WO2018072565A1 - 一种多载波系统的数据调制方法及装置 - Google Patents

一种多载波系统的数据调制方法及装置 Download PDF

Info

Publication number
WO2018072565A1
WO2018072565A1 PCT/CN2017/100372 CN2017100372W WO2018072565A1 WO 2018072565 A1 WO2018072565 A1 WO 2018072565A1 CN 2017100372 W CN2017100372 W CN 2017100372W WO 2018072565 A1 WO2018072565 A1 WO 2018072565A1
Authority
WO
WIPO (PCT)
Prior art keywords
different
data
waveform functions
time
functions
Prior art date
Application number
PCT/CN2017/100372
Other languages
English (en)
French (fr)
Inventor
辛雨
边峦剑
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/342,870 priority Critical patent/US10917282B2/en
Publication of WO2018072565A1 publication Critical patent/WO2018072565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3494Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems using non - square modulating pulses, e.g. using raised cosine pulses; Partial response QAM, i.e. with partial response pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a data modulation method and apparatus for a multi-carrier system.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • OFDM Orthogonal Frequency Division Multiplexing
  • time-frequency resources composed of subcarriers and OFDM symbols constitute a wireless physical time-frequency resource of the LTE system.
  • the LTE system introduces a cyclic prefix (CP, Cyclic Prefix), that is, CP-OFDM, in the OFDM technology, so that the system has good performance.
  • CP cyclic prefix
  • multi-carrier systems need to be able to use both new waveform functions and early versions of user terminals, ie terminals using CP-OFDM rectangular functions, and multi-carrier systems to adapt to more application scenarios. There may be cases where multiple waveform functions coexist, and current multi-carrier systems use only one waveform function, a rectangular function.
  • Embodiments of the present invention are directed to providing a data modulation method and apparatus for a multi-carrier system, which are intended to The data to be transmitted is modulated with at least two different waveform functions, so that the multi-carrier system can be applied to a variety of waveform modulations and is compatible with rectangular waveform modulation.
  • an embodiment of the present invention provides a data modulation method for a multi-carrier system, where the method includes:
  • the transmitting node uses at least two different waveform functions
  • the transmitting node separately performs data modulation on the corresponding data to be transmitted according to the different waveform functions.
  • an embodiment of the present invention provides a data modulation apparatus for a multi-carrier system, where the apparatus includes: a configuration module and a modulation module;
  • the configuration module is configured to adopt at least two different waveform functions
  • the modulating module is configured to perform data modulation on each of the corresponding data to be transmitted according to the different waveform functions.
  • an embodiment of the present invention provides a computer readable storage medium storing computer executable instructions, which are implemented by a processor to implement a data modulation method of the multi-carrier system.
  • Embodiments of the present invention provide a data modulation method and apparatus for a multi-carrier system, which method uses a multi-carrier system to adopt at least two different waveform functions, and performs data on respective corresponding data to be transmitted according to the different waveform functions. modulation.
  • the multi-carrier system is capable of selecting a suitable waveform function through actual application requirements.
  • the multi-carrier system is suitable for a variety of waveform modulations while being compatible with rectangular waveform modulation in LTE systems.
  • FIG. 1 is a schematic diagram of a data modulation method of a multi-carrier system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a data modulation method of another multi-carrier system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another data modulation method for a multi-carrier system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a data modulation method of another multi-carrier system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a data modulation apparatus of a multi-carrier system according to an embodiment of the present invention.
  • 5G wireless cellular communication technology has extensively studied new waveform techniques for suppressing out-of-band leakage and improving the utilization efficiency of adjacent spectrum.
  • the 5G communication system needs to use both the new waveform function and the earlier version of the user terminal, that is, the terminal using the CP-OFDM rectangular function, and the system may coexist with multiple waveform functions in order to adapt to more application scenarios.
  • Current multi-carrier systems use only one waveform function, a rectangular function. This embodiment proposes a method that enables a multi-carrier system to be applied to a variety of waveform modulations and is compatible with rectangular waveform modulation.
  • the multi-carrier system of the embodiment of the present invention refers to, but is not limited to, a system that uses a plurality of sub-carriers to transmit data, such as an OFDM system.
  • the transmitting end of the system includes: various transmitting devices such as a base station, a terminal, a relay, and a transmitting point (TP).
  • the transmitting device is collectively referred to as a transmitting node.
  • the embodiment provides a data modulation method for a multi-carrier system, and the method may include:
  • the transmitting node uses at least two different waveform functions
  • the transmitting node adopts at least two different waveform functions, which may be different waveform functions on different sub-bands or different times according to the requirements of the application scenario; or may be at the same time according to the requirements of the application scenario.
  • Different waveform functions are used on the same subband.
  • the subband includes k subcarriers, and k is an integer greater than or equal to 1.
  • the transmitting node separately performs data modulation on each corresponding data to be transmitted according to the different waveform function.
  • the at least two different waveform functions may include a raised cosine function with a roll-off factor ⁇ as a value b, and other raised cosine functions or non-raised cosine functions with a roll-off factor ⁇ not equal to the value b, wherein b is a real number greater than or equal to 0 and less than or equal to 1. That is to say, when the roll-off factor ⁇ takes different values, the corresponding raised cosine function belongs to a different waveform function. When the roll-off factor of the raised cosine function is equal to 0, the raised cosine function is a rectangular function.
