup defrosting control is judged, so that the logic of the method is simpler and more intuitive, because the air conditioning operation is judged.
  • the steps of the state are simple and accurate, so it is not easy to cause misjudgment.
  • Step S2010 may be set to any sequence before the step S203.
  • step S2010 is set. Prior to step S201, it is advantageous to avoid unnecessary data acquisition and analysis in the cooling mode.
  • a first embodiment of the present invention provides an air conditioner connected with a humidity detecting element 4 for detecting outdoor humidity or relative humidity, for detecting an outdoor ambient temperature and an outdoor heat exchanger temperature.
  • a temperature detecting element 3 the air conditioner further comprising: a memory, a processor, and an air conditioning defrosting control program stored on the memory and operable on the processor, the air conditioning defrosting control program being The step of implementing the air-conditioning defrosting control method according to any one of the above items at the time of execution.
  • FIG. 14 is a schematic structural diagram of an embodiment of an outdoor unit system for an air conditioner.
  • the air conditioner outdoor unit system may be composed of a liquid side shutoff valve 1 , a gas side shutoff valve 2 , a temperature detecting element 3 , a humidity detecting element 4 , and a four-way valve 5 .
  • the compressor system may be composed of any number of inverter compressors and/or fixed frequency compressors in parallel to achieve a full inverter compressor combination, a full fixed frequency compressor combination, or a variable frequency, fixed frequency compressor hybrid combination.
  • the compressor system uses a fixed frequency compressor and an inverter compressor in parallel.
  • the air conditioner may include a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the user interface 1003 may include a display, an input unit such as a keyboard, and the optional user interface 1003 may further include a standard wired interface and a wireless interface.
  • the front end acquires data through the user interface 1003.
  • the network interface 1004 can optionally include a standard wired interface, a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high speed RAM memory or a non-volatile memory such as a disk memory.
  • the memory 1005 can also optionally be a storage device independent of the aforementioned processor 1001.
  • terminal structure shown in FIG. 7 does not constitute a limitation to the terminal, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the technical solution of the air conditioner in this embodiment includes at least all the technical solutions of the air conditioning defrosting control method embodiment, and therefore has at least all the technical effects of the above embodiments, and details are not described herein again.
  • the present invention also provides a computer readable storage medium having an air conditioning defrosting control program stored thereon, wherein the air conditioning defrosting control program is executed by a processor to implement the above-described A step of the air conditioning defrosting control method described.
  • the technical solution of the computer readable storage medium of the present embodiment includes at least all the technical solutions of the air conditioning defrosting control method embodiment, and therefore has at least all the technical effects of the above embodiments, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调除霜控制方法及控制装置,方法包括如下步骤:检测换热器冷媒压力;根据检测的换热器冷媒压力获取对应的饱和温度;获取环境露点温度;在对应的饱和温度小于0℃且小于等于环境露点温度时,控制空调器进入除霜模式。该方法保证有霜及时除霜,避免无霜化霜,降低能耗,延长空调使用寿命。

Description

一种空调除霜方法及装置
相关申请的交叉引用
