WO2018072456A1 - 用于控制显示面板的el驱动电压的装置及方法 - Google Patents

用于控制显示面板的el驱动电压的装置及方法 Download PDF

Info

Publication number
WO2018072456A1
WO2018072456A1 PCT/CN2017/087745 CN2017087745W WO2018072456A1 WO 2018072456 A1 WO2018072456 A1 WO 2018072456A1 CN 2017087745 W CN2017087745 W CN 2017087745W WO 2018072456 A1 WO2018072456 A1 WO 2018072456A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
output
control signal
display panel
Prior art date
Application number
PCT/CN2017/087745
Other languages
English (en)
French (fr)
Inventor
张成庚
卢楠
王雨菲
杨华玲
刘静
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/739,951 priority Critical patent/US10510295B2/en
Publication of WO2018072456A1 publication Critical patent/WO2018072456A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • G09G2330/045Protection against panel overheating

Definitions

  • the present disclosure relates to the field of display technologies, and more particularly to an apparatus and method for controlling an EL driving voltage of an active matrix organic light emitting diode (AMOLED) display panel, and a display device.
  • AMOLED active matrix organic light emitting diode
  • the display driving chip controls the display mode and display content of the AMOLED display panel
  • the power driving chip provides the EL driving signal ELVDD/ELVSS required for the AMOLED display panel and other special voltages required by the display panel. Due to the self-illumination and current-driven characteristics of the AMOLED display panel, the AMOLED display panel is insensitive to high voltage in the case of a constant current. The extra high voltage in actual use does not increase the brightness of the OLED illumination, but causes the power consumption of the display panel to increase, thereby causing the display panel to generate heat and reducing the user experience.
  • the display driver chip dynamically controls the voltage of the EL drive signal ELVDD/ELVSS according to the temperature of the display screen or the panel, but the power supply driver chip cannot accurately judge whether the voltage is too high or too low.
  • the EL driving voltage ie, the voltage of the EL driving signal ELVDD/ELVSS
  • the EL driving voltage affects the voltage applied to the OLED device and the driving transistor.
  • the OLED device emits light normally and the voltage applied to the driving transistor is normal.
  • the voltage applied to the driving transistor is excessively large, which increases the power consumption of the display panel, thereby causing heat generation due to long-term operation, and even burning of the display panel.
  • the embodiments described herein provide an apparatus and method for controlling an EL driving voltage of a display panel, and a display apparatus capable of detecting a current of an EL driving signal ELVDD/ELVSS outputted to a display panel, and implementing the detected current Dynamic voltage control of the EL drive signal ELVDD/ELVSS.
  • a display apparatus capable of detecting a current of an EL driving signal ELVDD/ELVSS outputted to a display panel, and implementing the detected current Dynamic voltage control of the EL drive signal ELVDD/ELVSS.
  • an apparatus for controlling an EL driving voltage of a display panel includes a current sensing module configured to detect an EL drive current signal output to the display panel and convert the EL drive current signal into a first voltage signal; a signal generation module configured to be based on current sensing a first voltage signal of the module generates a pulse signal; a current protection module configured to generate a first control signal based on the first voltage signal and the reference voltage from the current sensing module; a signal coupling module configured to be according to the first control The signal, the output pulse signal or the low level signal is used as the second control signal to control the EL driving voltage.
  • the magnitude of the first voltage signal is positively correlated with the magnitude of the EL drive current signal.
  • the signal generation module is further configured to set a parameter of the pulse signal based on a magnitude of the first voltage signal.
  • the parameters of the pulse signal include one or more of frequency, period, amplitude, and duty cycle.
  • the signal generation module includes a signal generator based on a single bus protocol.
  • the first control signal is linearly related to the first voltage signal.
  • the current protection module includes a first resistor, a second resistor, a third resistor, a first capacitor, and an operational amplifier.
  • the first end of the first resistor is coupled to one of the output end of the current sensing module and the reference voltage end, and the second end of the first resistor is coupled to the second resistor One end, the first end of the first capacitor, and the inverting input of the operational amplifier.
  • the second end of the second resistor is coupled to the second end of the first capacitor and the output of the operational amplifier, and the output of the operational amplifier is the output of the current protection module.
  • the first end of the third resistor is coupled to the other of the output of the current sensing module and the reference voltage terminal, and the second end of the third resistor is coupled to the non-inverting input of the operational amplifier.
  • the signal coupling module is configured to output a pulse signal in response to the amplitude of the first control signal being less than a threshold, and output a low level in response to the amplitude of the first control signal being greater than or equal to the threshold signal.
  • the signal coupling module includes a transistor.
  • the control electrode of the transistor is coupled to the output end of the current protection module, the first pole of the transistor is coupled to the low level signal end, and the second pole of the transistor is coupled to the output end of the signal generating module and serves as an output end of the signal coupling module.
  • the transistor is an N-type transistor or a P-type transistor.
  • a display device including a display panel; and a device as described above for controlling an EL driving voltage output to the display panel.
  • the display panel is an AMOLED display panel.
  • a method for controlling an EL driving voltage of a display panel includes: detecting an EL driving current signal outputted to the display panel; converting the EL driving current signal into a first voltage signal; generating a pulse signal according to the first voltage signal; generating a first control signal based on the first voltage signal and the reference voltage And outputting a pulse signal or a low level signal as the second control signal to control the EL driving voltage according to the first control signal.
  • the magnitude of the first voltage signal is positively correlated with the magnitude of the EL drive current signal.
  • the parameter of the pulse signal is set based on the amplitude of the first voltage signal.
  • the parameters of the pulse signal include one or more of frequency, period, amplitude, and duty cycle.
  • the first control signal is linearly related to the first voltage signal.