  • the non-raised cosine function may include a root raised cosine function, a piecewise function, and the like.
  • T T 1 /2
  • T 1 represents the time domain width parameter of the raised cosine function
  • T 1 (1+ ⁇ ) N ⁇ T
  • N is a real number greater than or equal to 1
  • T is a symbol interval; that is, the maximum time between independent variables corresponding to the non-zero function value of the raised cosine function
  • the span is equal to N x T.
  • the rectangular function in the CP-OFDM format has the lowest complexity, and the multipath delay resistance is good, but the out-of-band leakage is the most serious; the raised cosine function is calculated. The amount is small, there is inter-symbol interference, and the out-of-band leakage suppression effect is slightly worse.
  • the transmitting node separately performs data modulation on the corresponding data to be sent according to the different waveform functions, and may include:
  • N Performing N repetitions of each of the consecutive L symbols to obtain a time-domain data sequence of extended length N ⁇ T; wherein T is a symbol interval, and N is a real number greater than or equal to 1;
  • the time-domain data sequence in which the L points are multiplied and has a length of N ⁇ T is sequentially shifted by one symbol interval T in the time domain, and the lengths corresponding to L consecutively shifted by one symbol interval T are N.
  • the time domain data sequence of ⁇ T is superimposed to obtain a set of time domain data sequences of length [N+(L-1)] ⁇ T.
  • the size of the OFDM symbol interval is related to the number of OFDM symbols per unit time; the OFDM symbol interval can be regarded as the interval duration between the first subcarrier of the current symbol and the first subcarrier of the next symbol;
  • the symbol intervals between different OFDM symbols may be unequal.
  • L is an integer greater than 0, and L is the number of OFDM symbols included in one Transmission Time Interval (TTI). In LTE, one TTI is equal to 1 ms.
  • the transmitting node in order to be compatible with the CP-OFDM user terminal, when the waveform function is the rectangular function, the transmitting node separately performs data modulation on the corresponding data to be transmitted according to the different waveform functions.
  • the CP-OFDM symbols corresponding to the consecutive L symbols are connected end to end to obtain a set of consecutive time domain data sequences consisting of L of the CP-OFDM symbols.
  • the data modulation method of the waveform function includes, but is not limited to, the method described above.
  • the modulated data of the different waveform functions are frequency shifted and mapped to different actual frequency subbands.
  • this embodiment provides a data modulation method for a multi-carrier system, and an application thereof.
  • the launch node including:
  • one of the different waveform functions is a raised cosine function whose roll-off factor is equal to the value b, and the rest is a raised cosine function or a non-raised cosine function whose roll-off factor is not equal to the value b; wherein, b For a certain value.
  • the mathematical representation of the raised cosine function includes:
  • N a real number greater than or equal to 1
  • T is a symbol interval; that is, the maximum time span between independent variables corresponding to the non-zero function value of the raised cosine function Equal to N ⁇ T.
  • the corresponding raised cosine function belongs to a different waveform function.
  • the raised cosine function is a rectangular function.
  • the non-raised cosine function includes: a root raised cosine function, a piecewise function, and the like.
  • the transmitting node may adopt the different waveform functions on different subbands at the same time; similarly, the transmitting node may also adopt the different waveforms on different subbands at different times. function.
  • the subband includes k subcarriers, and k is an integer greater than or equal to 1.
  • S220 Modulate data on the different sub-bands according to the different waveform functions.
  • the separately modulating data on the different sub-bands according to the different waveform functions may include:
  • the time-domain data sequence in which the L points are multiplied and has a length of N ⁇ T is sequentially shifted by one symbol interval T in the time domain, and the lengths corresponding to L consecutively shifted by one symbol interval T are N.
  • the time domain data sequence of ⁇ T is superimposed to obtain a set of time domain data sequences of length [N+(L-1)] ⁇ T.
  • the CP-OFDM symbols corresponding to the consecutive L symbols are connected end to end to obtain a set of consecutive time domain data sequences consisting of L of the CP-OFDM symbols.
  • the data modulation method of the waveform function includes, but is not limited to, the method described above.
  • the modulated data of the different waveform functions are frequency shifted and mapped to different actual frequency subbands.
  • this embodiment provides a data modulation method for a multi-carrier system, which is applied to a transmitting node, and includes:
  • one of the different waveform functions is a raised cosine function with a roll-off factor equal to the value b, and the rest is a raised cosine function or a non-raised cosine function with a roll-off factor not equal to the value b.
  • the mathematical representation of the raised cosine function includes:
  • N a real number greater than or equal to 1
  • T is a symbol interval; that is, the maximum time span between independent variables corresponding to the non-zero function value of the raised cosine function Equal to N ⁇ T.
  • the corresponding raised cosine function belongs to a different waveform function.
  • the raised cosine function is a rectangular function.
  • the non-raised cosine function includes: a root raised cosine function, a piecewise function, and the like.
  • the transmitting node may employ the different waveform functions at different times of the same subband.
  • the subband includes k subcarriers, and k is an integer greater than or equal to 1.
  • S320 Modulate data of the different time periods of the same subband according to the different waveform functions.
  • the separately modulating data of the same sub-band at different times according to the different waveform functions may include:
  • N Performing N repetitions of each of the consecutive L symbols to obtain a time-domain data sequence of extended length N ⁇ T; wherein T is a symbol interval, and N is a real number greater than or equal to 1;
