WO2018219233A1 - 数据调制方法、装置及存储介质 - Google Patents

数据调制方法、装置及存储介质 Download PDF

Info

Publication number
WO2018219233A1
WO2018219233A1 PCT/CN2018/088506 CN2018088506W WO2018219233A1 WO 2018219233 A1 WO2018219233 A1 WO 2018219233A1 CN 2018088506 W CN2018088506 W CN 2018088506W WO 2018219233 A1 WO2018219233 A1 WO 2018219233A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
extended
subcarriers
edge subband
edge
Prior art date
Application number
PCT/CN2018/088506
Other languages
English (en)
French (fr)
Inventor
辛雨
边峦剑
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018219233A1 publication Critical patent/WO2018219233A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators

Definitions

  • the present invention relates to the field of multi-carrier wireless communication technologies, and in particular, to a data modulation method, apparatus, and storage medium.
  • the Long Term Evolution (LTE) technology is a fourth generation (4G, Fourth Generation) wireless cellular communication technology.
  • the LTE system introduces Orthogonal Frequency Division Multiplexing (OFDM) technology, and OFDM continues to be used in the fifth generation (5G, Fifth Generation) wireless cellular communication technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • 5G, Fifth Generation fifth generation wireless cellular communication technology.
  • the out-of-band leakage of the LTE system is relatively large, so the edge of the transmission band often needs to vacate a certain frequency as a guard interval to reduce the influence of the out-of-band leakage on the adjacent frequency band. In this way, the transmission band is wasted to a certain extent, and the spectrum utilization efficiency is reduced.
  • Embodiments of the present invention provide a data modulation method, apparatus, and storage medium for solving the above problems, which at least partially solve the problem of low spectrum utilization efficiency.
  • a data modulation method comprising:
  • the data to be transmitted is multiplied by a spreading sequence of length 2N to obtain 2N extended data; wherein each two consecutive elements of the extended sequence are a group, two in the group The phase difference of the elements is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ;
  • a data modulation apparatus including:
  • a modulation module configured to multiply the data to be transmitted by a spreading sequence of length 2N on an edge subband of the transmission band to obtain 2N extended data; wherein each consecutive two elements of the extended sequence are a group The phase difference between the two elements in the group is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ;
  • a transmission module configured to send the 2N extended data on consecutive 2N subcarriers of the edge subband; wherein N takes a positive integer.
  • a data modulation apparatus comprising: a memory, a processor, and a data modulation program stored on the memory and operable on the processor, the processor configured to execute the data modulation program The steps of the data modulation method of the present invention are implemented.
  • a computer readable storage medium having stored thereon a computer program for performing the steps of the data modulation method of the present invention when executed by a processor.
  • the method, the device and the storage medium of the embodiment of the present invention introduce a spreading sequence of length 2N; and each consecutive two elements of the extended sequence is a group, and the phase difference between the two elements in the group is ⁇ , and the elements between the groups The phase difference is zero or ⁇ .
  • multiplying the data to be transmitted by a spreading sequence of length 2N and then loading it onto the edge subband of the transmission band can substantially offset the sidelobe amplitude between the subcarrier data under the extended sequence, thereby It can reduce the out-of-band leakage caused by the large-scale side lobes occupying the out-of-band carrier; and repeating the transmission of data under the extended sequence can increase the signal-to-noise ratio and improve the demodulation performance. Therefore, the technical solution provided by the embodiment of the present invention can effectively utilize edge subbands of the transmission band to improve spectrum efficiency.
  • FIG. 1 is a flowchart of a data modulation method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a data modulation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of mapping of data to subcarriers extended by [1, -1] according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of two consecutive subcarriers transmitting the same data according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a data modulation method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of mapping of data to subcarriers extended by [1, -1, 1, -1] according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of mapping of data to subcarriers extended by [1, -1, -1, 1] according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a data modulation method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of mapping of data to subcarriers extended by [1,-1,-1,1,-1,1] according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of mapping of data to subcarriers extended by [1,-1,-1,1,-1,1] according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram of a data modulation apparatus according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a data modulation apparatus according to an embodiment of the present invention.
  • the embodiments of the present invention provide a data modulation method, apparatus, and computer readable storage medium, so that a multi-carrier system (a system that uses multiple subcarriers to transmit data, such as an OFDM system) can effectively utilize a transmission band.
  • a multi-carrier system a system that uses multiple subcarriers to transmit data, such as an OFDM system
  • the edge of the subband and can control the effects of out-of-band leakage.
  • An embodiment of the present invention provides a data modulation method, which may be applied to a transmitting node, where the transmitting node may be, but is not limited to, a base station, a terminal, a relay, a transmitting point, and the like.
  • the method includes the following steps:
  • Step S101 multiplying the data to be transmitted by the extended sequence of length 2N on the edge subband of the transmission band to obtain 2N extended data; wherein each consecutive two elements of the extended sequence are a group, a group The phase difference between the two elements is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ;
  • Step S102 Send the 2N extended data to consecutive 2N subcarriers of the edge subband.
  • the edge subband of the transmission band may be an edge subband of one side of the transmission band, or may be an edge subband of the transmission band bilaterally.
  • the edge sub-band refers to the edge sub-band of one side, and at this time, the edge on the side of the leakage outside the control band is controlled.
  • the edge sub-band refers to the bilateral edge sub-band, and at this time, the edge sub-bands at both ends of the transmission band On top, multiply the data to be transmitted by the extended sequence.
  • the edge subband includes p subcarriers, and p is an integer greater than or equal to 1.
  • the data to be transmitted is Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), and quadrature amplitude modulation.
  • Digital modulation information such as (QAM, Quadrature Amplitude Modulation), may also be other data forms, which are collectively referred to herein as data to be transmitted.
  • each consecutive two elements of the extended sequence are a group, including: a first element and a second element are a group, a third element and a fourth element are a group, a fifth element and a sixth element.
  • the elements are a group, ..., the 2N-1 and 2N elements are a group.
  • N takes a positive integer.
  • the larger the value of N the better the out-of-band leakage suppression effect and the higher the signal-to-noise ratio, but the data transmission efficiency will decrease as the value of N increases. Therefore, those skilled in the art can flexibly set the value of N according to specific needs.
  • N is taken as 1, 2 or 3.
  • the spreading sequence is [C, -C];
  • the spreading sequence is [C, -C, -C, C];
  • the spreading sequence is [C, -C, -C, C, -C, C];
  • the sending, by the 2N pieces of extended data, on consecutive 2N subcarriers of the edge subband, respectively includes:
  • the 2N extended data are sequentially transmitted on the 2N subcarriers of the edge subband in order from the outer to the inner in the transmission band.
  • the 2N extended data is sequentially transmitted on the 2N subcarriers of the edge subband according to the transmission frequency band in an outbound order, including:
  • the 2N extended data is sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from low to high;
  • the frequency of the edge subband of the low frequency end of the transmission band is lower than the frequency of the edge subband of the high frequency end of the transmission band.
  • the high frequency and the low frequency are relatively high, and the frequency of the high frequency is higher than the frequency of the low frequency.
  • the edge subband is an edge subband of the high frequency end of the transmission band
  • the 2N pieces of the extended data are sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from high to low.
  • the K data to be transmitted are respectively multiplied by the spreading sequence to obtain K group extended data (where each group has 2N expanded data).
  • the K sets of expanded data are respectively transmitted on consecutive K groups of subcarriers of the edge subband in a group of consecutive 2N subcarriers.
  • the method according to the embodiment of the present invention modulates the data to be transmitted by using the extended sequence, obtains the modulated 2N data, and transmits the modulated 2N data on consecutive 2N subcarriers, so that The sidelobe amplitude between the 2N subcarrier signals is largely cancelled to reduce the out-of-band leakage; and the repeated transmission of data under the extended sequence can increase the signal-to-noise ratio, thereby improving the demodulation performance. Therefore, the solution in the embodiment of the present invention can effectively utilize edge subbands of the transmission band to improve spectrum efficiency.
  • a data modulation method is provided, which is a specific implementation manner of the method described in the first embodiment.
  • the method includes the following steps:
  • Step S201 multiplying the data to be transmitted by the extended sequence [1, -1] on the edge subband of the transmission band to obtain two extended data;
  • the edge subband of the transmission band may be an edge subband of one side of the transmission band, or may be an edge subband of the transmission band bilaterally.
  • the edge sub-band refers to a single-edge edge sub-band, and at this time, in the control band On the edge subband on the outer leakage side, multiply the data to be transmitted by the extended sequence [1, -1]; when both ends of the transmission band need to control out-of-band leakage, the edge sub-band refers to the bilateral edge sub-band At this time, on the edge subbands at both ends of the transmission band, the data to be transmitted is multiplied by the spreading sequence [1, -1].
  • Step S202 The two extended data are respectively sent on consecutive two subcarriers of the edge subband.
  • K data to be transmitted [S 1 S 2 S 3 ... S K ] are multiplied by the spreading sequence [1, -1], respectively, to obtain K-group expanded data [S 1 , -S 1 ], [S 2 , -S 2 ]...[S K ,-S K ] .
  • the K sets of expanded data are respectively transmitted on consecutive K groups of subcarriers of the edge subband, that is, [S 1 , -S 1 ] on the subcarriers 1, 2, in a group of two consecutive subcarriers.
  • the out-of-band leakage of the edge sub-band can be reduced.
  • the horizontal axis represents the frequency
  • the vertical axis represents the amplitude
  • the horizontal broken line in the figure represents the reference line having the amplitude of 0.
  • a data modulation method is provided, which is a specific embodiment of the method described in the first embodiment.
  • the method includes the following steps:
  • Step S501 multiplying the data to be transmitted by the extended sequence [1, -1, -1, 1] on the edge subband of the transmission band to obtain four extended data;