  • the pulse signal or the low battery is output according to the first control signal.
  • the pulse signal is output as the second control signal in response to the amplitude of the first control signal being less than the threshold.
  • the low level signal is output as the second control signal in response to the amplitude of the first control signal being greater than or equal to the threshold.
  • the EL driving voltage is adjusted according to a parameter of the pulse signal in response to the output pulse signal as the second control signal.
  • the EL drive voltage is reset in response to the output low level signal as the second control signal.
  • the apparatus for controlling the EL driving voltage of the display panel is capable of dynamically controlling a control signal supplied to the power driving chip, thereby causing the power driving chip to dynamically control the magnitude of the EL driving voltage, thereby realizing the display Dynamic control of panel power consumption.
  • FIG. 1 is a schematic view showing a connection relationship of an AMOLED display panel, a display driving chip, and a power driving chip;
  • FIG. 2 is a schematic block diagram of an example apparatus for controlling an EL driving voltage of a display panel, in accordance with an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an example apparatus for controlling an EL driving voltage of a display panel, according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for controlling an EL driving voltage of a display panel, according to an embodiment of the present disclosure.
  • the source and drain (emitter and collector) of the transistor are symmetrical, and the source and drain (emitter and collector) of the N-type transistor and the P-type transistor
  • the conduction currents are opposite in direction, so in the embodiments of the present disclosure, the controlled intermediate end of the transistor is referred to as the control pole, the signal input terminal is referred to as the first pole, and the signal output terminal is referred to as the second pole.
  • FIG. 1 is a schematic view showing a connection relationship of an AMOLED display panel 100, a display driving chip 200, and a power driving chip 300.
  • the display driving chip 200 provides various signals for controlling the light-emitting elements in the AMOLED display panel 100, such as Source, gate, EM, and Vref/Vinit, to the AMOLED display panel 100.
  • the power driving chip 300 supplies the EL driving signals ELVDD and ELVSS to the AMOLED display panel 100.
  • a device (not shown) for dynamically controlling the EL driving voltage is provided in the display driving chip 200, which supplies the power driving chip 300 with a second control signal CTRL for dynamically controlling the EL driving voltage. When the EL driving voltage is too large, the power driving chip 300 is restarted by the second control signal CTRL to reset the EL driving voltage.
  • FIG. 2 illustrates a schematic block diagram of an example apparatus for controlling an EL driving voltage of a display panel, according to an embodiment of the present disclosure.
  • the example device includes a current sensing module 210, a signal generating module 220, a current protection module 230, and a signal coupling module 240.
  • the current sensing module 210 is connected to the signal generating module 220 and the current protection module 230, and detects a current signal output to the AMOLED display panel 100, for example, an EL driving signal ELVSS (which may also be ELVDD, for example) and converts the current signal into a first voltage.
  • ELVSS which may also be ELVDD, for example
  • Signal U1 and outputting first voltage signal U1 from current sensing module 210 to signal generation module 220 and current protection module 230.
  • the magnitude of the first voltage signal U1 is positively correlated with the magnitude of the EL drive current signal.
  • the signal generating module 220 is connected to the current sensing module 210 and the signal coupling module 240, and generates a pulse signal CTRL' according to the first voltage signal U1 from the current sensing module 210 and outputs the pulse signal CTRL' to the signal coupling module 240.
  • the signal generation module 220 is further configured to dynamically set parameters such as frequency, period, amplitude, and duty cycle of the pulse signal CTRL' in real time based on the magnitude of the first voltage signal U1 from the current sensing module 210.
  • the current protection module 230 is connected to the current sensing module 210 and the signal coupling module 240, and generates a first control signal U2 based on the first voltage signal U1 and the reference voltage VREF from the current sensing module 210. Then, the first control signal U2 is output to the signal coupling module 240. In the present embodiment, the first control signal U2 is linearly related to the first voltage signal U1.
  • the signal coupling module 240 is connected to the signal generating module 220 and the current protection module 230, and according to the first control signal U2, the pulse signal CTRL' generated by the signal generating module 220 or the low level signal is used as the second control signal CTRL to control the EL driving signal.
  • the voltage of ELVSS When the amplitude of the first control signal U2 is less than the threshold of the turn-on signal coupling module, the signal coupling module 240 outputs the pulse signal CTRL' to the power driving chip 300.
  • the power driving chip 300 shown in FIG. 1 can dynamically adjust the EL driving signal output from the power driving chip 300 according to parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL'.
  • the EL driving voltage is appropriately reduced. If the frequency of the pulse signal CTRL' is lower than the preset value, the EL driving voltage is appropriately increased.
  • the signal coupling module 240 is turned on, and outputs a low level signal to the power driving chip 300. In this case, the power driving chip 300 is automatically restarted, thereby resetting the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300.
  • FIG. 3 is a schematic structural diagram of an example apparatus for controlling an EL driving voltage of a display panel, according to an embodiment of the present disclosure.
  • the current sensing module 210 may include a current sensor 211 for detecting an EL driving current signal output to the AMOLED display panel 100.
  • the EL drive current signal is then converted to a first voltage signal U1 by, for example, a converter (not shown).
  • the magnitude of the first voltage signal U1 output from the current sensing module 210 is positively correlated with the magnitude of the EL drive current signal. That is, when the magnitude of the EL drive current increases, the first voltage The amplitude of the signal U1 also increases.
  • the sign of the first voltage signal U1 may be the same as or opposite to the sign of the EL drive current signal.
  • Signal generation module 220 includes, for example, a signal generator 221 based on a single bus protocol.