  • the time-domain data sequence in which the L points are multiplied and has a length of N ⁇ T is sequentially shifted by one symbol interval T in the time domain, and the lengths corresponding to L consecutively shifted by one symbol interval T are N.
  • the time domain data sequence of ⁇ T is superimposed to obtain a set of time domain data sequences of length [N+(L-1)] ⁇ T.
  • Modulation which can include:
  • the CP-OFDM symbols corresponding to the consecutive L symbols are connected end to end to obtain a set of consecutive time domain data sequences consisting of L of the CP-OFDM symbols.
  • the data modulation method of the waveform function includes, but is not limited to, the method described above.
  • the modulated data of the waveform function is frequency shifted and mapped to the same actual frequency subband.
  • this embodiment provides a data modulation method for a multi-carrier system, which is applied to a transmitting node, and includes:
  • one of the different waveform functions is a raised cosine function with a roll-off factor equal to the value b, and the rest is a raised cosine function or a non-raised cosine function with a roll-off factor not equal to the value b.
  • the mathematical representation of the raised cosine function includes:
  • N a real number greater than or equal to 1
  • T is a symbol interval; that is, the maximum time span between independent variables corresponding to the non-zero function value of the raised cosine function Equal to N ⁇ T.
  • the corresponding raised cosine function belongs to a different waveform function.
  • the raised cosine function is a rectangular function.
  • the non-raised cosine function includes: a root raised cosine function, a piecewise function, and the like.
  • the transmitting node may employ the different waveform functions for different users on the same subband at the same time.
  • the subband includes k subcarriers, and k is an integer greater than or equal to 1.
  • S420 Modulate data of different users on the same sub-band at the same time according to the different waveform functions.
  • the separately modulating data of different users on the same sub-band at the same time according to the different waveform functions may include:
  • N Performing N repetitions of each of the consecutive L symbols to obtain a time-domain data sequence of extended length N ⁇ T; wherein T is a symbol interval, and N is a real number greater than or equal to 1;
  • the time-domain data sequence in which the L points are multiplied and has a length of N ⁇ T is sequentially shifted by one symbol interval T in the time domain, and the lengths corresponding to L consecutively shifted by one symbol interval T are N.
  • the time domain data sequence of ⁇ T is superimposed to obtain a set of time domain data sequences of length [N+(L-1)] ⁇ T.
  • the waveform function is the rectangular function
  • different users on the same sub-band at the same time can include:
  • the CP-OFDM symbols corresponding to the consecutive L symbols are connected end to end to obtain a set of consecutive time domain data sequences consisting of L of the CP-OFDM symbols.
  • the data modulation method of the waveform function includes, but is not limited to, the method described above.
  • the modulated data of the waveform function is frequency shifted and mapped to the same actual frequency subband.
  • Embodiments of the present invention provide a data modulation method and apparatus for a multi-carrier system, which enables a multi-carrier system to perform data modulation using at least two different waveform functions.
  • the multi-carrier system is capable of selecting a suitable waveform function through actual application requirements.
  • the multi-carrier system is suitable for a variety of waveform modulations while being compatible with rectangular waveform modulation.
  • a data modulating device 50 for a multi-carrier system may include: a configuration module 501 and a modulation module 502;
  • the configuration module 501 is configured to adopt at least two different waveform functions
  • the modulating module 502 is configured to perform data modulation on each of the corresponding data to be transmitted according to the different waveform functions.
  • the functions of the configuration module and the modulation module are all performed by a processor.
  • the processor may be an Application Specific Integrated Circuit (ASIC), a DSP, a Digital Signal Processing Device (DSPD), a Programmable Logic Device (PLD), an FPGA, a CPU, or the like. At least one of a controller, a microcontroller, and a microprocessor. It is to be understood that the electronic device for implementing the above-mentioned processor functions may be other for different devices, which is not limited in the embodiment of the present invention.
  • the configuration module 501 is configured to adopt the different waveform functions on different sub-bands; or, to adopt the different waveform functions at different times.
  • the configuration module 501 is configured to adopt the different waveform functions on different sub-bands at the same time.
  • the configuration module 501 is configured to adopt the different waveform functions at different times of the same subband.
  • the modulation module 502 is configured to:
  • N Performing N repetitions of each of the consecutive L symbols to obtain a time-domain data sequence of extended length N ⁇ T; wherein T is a symbol interval, and N is a real number greater than or equal to 1;
  • the time-domain data sequence in which the L points are multiplied and has a length of N ⁇ T is sequentially shifted by one symbol interval T in the time domain, and the lengths corresponding to L consecutively shifted by one symbol interval T are N.
  • the time domain data sequence of ⁇ T is superimposed to obtain a set of time domain data sequences of length [N+(L-1)] ⁇ T.
  • the application can take the form of a hardware embodiment, a software embodiment, or an embodiment in combination with software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • Embodiments of the present invention provide a data modulation method and apparatus for a multi-carrier system, which method uses a multi-carrier system to adopt at least two different waveform functions, and performs data on respective corresponding data to be transmitted according to the different waveform functions. modulation.
  • the multi-carrier system is capable of selecting a suitable waveform function through actual application requirements.
  • the multi-carrier system is suitable for a variety of waveform modulations while being compatible with rectangular waveform modulation in LTE systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多载波系统的数据调制方法及装置,该方法包括:发射节点采用至少两种不同的波形函数进行数据调制。