本申请要求广东美的暖通设备有限公司、美的集团股份有限公司于2017年04月21日提交的、发明名称为“空调除霜控制方法、空调及计算机可读存储介质”的、中国专利申请号“201710269632.1”和于2016年10月20日提交的、发明名称为“空调器的除霜控制方法及装置”的、中国专利申请号“201610915879.1优先权。
技术领域
本发明主要涉及空调技术领域,具体地说,涉及一种空调器的除霜控制方法及装置。
背景技术
随着人们生活水平的提高,家用电器的种类越来越多。其中空调器是人们生活中必不可少的家用电器之一,但现有的空调器在运行时,经常伴随有换热器结霜现象。换热器一旦结霜即会降低空调器的换热效率,阻碍空调器制热能力的提升。为了解决空调器结霜后的能力衰减问题,空调器需要切换到除霜模式,但过于频繁的除霜一方面牺牲了空调器制热能力,耗费较多能量用于除霜运行。
发明内容
本发明的主要目的是提供一种空调器的除霜控制方法及装置,旨在解决现有技术中空调频繁除霜,耗费较多能量的缺陷。
为实现上述目的,本发明提出的空调器的除霜控制方法包括以下步骤:
检测换热器冷媒压力;
根据检测的换热器冷媒压力获取对应的饱和温度;
获取环境露点温度;
在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
所述根据检测的换热器冷媒压力获取对应的饱和温度具体为:
根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
优选地,所述获取环境露点温度的步骤包括:
检测环境温度和环境湿球温度;
根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
优选地,所述根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度之后还包括:
根据检测的环境温度和环境湿球温度查询得到对应的结霜临界温度;
在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
优选地,所述在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式的步骤包括:
在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
累计空调器结霜时间;
在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
此外,为实现上述目的,本发明还提供一种空调器的除霜控制装置,所述空调器的除霜控制装置包括:
第一检测模块,用于检测换热器冷媒压力;
获取模块,用于根据检测的换热器冷媒压力获取对应的饱和温度;
所述获取模块,还用于获取环境露点温度;
控制模块,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
优选地,所述获取模块具体用于根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
优选地,所述空调除霜装置还包括第二检测模块,用于检测环境温度和环境湿球温度;
所述获取模块还具体用于根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
优选地,所述获取模块还用于根据检测的环境温度和环境湿球温度通过查询得到对应的结霜临界温度;
所述空调器的除霜控制装置还包括执行模块,用于在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
优选地,所述控制模块包括:
结霜确定单元,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
时间累积单元,用于累计空调器结霜时间;
控制单元,用于在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
本发明通过检测换热器冷媒压力,并根据换热器冷媒压力获得与换热器冷媒压力所对应的饱和温度;将对应的饱和温度和获得的环境露点温度比较,在对应的饱和温度小于0℃, 且小于等于环境露点温度的情况下,控制空调器进入除霜模式,从而保证空调器有霜及时除霜,避免无霜化霜,降低能耗,延长空调器使用寿命。
为实现上述目的,本发明还提供一种空调,所述空调连接有用于检测室外湿度或相对湿度的湿度检测元件、用于检测室外环境温度和室外换热器温度的温度检测元件;所述空调还包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调除霜控制程序,所述空调除霜控制程序被所述处理器执行时实现如上述任一项所述的空调器的除霜控制方法的步骤。
为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调除霜控制程序,所述空调除霜控制程序被处理器执行时实现如上述任一项所述的空调器的除霜控制方法的步骤。
本发明的主要目的是提供一种空调除霜控制方法,旨在使空调实现合理的除霜控制。
为实现上述目的,本发明提出的空调除霜控制方法包括如下步骤:
获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度;
侦测空调在当前室外环境相对湿度下的持续运行时间;
根据所述当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器温度和所述持续运行时间,判断室外换热器是否满足预设的除霜条件;
当室外换热器满足预设的结霜条件时,对室外换热器进行除霜操作。
优选地,所述根据所述当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器温度和所述持续运行时间,判断室外换热器是否满足预设的除霜条件的步骤,包括:
根据所述当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度判断室外换热器是否满足预设的结霜条件;
当室外换热器满足预设的结霜条件时,根据所述当前的室外环境相对湿度和所述当前的室外换热器温度确定室外换热器的当前结霜周期;
根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件。
优选地,所述当室外换热器满足预设的结霜条件时,对室外换热器进行除霜操作,进一步包括:
当所述持续运行时间达到所述当前的结霜周期时,对室外换热器进行除霜操作。
优选地,所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之前,还包括:
获取预设的数据获取周期;
在执行所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之时,开始计时;
每当计时时间达到所述数据获取周期时,获取下一周期的室外环境相对湿度、下一周期的室外环境温度和下一周期的室外换热器温度。
优选地,所述侦测空调在当前室外环境相对湿度下的持续运行时间的步骤之前,还包括:
判断下一周期的室外环境相对湿度与上一周期的室外环境相对湿度是否相等;
当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度相等时,继续执行所述侦测空调在当前室外环境相对湿度下的持续运行时间的步骤;
当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度不相等时,侦测空调在下一周期的室外环境相对湿度下的持续运行时间。
优选地,所述根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤之前,还包括:
获取当前数据获取周期和当前数据获取周期之前的每一室外环境相对湿度所对应的结霜周期和每一室外环境相对湿度所对应的持续运行时间;
所述根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤,包括:
根据每一室外环境相对湿度所对应的持续运行时间和每一室外环境相对湿度所对应的结霜周期,判断室外换热器是否满足预设的除霜条件。
优选地,所述根据每一室外环境相对湿度所对应的持续运行时间和每一室外环境相对湿度所对应的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤,包括:
获取同一室外环境相对湿度所对应的持续运行时间和结霜周期的比值;
获取每一所述室外环境相对湿度所对应的所述比值的求和结果;
根据所述求和结果是否达到1,判断室外换热器是否满足预设的除霜条件。
优选地,所述根据所述当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度判断室外换热器是否满足预设的结霜条件的步骤,包括:
根据所述当前的室外环境相对湿度和所述当前的室外换热器确定室外换热器当前的结霜临界温度;
根据所述当前的结霜临界温度和所述当前的室外换热器温度,判断室外换热器是否满足 预设的结霜条件。