  • the signal generator 221 is capable of generating a pulse signal CTRL' according to the first voltage signal U1 from the current sensing module 210 and dynamically setting the pulse signal CTRL' such as frequency, period, amplitude, and based on the magnitude of the first voltage signal U1. Parameters such as duty cycle.
  • the current protection module 230 includes a first resistor Rg, a second resistor Rf, a third resistor Rb, a first capacitor Cf, an operational amplifier AMP, and is configured to be based on the first voltage signal U1 and the reference voltage VREF from the current sensing module 210, A first control signal U2 is generated.
  • the first control signal U1 is linearly related to the first voltage signal U2.
  • the signal coupling module 240 includes a transistor T1.
  • the control electrode of the transistor T1 is coupled to the output end of the current protection module 230.
  • the first pole of the transistor T1 is coupled to the low-level signal terminal, and the second pole of the transistor T1 is coupled to the output terminal of the signal generating module 220, and serves as a signal coupling module.
  • the output of 240 is the first pole of the transistor T1.
  • the type of the transistor T1 in the signal coupling module 240 and the first voltage signal U1 and the reference voltage in the current protection module 230 may be selected based on the positive and negative polarities of the detected EL driving signal. How to connect VREF.
  • the reference voltage VREF is set to be a positive voltage
  • the transistor T1 is a P-type transistor.
  • the first end of the first resistor Rg is coupled to the output end of the current sensing module 210 (ie, the first voltage signal U1)
  • the second end of the first resistor Rg is coupled to the second resistor Rf.
  • the second end of the second resistor Rf is coupled to the second end of the first capacitor Cf and the output of the operational amplifier AMP
  • the output of the operational amplifier AMP is the output of the current protection circuit.
  • the first end of the third resistor Rb is coupled to the reference voltage VREF
  • the second end of the third resistor Rb is coupled to the non-inverting input of the operational amplifier AMP.
  • the voltage V2 of the first control signal U2 is calculated by the following equation (1):
  • Rg is the resistance of the first resistor Rg
  • Rf is the resistance of the second resistor Rf
  • VREF is the voltage value of the reference voltage VREF
  • V1 is the voltage value of the first voltage signal U1.
  • the first control signal U2 is negatively correlated with the first voltage signal U1. Since the reference voltage VREF is a constant value, in the case where the following inequality (2) is satisfied, the voltage V2 of the first control signal U2 is a positive voltage, the transistor T1 is turned off, and the signal coupling module 240 outputs the signal generation module from the power supply driving chip 300. 220 pulse signal CTRL'.
  • the voltage V1 of the first voltage signal U1 increases, when the inequality (2) is not satisfied, the voltage V2 of the first control signal U2 becomes a negative voltage, and the amplitude
  • of the voltage V2 of the first control signal U2 is lower than the amplitude
  • the transistor T1 remains off, and the signal coupling module 240
  • the pulse signal CTRL' from the signal generating module 220 is continuously output to the power driving chip 300.
  • the power driving chip 300 can dynamically adjust the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300 in accordance with parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL'. For example, if the frequency of the pulse signal CTRL' is higher than a preset value, the EL driving voltage is appropriately reduced. If the frequency of the pulse signal CTRL' is lower than the preset value, the EL driving voltage is appropriately increased.
  • of the voltage V2 of the first control signal U2 is greater than or equal to the threshold voltage of the transistor T1.
  • the transistor T1 is turned on, and the voltage of the second pole of the transistor T1 is equal to the voltage of the first pole of the transistor T1 (that is, low level).
  • the signal coupling module 240 outputs a low level signal to the power driving chip 300, and the power driving chip 300 automatically restarts, thereby resetting the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300.
  • the reference power is set.
  • the voltage VREF is a negative voltage
  • the transistor T1 is an N-type transistor.
  • the arrangement of the current protection module 230 is the same as the arrangement thereof in the first example. Therefore, likewise, the voltage V2 of the first control signal U2 is calculated by the equation (1), and the first control signal U2 is negatively correlated with the first voltage signal U1.
  • the reference voltage VREF is a constant value, in the case where the following inequality (3) is satisfied, the voltage V2 of the first control signal U2 is a negative voltage, the transistor T1 is turned off, and the signal coupling module 240 outputs the signal generation module from the power driving chip 300. 220 pulse signal CTRL'.
  • the voltage V1 of the first voltage signal U1 decreases, when the inequality (3) is not satisfied, the voltage V2 of the first control signal U2 becomes a positive voltage, and the amplitude
  • of the voltage V2 of the first control signal U2 is lower than the amplitude
  • the transistor T1 remains off, and the signal coupling module 240
  • the pulse signal CTRL' from the signal generating module 220 is continuously output to the power driving chip 300.
  • the power driving chip 300 can dynamically adjust the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300 in accordance with parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL'. For example, if the frequency of the pulse signal CTRL' is higher than a preset value, the EL driving voltage is appropriately reduced. If the frequency of the pulse signal CTRL' is lower than the preset value, the EL driving voltage is appropriately increased.
  • of the voltage V2 of the first control signal U2 is greater than or equal to the threshold voltage of the transistor T1.
  • the transistor T1 is turned on, and the voltage of the second pole of the transistor T1 is equal to the voltage of the first pole of the transistor T1 (that is, low level).
  • the signal coupling module 240 outputs a low level signal to the power driving chip 300, and the power driving chip 300 automatically restarts, thereby resetting the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300.
  • the reference voltage VREF is set to be a positive voltage
  • the transistor T1 is an N-type transistor.
  • Current protection in this example The arrangement of the module 230 differs from the arrangement of the current protection module 230 in the first example in that the first end of the first resistor Rg is coupled to the reference voltage VREF, and the first end of the third resistor Rb is coupled to the current sensing module The output (ie, the first voltage signal U1).
  • the voltage V2 of the first control signal U2 is calculated by the following equation:
  • the first control signal U2 is positively correlated with the first voltage signal U1. Since the reference voltage VREF is a constant value, in the case where the following inequality (5) is satisfied, the voltage V2 of the first control signal U2 is a negative voltage, the transistor T1 is turned off, and the signal coupling module 240 outputs the signal generation module from the power driving chip 300. 220 pulse signal CTRL'.
  • the voltage V2 of the first control signal U2 becomes a positive voltage when the inequality (5) is not satisfied.
  • of the voltage V2 of the first control signal U2 is lower than the amplitude
  • the transistor T1 remains off, and the signal coupling module 240
  • the pulse signal CTRL' from the signal generating module 220 is continuously output to the power driving chip 300.
  • the power driving chip 300 can dynamically adjust the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300 in accordance with parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL'. For example, if the frequency of the pulse signal CTRL' is higher than a preset value, the EL driving voltage is appropriately reduced. If the frequency of the pulse signal CTRL' is lower than the preset value, the EL driving voltage is appropriately increased.
  • of the voltage V2 of the first control signal U2 is greater than or equal to the threshold voltage of the transistor T1.
  • the transistor T1 is turned on, and the voltage of the second pole of the transistor T1 is equal to the voltage of the first pole of the transistor T1 (that is, low level).
  • the signal coupling module 240 outputs a low level signal to the power driving chip 300, and the power driving chip 300 automatically restarts, thereby resetting the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300.
  • the reference voltage VREF is set to a negative voltage
  • the transistor T1 is a P-type transistor.
  • the arrangement of the elements in the current protection module 230 and the input signals is the same as the arrangement of the elements in the third example and the input signals. Therefore, likewise, the voltage V2 of the first control signal U2 is calculated by the equation (4), and the first control signal U2 is positively correlated with the first voltage signal U1.
  • the reference voltage VREF is a constant value, in the case where the following inequality (6) is satisfied, the voltage V2 of the first control signal U2 is a positive voltage, the transistor T1 is turned off, and the signal coupling module 240 outputs the signal generation module from the power driving chip 300. 220 pulse signal CTRL'.
  • the voltage V2 of the first control signal U2 becomes a negative voltage when the inequality (6) is not satisfied.
  • of the voltage V2 of the first control signal U2 is lower than the amplitude
  • the transistor T1 remains off, and the signal coupling module 240
  • the pulse signal CTRL' from the signal generating module 220 is continuously output to the power driving chip 300.
  • the power driving chip 300 can dynamically adjust the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300 in accordance with parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL'. For example, if the frequency of the pulse signal CTRL' is higher than a preset value, the EL driving voltage is appropriately reduced. If the frequency of the pulse signal CTRL' is lower than the preset value, the EL driving voltage is appropriately increased.
  • of the voltage V2 of the first control signal U2 is greater than or equal to the amplitude
  • the signal coupling module 240 outputs a low level signal to the power driving chip 300, and the power driving chip 300 automatically restarts, thereby resetting the voltage of the EL driving signal ELVDD/ELVSS output from the power driving chip 300.
  • FIG. 4 illustrates a schematic flow chart of a method for controlling an EL driving voltage of a display panel, according to an embodiment of the present disclosure. A method of controlling the EL driving voltage of the display panel will be described below with reference to FIG.
  • step S400 the EL drive current signal output to the display panel 100 is detected.
  • step S402 the EL drive current signal is converted into the first voltage signal U1.
  • step S404 a pulse signal CTRL' is generated based on the first voltage signal U1.
  • step S406 a first control signal U2 is generated based on the first voltage signal U1 and the reference voltage VREF.
  • step S408 according to the first control signal U2, the pulse signal CTRL' or the low level signal is output as the second control signal CTRL to control the EL driving voltage.
  • steps S404 and S406 can be performed in the order in which they are performed, or simultaneously.
  • the magnitude of the first voltage signal U1 is positively correlated with the magnitude of the EL drive current signal. That is, the larger the amplitude of the first voltage signal U1, the larger the amplitude of the EL drive current signal.
  • the sign of the first voltage signal U1 may be the same or opposite to the sign of the EL drive current signal.
  • parameters such as frequency, period, amplitude, and duty ratio of the pulse signal CTRL' are set based on the magnitude of the first voltage signal U1.
  • the first control signal U2 is linearly related to the first voltage signal U1.
  • step S408 when the amplitude of the first control signal U1 is less than the threshold, the second control signal U2 is the pulse signal CTRL', and when the amplitude of the first control signal U1 is greater than or When the threshold is equal to, the second control signal U2 is a low level signal.
  • step S408 in the case where the pulse signal CTRL' is taken as the second control signal U2, the EL driving voltage is adjusted in accordance with the parameter of the pulse signal CTRL'. And in the case where the low level signal is used as the second control signal U2, the EL driving voltage is reset.
  • the apparatus and method for controlling the EL driving voltage of the display panel and the display apparatus are capable of performing current detection on the EL driving signal ELVDD/ELVSS and implementing the EL by the detected current Dynamics of the drive signal ELVDD/ELVSS Voltage control. Therefore, the dynamic voltage control method can realize dynamic control of the power consumption of the display panel. If the power consumption of the display panel exceeds the predetermined power consumption, the power drive chip automatically restarts, resetting the voltage of the EL drive signal ELVDD/ELVSS to restore the power consumption of the display panel to normal.
  • the display device provided by the embodiments of the present disclosure can be applied to any product having a display function, such as an electronic paper, a mobile phone, a tablet, a television, a notebook computer, a digital photo frame, a navigator, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种用于控制显示面板的EL驱动电压的装置,能够动态地控制显示面板(100)的EL驱动电压并在EL驱动电压过大时复位EL驱动电压,使其恢复正常。该装置包括:电流感应模块(210),其被配置为检测向显示面板(100)输出的EL驱动电流信号,并将该EL驱动电流信号转换成第一电压信号(V1);信号生成模块(220),其被配置为根据来自电流感应模块(210)的第一电压信号(V1)生成脉冲信号(CTRL');电流保护模块(230),其被配置为基于来自电流感应模块(210)的第一电压信号(V1)和参考电压(VREF),生成第一控制信号(V2);信号耦合模块(240),其被配置为根据第一控制信号(V2),输出脉冲信号(CTRL')或者低电平信号,作为第二控制信号(CTRL)以控制EL驱动电压。