Description

一种多载波系统的数据调制方法及装置 技术领域
本申请涉及但不限于通讯领域,尤指一种多载波系统的数据调制方法及装置。
背景技术
长期演进技术(LTE,Long Term Evolution)是由第三代合作伙伴计划(3GPP,The 3rd Generation Partnership Project)组织制定的通用移动通信系统(UMTS,Universal Mobile Telecommunications System)技术标准的长期演进。LTE系统引入正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术,因此,子载波和OFDM符号构成的时频资源组成了LTE系统的无线物理时频资源。同时,LTE系统在OFDM技术中引入循环前缀(CP,Cyclic Prefix),即CP-OFDM,从而使系统具有良好的性能。但是,由于CP-OFDM的加窗技术采用的是矩形函数,相应地,其频谱泄漏比较大;因此,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)组织在第五代(5G,Fifth Generation)通信中大量研究新的波形技术,用以抑制带外泄漏,提高相邻频谱的利用效率。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
在新波形技术应用中,多载波系统需要既可以使用新波形函数,又能兼容早期版本的用户终端,即采用CP-OFDM矩形函数的终端,并且,多载波系统为适应更多的应用场景,可能出现多种波形函数共存的情况,而目前的多载波系统仅使用一种波形函数即矩形函数。
本发明实施例期望提供一种多载波系统的数据调制方法及装置,旨在通 过采用至少两种不同的波形函数对待发送数据进行数据调制,从而使多载波系统能够适用于多种波形调制,并且兼容矩形波形调制。
第一方面,本发明实施例提供了一种多载波系统的数据调制方法,所述方法包括:
发射节点采用至少两种不同的波形函数;
所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
第二方面,本发明实施例提供了一种多载波系统的数据调制装置,所述装置包括:配置模块和调制模块;其中,
所述配置模块,设置为采用至少两种不同的波形函数;
所述调制模块:设置为根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
第三方面,本发明实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述多载波系统的数据调制方法。
本发明实施例提供了一种多载波系统的数据调制方法及装置,该方法使多载波系统采用至少两种不同的波形函数,并根据所述不同的波形函数对各自对应的待发送数据进行数据调制。所述多载波系统能够通过实际的应用需求选择相适应的波形函数。由此,所述多载波系统适用于多种波形调制,同时兼容LTE系统中的矩形波形调制。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种多载波系统的数据调制方法示意图;
图2为本发明实施例提供的另一种多载波系统的数据调制方法示意图;
图3为本发明实施例提供的又一种多载波系统的数据调制方法示意 图;
图4为本发明实施例提供的再一种多载波系统的数据调制方法示意图;
图5为本发明实施例提供的一种多载波系统的数据调制装置的结构示意图。
详述
下面将结合本发明实施例中的附图,对本发明实施例进行清楚、完整地描述。
实施例一
如技术背景所述,5G无线蜂窝通信技术大量研究新的波形技术,用于抑制带外泄漏,提高相邻频谱的利用效率。5G通信系统需要既可以使用新波形函数,又能兼容早期版本的用户终端,即采用CP-OFDM矩形函数的终端,并且系统为适应更多的应用场景,可能出现多种波形函数共存的情况,而目前的多载波系统仅使用一种波形函数即矩形函数。本实施例提出了一种方法,使多载波系统能够适用于多种波形调制,并且兼容矩形波形调制。
本发明实施例的多载波系统是指但不限于使用了多个子载波来传输数据的系统,比如OFDM系统。
系统发射端包括:基站、终端、中继(Relay)、发射点(TP,Transmitting Point)等各种发射设备,本申请将这些发射设备统称为发射节点。
如图1所示,本实施例提供了一种多载波系统的数据调制方法,所述方法可以包括:
S110、发射节点采用至少两种不同的波形函数;
可以理解地,所述发射节点采用至少两种不同的波形函数,可以是根据应用场景的需求在不同子带上或者不同时间上采用不同的波形函数;也可以是根据应用场景的需求在同一时间同一子带上采用不同的波形函数。 另外,所述子带包含k个子载波,k为大于等于1的整数。
S120、所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
所述至少两种不同的波形函数,可以包括一种滚降因子β为数值b的升余弦函数,以及滚降因子β不等于所述数值b的其它升余弦函数或非升余弦函数,其中,b为大于等于0,小于等于1的实数。也就是说,当所述滚降因子β取不同数值时,相对应的升余弦函数属于不同的波形函数。当所述升余弦函数的滚降因子等于0时,所述升余弦函数为矩形函数。所述非升余弦函数可以包括:根升余弦函数和分段函数等。
所述升余弦函数的数学表示形式如下:
Figure PCTCN2017100372-appb-000001