优选地,所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之前,还包括:
获取空调当前的运行状态,并判断空调当前的运行状态是否为制热状态;
若是,执行所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤。
为实现上述目的,本发明还提供一种空调,所述空调连接有用于检测室外湿度或相对湿度的湿度检测元件、用于检测室外环境温度和室外换热器温度的温度检测元件;所述空调还包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调除霜控制程序,所述空调除霜控制程序被所述处理器执行时实现如上述任一项所述的空调除霜控制方法的步骤。
为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调除霜控制程序,所述空调除霜控制程序被处理器执行时实现如上述任一项所述的空调除霜控制方法的步骤。
在本发明技术方案中,通过获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度,以确定在空调运行过程中的与室外换热器结霜有关的参数,从而根据这些参数以及空调在当前室外环境相对湿度下的持续运行时间,能够判断室外换热器是否满足预设的除霜条件,当室外换热器能够满足预设的结霜条件时,才启动对室外换热器进行除霜操作,根据空调运行过程中的与室外换热器结霜有关的参数和空调在当前室外环境湿度下的持续运行时间判断是否对室外换热器进行除霜操作,有利于使空调实现合理的除霜控制。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明空调器的除霜控制方法第一实施例的流程示意图;
图2是本发明空调器的除霜控制方法第二实施例的流程示意图;
图3是本发明空调器的除霜控制方法第三实施例的流程示意图;
图4是本发明空调器的除霜控制方法中步骤S40的细化流程示意图;
图5是本发明空调器的除霜控制装置第一实施例的功能模块示意图;
图6是本发明空调器的除霜控制装置第二实施例的功能模块示意图;
图7是本发明空调器的除霜控制装置第三实施例的功能模块示意图;
图8是本发明空调器的除霜控制装置中控制模块的细化功能模块示意图;
图9为本发明的空调除霜控制方法第一实施例的流程示意图;
图10为本发明的空调除霜控制方法第二实施例的流程示意图;
图11为本发明的空调除霜控制方法第七实施例的流程示意图;
图12为本发明的空调除霜控制方法第八实施例的流程示意图;
图13为本发明的空调除霜控制方法第九实施例的流程示意图;
图14为本发明的空调的室外机系统结构示意图;
图15为本发明的空调一实施例的模块结构示意图。
附图标号说明:
标号 名称 标号 名称
1 液侧截止阀 2 气测截止阀
3 温度检测元件 4 湿度检测元件
5 四通阀 6 高压传感器
7 低压传感器 8 压缩机
9 单向阀 10 油水分离器
11 气液分离器 12 室外换热器
13 膨胀阀    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供一种空调器的除霜控制方法,参照图1,在一实施例中,该空调器的除霜控制方法包括:
步骤S101,检测换热器冷媒压力;
空调器的换热器包括室内换热器和室外换热器,制冷运行时,室外换热器作为冷凝器起冷凝作用,室内换热器作为蒸发器起蒸发作用;制热运行时,室外换热器作为蒸发器起蒸发作用,室内换热器作为冷凝器起冷凝作用。制冷时需对室内机除霜,检测室内换热器冷媒压力,制热时需对室外机除霜,检测室外换热器冷媒压力。具体地,因换热器压降不大,可用 压力传感器对换热器入口冷媒压力、出口冷媒压力及中间冷媒压力的其中之一进行检测。
步骤S101,根据检测的换热器冷媒压力获取对应的饱和温度;
饱和温度是指液体和蒸汽处于动态平衡状态即饱和状态时所具有的温度。饱和状态时,液体和蒸汽的温度相等。饱和温度一定时,饱和压力也一定;反之,饱和压力一定时,饱和温度也一定。压力升高,会在新的温度下形成新的动态平衡状态。本实施例中根据实际检测到的换热器冷媒压力获取相对应的饱和温度。相对于直接检测换热器的温度,换热器冷媒压力受外界环境温度影响较小,所以通过检测换热器的冷媒压力而获取到与其对应的饱和温度,所得到的温度值更为准确,此饱和温度和换热器温度较为接近,可用此饱和温度代替换热器温度进行判断。具体的,当空调制冷运行时,根据检测到的室内换热器冷媒压力获取室内对应的饱和温度;空调制热运行时,根据检测到的室外换热器冷媒压力获取室外对应的饱和温度。
步骤S103,获取环境露点温度;
环境露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度,即空气中的水蒸气变为露珠时的温度。当空气中水汽已达到饱和时,气温与环境露点温度相同;当水汽未达到饱和时,气温高于环境露点温度,气温降到露点以下是水汽凝结的必要条件。本实施例中获取目前环境的环境露点温度,以判断水汽是否具备凝结的条件。具体的,空调制冷运行时,获取室内环境露点温度;空调制热运行时,相应的获取室外环境露点温度。
步骤S104,在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
获取到饱和温度和环境露点温度后,将两者之间的值进行比较,同时还需要判断饱和温度是否小于0℃,只有当饱和温度小于0℃,同时小于等于环境露点温度,说明空调换热器出现结霜现象,控制空调进入除霜模式。否则控制空调正常运行,保证空调器有霜及时除霜,避免无霜化霜,降低能耗,延长空调使用寿命。
需要说明的是,本发明的实施例中,所述根据检测的换热器冷媒压力获取对应的饱和温度具体为:根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
根据上述可知,不同的压力值,对应的饱和温度也不同,根据压力值的变化,会在新的温度下形成新的液体和蒸汽平衡状态。本实施例中先设置好多个换热器冷媒压力对应的饱和温度,需要时根据检测到的换热器冷媒压力浏览查询对应的饱和温度值;也可以设置好压力和饱和温度的对应公式,根据检测到的换热器冷媒压力计算出对应的饱和温度。
进一步地,参照图2,基于本发明空调器的除霜控制方法第一实施例,在本发明空调器的除霜控制方法第二实施例中,上述步骤S103包括:
步骤S1031,检测环境温度和环境湿球温度;
步骤S1032,根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
本实施例中,湿球温度是指同等焓值空气状态下,空气中水蒸气达到饱和时的空气温度。空气中水蒸气的含量与温度相关,通过检测到的环境温度和环境湿球温度得到对应的环境露点温度。具体地,预设多个环境温度和环境湿球温度对应的环境露点温度,需要时根据检测到的环境温度和环境湿球温度浏览查询对应的环境露点温度;也可以设置好环境温度、环境湿球温度和环境露点温度的对应公式,根据检测到的环境温度和环境湿球温度计算出对应的环境露点温度。空调制冷运行时,检测室内环境温度和室内环境湿球温度,根据检测的室内环境温度和室内环境湿球温度通过查询或计算得到对应的室内环境露点温度;空调制热运行时,检测室外环境温度和室外环境湿球温度,根据检测的室外环境温度和室外环境湿球温度通过查询或计算得到对应的室外环境露点温度。
进一步地,参照图3,基于本发明空调器的除霜控制方法第二实施例,在本发明空调器的除霜控制方法第三实施例中,上述步骤S1032之后还包括:
步骤S1033,根据检测的环境温度和环境湿球温度查询得到对应的结霜临界温度;
步骤S1034,在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
在本实施例中,在根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度之后,还根据这两个温度值查询得到对应的结霜临界温度。具体地,预设多个环境温度和环境湿球温度对应的结霜临界温度,需要时根据检测到的环境温度和环境湿球温度浏览查询对应的结霜临界温度。空调制冷运行时,检测室内环境温度和室内环境湿球温度,根据检测的室内环境温度和室内环境湿球温度通过查询得到对应的室内结霜临界温度;空调制热运行时,检测室外环境温度和室外环境湿球温度,根据检测的室外环境温度和室外环境湿球温度通过查询得到对应的室外结霜临界温度。在环境露点温度低于结霜临界温度,说明达到结霜条件,再进一步执行饱和温度和环境露点温度大小的判断。
进一步地,参照图4,作为本发明空调器的除霜控制方法中步骤S104的一个优选实施例,上述步骤S104包括:
步骤S1041,在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
步骤S1042,累计空调器结霜时间;