Description

用于控制显示面板的EL驱动电压的装置及方法
相关申请的交叉引用
本申请要求于2016年10月21日递交的中国专利申请第201610920702.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,更具体地,涉及用于控制有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)显示面板的EL驱动电压的装置及方法、以及显示装置。
背景技术
在包括AMOLED显示面板的显示装置中,显示驱动芯片控制AMOLED显示面板的显示方式和显示内容,电源驱动芯片提供AMOLED显示面板所需要的EL驱动信号ELVDD/ELVSS以及显示面板需要的其它特殊电压。由于AMOLED显示面板的自发光和由电流驱动的特性,在电流一定的情况下AMOLED显示面板对高压不敏感。在实际使用中额外的高压不会增加OLED发光的亮度,而是会造成显示面板的功耗增加,从而引起显示面板发热,降低用户体验。
显示驱动芯片根据显示画面或者面板的温度对EL驱动信号ELVDD/ELVSS的电压进行动态控制,但是电源驱动芯片对于电压是否过高或者过低无法有准确的判断。EL驱动电压(即,EL驱动信号ELVDD/ELVSS的电压)影响施加到OLED器件和驱动晶体管上的电压。EL驱动电压正常时,OLED器件正常发光并且施加到驱动晶体管上的电压正常。然而,一旦EL驱动电压超出阈值,则会造成施加到驱动晶体管上的电压过大,这样会增加显示面板的功耗,从而造成由于长期工作引起的发热,甚至是显示面板的烧毁。
发明内容
本文中描述的实施例提供了一种用于控制显示面板的EL驱动电压的装置及方法、以及显示装置,能够检测向显示面板输出的EL驱动信号ELVDD/ELVSS的电流,并通过检测的电流实现对EL驱动信号ELVDD/ELVSS的动态电压控制。通过动态地控制EL驱动电压,可以实现对显示面板功耗的动态控制。如果显示面板的功耗超过预定的功耗,则电源驱动芯片能够自动重启,以复位EL驱动信号ELVDD/ELVSS的电压,从而使显示面板的功耗恢复正常。
根据本公开的第一方面,提供了一种用于控制显示面板的EL驱动电压的装置。该装置包括电流感应模块,其被配置为检测向所述显示面板输出的EL驱动电流信号,并将该EL驱动电流信号转换成第一电压信号;信号生成模块,其被配置为根据来自电流感应模块的第一电压信号生成脉冲信号;电流保护模块,其被配置为基于来自电流感应模块的第一电压信号和参考电压,生成第一控制信号;信号耦合模块,其被配置为根据第一控制信号,输出脉冲信号或者低电平信号作为第二控制信号以控制EL驱动电压。
在本公开的实施例中,第一电压信号的幅值与EL驱动电流信号的幅值正相关。
在本公开的实施例中,所述信号生成模块进一步被配置为基于第一电压信号的幅值来设定所述脉冲信号的参数。
在本公开的实施例中,脉冲信号的参数包括频率、周期、幅值以及占空比中的一个或多个。
在本公开的实施例中,信号生成模块包括基于单总线协议的信号发生器。
在本公开的实施例中,第一控制信号与第一电压信号线性相关。
在本公开的实施例中,电流保护模块包括第一电阻、第二电阻、第三电阻、第一电容器和运算放大器。第一电阻的第一端耦接到电流感应模块的输出端和参考电压端中的一者,第一电阻的第二端耦接到第二电阻的第 一端、第一电容器的第一端以及运算放大器的反相输入端。第二电阻的第二端耦接到第一电容器的第二端以及运算放大器的输出端,并且运算放大器的输出端为电流保护模块的输出端。第三电阻的第一端耦接到电流感应模块的输出端和参考电压端中的另一者,第三电阻的第二端耦接到运算放大器的正相输入端。
在本公开的实施例中,信号耦合模块被配置为响应于第一控制信号的幅值小于阈值,输出脉冲信号,以及响应于第一控制信号的幅值大于或者等于该阈值,输出低电平信号。
在本公开的实施例中,信号耦合模块包括晶体管。晶体管的控制极耦接电流保护模块的输出端,晶体管的第一极耦接低电平信号端,晶体管的第二极耦接信号生成模块的输出端,并作为信号耦合模块的输出端。
在本公开的实施例中,晶体管为N型晶体管或P型晶体管。
根据本公开的第二方面,提供了一种显示装置,包括显示面板;以及如上所述的装置,用于控制向显示面板输出的EL驱动电压。
在本公开的实施例中,该显示面板是AMOLED显示面板。
根据本公开的第三方面,提供了一种用于控制显示面板的EL驱动电压的方法。该方法包括:检测向显示面板输出的EL驱动电流信号;将EL驱动电流信号转换成第一电压信号;根据第一电压信号生成脉冲信号;基于第一电压信号与参考电压,生成第一控制信号;根据第一控制信号,输出脉冲信号或者低电平信号作为第二控制信号以控制EL驱动电压。
在本公开的实施例中,第一电压信号的幅值与EL驱动电流信号的幅值正相关。
在本公开的实施例中,在根据第一电压信号生成脉冲信号的步骤中,基于第一电压信号的幅值来设定脉冲信号的参数。
在本公开的实施例中,脉冲信号的参数包括频率、周期、幅值以及占空比中的一个或多个。
在本公开的实施例中,第一控制信号与第一电压信号线性相关。
在本公开的实施例中,在根据第一控制信号,输出脉冲信号或者低电 平信号作为第二控制信号的步骤中,响应于第一控制信号的幅值小于阈值,输出脉冲信号作为第二控制信号。响应于第一控制信号的幅值大于或者等于该阈值,输出低电平信号作为第二控制信号。
在本公开的实施例中,响应于输出脉冲信号作为第二控制信号,根据脉冲信号的参数调节EL驱动电压。响应于输出低电平信号作为第二控制信号,对EL驱动电压复位。
根据本公开的实施例的用于控制显示面板的EL驱动电压的装置能够动态地控制向电源驱动芯片提供的控制信号,从而使电源驱动芯片动态地控制EL驱动电压的幅值,进而实现对显示面板功耗的动态控制。
附图说明
图1是示出AMOLED显示面板、显示驱动芯片和电源驱动芯片的连接关系的示意图;
图2是根据本公开的实施例的用于控制显示面板的EL驱动电压的示例装置的示意性框图;
图3是根据本公开的实施例的用于控制显示面板的EL驱动电压的示例装置的结构示意图;
图4是根据本公开的实施例的用于控制显示面板的EL驱动电压的方法的示意性流程图。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属的领域的技术人员所通常理解的相同含义。进一步将 理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于正式的形式来解释,除非在此另外明确定义。如在此所使用的,将两个或更多部分“连接”或“耦接”到一起的陈述应指该部分直接结合到一起或通过一个或多个中间部件结合。
在本公开的所有实施例中,由于晶体管的源极和漏极(发射极和集电极)是对称的,并且N型晶体管和P型晶体管的源极和漏极(发射极和集电极)之间的导通电流方向相反,因此在本公开的实施例中,统一将晶体管的受控中间端称为控制极,信号输入端称为第一极,信号输出端称为第二极。
图1是示出AMOLED显示面板100、显示驱动芯片200和电源驱动芯片300的连接关系的示意图。如图1所示,显示驱动芯片200向AMOLED显示面板100提供控制AMOLED显示面板100中的发光元件发光的各种信号,例如,Source、gate、EM以及Vref/Vinit等。电源驱动芯片300向AMOLED显示面板100提供EL驱动信号ELVDD和ELVSS。在显示驱动芯片200中包括用于动态控制EL驱动电压的装置(未示出),其向电源驱动芯片300提供用于动态控制EL驱动电压的第二控制信号CTRL。当EL驱动电压过大时,采用第二控制信号CTRL重启电源驱动芯片300,复位EL驱动电压。
图2示出根据本公开的实施例的用于控制显示面板的EL驱动电压的示例装置的示意性框图。该示例装置包括电流感应模块210、信号生成模块220、电流保护模块230和信号耦合模块240。
电流感应模块210连接信号生成模块220和电流保护模块230,并实时检测向AMOLED显示面板100输出的例如EL驱动信号ELVSS(也例如可以为ELVDD)的电流信号并将该电流信号转换成第一电压信号U1,以及将第一电压信号U1从电流感应模块210输出到信号生成模块220和电流保护模块230。在本实施例中,第一电压信号U1的幅值与EL驱动电流信号的幅值正相关。