其中,t表示时间,B为预设值,β为滚降因子,且取值范围为[0,1],T0=T1/2,T1表示所述升余弦函数的时域宽度参数,T1(1+β)=N×T,N为大于或等于1的实数,T为符号间隔;也就是说,所述升余弦函数的非零函数值对应的自变量之间的最大时间跨度等于N×T。
可以理解地,不同的波形函数能够适用于不同的应用场景,例如:CP-OFDM形式下的矩形函数的复杂度最低,抵抗多径时延效果好,但带外泄漏最严重;升余弦函数计算量小,存在符号间干扰,带外泄漏抑制效果稍差一点,适用于简化复杂度、带外泄漏有影响的应用场景;升余弦函数的滚降因子越大,符号间干扰越大,带外泄漏的抑制效果越好,反之,升余弦函数的滚降因子越小,符号间干扰越小,带外泄漏的抑制效果越差;根升余弦函数计算量大,带外泄漏抑制效果更好一些,适用于对复杂度没有要求、带外泄漏影响严重的环境。
在本实施例中,所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处 理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
其中,T>0,OFDM符号间隔的大小与单位时间内OFDM符号的数量有关;OFDM符号间隔可以看作是当前符号第一个子载波与下一符号第一个子载波之间的间隔时长;不同的OFDM符号之间的符号间隔有可能是不相等的。L是大于0的整数,L是在一个传输时间间隔(Transmission Time Interval,TTI)内包含的OFDM符号数量。在LTE中,一个TTI等于1ms。
在本实施例中,为了兼容CP-OFDM的用户终端,当所述波形函数为所述矩形函数时,所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号的时域数据序列分别添加循环前缀,得到所述每一符号对应的CP-OFDM符号;
将所述连续L个符号对应的CP-OFDM符号进行首尾相连,得到一组由L个所述CP-OFDM符号组成的连续的时域数据序列。
在本实施例中,所述波形函数的数据调制方法包含但不限于以上所述方法。
在本实施例中,将所述不同波形函数的调制数据进行频移,映射到不同的实际频率子带。
如图2所示,本实施例提供了一种多载波系统的数据调制方法,应用 于发射节点,包括:
S210、根据应用场景的需求在不同子带上采用不同的波形函数;
本实施例中,所述不同的波形函数其中一种为滚降因子等于数值b的升余弦函数,其余为滚降因子不等于所述数值b的升余弦函数或非升余弦函数;其中,b为某一数值。
所述升余弦函数的数学表示形式包括:
Figure PCTCN2017100372-appb-000002
其中,t表示时间;B为预设值;β为滚降因子,取值范围为[0,1],T0=T1/2,T1表示所述升余弦函数的时域宽度参数,T1(1+β)=N×T,N为大于或等于1的实数,T为符号间隔;也就是说,所述升余弦函数的非零函数值对应的自变量之间的最大时间跨度等于N×T。
当所述滚降因子β取不同数值时,相对应的升余弦函数属于不同的波形函数。当β=0时,所述升余弦函数为矩形函数。
所述非升余弦函数包括:根升余弦函数和分段函数等。
在本实施例中,所述发射节点可以在同一时间的不同子带上采用所述不同的波形函数;同理,所述发射节点也可以在不同时间的不同子带上采用所述不同的波形函数。
在本实施例中,所述子带包含k个子载波,k为大于等于1的整数。
S220、根据所述不同的波形函数,对所述不同子带上的数据分别进行调制。
在本实施例中,所述根据所述不同的波形函数,对所述不同子带上的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度 为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
在本实施例中,为了兼容CP-OFDM的用户终端,当所述波形函数为所述矩形函数时,所述根据所述不同的波形函数,对所述不同子带上的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号的时域数据序列分别添加循环前缀,得到所述每一符号对应的CP-OFDM符号;
将所述连续L个符号对应的CP-OFDM符号进行首尾相连,得到一组由L个所述CP-OFDM符号组成的连续的时域数据序列。
在本实施例中,所述波形函数的数据调制方法包含但不限于以上所述方法。
在本实施例中,将所述不同波形函数的调制数据进行频移,映射到不同的实际频率子带。
如图3所示,本实施例提供了一种多载波系统的数据调制方法,应用于发射节点,包括:
S310、根据应用场景的需求在不同时间上采用不同的波形函数;
在本实施例中,所述不同的波形函数其中一种为滚降因子等于数值b的升余弦函数,其余为滚降因子不等于所述数值b的升余弦函数或非升余弦函数。
所述升余弦函数的数学表示形式包括:
Figure PCTCN2017100372-appb-000003
其中,t表示时间;B为预设值;β为滚降因子,取值范围为[0,1],T0=T1/2,T1表示所述升余弦函数的时域宽度参数,T1(1+β)=N×T,N为大于或等于1的实数,T为符号间隔;也就是说,所述升余弦函数的非零函数值对应的自变量之间的最大时间跨度等于N×T。
当所述滚降因子β取不同数值时,相对应的升余弦函数属于不同的波形函数。当β=0时,所述升余弦函数为矩形函数。
所述非升余弦函数包括:根升余弦函数和分段函数等。
在本实施例中,所述发射节点可以在同一子带的不同时间上采用所述不同的波形函数。