步骤S1043,在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
本实施例中,预先设置有预设时间,当饱和温度小于0℃,且小于等于环境露点温度时,说明空气器开始结霜,进行结霜时间累计,并对累计的结霜时间进行判断,当结霜时间大于预设时间时,说明结霜达到一定厚度,才控制空调器进入除霜模式进行除霜,避免一结霜就开始除霜的情况,节省能耗,延长空调使用寿命。
本发明还提供一种空调器的除霜控制装置,参照图5,在一实施例中,本发明提供的空调器的除霜控制装置包括:
第一检测模块10,用于检测换热器冷媒压力;
空调器的换热器包括室内换热器和室外换热器,制冷运行时,室外换热器作为冷凝器起冷凝作用,室内换热器作为蒸发器起蒸发作用;制热运行时,室外换热器作为蒸发器起蒸发作用,室内换热器作为冷凝器起冷凝作用。制冷时需对室内机除霜,检测室内换热器冷媒压力,制热时需对室外机除霜,检测室外换热器冷媒压力。具体地,因换热器压降不大,可用压力传感器对换热器入口冷媒压力、出口冷媒压力及中间冷媒压力的其中之一进行检测。
获取模块20,用于根据检测的换热器冷媒压力获取对应的饱和温度;
饱和温度是指液体和蒸汽处于动态平衡状态即饱和状态时所具有的温度。饱和状态时,液体和蒸汽的温度相等。饱和温度一定时,饱和压力也一定;反之,饱和压力一定时,饱和温度也一定。压力升高,会在新的温度下形成新的动态平衡状态。本实施例中根据实际检测到的换热器冷媒压力获取相对应的饱和温度。相对于直接检测换热器的温度,换热器冷媒压力受外界环境温度影响较小,所以通过检测换热器的冷媒压力而获取到与其对应的饱和温度,所得到的温度值更为准确,此饱和温度和换热器温度较为接近,可用此饱和温度代替换热器温度进行判断。具体的,当空调制冷运行时,根据检测到的室内换热器冷媒压力获取室内对应的饱和温度;空调制热运行时,根据检测到的室外换热器冷媒压力获取室外对应的饱和温度。
所述获取模块20,还用于获取环境露点温度;
环境露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度,即空气中的水蒸气变为露珠时的温度。当空气中水汽已达到饱和时,气温与环境露点温度相同;当水汽未达到饱和时,气温高于环境露点温度,气温降到露点以下是水汽凝结的必要条件。本实施例中获取目前环境的环境露点温度,以判断水汽是否具备凝结的条件。具体的,空调制冷运行时,获取室内环境露点温度;空调制热运行时,相应的获取室外环境露点温度。
控制模块30,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
获取到饱和温度和环境露点温度后,将两者之间的值进行比较,同时还需要判断饱和温度是否小于0℃,只有当饱和温度小于0℃,同时小于等于环境露点温度,说明空调换热器出现结霜现象,控制空调进入除霜模式。否则控制空调正常运行,保证空调器有霜及时除霜,避免无霜化霜,降低能耗,延长空调使用寿命。
需要说明的是,本发明的实施例中,所述获取模块20具体用于根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
根据上述可知,不同的压力值,对应的饱和温度也不同,根据压力值的变化,会在新的温度下形成新的液体和蒸汽平衡状态。本实施例中先设置好多个换热器冷媒压力对应的饱和温度,需要时根据检测到的换热器冷媒压力浏览查询对应的饱和温度值;也可以设置好压力和饱和温度的对应公式,根据检测到的换热器冷媒压力计算出对应的饱和温度。
更进一步的,参照图6,基于本发明空调器的除霜控制装置第二实施例,在本发明空调器的除霜控制装置第三实施例中,所述空调器的除霜控制装置还包括第二检测模块40,用于检测环境温度和环境湿球温度;
所述获取模块20还具体用于根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
本实施例中,湿球温度是指同等焓值空气状态下,空气中水蒸气达到饱和时的空气温度。空气中水蒸气的含量与温度相关,通过检测到的环境温度和环境湿球温度得到对应的环境露点温度。具体地,预设多个环境温度和环境湿球温度对应的环境露点温度,需要时根据检测到的环境温度和环境湿球温度浏览查询对应的环境露点温度;也可以设置好环境温度、环境湿球温度和环境露点温度的对应公式,根据检测到的环境温度和环境湿球温度计算出对应的环境露点温度。空调制冷运行时,检测室内环境温度和室内环境湿球温度,根据检测的室内环境温度和室内环境湿球温度通过查询或计算得到对应的室内环境露点温度;空调制热运行时,检测室外环境温度和室外环境湿球温度,根据检测的室外环境温度和室外环境湿球温度通过查询或计算得到对应的室外环境露点温度。
进一步地,参照图7,基于本发明空调器的除霜控制装置第二实施例,在本发明空调器的除霜控制装置第三实施例中,所述获取模块20还用于根据检测的环境温度和环境湿球温度通过查询得到对应的结霜临界温度;
所述空调器的除霜控制装置还包括执行模块50,用于在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
在本实施例中,在根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境 露点温度之后,还根据这两个温度值查询得到对应的结霜临界温度。具体地,预设多个环境温度和环境湿球温度对应的结霜临界温度,需要时根据检测到的环境温度和环境湿球温度浏览查询对应的结霜临界温度。空调制冷运行时,检测室内环境温度和室内环境湿球温度,根据检测的室内环境温度和室内环境湿球温度通过查询得到对应的室内结霜临界温度;空调制热运行时,检测室外环境温度和室外环境湿球温度,根据检测的室外环境温度和室外环境湿球温度通过查询得到对应的室外结霜临界温度。在环境露点温度低于结霜临界温度,说明达到结霜条件,再进一步执行饱和温度和环境露点温度大小的判断。
进一步地,参照图8,本发明空调器的除霜控制装置的控制模块30包括:
结霜确定单元31,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
时间累积单元32,用于累计空调器结霜时间;
控制单元33,用于在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
本实施例中,预先设置有预设时间,当饱和温度小于0℃,且小于等于环境露点温度时,说明空气器开始结霜,进行结霜时间累计,并对累计的结霜时间进行判断,当结霜时间大于预设时间时,说明结霜达到一定厚度,才控制空调器进入除霜模式进行除霜,避免一结霜就开始除霜的情况,节省能耗,延长空调使用寿命。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图9,为实现上述目的,本发明的第一实施例提供一种空调除霜控制方法,其特征在于,包括如下步骤:
步骤S201,获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度;
步骤S202,侦测空调在当前室外环境相对湿度下的持续运行时间;
步骤S203,根据所述当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器温度和所述持续运行时间,判断室外换热器是否满足预设的除霜条件;
步骤S204,当室外换热器满足预设的结霜条件时,对室外换热器进行除霜操作。
在本发明技术方案中,通过获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度,以确定在空调运行过程中的与室外换热器结霜有关的参数,从而根据这些参数以及空调在当前室外环境相对湿度下的持续运行时间,能够判断室外换热器是否满足预设的除霜条件,当室外换热器能够满足预设的结霜条件时,才启动对室外换热器进行除霜操作,根据空调运行过程中的与室外换热器结霜有关的参数和空调在当前室外环境湿度下的 持续运行时间判断是否对室外换热器进行除霜操作,有利于使空调实现合理的除霜控制。
所述室外环境相对湿度可以通过相对湿度检测元件测量得到,或者通过湿度测量装置测量湿度后换算或查表得到,所述室外环境温度和所述室外换热器都可以通过设置对应的温度检测元件测量得到。在本实施例中,可以采用干湿球湿度计测量湿球温度和干球温度,所述干球温度为室外环境温度,通过所述室外环境温度和所述湿球温度即可获得所述室外环境相对湿度。
制热模式下,空调的室外换热器的温度通常在0℃以下,在制冷模式下,空调的室外换热器的温度通常在30℃以上,因此,根据所述当前的室外换热器温度即可判断空调是否处于制热模式,若处于制热模式,则有必要进一步判断是否应当对室外换热器除霜,进一步判断的依据是:当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度,上述三项数据能用于判断室外换热器是否达到结霜条件,进一步根据持续运行时间能够确定是否需要对室外换热器除霜。