信号生成模块220连接电流感应模块210和信号耦合模块240,并根据来自电流感应模块210的第一电压信号U1生成脉冲信号CTRL'以及将脉冲信号CTRL'输出到信号耦合模块240。信号生成模块220进一步被配置为基于来自电流感应模块210的第一电压信号U1的幅值来实时动态地设定脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数。
电流保护模块230连接电流感应模块210和信号耦合模块240,并基于来自电流感应模块210的第一电压信号U1和参考电压VREF生成第一控制信号U2。然后,将第一控制信号U2输出到信号耦合模块240。在本实施例中,第一控制信号U2与第一电压信号U1线性相关。
信号耦合模块240连接信号生成模块220和电流保护模块230,并根据第一控制信号U2,输出信号生成模块220生成的脉冲信号CTRL'或者低电平信号作为第二控制信号CTRL以控制EL驱动信号ELVSS的电压。当第一控制信号U2的幅值小于开启信号耦合模块的阈值时,信号耦合模块240向电源驱动芯片300输出脉冲信号CTRL'。在这种情况下,如图1所示的电源驱动芯片300能够根据脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数来动态地调节电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。例如,若脉冲信号CTRL'的频率比预设值更高,则适当减少EL驱动电压。若脉冲信号CTRL'的频率比预设值更低,则适当增加EL驱动电压。当第一控制信号U2的幅值大于或者等于开启信号耦合模块的阈值时,信号耦合模块240开启,并向电源驱动芯片300输出低电平信号。在这种情况下,电源驱动芯片300自动重启,从而复位电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。
图3是根据本公开的实施例的用于控制显示面板的EL驱动电压的示例装置的结构示意图。如图3所示,电流感应模块210可包括电流传感器211,其用于检测向AMOLED显示面板100输出的EL驱动电流信号。EL驱动电流信号然后通过例如转换器(未示出)被转换成第一电压信号U1。在本实施例中,从电流感应模块210输出的第一电压信号U1的幅值与EL驱动电流信号的幅值正相关。即当EL驱动电流的幅值增大时,第一电压 信号U1的幅值也增大。第一电压信号U1的符号可以与EL驱动电流信号的符号相同或相反。
信号生成模块220包括例如基于单总线协议的信号发生器221。信号发生器221能够根据来自电流感应模块210的第一电压信号U1生成脉冲信号CTRL'并基于第一电压信号U1的幅值来动态地设定脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数。
电流保护模块230包括第一电阻Rg、第二电阻Rf、第三电阻Rb、第一电容器Cf、运算放大器AMP,并被配置为基于来自电流感应模块210的第一电压信号U1和参考电压VREF,生成第一控制信号U2。第一控制信号U1与第一电压信号U2线性相关。
信号耦合模块240包括晶体管T1。晶体管T1的控制极耦接电流保护模块230的输出端,晶体管T1的第一极耦接低电平信号端,晶体管T1的第二极耦接信号生成模块220的输出端,并作为信号耦合模块240的输出端。
在本公开的实施例中,可基于检测的EL驱动信号的正负极性来选择在信号耦合模块240中的晶体管T1的类型,以及在电流保护模块230中的第一电压信号U1与参考电压VREF的连接方式。
例如,在第一示例中,当检测的EL驱动信号为正电压信号时,设置参考电压VREF为正电压,并且晶体管T1为P型晶体管。在电流保护模块230中,第一电阻Rg的第一端耦接到电流感应模块210的输出端(即,第一电压信号U1),第一电阻Rg的第二端耦接到第二电阻Rf的第一端、第一电容器Cf的第一端以及运算放大器AMP的反相输入端。第二电阻Rf的第二端耦接到第一电容器Cf的第二端以及运算放大器AMP的输出端,并且运算放大器AMP的输出端为电流保护电路的输出端。第三电阻Rb的第一端耦接到参考电压VREF,第三电阻Rb的第二端耦接到运算放大器AMP的正相输入端。
根据上述布置,第一控制信号U2的电压V2由下列等式(1)计算出:
Figure PCTCN2017087745-appb-000001
这上述等式(1)中,Rg为第一电阻Rg的阻值,Rf为第二电阻Rf的阻值,VREF为参考电压VREF的电压值,以及V1为第一电压信号U1的电压值。第一控制信号U2与第一电压信号U1负相关。由于参考电压VREF是恒定值,在满足下面的不等式(2)的情况下,第一控制信号U2的电压V2为正电压,晶体管T1截止,信号耦合模块240向电源驱动芯片300输出来自信号生成模块220的脉冲信号CTRL'。
Figure PCTCN2017087745-appb-000002
随着第一电压信号U1的电压V1的增大,当不等式(2)不满足时第一控制信号U2的电压V2变为负电压,第一控制信号U2的电压V2的幅值|V2|与第一电压信号U1的电压V1的幅值|V1|正相关。当第一控制信号U2的电压V2的幅值|V2|低于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|<|Vth|)时,晶体管T1保持截止,信号耦合模块240向电源驱动芯片300继续输出来自信号生成模块220的脉冲信号CTRL'。电源驱动芯片300能够根据脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数来动态地调节电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。例如,若脉冲信号CTRL'的频率比预设值更高,则适当减少EL驱动电压。若脉冲信号CTRL'的频率比预设值更低,则适当增加EL驱动电压。
随着第一电压信号U1的电压V1的继续增大,当由于第一电压信号U1的电压V1过大使得第一控制信号U2的电压V2的幅值|V2|大于或者等于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|≥|Vth|)时,晶体管T1导通,晶体管T1的第二极的电压等于晶体管T1的第一极的电压(即为低电平)。在这种情况下,信号耦合模块240向电源驱动芯片300输出低电平信号,电源驱动芯片300自动重启,从而复位电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。
在第二示例中,当检测的EL驱动信号为负电压信号时,设置参考电 压VREF为负电压,并且晶体管T1为N型晶体管。电流保护模块230的布置与在第一示例中其的布置相同。因此,同样地,第一控制信号U2的电压V2由等式(1)计算出,并且第一控制信号U2与第一电压信号U1负相关。
由于参考电压VREF是恒定值,在满足下面的不等式(3)的情况下,第一控制信号U2的电压V2为负电压,晶体管T1截止,信号耦合模块240向电源驱动芯片300输出来自信号生成模块220的脉冲信号CTRL'。
Figure PCTCN2017087745-appb-000003
随着第一电压信号U1的电压V1的减小,当不等式(3)不满足时第一控制信号U2的电压V2变为正电压,第一控制信号U2的电压V2的幅值|V2|与第一电压信号U1的电压V1的幅值|V1|正相关。当第一控制信号U2的电压V2的幅值|V2|低于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|<|Vth|)时,晶体管T1保持截止,信号耦合模块240向电源驱动芯片300继续输出来自信号生成模块220的脉冲信号CTRL'。电源驱动芯片300能够根据脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数来动态地调节电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。例如,若脉冲信号CTRL'的频率比预设值更高,则适当减少EL驱动电压。若脉冲信号CTRL'的频率比预设值更低,则适当增加EL驱动电压。