  • the edge subband of the transmission band may be an edge subband of one side of the transmission band, or may be an edge subband of the transmission band bilaterally.
  • the edge sub-band refers to a single-edge edge sub-band, and at this time, in the control band
  • the edge sub-band on the outer leakage side multiply the data to be transmitted by the extended sequence [1, -1, -1, 1];
  • the edge sub-band refers to Bilateral edge subbands, at this time, on the edge subbands at both ends of the transmission band, the data to be transmitted is multiplied by the spreading sequence [1, -1, -1, 1].
  • Step S502 the four extended data are respectively sent on consecutive four subcarriers of the edge subband.
  • the data to be transmitted is multiplied by the spreading sequence [1, -1, -1, 1], in order of the transmission band from the outside to the inside, sequentially on the consecutive 4 subcarriers. send.
  • the data to be transmitted on the corresponding edge sub-band is multiplied by the extended sequence [1, -1, -1, 1], according to the low frequency to the high
  • the frequency sequence is sequentially transmitted on four consecutive subcarriers;
  • the data to be transmitted on the corresponding edge subband is multiplied by the spreading sequence [1, -1, - 1,1], sequentially transmitted on four consecutive subcarriers in order from high frequency to low frequency.
  • the data to be transmitted is multiplied by the spreading sequence [1, -1, -1, 1], and may be sequentially in the order of low frequency to high frequency, in succession 4 Sent on subcarriers.
  • the data to be transmitted on the corresponding edge sub-band is multiplied by the extended sequence [1, -1, -1, 1], according to the low frequency to the high
  • the frequency sequence is sequentially transmitted on four consecutive subcarriers;
  • the data to be transmitted on the corresponding edge subband is multiplied by the spreading sequence [1, -1, - 1,1] is sequentially transmitted on four consecutive subcarriers in order from low frequency to high frequency.
  • K data to be transmitted [S 1 S 2 S 3 ... S K ] are respectively multiplied by the extended sequence [1, -1, -1, 1] to obtain K-group extended data [S 1 , -S 1 , -S 1 , S 1 ], [S 2 ,- S 2 , -S 2 , S 2 ]...[S K , -S K , -S K , S K ].
  • the K-group extended data is respectively transmitted on consecutive K groups of sub-carriers of the edge sub-band in a group of four consecutive sub-carriers, that is, [S 1 , -S 1 , -S 1 , S 1 ] Transmitted on subcarriers 1, 2 , 3, 4, [S 2 , -S 2 , -S 2 , S 2 ] are transmitted on subcarriers 5, 6, 7, 8... [S K, -S K, S K , -S K ] are transmitted on subcarriers 4K-3, 4K-2, 4K-1, 4K.
  • the mapping of the K group of extended data to the subcarrier is as shown in FIG. 6; when the edge subband is an edge subband of the high frequency end of the transmission band
  • the mapping of the K-group extended data to the sub-carriers is as shown in FIG. 7.
  • the extended sequence [1, -1, -1, 1] reaches the suppression band by sidelobe cancellation of four consecutive subcarrier signals.
  • the effect of the external leakage is better than the out-of-band leakage suppression effect of the extended sequence [1, -1].
  • a data modulation method is provided. As shown in FIG. 8, the method includes the following steps:
  • Step S801 multiplying the data to be transmitted by the extended sequence [1, -1, -1, 1, -1, 1] on the edge subband of the transmission band to obtain six extended data;
  • the edge subband of the transmission band may be an edge subband of one side of the transmission band, or may be an edge subband of the transmission band bilaterally.
  • the edge sub-band refers to a single-edge edge sub-band, and at this time, in the control band On the edge subband on the outer leakage side, multiply the data to be transmitted by the extended sequence [1, -1, -1, 1, -1, 1]; when both ends of the transmission band need to control out-of-band leakage,
  • the edge subband refers to the bilateral edge subband. At this time, the data to be transmitted is multiplied by the spreading sequence [1, -1, -1, 1, -1, 1] on the edge subbands at both ends of the transmission band.
  • Step S802 the six extended data are respectively sent on consecutive six subcarriers of the edge subband.
  • the data to be transmitted is multiplied by the extended sequence [1, -1, -1, 1, -1, 1], in order of the transmission frequency band from the outside to the inside, in sequence, in succession 6 Sent on subcarriers.
  • the data to be transmitted on the corresponding edge sub-band is multiplied by the spreading sequence [1, -1, -1, 1, -1, 1], According to the sequence from low frequency to high frequency, sequentially transmitted on 6 consecutive subcarriers; when the high frequency end side of the transmission band needs to control out-of-band leakage, the data to be transmitted on the corresponding edge sub-band is multiplied by the extended sequence [1] , -1, -1, 1, -1, 1] are sequentially transmitted on consecutive 6 subcarriers in order from high frequency to low frequency.
  • the K data to be transmitted [S 1 S 2 S 3 ... S K ] are respectively multiplied by the extended sequence [1, -1, -1, 1, -1, 1], obtain the K group extended data [S 1 , -S 1 , -S 1 , S 1 , -S 1 , S 1 ], [S 2 , -S 2 , -S 2 , S 2 , -S 2 , S 2 ]...[S K , -S K , -S K , S K , -S K , S K ].
  • the K sets of expanded data are respectively transmitted on consecutive K groups of subcarriers of the edge subband, that is, [S 1 , -S 1 , -S 1 , S 1 , in a group of six consecutive subcarriers.
  • -S 1 , S 1 ] are transmitted on subcarriers 1, 2 , 3 , 4, 5, 6, [S 2 , -S 2 , -S 2 , S 2 , -S 2 , S 2 ] on subcarrier 7 , 8, 9, 10, 11, 12 are transmitted...
  • the extended sequence [1, -1, -1, 1, -1, 1] is a side lobe through 6 consecutive subcarrier signals.
  • the cancellation achieves the effect of suppressing out-of-band leakage, and repeatedly transmitting data under the action of the spreading sequence [1, -1, -1, 1, -1, 1] can increase the received signal-to-noise ratio by a maximum of 6 times.
  • a data modulation apparatus is provided, as shown in FIG.