容易理解,当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器温度均满足一定的结霜条件,且这种结霜条件持续至一定时间,才会导致室外换热器结霜的结果,因此,侦测空调在当前室外环境相对湿度下的持续运行时间,有助于判断适宜结霜环境的持续时间,根据适宜结霜的条件和该结霜条件的持续运行时间,即可判断是否需要对室外换热器进行除霜操作。
请参见图10,基于本发明的空调除霜控制方法的第一实施例,本发明的空调除霜控制方法的第二实施例中,所述步骤S203包括:
步骤S2031,根据所述当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度判断室外换热器是否满足预设的结霜条件;
步骤S2032,当室外换热器满足预设的结霜条件时,根据所述当前的室外环境相对湿度和所述当前的室外换热器温度确定室外换热器的当前结霜周期;
步骤S2033,根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件。
根据所述室外环境温度和所述室外环境相对湿度和所述当前的室外换热器温度可以判断室外换热器是否存在结霜的可能。例如,当室外换热器温度超过0℃时,则可以认为室外换热器不具备结霜条件。当室外换热器温度为0℃以下时,进一步结合室外环境温度和室外环境相对湿度,可以判断室外换热器是否具备结霜条件。
根据所述当前的室外环境相对湿度和所述当前的室外换热器温度能够确定室外换热器的当前结霜周期,并且在室外换热器温度适合结霜的条件下,室外环境相对湿度越大,对应 的结霜周期越短,反之,室外环境相对湿度越小,对应的结霜周期越长。在系统中可以存储一映射关系表,此映射关系表中存储有室外环境相对湿度和结霜周期的一一对应关系,获取的室外环境相对湿度后,根据所述映射关系表,即可确定对应的结霜周期。
容易理解,将室外换热器在满足结霜条件的环境中的持续运行时间和结霜周期相比较,即可判断室外换热器是否结霜,有利于据此比较结果判断是否需要启动对室外换热器的除霜控制。
基于本发明的空调除霜控制方法的第二实施例,本发明的空调除霜控制方法的第三实施例中,所述步骤S204进一步包括:
步骤S2041,当所述持续运行时间达到所述当前的结霜周期时,对室外换热器进行除霜操作。
例如,在12:00-12:15时刻间,系统以90%相对湿度运行,该相对湿度对应结霜周期T1为45min,由于持续运行时间为15min,未达到结霜周期,因此,判断系统未结霜,可以不进行除霜控制,此时继续侦测空调在当前室外相对湿度下的持续运行时间,当持续运行时间达到45min时,启动除霜控制。
当然,当所述持续运行时间未达到所述当前的结霜周期时对室外换热器进行除霜操作也同理包含在本发明的保护范围之内。
基于本发明的空调除霜控制方法的第二实施例,本发明的空调除霜控制方法的第四实施例中,所述步骤S201之前,还包括:
步骤S205,获取预设的数据获取周期;
在执行所述步骤S201之时,执行步骤S206,开始计时;
步骤S207,每当计时时间达到所述数据获取周期时,按照所述步骤S101获取下一周期的室外环境相对湿度、下一周期的室外环境温度和下一周期的室外换热器温度。
本文中的上一周期和下一周期指的是相邻的两个数据获取周期。由于室外环境和室外换热器温度是不断在变化的,结霜周期也会不断变化,仅凭一次测量的室外环境和室外换热器温度和侦测空调在该数据下的持续运行时间,除霜控制可能不能达到最理想的效果。为了进一步提高除霜控制的准确性,可以周期性地获取室外环境相对湿度、室外环境温度和室外换热器温度,因此,系统可以及时侦测到结霜条件的变化,迅速调整进入除霜控制的时机。
容易理解,数据获取周期较短时,有利于及时感应到结霜条件的变化,从而实现及时而有效的除霜控制。例如,数据获取周期可以在5min以下。当然,数据获取周期也不宜过短。
基于本发明的空调除霜控制方法的第四实施例,本发明的空调除霜控制方法的第五实施例中,步骤S202之前,还包括:
步骤S208,判断下一周期的室外环境相对湿度与上一周期的室外环境相对湿度是否相等;
步骤S2081,当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度相等时,继续执行所述步骤S202;
步骤S2082,当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度不相等时,按照所述步骤S202侦测空调在下一周期的室外环境相对湿度下的持续运行时间。
判断下一周期的室外环境相对湿度与上一周期的室外环境相对湿度是否相等,根据判断结果可以确定是否需要对上一室外环境相对湿度下的空调运行时间进行累计。当相邻两周期中的室外环境相对湿度数据相等时,对该相对湿度数据下的持续运行时间进行累计即可,当相邻两周期中的室外环境相对湿度数据不相等时,对上一周期的室外环境相对湿度下的持续运行时间进行存储,并开始侦测空调在下一周期的室外环境相对湿度下的持续运行时间。
当然,这只是侦测空调在当前室外环境相对湿度下的持续运行时间的一种实施方式,这种实施方式中,每次累加的时间量就是所述数据获取周期的时长。
在实际的应用中,可以采取一个计时器用于进行数据采集控制,并采取另一个计时器侦测空调在当前室外环境相对湿度下的持续运行时间。
基于本发明的空调除霜控制方法的第五实施例,本发明的空调除霜控制方法的第六实施例中,所述步骤S2033之前,还包括:
步骤S209,获取当前数据获取周期和当前数据获取周期之前的每一室外环境相对湿度所对应的结霜周期和每一室外环境相对湿度所对应的持续运行时间;
所述步骤S2033,包括:
步骤S2033a,根据每一室外环境相对湿度所对应的持续运行时间和每一室外环境相对湿度所对应的结霜周期,判断室外换热器是否满足预设的除霜条件。
按照预设的数据获取周期进行获取室外环境相对湿度、室外环境温度和室外换热器温度,有利于根据每一数据获取周期中获取到的室外环境相对湿度确定该室外环境相对湿度对应的结霜周期。
例如,当数据获取周期t为5min,从12:00开始进入数据获取的第一周期集,在12:00-12:15时刻间,系统均以90%相对湿度运行,该相对湿度对应结霜周期T1为45min。在计时时间达到第二次数据获取周期(此时为12:05),系统持续运行时间t1仅为5min,未达到当前相对湿度对应的结霜周期T1,因此,不进行除霜控制,并直接获取第二轮的数 据,由于第二轮获取到的室外环境相对数据仍不变,因此,此时可以对持续运行时间t1继续进行累加,直至达到第四次数据获取周期(此时为12:15),系统侦测到相对湿度数据变化了(此时相对数据为80%),才停止对持续运行时间t1进行累计,并对空调在80%的相对湿度条件下的持续运行时间t2进行累计。
在12:15-12:35的时间内,系统以80%相对湿度运行,该相对湿度对应结霜周期T2为60min。为了持续判断在空调是否满足除霜条件,需要获取并存储第一个结霜周期数据T1和在90%相对湿度下的持续运行时间t1,并获取并存储第二个结霜周期数据T2和在80%相对湿度下的持续运行时间t2。
请参阅图11,基于本发明的空调除霜控制方法的第六实施例,本发明的空调除霜控制方法的第七实施例中,所述步骤S2033a,包括:
步骤S2033b,获取同一室外环境相对湿度所对应的持续运行时间和结霜周期的比值;
步骤S2033c,获取每一所述室外环境相对湿度所对应的所述比值的求和结果;
步骤S2033d,根据所述求和结果是否达到1,判断室外换热器是否满足预设的除霜条件。
需要注意的是,自空调达到结霜条件开始,若空调在某一室外环境相对湿度的持续运行时间达到对应的结霜周期,则应启动对室外换热器的除霜控制。
当该相对湿度下的持续运行时间未达到结霜周期,且相对湿度发生变化,系统在对新的相对湿度下的持续运行时间进行侦测时,还应获取每一所述室外环境相对湿度所对应的所述比值的求和结果,并根据所述求和结果是否达到1,判断室外换热器是否满足预设的除霜条件,一旦求和结果达到1,就需要启动对室外换热器的除霜控制。
例如,假设数据获取周期为5min,自12:00开始获取第一次数据。在12:00-12:15时刻间,系统均以90%相对湿度运行,该相对湿度对应结霜周期T1为45min,12:15-12:35的时间内,系统以80%相对湿度运行,该相对湿度对应结霜周期T2为60min。
获取到的第一次求和结果为:
5/45=1/9≤1,不满足预设除霜条件;
获取到的第二次求和结果为:
10/45=2/9≤1,不满足预设除霜条件;
获取到的第三次求和结果为:
15/45=1/3≤1,不满足预设除霜条件;
由于第一时段(12:00-12:15)的求和结果均为达到1,因此,数据获取的过程一直持续进行至第二时段(12:15-12:35),并持续统计求和结果。
获取到的第四次求和结果为:
15/45+5/60=5/12≤1,不满足预设除霜条件;
......