随着第一电压信号U1的电压V1的继续减小,当由于第一电压信号U1的电压V1过大使得第一控制信号U2的电压V2的幅值|V2|大于或者等于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|≥|Vth|)时,晶体管T1导通,晶体管T1的第二极的电压等于晶体管T1的第一极的电压(即为低电平)。在这种情况下,信号耦合模块240向电源驱动芯片300输出低电平信号,电源驱动芯片300自动重启,从而复位电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。
在第三示例中,当检测的EL驱动信号为正电压信号时,设置参考电压VREF为正电压,并且晶体管T1为N型晶体管。在本示例中电流保护 模块230的布置与在第一示例中的电流保护模块230的布置的区别在于,第一电阻Rg的第一端耦接到参考电压VREF,第三电阻Rb的第一端耦接到电流感应模块的输出端(即,第一电压信号U1)。
根据上述布置,第一控制信号U2的电压V2由下列等式计算出:
Figure PCTCN2017087745-appb-000004
由上述等式(4)可见,第一控制信号U2与第一电压信号U1正相关。由于参考电压VREF是恒定值,在满足下面的不等式(5)的情况下,第一控制信号U2的电压V2为负电压,晶体管T1截止,信号耦合模块240向电源驱动芯片300输出来自信号生成模块220的脉冲信号CTRL'。
Figure PCTCN2017087745-appb-000005
随着第一电压信号U1的电压V1的增大,当不等式(5)不满足时第一控制信号U2的电压V2变为正电压。当第一控制信号U2的电压V2的幅值|V2|低于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|<|Vth|)时,晶体管T1保持截止,信号耦合模块240向电源驱动芯片300继续输出来自信号生成模块220的脉冲信号CTRL'。电源驱动芯片300能够根据脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数来动态地调节电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。例如,若脉冲信号CTRL'的频率比预设值更高,则适当减少EL驱动电压。若脉冲信号CTRL'的频率比预设值更低,则适当增加EL驱动电压。
随着第一电压信号U1的电压V1的继续增大,当由于第一电压信号U1的电压V1过大使得第一控制信号U2的电压V2的幅值|V2|大于或者等于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|≥|Vth|)时,晶体管T1导通,晶体管T1的第二极的电压等于晶体管T1的第一极的电压(即为低电平)。在这种情况下,信号耦合模块240向电源驱动芯片300输出低电平信号,电源驱动芯片300自动重启,从而复位电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。
在第四示例中,当检测的EL驱动信号为负电压信号时,设置参考电压VREF为负电压,并且晶体管T1为P型晶体管。在电流保护模块230中的各元件以及输入信号的布置与在第三示例中的各元件以及输入信号的布置相同。因此,同样地,第一控制信号U2的电压V2由等式(4)计算出,并且第一控制信号U2与第一电压信号U1正相关。
由于参考电压VREF是恒定值,在满足下面的不等式(6)的情况下,第一控制信号U2的电压V2为正电压,晶体管T1截止,信号耦合模块240向电源驱动芯片300输出来自信号生成模块220的脉冲信号CTRL'。
Figure PCTCN2017087745-appb-000006
随着第一电压V1的减小,即其幅值|V1|的增大,当不等式(6)不满足时第一控制信号U2的电压V2变为负电压。当第一控制信号U2的电压V2的幅值|V2|低于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|<|Vth|)时,晶体管T1保持截止,信号耦合模块240向电源驱动芯片300继续输出来自信号生成模块220的脉冲信号CTRL'。电源驱动芯片300能够根据脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数来动态地调节电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。例如,若脉冲信号CTRL'的频率比预设值更高,则适当减少EL驱动电压。若脉冲信号CTRL'的频率比预设值更低,则适当增加EL驱动电压。
随着第一电压V1的继续减小,当第一控制信号U2的电压V2的幅值|V2|大于或者等于晶体管T1的阈值电压Vth的幅值|Vth|(即|V2|≥|Vth|)时,晶体管T1导通,晶体管T1的第二极的电压等于晶体管T1的第一极的电压(即为低电平)。在这种情况下,信号耦合模块240向电源驱动芯片300输出低电平信号,电源驱动芯片300自动重启,从而复位电源驱动芯片300输出的EL驱动信号ELVDD/ELVSS的电压。
图4示出根据本公开的实施例的用于控制显示面板的EL驱动电压的方法的示意性流程图。下面参考图4来描述控制显示面板的EL驱动电压的方法。
在步骤S400中,检测向显示面板100输出的EL驱动电流信号。
在步骤S402中,将EL驱动电流信号转换成第一电压信号U1。
在步骤S404中,根据第一电压信号U1生成脉冲信号CTRL'。
在步骤S406中,基于第一电压信号U1和参考电压VREF生成第一控制信号U2。
在步骤S408中,根据第一控制信号U2,输出脉冲信号CTRL'或者低电平信号作为第二控制信号CTRL以控制EL驱动电压。
在上述步骤中,步骤S404和S406可调换进行的先后顺序,或同时进行。
在本实施例的一个示例中,第一电压信号U1的幅值与EL驱动电流信号的幅值正相关。也就是说,第一电压信号U1的幅值越大,则EL驱动电流信号的幅值越大。在第一电压信号U1的幅值与EL驱动电流信号的幅值正相关的情况下,第一电压信号U1的符号可以与EL驱动电流信号的符号相同或相反。
在本实施例的一个示例中,基于第一电压信号U1的幅值来设定脉冲信号CTRL'的诸如频率、周期、幅值以及占空比等的参数。
在本实施例的一个示例中,第一控制信号U2与第一电压信号U1线性相关。
在本实施例的一个示例中,在步骤S408中,当第一控制信号U1的幅值小于阈值时,第二控制信号U2为脉冲信号CTRL',以及当第一控制信号U1的幅值大于或者等于该阈值时,第二控制信号U2为低电平信号。
在本实施例的一个示例中,在步骤S408中,在将脉冲信号CTRL'作为第二控制信号U2的情况下,根据脉冲信号CTRL'的参数来调节EL驱动电压。以及在将低电平信号作为第二控制信号U2的情况下,复位EL驱动电压。
综上所述,根据本公开的实施例的用于控制显示面板的EL驱动电压的装置及方法、以及显示装置,能够对EL驱动信号ELVDD/ELVSS进行电流检测,并通过检测的电流实现对EL驱动信号ELVDD/ELVSS的动态 电压控制。所以该动态电压控制方法可以实现对显示面板功耗的动态控制。如果显示面板的功耗超过预定的功耗,则电源驱动芯片自动重启,复位EL驱动信号ELVDD/ELVSS的电压从而使显示面板的功耗恢复正常。
本公开的实施例提供的显示装置可以应用于任何具有显示功能的产品,例如,电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框或导航仪等。
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。