  • the modulation module 1110 is configured to multiply the data to be transmitted by the extended sequence of length 2N on the edge subband of the transmission band to obtain 2N extended data; wherein each consecutive two elements of the extended sequence is one Group, the phase difference between two elements in the group is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ;
  • the transmitting module 1120 is configured to send the 2N extended data on consecutive 2N subcarriers of the edge subband, where N takes a positive integer.
  • the N takes 1, 2 or 3.
  • the extended sequence includes [C, -C];
  • the extended sequence includes [C, -C, -C, C];
  • the extended sequence includes [C, -C, -C, C, -C, C];
  • the transmission module 1120 is configured to sequentially perform the 2N extended data in the order of the transmission frequency band from the outside to the inside.
  • the edge subband is transmitted on 2N subcarriers consecutively.
  • the 2N pieces of extended data are sequentially transmitted on the 2N subcarriers of the edge subband in order from the outer to the inner side of the transmission frequency band, and may include at least one of the following:
  • the 2N extended data is sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from low to high;
  • the edge subband is an edge subband of the high frequency end of the transmission band
  • the 2N pieces of the extended data are sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from high to low.
  • the modulation module 1110 and the transmission module 1120 may exist as program modules of the processor in the device, and the algorithms required for the extension sequence and the modulation module and the transmission module to operate are stored in the memory of the device.
  • the program module is stored in a memory, and the processor is connected to the memory, and the data modulation method provided by one or more of the foregoing technical solutions can be implemented by reading and executing the program modules.
  • the device modulates the data to be transmitted by using the extended sequence, obtains the modulated 2N data, and transmits the modulated 2N data on consecutive 2N subcarriers, so that The sidelobe amplitude between the 2N subcarrier signals is largely cancelled to reduce the out-of-band leakage; and the repeated transmission of data under the extended sequence can increase the signal-to-noise ratio, thereby improving the demodulation performance. Therefore, the solution in the embodiment of the present invention can effectively utilize edge subbands of the transmission band to improve spectrum efficiency.
  • a data modulation apparatus comprising: a memory 1210, a processor 1220, and a computer stored on the memory 1210 and operable on the processor 1220.
  • the processor 1220 is coupled to the memory 1210, for example, by various in-device interfaces, such as an integrated circuit bus, and the processor 1220 can be configured to execute the computer program such that one or more of the foregoing technical solutions can be implemented.
  • the data modulation method provided, for example, when the processor 1220 executes the computer program, can implement the following steps:
  • the data to be transmitted is multiplied by a spreading sequence of length 2N to obtain 2N extended data; wherein each two consecutive elements of the extended sequence are a group, two in the group The phase difference of the elements is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ;
  • N takes a positive integer.
  • N takes 1, 2 or 3.
  • the extended sequence includes [C, -C];
  • the extended sequence includes [C, -C, -C, C];
  • the extended sequence includes [C, -C, -C, C, -C, C];
  • the 2N extended data is respectively sent on consecutive 2N subcarriers of the edge subband, including :
  • the data of the 2N pieces of the extended data is sequentially transmitted in the outer sub-band of the edge sub-band according to the transmission frequency band, which includes:
  • the 2N extended data is sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from low to high;
  • the edge subband is an edge subband of the high frequency end of the transmission band
  • the 2N pieces of the extended data are sequentially transmitted on the 2N subcarriers of the edge subband in order of frequency from high to low.
  • the device modulates the data to be transmitted by using the extended sequence, obtains the modulated 2N data, and transmits the modulated 2N data on consecutive 2N subcarriers, so that The sidelobe amplitude between the 2N subcarrier signals is largely cancelled to reduce the out-of-band leakage; and the repeated transmission of data under the extended sequence can increase the signal-to-noise ratio, thereby improving the demodulation performance. Therefore, the solution in the embodiment of the present invention can effectively utilize edge subbands of the transmission band to improve spectrum efficiency.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the method described in any of the foregoing embodiments, for example, executable as shown in FIG. The methods shown in Figures 2, 5 and 8.
  • the computer readable storage medium storing the computer program provided by the embodiment of the present invention may be a non-transitory storage medium.
  • embodiments of the present invention can be provided as a method, apparatus, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the data to be transmitted and the extended sequence of length 2N are extended, thereby obtaining 2N extended sequences, and the extended sequence has characteristics: two consecutive The elements are a group, and the phase difference between the two elements in the group is ⁇ , and the phase difference of the elements between the groups is zero or ⁇ ; thus, on the one hand, after the expanded data is modulated onto the subcarriers of the edge subband of the transmission band, The amplitude of the side lobes can be greatly reduced, thereby reducing the edge leakage; on the other hand, the repeated transmission of data by the extended sequence can increase the signal-to-noise ratio and improve the demodulation performance; therefore, it has a positive industrial effect. At the same time, since the above effects can be easily realized by the change of the data modulation in the transmitting end, it is simple in implementation and widely applicable in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据调制方法、装置及存储介质,所述方法包括:在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送。