获取到的第八次求和结果为:
15/45+20/60=2/3≤1,仍不满足预设除霜条件。
因此,需要继续获取下一个周期的室外环境相对湿度、室外环境温度、室外换热器温度及持续运行时间。
请参见图12,基于本发明的空调除霜控制方法的第二实施例至第七实施例中的任一项,本发明的空调除霜控制方法的第八实施例中,所述步骤S2031包括:
步骤S2031a,根据所述当前的室外环境相对湿度和所述当前的室外换热器确定室外换热器当前的结霜临界温度;
步骤S2031b,根据所述当前的结霜临界温度和所述当前的室外换热器温度,判断室外换热器是否满足预设的结霜条件。
根据所述室外环境温度和所述室外环境相对湿度,可以确定当前的露点温度。只要室外换热器温度在露点温度以下,就存在结霜的可能,之所以只存在结霜的可能,是因为是否结霜还要参考系统在适宜结霜条件下的持续运行时间。在本实施例中,在系统中预存不同室外环境温度和室外环境相对湿度下的结霜临界温度值,为了使系统能更准确地判断室外换热器达到结霜条件,在本实施例中,优选所述结霜临界温度小于或等于所述露点温度,当室外换热器温度小于或等于所述结霜临界温度时,认为室外换热器满足预设的结霜条件并开始结霜。
请参阅图13,基于本发明的空调除霜控制方法的第一实施例至第七实施例中的任一项,本发明的空调除霜控制方法的第九实施例中,所述步骤S201之前,还包括:
步骤S2010,获取空调当前的运行状态,并判断空调当前的运行状态是否为制热状态;
若是,则执行所述步骤S201。
根据室外换热器的温度可以判断空调是否处于制热状态,只有当空调处于制热状态时,室外换热器才存在结霜的可能,才有必要判断是否需要进行除霜。
在本实施例中,直接获取空调当前的运行状态,当空调当前的运行状态为制热状态时,才进行后续的启动除霜控制的判断,使得方法的逻辑更加简单和直观,由于判断空调运行状态的步骤简便而准确,因此不容易导致误判。
步骤S2010可以设置在所述步骤S203之前的任意时序,在本实施例中,步骤S2010设 置在步骤S201之前,有利于避免制冷模式下进行不必要的数据采集和分析。
此外,为实现上述目的,本发明的第一实施例提供一种空调,所述空调连接有用于检测室外湿度或相对湿度的湿度检测元件4、用于检测室外环境温度和室外换热器温度的温度检测元件3;所述空调还包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调除霜控制程序,所述空调除霜控制程序被所述处理器执行时实现上述任一项所述的空调除霜控制方法的步骤。
请参阅图14,为空调的室外机系统一实施例的结构示意图,空调室外机系统可以由液侧截止阀1、气侧截止阀2、温度检测元件3、湿度检测元件4、四通阀5、高压传感器6、低压传感器7、压缩机系统、单向阀9、油水分离器10、气液分离器11、室外换热器12和膨胀阀13组成,其中,可以根据需要在此室外机系统上进行元件删减或增加。
所述压缩机系统可以由任意数量的变频压缩机和/或定频压缩机并联组成,以实现全变频压缩机组合、全定频压缩机组合,或变频、定频压缩机混合组合。本实施例中,所述压缩机系统采用一个定频压缩机和一个变频压缩机并联。
请参阅图15,在某些具体实施方式中,该空调可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口,具体使用时,前端通过上述用户接口1003获取数据。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图7中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
由于本实施例空调的技术方案至少包括上述空调除霜控制方法实施例的全部技术方案,因此至少具有以上实施例的全部技术效果,此处不再一一赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备进入本发明各个实施例所述的方法。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调除霜控制程序,所述空调除霜控制程序被处理器执行时实现上述任一项所述的空调除霜控制方法的步骤。由于本实施例计算机可读存储介质的技术方案至少包括上述空调除霜控制方法实施例的全部技术方案,因此至少具有以上实施例的全部技术效果,此处不再一一赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (23)

  1. 一种空调器的除霜控制方法,其特征在于,所述空调器的除霜控制方法包括以下步骤:
    检测换热器冷媒压力或换热器盘管温度;
    根据检测的换热器冷媒压力获取对应的饱和温度;
    获取环境露点温度;
    在对应的饱和温度或换热器盘管温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
  2. 如权利要求1所述的空调器的除霜控制方法,其特征在于,所述根据检测的换热器冷媒压力获取对应的饱和温度具体为:
    根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
  3. 如权利要求1或2所述的空调器的除霜控制方法,其特征在于,所述获取环境露点温度的步骤包括:
    检测环境温度和环境湿球温度;
    根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
  4. 如权利要求1-3任一项所述的空调器的除霜控制方法,其特征在于,所述根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度之后还包括:
    根据检测的环境温度和环境湿球温度查询得到对应的结霜临界温度;
    在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
  5. 如权利要求1-4任一项所述的空调器的除霜控制方法,其特征在于,所述在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式的步骤包括:
    在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
    累计空调器结霜时间;
    在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
  6. 一种空调器的除霜控制装置,其特征在于,所述空调器的除霜控制装置包括:
    第一检测模块,用于检测换热器冷媒压力;
    获取模块,用于根据检测的换热器冷媒压力获取对应的饱和温度;
    所述获取模块,还用于获取环境露点温度;
    控制模块,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,控制空调器进入除霜模式。
  7. 如权利要求6所述的空调器的除霜控制装置,其特征在于,所述获取模块具体用于根据检测的换热器冷媒压力查询或计算得到对应的饱和温度。
  8. 如权利要求6或7所述的空调器的除霜控制装置,其特征在于,所述空调器的除霜控制装置还包括:
    第二检测模块,用于检测环境温度和环境湿球温度;
    所述获取模块还具体用于根据检测的环境温度和环境湿球温度通过查询或计算得到对应的环境露点温度。
  9. 如权利要求6-8任一项所述的空调器的除霜控制装置,其特征在于:
    所述获取模块还用于根据检测的环境温度和环境湿球温度通过查询得到对应的结霜临界温度;
    所述空调器的除霜控制装置还包括:
    执行模块,用于在环境露点温度小于等于结霜临界温度时,执行所述判断对应的饱和温度是否小于0℃,且小于等于环境露点温度。
  10. 如权利要求6-9任一项所述的空调器的除霜控制装置,其特征在于,所述控制模块包括:
    结霜确定单元,用于在对应的饱和温度小于0℃,且小于等于环境露点温度时,确定空调器开始结霜;
    时间累积单元,用于累计空调器结霜时间;
    控制单元,用于在空调器结霜时间大于预设时间时,控制空调器进入除霜模式。
  11. 一种空调除霜控制方法,其特征在于,包括如下步骤:
    获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度;
    侦测空调在当前室外环境相对湿度下的持续运行时间;