在本实施例中,所述子带包含k个子载波,k为大于等于1的整数。
S320、根据所述不同的波形函数,对同一子带的所述不同时间上的数据分别进行调制。
在本实施例中,所述根据所述不同的波形函数,对所述同一子带不同时间上的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
在本实施例中,为了兼容CP-OFDM的用户终端,当所述波形函数为所述矩形函数时,所述根据所述不同的波形函数,对所述同一子带不同时间上的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号的时域数据序列分别添加循环前缀,得到所述每一符号对应的CP-OFDM符号;
将所述连续L个符号对应的CP-OFDM符号进行首尾相连,得到一组由L个所述CP-OFDM符号组成的连续的时域数据序列。
在本实施例中,所述波形函数的数据调制方法包含但不限于以上所述方法。
在本实施例中,将所述波形函数的调制数据进行频移,映射到同一个实际频率子带。
如图4所示,本实施例提供了一种多载波系统的数据调制方法,应用于发射节点,包括:
S410、根据应用场景的需求在同一时间同一子带上采用不同的波形函数;
在本实施例中,所述不同的波形函数其中一种为滚降因子等于数值b的升余弦函数,其余为滚降因子不等于所述数值b的升余弦函数或非升余弦函数。
所述升余弦函数的数学表示形式包括:
Figure PCTCN2017100372-appb-000004
其中,t表示时间;B为预设值;β为滚降因子,取值范围为[0,1],T0=T1/2,T1表示所述升余弦函数的时域宽度参数,T1(1+β)=N×T,N为大于或等于1的实数,T为符号间隔;也就是说,所述升余弦函数的非零函数值对应的自变量之间的最大时间跨度等于N×T。
当所述滚降因子β取不同数值时,相对应的升余弦函数属于不同的波形函数。当β=0时,所述升余弦函数为矩形函数。
所述非升余弦函数包括:根升余弦函数和分段函数等。
在本实施例中,所述发射节点可在同一时间同一子带上针对不同用户采用所述不同的波形函数。
在本实施例中,所述子带包含k个子载波,k为大于等于1的整数。
S420、根据所述不同的波形函数,对所述同一时间同一子带上的不同用户的数据分别进行调制。
在本实施例中,所述根据所述不同的波形函数,对所述同一时间同一子带上的不同用户的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
在本实施例中,为了兼容CP-OFDM的用户终端,当所述波形函数为所述矩形函数时,所述根据所述不同的波形函数,对所述同一时间同一子带上的不同用户的数据分别进行调制,可以包括:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号的时域数据序列分别添加循环前缀,得到所述每一符号对应的CP-OFDM符号;
将所述连续L个符号对应的CP-OFDM符号进行首尾相连,得到一组由L个所述CP-OFDM符号组成的连续的时域数据序列。
在本实施例中,所述波形函数的数据调制方法包含但不限于以上所述方法。
在本实施例中,将所述波形函数的调制数据进行频移,映射到同一个实际频率子带。
本发明实施例提供了一种多载波系统的数据调制方法及装置,该方法使多载波系统采用至少两种不同的波形函数进行数据调制。所述多载波系统能够通过实际的应用需求选择相适应的波形函数。由此,所述多载波系统适用于多种波形调制,同时兼容矩形波形调制。
实施例二
参见图5,其示出了本发明实施例提供的一种多载波系统的数据调制装置50,所述装置可以包括:配置模块501和调制模块502;其中,
所述配置模块501,设置为采用至少两种不同的波形函数;
所述调制模块502,设置为根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
所述配置模块和所述调制模块的功能均由处理器完成。所述处理器可以为特定用途集成电路(ASIC,Application Specific Integrated Circuit)、DSP、数字信号处理装置(DSPD,Digital Signal Processing Device)、可编程逻辑装置(PLD,Programmable Logic Device)、FPGA、CPU、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本发明实施例不作限定。
在上述方案中,所述配置模块501,设置为:在不同子带上采用所述不同的波形函数;或者,在不同时间上采用所述不同的波形函数。
在上述方案中,所述配置模块501,设置为:在同一时间的不同子带上采用所述不同的波形函数。
在上述方案中,所述配置模块501,设置为:在同一子带的不同时间上采用所述不同的波形函数。
在上述方案中,所述调制模块502,设置为:
将所述待发送数据进行IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的实施例而已,并非用于限定本申请的保护范围。
工业实用性
本发明实施例提供了一种多载波系统的数据调制方法及装置,该方法使多载波系统采用至少两种不同的波形函数,并根据所述不同的波形函数对各自对应的待发送数据进行数据调制。所述多载波系统能够通过实际的应用需求选择相适应的波形函数。由此,所述多载波系统适用于多种波形调制,同时兼容LTE系统中的矩形波形调制。