Description

数据调制方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710398831.2、申请日为2017年05月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及多载波无线通信技术领域,尤其涉及一种数据调制方法、装置及存储介质。
背景技术
长期演进(LTE,Long Term Evolution)技术是第四代(4G,Fourth Generation)无线蜂窝通信技术。LTE系统引入正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术,并且OFDM在第五代(5G,Fifth Generation)无线蜂窝通信技术中继续沿用。但是,LTE系统的带外泄漏比较大,因此传输频带的边缘往往要空出一段频率作为保护间隔,用以降低带外泄漏对相邻频带的影响。这样一来,不免在一定程度上造成传输频带的浪费,降低了频谱利用效率。
发明内容
本发明实施例提供一种用以解决上述问题的数据调制方法、装置及存储介质,至少部分解决频谱利用效率低的问题。
第一方面,提供一种数据调制方法,所述方法包括:
在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。
第二方面,提供一种数据调制装置,包括:
调制模块,配置为在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
传输模块,配置为将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。
第三方面,提供一种数据调制装置,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的数据调制程序,所述处理器配置为执行所述数据调制程序时实现本发明所述数据调制方法的步骤。
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述数据调制方法的步骤。
本发明实施例所述方法、装置和存储介质,引入的长度为2N的扩展序列;且扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π。如此,将待传输数据乘以长度为2N的扩展序列后,再加载到传输频带的边缘子带上,可以使扩展序列作用下的各个子载波数据之间的旁瓣幅值大幅度抵消,从而可以减低大幅度旁瓣占用带外载波导致的带外泄漏;并且,在扩展序列作用下重复发送数据能够增加信噪比,从而提高解调性能。因此,本发明实施例提供的技术方案可有效 利用传输频带的边缘子带,提高频谱效率。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的一种数据调制方法的流程图;
图2为本发明实施例提供的一种数据调制方法的流程图;
图3为本发明实施例中通过[1,-1]扩展后的数据到子载波的映射示意图;
图4为本发明实施例发送相同数据的连续两个子载波的示意图;
图5为本发明实施例提供的一种数据调制方法的流程图;
图6为本发明实施例中通过[1,-1,1,-1]扩展后的数据到子载波的映射示意图;
图7为本发明实施例中又一通过[1,-1,-1,1]扩展后的数据到子载波的映射示意图;
图8为本发明实施例提供的一种数据调制方法的流程图;
图9为本发明实施例中通过[1,-1,-1,1,-1,1]扩展后的数据到子载波的映射示意图;
图10为本发明实施例中又一通过[1,-1,-1,1,-1,1]扩展后的数据到子载波的映射示意图;
图11为本发明实施例提供的一种数据调制装置的结构框图;
图12为本发明实施例提供的一种数据调制装置的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
LTE系统的带外泄漏比较大,因此传输频带边缘往往要空出一段频率作为保护间隔,用以降低带外泄漏对相邻频带的影响。这样一来,不免在一定程度上造成传输频带的浪费,降低了频谱利用效率。为此,本发明实施例提出了一种数据调制方法、装置及计算机可读存储介质,使多载波系统(是指使用了多个子载波来传输数据的系统,比如OFDM系统)可以有效利用传输频带的边缘子带,并能控制带外泄漏的影响。下面通过几个具体实施例对本发明的实施过程进行详细阐述。
在本发明实施例提供一种数据调制方法,该方法可应用于发射节点,所述发射节点可以但不限于为:基站、终端、中继(relay)、发射点(transmitting point)等。
如图1所示,所述方法包括如下步骤:
步骤S101,在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
步骤S102,将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送。
本发明实施例中,所述的传输频带的边缘子带,可以是传输频带单边的边缘子带,也可以是传输频带双边的边缘子带。可选地,当传输频带一端需要控制带外泄漏而另一端不需要控制带外泄漏时,所述边缘子带是指 单边的边缘子带,此时,在控制带外泄漏一侧的边缘子带上,将待传输数据乘以扩展序列;当传输频带两端都需要控制带外泄漏时,所述边缘子带是指双边的边缘子带,此时,在传输频带两端的边缘子带上,将待传输数据乘以扩展序列。所述边缘子带包含p个子载波,p为大于等于1的整数。
可选地,本发明实施例中,所述的待传输数据是二进制相移键控(BPSK,Binary Phase Shift Keying)、正交相移键控(QPSK,Quadrature Phase Shift Keyin)、正交幅度调制(QAM,Quadrature Amplitude Modulation)等数字调制信息,也可以是其他的数据形式,本发明实施例这里统称为待传输数据。
本发明实施例中,所述扩展序列的每连续两个元素为一组,包括:第1元素及第2元素为一组,第3元素及第4元素为一组,第5元素及第6元素为一组,……,第2N-1及第2N元素为一组。
本发明实施例中,N取正整数。其中,N取值越大,带外泄漏抑制效果更好、信噪比更高,但随着N值的增大也会导致数据传输效率降低。所以,本领域技术人员可以根据具体需求灵活地设定N的取值。在本发明的一个具体实施例中,令N取1、2或3。
可选地,在本发明的一个具体实施例中,
当N取1时,令扩展序列为[C,-C];
当N取2时,令扩展序列为[C,-C,-C,C];
当N取3时,令扩展序列为[C,-C,-C,C,-C,C];
其中,C为复数。
可选地,本发明实施例中,当所述N取2或3时,所述将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送,包括:
将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送。
可选地,将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送,包括:
当所述边缘子带为传输频带低频端的边缘子带时,将所述2N个扩展后的数据,按照频率由低到高的顺序依次在所述边缘子带连续的2N个子载波上发送;一个传输频带的低频端的边缘子带的频率是低于该传输频带的高频端的边缘子带的频率的。在本发明实施例中高频和低频是相对而言的,高频的频率高于低频的频率。