    根据所述当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器 温度和所述持续运行时间,判断室外换热器是否满足预设的除霜条件;
    当室外换热器满足预设的结霜条件时,对室外换热器进行除霜操作。
  12. 根据权利要求11所述的空调除霜控制方法,其特征在于,所述根据所述当前的室外环境相对湿度、所述当前的室外环境温度、所述当前的室外换热器温度和所述持续运行时间,判断室外换热器是否满足预设的除霜条件的步骤,包括:
    根据所述当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度判断室外换热器是否满足预设的结霜条件;
    当室外换热器满足预设的结霜条件时,根据所述当前的室外环境相对湿度和所述当前的室外换热器温度确定室外换热器的当前结霜周期;
    根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件。
  13. 根据权利要求11或12所述的空调除霜控制方法,其特征在于,所述当室外换热器满足预设的结霜条件时,对室外换热器进行除霜操作,进一步包括:
    当所述持续运行时间达到所述当前的结霜周期时,对室外换热器进行除霜操作。
  14. 根据权利要求11-13任一项所述的空调除霜控制方法,其特征在于,所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之前,还包括:
    获取预设的数据获取周期;
    在执行所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之时,开始计时;
    每当计时时间达到所述数据获取周期时,获取下一周期的室外环境相对湿度、下一周期的室外环境温度和下一周期的室外换热器温度。
  15. 根据权利要求11-14任一项所述的空调除霜控制方法,其特征在于,所述侦测空调在当前室外环境相对湿度下的持续运行时间的步骤之前,还包括:
    判断下一周期的室外环境相对湿度与上一周期的室外环境相对湿度是否相等;
    当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度相等时,继续执行所述侦测空调在当前室外环境相对湿度下的持续运行时间的步骤;
    当下一周期的室外环境相对湿度与上一周期的室外环境相对湿度不相等时,侦测空调在下一周期的室外环境相对湿度下的持续运行时间。
  16. 根据权利要求11-15任一项所述的空调除霜控制方法,其特征在于,所述根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤之前,还包括:
    获取当前数据获取周期和当前数据获取周期之前的每一室外环境相对湿度所对应的结霜周期和每一室外环境相对湿度所对应的持续运行时间;
    所述根据所述持续运行时间和所述当前的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤,包括:
    根据每一室外环境相对湿度所对应的持续运行时间和每一室外环境相对湿度所对应的结霜周期,判断室外换热器是否满足预设的除霜条件。
  17. 根据权利要求16所述的空调除霜控制方法,其特征在于,所述根据每一室外环境相对湿度所对应的持续运行时间和每一室外环境相对湿度所对应的结霜周期,判断室外换热器是否满足预设的除霜条件的步骤,包括:
    获取同一室外环境相对湿度所对应的持续运行时间和结霜周期的比值;
    获取每一所述室外环境相对湿度所对应的所述比值的求和结果;
    根据所述求和结果是否达到1,判断室外换热器是否满足预设的除霜条件。
  18. 根据权利要求12至17中任一项所述的空调除霜控制方法,其特征在于,所述根据所述当前的室外环境相对湿度、所述当前的室外环境温度和所述当前的室外换热器温度判断室外换热器是否满足预设的结霜条件的步骤,包括:
    根据所述当前的室外环境相对湿度和所述当前的室外换热器确定室外换热器当前的结霜临界温度;
    根据所述当前的结霜临界温度和所述当前的室外换热器温度,判断室外换热器是否满足预设的结霜条件。
  19. 根据权利要求11至17中任一项所述的空调除霜控制方法,其特征在于,所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤之前,还包括:
    获取空调当前的运行状态,并判断空调当前的运行状态是否为制热状态;
    若是,执行所述获取当前的室外环境相对湿度、当前的室外环境温度和当前的室外换热器温度的步骤。
  20. 一种空调,其特征在于,所述空调连接有用于检测室外湿度或相对湿度的湿度检测元件、用于检测室外环境温度和室外换热器温度的温度检测元件;所述空调还包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调除霜控制程序,所述空调除霜控制程序被所述处理器执行时实现如权利要求1-5中任一所述的空调器的除霜控制方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有空调除霜控制程序,所述空调除霜控制程序被处理器执行时实现如权利要求1-5中任一所述的空调器的除霜控制方法。
  22. 一种空调,其特征在于,所述空调连接有用于检测室外湿度或相对湿度的湿度检测元件、用于检测室外环境温度和室外换热器温度的温度检测元件;所述空调还包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调除霜控制程序,所述空调除霜控制程序被所述处理器执行时实现如权利要求11至19中任一项所述的空调除霜控制方法的步骤。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有空调除霜控制程序,所述空调除霜控制程序被处理器执行时实现如权利要求11至19中任一项所述的空调除霜控制方法的步骤。
PCT/CN2017/106842 2016-10-20 2017-10-19 一种空调除霜方法及装置 WO2018072727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17861512.6A EP3531045A4 (en) 2016-10-20 2017-10-19 METHOD AND DEVICE FOR DEFROSTING AN AIR-CONDITIONING SYSTEM
US16/387,358 US20190242604A1 (en) 2016-10-20 2019-04-17 Method and device for defrosting air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610915879.1A CN106288243A (zh) 2016-10-20 2016-10-20 空调器的除霜控制方法及装置
CN201610915879.1 2016-10-20
CN201710269632.1 2017-04-21
CN201710269632.1A CN107044716B (zh) 2017-04-21 2017-04-21 空调除霜控制方法、空调及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/387,358 Continuation US20190242604A1 (en) 2016-10-20 2019-04-17 Method and device for defrosting air conditioner

Publications (1)

Publication Number Publication Date
WO2018072727A1 true WO2018072727A1 (zh) 2018-04-26

Family

ID=62018920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106842 WO2018072727A1 (zh) 2016-10-20 2017-10-19 一种空调除霜方法及装置

Country Status (3)

Country Link
US (1) US20190242604A1 (zh)
EP (1) EP3531045A4 (zh)