Claims (13)

  1. 一种多载波系统的数据调制方法,所述方法包括:
    发射节点采用至少两种不同的波形函数;
    所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
  2. 根据权利要求1所述的方法,其中,所述至少两种不同的波形函数,其中一种波形函数为滚降因子等于数值b的升余弦函数,其余的波形函数为滚降因子不等于数值b的升余弦函数或非升余弦函数。
  3. 根据权利要求2所述的方法,其中,当所述升余弦函数的滚降因子等于0时,所述升余弦函数为矩形函数;所述非升余弦函数包括如下至少之一:根升余弦函数和分段函数。
  4. 根据权利要求1所述的方法,其中,所述发射节点采用至少两种不同的波形函数,包括:
    所述发射节点在不同子带上采用所述不同的波形函数;
    或者,所述发射节点在不同时间上采用所述不同的波形函数;
    其中,所述子带包含k个子载波,且k为大于等于1的整数。
  5. 根据权利要求4所述的方法,其中,所述发射节点在不同子带上采用所述不同的波形函数,包括:
    所述发射节点在同一时间的不同子带上采用所述不同的波形函数。
  6. 根据权利要求4所述的方法,其中,所述发射节点在不同时间上采用所述不同的波形函数,包括:
    所述发射节点在同一子带的不同时间上采用所述不同的波形函数。
  7. 根据权利要求1所述的方法,其中,所述发射节点根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制,包括:
    将所述待发送数据进行快速傅里叶逆变换IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
    对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
    利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
    将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
  8. 一种多载波系统的数据调制装置,所述装置包括:配置模块和调制模块;其中,
    所述配置模块,设置为采用至少两种不同的波形函数;
    所述调制模块:设置为根据所述不同的波形函数对各自对应的待发送数据分别进行数据调制。
  9. 根据权利要求8所述的装置,其中,所述配置模块,设置为:
    在不同子带上采用所述不同的波形函数;
    或者,在不同时间上采用所述不同的波形函数。
  10. 根据权利要求9所述的装置,其中,所述配置模块,设置为:
    在同一时间的不同子带上采用所述不同的波形函数。
  11. 根据权利要求9所述的装置,其中,所述配置模块,设置为:
    在同一子带的不同时间上采用所述不同的波形函数。
  12. 根据权利要求8所述的装置,其中,所述调制模块,设置为:
    将所述待发送数据进行快速傅里叶逆变换IFFT处理,得到所述待发送数据对应的IFFT处理结果;其中,所述待发送数据对应的IFFT处理结果为连续L个符号;
    对所述连续L个符号中的每一符号进行N次重复扩展,得到扩展后长度为N×T的时域数据序列;其中,T为符号间隔,N为大于或等于1的实数;
    利用所述波形函数的离散函数值,与所述扩展后长度为N×T的时域数 据序列进行点乘,得到点乘后长度为N×T的时域数据序列;
    将L个所述点乘后长度为N×T的时域数据序列在时域上分别依次错开1个符号间隔T,并将L个所述依次错开1个符号间隔T后对应的长度为N×T的时域数据序列进行叠加,得到一组长度为[N+(L-1)]×T的时域数据序列。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-7任一项的多载波系统的数据调制方法。
PCT/CN2017/100372 2016-10-18 2017-09-04 一种多载波系统的数据调制方法及装置 WO2018072565A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/342,870 US10917282B2 (en) 2016-10-18 2017-09-04 Data modulation method and device utilized in multi-carrier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610907381.0 2016-10-18
CN201610907381.0A CN107968759B (zh) 2016-10-18 2016-10-18 一种多载波系统的数据调制方法及装置

Publications (1)

Publication Number Publication Date
WO2018072565A1 true WO2018072565A1 (zh) 2018-04-26