当所述边缘子带为传输频带高频端的边缘子带时,将所述2N个扩展后的数据,按照频率由高到低的顺序依次在所述边缘子带连续的2N个子载波上发送。
值得一提的是,本发明实施例上述的方法步骤是针对任意一个待传输数据的处理过程,当待传输数据为多个时,例如当前有K个待传输数据,所述K为大于1的整数,此时发送待传输数据的一种方式为:
在传输频带的边缘子带上,将K个待传输数据分别乘以扩展序列,得到K组扩展后的数据(其中每组有2N个扩展后的数据)。以连续2N个子载波为一组,将所述K组扩展后的数据分别在所述边缘子带的连续K组子载波上发送。
综上可知,本发明实施例所述方法,利用扩展序列对待传输数据进行调制,得到调制后的2N数据,并将这调制后的2N个数据分别在连续的2N子载波上发送,这样,可以使这2N个子载波信号之间的旁瓣幅值大幅度抵消,达到降低带外泄漏的目的;并且,在扩展序列作用下重复发送数据能够增加信噪比,从而提高解调性能。因此,本发明实施例所述方案可有效利用传输频带的边缘子带,提高频谱效率。
在本发明另一个实施例中提供一种数据调制方法,该实施例是第一实施例所述方法的一种具体实施方式。可选地,如图2所示,所述方法包括 如下步骤:
步骤S201,在传输频带的边缘子带上,将待传输数据乘以扩展序列[1,-1],得到两个扩展后的数据;
本发明实施例中,所述的传输频带的边缘子带,可以是传输频带单边的边缘子带,也可以是传输频带双边的边缘子带。可选地,本发明实施例中,当传输频带一端需要控制带外泄漏而另一端不需要控制带外泄漏时,所述边缘子带是指单边的边缘子带,此时,在控制带外泄漏一侧的边缘子带上,将待传输数据乘以扩展序列[1,-1];当传输频带两端都需要控制带外泄漏时,所述边缘子带是指双边的边缘子带,此时,在传输频带两端的边缘子带上,将待传输数据乘以扩展序列[1,-1]。
步骤S202,将所述两个扩展后的数据分别在所述边缘子带的连续两个子载波上发送。
在本发明的一个具体实施例中,当有K个待传输数据[S 1S 2S 3…S K]时,在传输频带的边缘子带上,K个待传输数据[S 1S 2S 3…S K]分别乘以扩展序列[1,-1],得到K组扩展后的数据[S 1,-S 1]、[S 2,-S 2]…[S K,-S K]。以连续两个子载波为一组,将所述K组扩展后的数据分别在所述边缘子带的连续K组子载波上发送,即[S 1,-S 1]在子载波1、2上发送,[S 2,-S 2]在子载波3、4上发送,[S 3,-S 3]在子载波5、6上发送……[S K,-S K]在子载波2K-1、2K上发送,具体如图3所示。
本发明实施例所述方法,能够降低边缘子带的带外泄漏。如图4所示,横轴表示频率,纵轴表示幅度,图中横的虚线表示幅值为0的基准线。待传输数据乘以[1,-1]扩展序列后在两个连续子载波上发送,那么,这两个子载波的信号旁瓣可以正负大幅抵消,达到抑制带外泄漏的效果。并且,连续两个子载波发送相同的数据,可以提高最大2倍的信噪比。
在本发明以下实施例中提供一种数据调制方法,该实施例是第一实施 例所述方法的一种具体实施方式。可选地,如图5所示,所述方法包括以下步骤:
步骤S501,在传输频带的边缘子带上,将待传输数据乘以扩展序列[1,-1,-1,1],得到四个扩展后的数据;
本发明实施例中,所述的传输频带的边缘子带,可以是传输频带单边的边缘子带,也可以是传输频带双边的边缘子带。可选地,本发明实施例中,当传输频带一端需要控制带外泄漏而另一端不需要控制带外泄漏时,所述边缘子带是指单边的边缘子带,此时,在控制带外泄漏一侧的边缘子带上,将待传输数据乘以扩展序列[1,-1,-1,1];当传输频带两端都需要控制带外泄漏时,所述边缘子带是指双边的边缘子带,此时,在传输频带两端的边缘子带上,将待传输数据乘以扩展序列[1,-1,-1,1]。
步骤S502,将所述四个扩展后的数据分别在所述边缘子带的连续四个子载波上发送。
在本发明的一个实施例中,在边缘子带上,待传输数据乘以扩展序列[1,-1,-1,1],按照传输频带由外向内的顺序,依次在连续4个子载波上发送。
可选地,当传输频带的低频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1],按照由低频向高频的顺序,依次在连续4个子载波上发送;当传输频带的高频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1],按照由高频向低频的顺序,依次在连续4个子载波上发送。
在本发明的又一个实施例中,在边缘子带上,待传输数据乘以扩展序列[1,-1,-1,1],还可以按照由低频向高频的顺序,依次在连续4个子载波上发送。
可选地,当传输频带的低频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1],按照由低频向高频的顺序, 依次在连续4个子载波上发送;当传输频带的高频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1],按照由低频向高频的顺序,依次在连续4个子载波上发送。
在本发明的再一个实施例中,当有K个待传输数据[S 1S 2S 3…S K]时,在传输频带的边缘子带上,K个待传输数据[S 1S 2S 3…S K]分别乘以扩展序列[1,-1,-1,1],得到K组扩展后的数据[S 1,-S 1,-S 1,S 1]、[S 2,-S 2,-S 2,S 2]…[S K,-S K,-S K,S K]。以连续四个子载波为一组,将所述K组扩展后的数据分别在所述边缘子带的连续K组子载波上发送,即[S 1,-S 1,-S 1,S 1]在子载波1、2、3、4上发送,[S 2,-S 2,-S 2,S 2]在子载波5、6、7、8上发送……[S K,-S K,S K,-S K]在子载波4K-3、4K-2、4K-1、4K上发送。当所述边缘子带为传输频带低频端的边缘子带时,所述K组扩展后的数据到子载波的映射如图6所示;当所述边缘子带为传输频带高频端的边缘子带时,所述K组扩展后的数据到子载波的映射如图7所示。
本发明实施例中,与前述实施例中提到的子载波旁瓣抵消同理,扩展序列[1,-1,-1,1]是通过4个连续子载波信号的旁瓣抵消达到抑制带外泄漏的效果,比扩展序列[1,-1]的带外泄漏抑制效果更好。并且,在扩展序列[1,-1,-1,1]作用下重复发送数据,可以提高最大4倍的接收信噪比。
在本发明实施例中提供一种数据调制方法,如图8所示,所述方法包括以下步骤:
步骤S801,在传输频带的边缘子带上,将待传输数据乘以扩展序列[1,-1,-1,1,-1,1],得到六个扩展后的数据;
本发明实施例中,所述的传输频带的边缘子带,可以是传输频带单边的边缘子带,也可以是传输频带双边的边缘子带。可选地,本发明实施例中,当传输频带一端需要控制带外泄漏而另一端不需要控制带外泄漏时,所述边缘子带是指单边的边缘子带,此时,在控制带外泄漏一侧的边缘子 带上,将待传输数据乘以扩展序列[1,-1,-1,1,-1,1];当传输频带两端都需要控制带外泄漏时,所述边缘子带是指双边的边缘子带,此时,在传输频带两端的边缘子带上,将待传输数据乘以扩展序列[1,-1,-1,1,-1,1]。
步骤S802,将所述六个扩展后的数据分别在所述边缘子带的连续六个子载波上发送。
在本发明实施例中,在边缘子带上,待传输数据乘以扩展序列[1,-1,-1,1,-1,1],按照传输频带由外向内的顺序,依次在连续6个子载波上发送。