WO (1) WO2018072727A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157148A (zh) * 2019-12-24 2020-05-15 追觅科技(上海)有限公司 温度检测校正方法、装置及存储介质
CN114294785A (zh) * 2021-12-29 2022-04-08 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN114484743A (zh) * 2022-02-08 2022-05-13 北京小米移动软件有限公司 空调器控制方法、装置、空调器及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624623B1 (ja) * 2019-06-26 2019-12-25 伸和コントロールズ株式会社 温度制御装置及び温調装置
CN111609518B (zh) * 2020-05-07 2023-02-03 青岛海尔空调电子有限公司 用于空调器的控制方法及空调器
CN112923515B (zh) * 2021-03-19 2022-03-08 广东积微科技有限公司 一种热泵机组的除霜方法
CN114265442B (zh) * 2021-11-19 2023-02-24 青岛海尔空调电子有限公司 确定室外湿球温度的方法、风机控制方法、电子设备
CN114279110B (zh) * 2022-03-01 2022-05-20 浙江乾丰智能科技有限公司 一种空气能热水器智能除霜装置及方法
KR20230135891A (ko) * 2022-03-17 2023-09-26 삼성전자주식회사 공기조화기 및 그 제어방법
CN114992781A (zh) * 2022-05-31 2022-09-02 北京小米移动软件有限公司 空调器的化霜控制方法、装置、终端及存储介质
CN114893866B (zh) * 2022-06-21 2023-07-21 珠海格力电器股份有限公司 一种化霜控制方法、装置及空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250438A (ja) * 1985-04-25 1986-11-07 Saginomiya Seisakusho Inc 空気調和機の除霜運転制御装置
JPH0278844A (ja) * 1988-09-14 1990-03-19 Hokkaido Electric Power Co Inc:The 空気調和機
CN102022872A (zh) * 2010-12-03 2011-04-20 劳特斯空调(江苏)有限公司 智能风冷热泵化霜控制方法
CN204301351U (zh) * 2013-11-19 2015-04-29 三菱电机株式会社 热泵式热水供给器
CN106288243A (zh) * 2016-10-20 2017-01-04 广东美的暖通设备有限公司 空调器的除霜控制方法及装置
CN107044716A (zh) * 2017-04-21 2017-08-15 广东美的暖通设备有限公司 空调除霜控制方法、空调及计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263426A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 除霜制御装置
JP4666061B2 (ja) * 2008-11-17 2011-04-06 ダイキン工業株式会社 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250438A (ja) * 1985-04-25 1986-11-07 Saginomiya Seisakusho Inc 空気調和機の除霜運転制御装置
JPH0278844A (ja) * 1988-09-14 1990-03-19 Hokkaido Electric Power Co Inc:The 空気調和機
CN102022872A (zh) * 2010-12-03 2011-04-20 劳特斯空调(江苏)有限公司 智能风冷热泵化霜控制方法
CN204301351U (zh) * 2013-11-19 2015-04-29 三菱电机株式会社 热泵式热水供给器
CN106288243A (zh) * 2016-10-20 2017-01-04 广东美的暖通设备有限公司 空调器的除霜控制方法及装置
CN107044716A (zh) * 2017-04-21 2017-08-15 广东美的暖通设备有限公司 空调除霜控制方法、空调及计算机可读存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157148A (zh) * 2019-12-24 2020-05-15 追觅科技(上海)有限公司 温度检测校正方法、装置及存储介质
CN114294785A (zh) * 2021-12-29 2022-04-08 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN114294785B (zh) * 2021-12-29 2023-09-08 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN114484743A (zh) * 2022-02-08 2022-05-13 北京小米移动软件有限公司 空调器控制方法、装置、空调器及存储介质

Also Published As

Publication number Publication date
EP3531045A1 (en) 2019-08-28
US20190242604A1 (en) 2019-08-08
EP3531045A4 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2018072727A1 (zh) 一种空调除霜方法及装置
CN101451779B (zh) 热泵空调除霜控制方法
WO2020056956A1 (zh) 热泵机组的化霜控制方法、装置、存储介质及热泵机组
CN105546770B (zh) 空调的频率控制方法及空调
CN106016628B (zh) 空调器化霜控制的方法及装置
CN102519186B (zh) 空调风冷热泵机组的除霜方法、空调风冷热泵机组
CN107543287B (zh) 空调装置及其控制方法
CN104807113A (zh) 一种空调室外机、空调室外机除霜判定系统以及方法
CN103411290A (zh) 空调器及其除霜控制方法
CN105258295A (zh) 空调器的防凝露控制方法及装置
CN105066377A (zh) 空调器的除霜控制方法、装置及空调器
CN103743060A (zh) 基于空气温度和湿度的热泵型空调系统除霜控制方法
CN107883487B (zh) 热泵空调系统、热泵空调器及其控制方法以及存储介质
CN109253524B (zh) 一种热泵系统的控制方法、热泵系统及空调
CN115095955B (zh) 空调器和空调器除霜控制方法
CN115183400B (zh) 空调器和空调器除霜控制方法
CN113883661B (zh) 用于多联机空调系统的除霜控制方法
CN109579344A (zh) 一种能够防止压缩机液击的空调系统及其控制方法
CN115013931B (zh) 空调器及其控制方法、装置及计算机可读存储介质
CN107687728B (zh) 一种判断结露点的空气能热泵化霜的控制方法
CN111623471B (zh) 空调器的除霜方法、空调器及计算机可读存储介质
CN115183401B (zh) 空调器和空调器除霜控制方法
CN115031352B (zh) 空调器和空调器除霜控制方法
CN115031353B (zh) 空调器和空调器除霜控制方法
US9664426B2 (en) System and method for improving efficiency of a refrigerant based system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861512

Country of ref document: EP

Effective date: 20190520