Family

ID=61996818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100372 WO2018072565A1 (zh) 2016-10-18 2017-09-04 一种多载波系统的数据调制方法及装置

Country Status (3)

Country Link
US (1) US10917282B2 (zh)
CN (1) CN107968759B (zh)
WO (1) WO2018072565A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089733A1 (fr) * 2007-12-28 2009-07-23 Huawei Technologies Co., Ltd. Procédé et dispositif de limitation du rapport valeur de crête sur valeur moyenne dans un système de multiplexage par répartition orthogonale de la fréquence multiporteuses
CN101867547A (zh) * 2010-05-24 2010-10-20 北京科技大学 一种降低滤波器组多载波系统的峰均比的方法
CN103326972A (zh) * 2013-07-01 2013-09-25 重庆邮电大学 一种滤波器组多载频调制系统及其设计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050249266A1 (en) * 2004-05-04 2005-11-10 Colin Brown Multi-subband frequency hopping communication system and method
US7636380B2 (en) * 2004-05-17 2009-12-22 Microsoft Corporation Orthogonal pulse polarity modulation
CN100571238C (zh) * 2005-08-29 2009-12-16 中国科学院上海微系统与信息技术研究所 多载波系统的发射、接收装置及其发射、接收方法
KR20150091370A (ko) * 2012-11-29 2015-08-10 인터디지탈 패튼 홀딩스, 인크 Ofdm 시스템에서의 스펙트럼 누출 감소 방법
CN105991490B (zh) * 2015-01-12 2020-07-10 北京三星通信技术研究有限公司 基于滤波器组的信号发送和接收方法、系统及装置
US10063401B2 (en) * 2015-01-16 2018-08-28 Samsung Electronics Co., Ltd. Communication method and apparatus based on a filter bank multi-carrier modulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089733A1 (fr) * 2007-12-28 2009-07-23 Huawei Technologies Co., Ltd. Procédé et dispositif de limitation du rapport valeur de crête sur valeur moyenne dans un système de multiplexage par répartition orthogonale de la fréquence multiporteuses
CN101867547A (zh) * 2010-05-24 2010-10-20 北京科技大学 一种降低滤波器组多载波系统的峰均比的方法
CN103326972A (zh) * 2013-07-01 2013-09-25 重庆邮电大学 一种滤波器组多载频调制系统及其设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIN YU ET AL.: "FB-OFDM: A Novel Multicarrier Scheme for 5G", 2016 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 27 June 2016 (2016-06-27) - 30 June 2016 (2016-06-30), pages 271 - 276, XP032957224, DOI: 10.1109/EuCNC.2016.7561046 *
ZHANG, WANCHUN ET AL: "FB-OFDM: A novel Multicarrier Sceme for 5G", ZTE TECHNOLOGY JOURNAL, vol. 22, no. 3, 30 June 2016 (2016-06-30), pages 23 - 24, ISSN: 1009-6868 *

Also Published As

Publication number Publication date
CN107968759B (zh) 2022-04-15
CN107968759A (zh) 2018-04-27
US20190245731A1 (en) 2019-08-08
US10917282B2 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
US10312990B2 (en) Signal sending or receiving method and device
US7746761B2 (en) Techniques to generate constant envelope multicarrier transmission for wireless networks
WO2022007507A1 (zh) 数据传输方法、装置、设备和存储介质
EP3713177B1 (en) Sequence-based signal processing method and signal processing apparatus
KR20160002722A (ko) 직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법
EP2011294A2 (en) Low complexity method and apparatus to generate a symmetric-periodic continuos phase modulation (cpm) waveform
JP5486734B2 (ja) シングルキャリア通信システムにおける送信信号生成装置および方法
CN111510412A (zh) 一种数据调制方法、装置和设备
CN106470179B (zh) 移动终端上行信号生成方法及装置
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
WO2018014815A1 (zh) 多载波系统及多载波系统的数据调制、解调方法及装置
CN107026809B (zh) 一种数据处理方法和装置
WO2018072565A1 (zh) 一种多载波系统的数据调制方法及装置
WO2023284752A1 (zh) 数据传输、数据调制方法、装置、电子设备和存储介质
WO2022242707A1 (zh) 数据传输方法、装置、电子设备和存储介质
CN107959647B (zh) 多载波系统的符号配置方法及装置、数据解调方法及装置
EP3598710A1 (en) Signal processing method and apparatus based on sequence
JP6780823B2 (ja) 信号伝送方法及び信号伝送装置
WO2023051592A1 (zh) 数据传输方法、数据调制方法、电子设备和存储介质
WO2022242705A1 (zh) 数据传输方法、装置、电子设备和存储介质
CN103078823B (zh) 声信道的图片发送方法、接收方法及装置
Qrabil et al. Design and implementation of OFDM transceiver system using M-PSK encoding techniques
CN108234375B (zh) 单载波数据的发射方法与装置
WO2018219233A1 (zh) 数据调制方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862383

Country of ref document: EP

Kind code of ref document: A1