可选地,当传输频带的低频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1,-1,1],按照由低频向高频的顺序,依次在连续6个子载波上发送;当传输频带的高频端一侧需要控制带外泄漏时,相应的边缘子带上的待传输数据乘以扩展序列[1,-1,-1,1,-1,1],按照由高频向低频的顺序,依次在连续6个子载波上发送。
本发明实施例中,在传输频带的边缘子带上,K个待传输数据[S 1S 2S 3…S K]分别乘以扩展序列[1,-1,-1,1,-1,1],得到K组扩展后的数据[S 1,-S 1,-S 1,S 1,-S 1,S 1]、[S 2,-S 2,-S 2,S 2,-S 2,S 2]…[S K,-S K,-S K,S K,-S K,S K]。以连续六个子载波为一组,将所述K组扩展后的数据分别在所述边缘子带的连续K组子载波上发送,即[S 1,-S 1,-S 1,S 1,-S 1,S 1]在子载波1、2、3、4、5、6上发送,[S 2,-S 2,-S 2,S 2,-S 2,S 2]在子载波7、8、9、10、11、12上发送……[S K,-S K,-S K,S K,-S K,S K]在子载波6K-5、6K-6、6K-3、6K-2、6K-1、6K上发送。当所述边缘子带为传输频带低频端的边缘子带时,所述K组扩展后的数据到子载波的映射如图9所示。当所述边缘子带为传输频带高频端的边缘子带时,所述K组扩展后的数据到子载波的映射如图10所示。
本发明实施例中,与前述实施例中提供的子载波旁瓣抵消同理,扩展序列[1,-1,-1,1,-1,1]是通过6个连续子载波信号的旁瓣抵消达到抑制带外泄漏的效果,在扩展序列[1,-1,-1,1,-1,1]作用下重复发送数据,可以提 高最大6倍的接收信噪比。
在本发明的又一个实施例中提供一种数据调制装置,如图11所示,包括:
调制模块1110,配置为在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
传输模块1120,配置为将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。可选地,所述N取1、2或3。
在本发明的一个实施例中:
当所述N取1时,所述扩展序列包括[C,-C];
当所述N取2时,所述扩展序列包括[C,-C,-C,C];
当所述N取3时,所述扩展序列包括[C,-C,-C,C,-C,C];
其中,所述C为复数。
可选地,在本发明的一个实施例中,当所述N取2或3时,传输模块1120,配置为将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送。
其中,将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送,可包括以下至少之一:
当所述边缘子带为传输频带低频端的边缘子带时,将所述2N个扩展后的数据,按照频率由低到高的顺序依次在所述边缘子带连续的2N个子载波上发送;
当所述边缘子带为传输频带高频端的边缘子带时,将所述2N个扩展后的数据,按照频率由高到低的顺序依次在所述边缘子带连续的2N个子载波 上发送。
本发明实施例中,所述调制模块1110和传输模块1120可以作为装置内处理器的程序模块存在,扩展序列及调制模块和传输模块运行所需的算法存储在装置的存储器内。该程序模块存储于存储器中,处理器与该存储器连接,通过读取并执行这些程序模块可以实现前述一个或多个技术方案提供的数据调制方法。
综上可知,本发明实施例所述装置,利用扩展序列对待传输数据进行调制,得到调制后的2N数据,并将这调制后的2N个数据分别在连续的2N子载波上发送,这样,可以使这2N个子载波信号之间的旁瓣幅值大幅度抵消,达到降低带外泄漏的目的;并且,在扩展序列作用下重复发送数据能够增加信噪比,从而提高解调性能。因此,本发明实施例所述方案可有效利用传输频带的边缘子带,提高频谱效率。
在本发明的再一个实施例中提供一种数据调制装置,如图12所示,包括:存储器1210、处理器1220及存储在所述存储器1210上并可在所述处理器1220上运行的计算机程序,所述处理器1220与存储器1210连接,例如,通过集成电路总线等各种设备内接口连接,所述处理器1220可配置为执行所述计算机程序,从而可以实现前述一个或多个技术方案提供的数据调制方法,例如,所述处理器1220执行所述计算机程序时可实现以下步骤:
在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。可选地,N取1、2或3。
在本发明的一个实施例中:
当所述N取1时,所述扩展序列包括[C,-C];
当所述N取2时,所述扩展序列包括[C,-C,-C,C];
当所述N取3时,所述扩展序列包括[C,-C,-C,C,-C,C];
其中,所述C为复数。
可选地,在本发明的一个实施例中,当所述N取2或3时,所述将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送,包括:
将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送;
其中,将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送,具体包括:
当所述边缘子带为传输频带低频端的边缘子带时,将所述2N个扩展后的数据,按照频率由低到高的顺序依次在所述边缘子带连续的2N个子载波上发送;
当所述边缘子带为传输频带高频端的边缘子带时,将所述2N个扩展后的数据,按照频率由高到低的顺序依次在所述边缘子带连续的2N个子载波上发送。
综上可知,本发明实施例所述装置,利用扩展序列对待传输数据进行调制,得到调制后的2N数据,并将这调制后的2N个数据分别在连续的2N子载波上发送,这样,可以使这2N个子载波信号之间的旁瓣幅值大幅度抵消,达到降低带外泄漏的目的;并且,在扩展序列作用下重复发送数据能够增加信噪比,从而提高解调性能。因此,本发明实施例所述方案可有效利用传输频带的边缘子带,提高频谱效率。
在本发明的另一个实施例中提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任意一实施例所述的方法,例如,可执行如图1、图2、图5及图8所示的方法。
本发明实施例提供的存储有计算机程序的计算机可读存储介质可选为非瞬间存储介质。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是其与其他实施例的不同之处。尤其对于装置实施例而言,由于其基本相似与方法实施例,所以,描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机 实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例公开的技术方案中,在发送数据之前,会将待传输的数据与长度为2N的扩展序列进行扩展处理,从而得到2N个扩展序列,而该扩展序列具有特点:每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;如此,一方面,扩展后的数据调制到传输频带的边缘子带的子载波上之后,可以大大的削减旁瓣幅值大幅度,从而减少边缘泄漏;另一方面,由于扩展序列作用下重复发送数据能够增加信噪比,从而提高解调性能;故具有积极的工业效果。与此同时,由于可以通过在发送端内数据调制的改变简便实现上述效果,故具有实现简单,可在工业上广泛运用的特点。

Claims (10)

  1. 一种数据调制方法,所述方法包括:
    在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
    将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。
  2. 如权利要求1所述的方法,其中,
    当所述N取1时,所述扩展序列包括[C,-C];
    当所述N取2时,所述扩展序列包括[C,-C,-C,C];
    当所述N取3时,所述扩展序列包括[C,-C,-C,C,-C,C];
    其中,所述C为复数。
  3. 如权利要求2所述的方法,其中,当所述N取2或3时,所述将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送,包括:
    将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送。
  4. 如权利要求3所述的方法,其中,所述将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送,包括以下至少之一:
    当所述边缘子带为传输频带低频端的边缘子带时,将所述2N个扩展后的数据,按照频率由低到高的顺序依次在所述边缘子带连续的2N个子载波上发送;
    当所述边缘子带为传输频带高频端的边缘子带时,将所述2N个扩展后的数据,按照频率由高到低的顺序依次在所述边缘子带连续的2N个子载波 上发送。
  5. 一种数据调制装置,包括:
    调制模块,配置为在传输频带的边缘子带上,将待传输数据乘以长度为2N的扩展序列,得到2N个扩展后的数据;其中,所述扩展序列的每连续两个元素为一组,组内两个元素的相位差为π,组间元素的相位差为零或者π;
    传输模块,配置为将所述2N个扩展后的数据分别在所述边缘子带的连续2N个子载波上发送;其中,N取正整数。
  6. 如权利要求5所述的装置,其中,
    当所述N取1时,所述扩展序列包括[C,-C];
    当所述N取2时,所述扩展序列包括[C,-C,-C,C];
    当所述N取3时,所述扩展序列包括[C,-C,-C,C,-C,C];
    其中,所述C为复数。
  7. 如权利要求6所述的装置,其中,当所述N取2或3时,所述传输模块用于将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送。
  8. 如权利要求7所述的装置,其中,所述传输模块在将所述2N个扩展后的数据,按照传输频带由外向内的顺序依次在所述边缘子带连续的2N个子载波上发送时,包括:
    当所述边缘子带为传输频带低频端的边缘子带时,将所述2N个扩展后的数据,按照频率由低到高的顺序依次在所述边缘子带连续的2N个子载波上发送;
    当所述边缘子带为传输频带高频端的边缘子带时,将所述2N个扩展后的数据,按照频率由高到低的顺序依次在所述边缘子带连续的2N个子载波上发送。
  9. 一种数据调制装置,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的数据调制程序,所述处理器配置为执行所述数据调制程序时实现如权利要求1至4任意一项提供的方法。
  10. 一种计算机可读存储介质,其中,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1至4中任一项所述的数据调制方法的步骤。
PCT/CN2018/088506 2017-05-31 2018-05-25 数据调制方法、装置及存储介质 WO2018219233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710398831.2 2017-05-31
CN201710398831.2A CN108989257B (zh) 2017-05-31 2017-05-31 数据调制方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2018219233A1 true WO2018219233A1 (zh) 2018-12-06

Family

ID=64454462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088506 WO2018219233A1 (zh) 2017-05-31 2018-05-25 数据调制方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN108989257B (zh)
WO (1) WO2018219233A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002038A1 (en) * 2002-06-25 2003-12-31 Koninklijke Philips Electronics N.V. Mt-cdma using spreading codes with interference-free windows
CN105515713A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种多用户码分多址接入通信方法与相应发射机、接收机
CN105577234A (zh) * 2014-10-10 2016-05-11 深圳市海思半导体有限公司 信息收发方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926501A (en) * 1996-12-12 1999-07-20 Motorola, Inc. Method and apparatus for dynamic channel configuration
KR20060063632A (ko) * 2004-12-03 2006-06-12 삼성전자주식회사 이동통신 시스템에서 파일럿 톤 전력 할당 장치 및 방법
CN102007743B (zh) * 2008-02-13 2015-04-08 电视广播有限公司 用信道频带发送/接收通信信号的频带高效方法和系统
US8432939B2 (en) * 2008-05-15 2013-04-30 Qualcomm Incorporated Using guard carriers for extra channels
JP2011176598A (ja) * 2010-02-24 2011-09-08 Panasonic Corp 無線送信装置及び無線送信方法
CN102611664B (zh) * 2011-01-21 2015-04-29 华为技术有限公司 发送信号的方法及装置
CN102413081A (zh) * 2011-12-30 2012-04-11 电信科学技术研究院 传输和接收上行数据的方法、系统和设备
US8873655B2 (en) * 2013-01-10 2014-10-28 Intel Corporation Sending information at a band edge within an orthogonal frequency-division multiplexing (OFDM) symbol
EP3110062B1 (en) * 2015-06-24 2017-10-25 Airbus Operations GmbH Method for masking communication signals, enode b with masking functionality and aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002038A1 (en) * 2002-06-25 2003-12-31 Koninklijke Philips Electronics N.V. Mt-cdma using spreading codes with interference-free windows
CN105515713A (zh) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 一种多用户码分多址接入通信方法与相应发射机、接收机
CN105577234A (zh) * 2014-10-10 2016-05-11 深圳市海思半导体有限公司 信息收发方法及装置

Also Published As

Publication number Publication date
CN108989257B (zh) 2024-01-30
CN108989257A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2019184626A1 (zh) 一种信息传输方法及装置
US10116479B2 (en) Apparatus and operating method for controlling peak to average power ratio of signal in wireless communication system
JPWO2019008916A1 (ja) 無線送信装置及び送信方法
WO2020103687A1 (zh) 一种信号传输方法及装置
WO2017129001A1 (zh) 一种数据处理方法和装置
US10491445B2 (en) Data modulation for use in multi-carrier system, demodulation method, frame generation method, and node
WO2017121410A1 (zh) 多载波系统的数据调制、解调方法、数据传输方法及节点
WO2018014815A1 (zh) 多载波系统及多载波系统的数据调制、解调方法及装置
US11757584B2 (en) Transmissions using discrete spectra
KR20090059315A (ko) 통신시스템에서 역 고속 퓨리에 변환 방법 및 장치
KR20230035053A (ko) 데이터 변조 방법, 통신 장치 및 저장 매체
US10581546B2 (en) Transmitter, transmission method, and receiver based on time-domain windows
WO2023284752A1 (zh) 数据传输、数据调制方法、装置、电子设备和存储介质
WO2023040621A1 (zh) 一种通信方法及相关装置
WO2018219233A1 (zh) 数据调制方法、装置及存储介质
JP6160906B2 (ja) 送信装置および送信方法
WO2019105053A1 (zh) 数据发送、接收方法、装置、设备及计算机可读存储介质
JP6780823B2 (ja) 信号伝送方法及び信号伝送装置
WO2018072565A1 (zh) 一种多载波系统的数据调制方法及装置
WO2023213227A1 (zh) 数据的传输方法、装置、存储介质及电子装置
EP3358798A1 (en) Receiver, transmitter, communication system for subband communication and methods for subband communication
WO2023213217A1 (zh) 数据序列的形成方法、装置、存储介质及电子装置
CN112468260B (zh) 物理帧生成方法、装置、电子设备及介质
Aka et al. Performance Evaluation of FBMC Compared to OFDM by Simulation with Matlab
CN112187691B (zh) 一种信号处理的方法、装置和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809438

Country of ref document: EP

Kind code of ref document: A1