Claims (15)

  1. 一种用于控制显示面板的EL驱动电压的装置,包括:
    电流感应模块,其被配置为检测向所述显示面板输出的EL驱动电流信号,并将所述EL驱动电流信号转换成第一电压信号;
    信号生成模块,其被配置为根据来自所述电流感应模块的所述第一电压信号生成脉冲信号;
    电流保护模块,其被配置为基于来自所述电流感应模块的所述第一电压信号和参考电压,生成第一控制信号;
    信号耦合模块,其被配置为根据所述第一控制信号,输出所述脉冲信号或者低电平信号作为第二控制信号以控制EL驱动电压。
  2. 根据权利要求1所述的装置,其中,所述第一电压信号的幅值与所述EL驱动电流信号的幅值正相关。
  3. 根据权利要求1或2所述的装置,其中,所述信号生成模块进一步被配置为基于所述第一电压信号的幅值来设定所述脉冲信号的参数,所述脉冲信号的所述参数包括频率、周期、幅值以及占空比中的一个或多个。
  4. 根据权利要求1至3中任意一项所述的装置,其中,所述信号生成模块包括基于单总线协议的信号发生器。
  5. 根据权利要求1至4中任意一项所述的装置,其中,所述第一控制信号与所述第一电压信号线性相关。
  6. 根据权利要求1至5中任意一项所述的装置,其中,所述电流保护模块包括第一电阻、第二电阻、第三电阻、第一电容器和运算放大器,
    其中,所述第一电阻的第一端耦接到所述电流感应模块的输出端和参考电压端中的一者,所述第一电阻的第二端耦接到所述第二电阻的第一端、所述第一电容器的第一端以及所述运算放大器的反相输入端;
    所述第二电阻的第二端耦接到所述第一电容器的第二端以及所述运算放大器的输出端,并且所述运算放大器的输出端为所述电流保护模块的输出端;
    所述第三电阻的第一端耦接到所述电流感应模块的所述输出端和所述 参考电压端中的另一者,所述第三电阻的第二端耦接到所述运算放大器的正相输入端。
  7. 根据权利要求1至6中任意一项所述的装置,其中,所述信号耦合模块被配置为响应于所述第一控制信号的幅值小于阈值,输出所述脉冲信号,以及响应于所述第一控制信号的幅值大于或者等于所述阈值,输出所述低电平信号。
  8. 根据权利要求1至7中任意一项所述的装置,其中,所述信号耦合模块包括晶体管,所述晶体管的控制极耦接所述电流保护模块的输出端,所述晶体管的第一极耦接低电平信号端,所述晶体管的第二极耦接所述信号生成模块的输出端,并作为所述信号耦合模块的输出端。
  9. 一种显示装置,包括:
    显示面板;以及
    如权利要求1至8中任意一项所述的装置,用于控制向所述显示面板输出的EL驱动电压。
  10. 一种用于控制显示面板的EL驱动电压的方法,包括:
    检测向所述显示面板输出的EL驱动电流信号;
    将所述EL驱动电流信号转换成第一电压信号;
    根据所述第一电压信号生成脉冲信号;
    基于所述第一电压信号与参考电压,生成第一控制信号;
    根据所述第一控制信号,输出所述脉冲信号或者低电平信号作为第二控制信号以控制EL驱动电压。
  11. 根据权利要求10所述的方法,其中,所述第一电压信号的幅值与所述EL驱动电流信号的幅值正相关。
  12. 根据权利要求10或11所述的方法,其中,在根据所述第一电压信号生成脉冲信号的步骤中,基于所述第一电压信号的幅值来设定所述脉冲信号的参数,所述脉冲信号的所述参数包括频率、周期、幅值以及占空比中的一个或多个。
  13. 根据权利要求10至12中任意一项所述的方法,其中,所述第一 控制信号与所述第一电压信号线性相关。
  14. 根据权利要求10至13中任意一项所述的方法,其中,在根据所述第一控制信号输出所述脉冲信号或者低电平信号作为第二控制信号的步骤中,响应于所述第一控制信号的幅值小于阈值,输出所述脉冲信号作为所述第二控制信号,以及响应于所述第一控制信号的幅值大于或者等于所述阈值,输出所述低电平信号作为所述第二控制信号。
  15. 根据权利要求10至14中任意一项所述的方法,其中,响应于输出所述脉冲信号作为所述第二控制信号,根据所述脉冲信号的参数调节所述EL驱动电压,以及响应于输出所述低电平信号作为所述第二控制信号,对所述EL驱动电压复位。
PCT/CN2017/087745 2016-10-21 2017-06-09 用于控制显示面板的el驱动电压的装置及方法 WO2018072456A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,951 US10510295B2 (en) 2016-10-21 2017-06-09 Apparatus and method for controlling EL drive voltage of display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610920702.0 2016-10-21
CN201610920702.0A CN106448561B (zh) 2016-10-21 2016-10-21 用于控制显示面板的el驱动电压的装置及方法

Publications (1)

Publication Number Publication Date
WO2018072456A1 true WO2018072456A1 (zh) 2018-04-26

Family

ID=58175675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087745 WO2018072456A1 (zh) 2016-10-21 2017-06-09 用于控制显示面板的el驱动电压的装置及方法

Country Status (3)

Country Link
US (1) US10510295B2 (zh)
CN (1) CN106448561B (zh)
WO (1) WO2018072456A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448561B (zh) 2016-10-21 2017-11-10 京东方科技集团股份有限公司 用于控制显示面板的el驱动电压的装置及方法
CN111524485B (zh) * 2020-05-29 2021-12-31 京东方科技集团股份有限公司 Oled模组外部驱动电路及驱动方法、显示装置
KR20220060291A (ko) * 2020-11-04 2022-05-11 엘지디스플레이 주식회사 표시장치와 그 구동 방법
CN112562564B (zh) * 2020-12-07 2022-07-08 湖北长江新型显示产业创新中心有限公司 一种显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372679B1 (en) * 2004-06-18 2008-05-13 Xilinx, Inc. Method and apparatus for RC triggered electrostatic discharge power clamp with hysteresis
CN101426323A (zh) * 2007-10-30 2009-05-06 三星电子株式会社 背光驱动器及包括其的液晶显示装置
CN104900190A (zh) * 2015-06-23 2015-09-09 京东方科技集团股份有限公司 电源电路、有机发光二极管显示装置
CN104933987A (zh) * 2015-05-29 2015-09-23 京东方科技集团股份有限公司 一种为有机发光二极管供电的电源电路和显示面板
CN105976756A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 电源芯片及显示装置
CN106448561A (zh) * 2016-10-21 2017-02-22 京东方科技集团股份有限公司 用于控制显示面板的el驱动电压的装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832613B1 (ko) * 2003-05-07 2008-05-27 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 El 표시 장치
KR100765268B1 (ko) * 2005-09-12 2007-10-09 삼성전자주식회사 디스플레이장치 및 그 제어방법
KR100965022B1 (ko) * 2006-02-20 2010-06-21 도시바 모바일 디스플레이 가부시키가이샤 El 표시 장치 및 el 표시 장치의 구동 방법
US7777166B2 (en) * 2006-04-21 2010-08-17 Cree, Inc. Solid state luminaires for general illumination including closed loop feedback control
CN1909759B (zh) * 2006-08-18 2012-11-28 北京中星微电子有限公司 Wled驱动电路和oled驱动电路
KR101403397B1 (ko) * 2006-11-29 2014-06-03 엘지디스플레이 주식회사 유기전계발광 표시장치
KR100833764B1 (ko) * 2007-01-22 2008-05-29 삼성에스디아이 주식회사 직류-직류 컨버터를 갖는 유기 전계 발광 표시 장치
KR101031694B1 (ko) * 2007-03-29 2011-04-29 도시바 모바일 디스플레이 가부시키가이샤 El 표시 장치
JP2009276460A (ja) * 2008-05-13 2009-11-26 Sony Corp 表示装置
KR101491623B1 (ko) * 2008-09-24 2015-02-11 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US8324824B2 (en) * 2009-01-29 2012-12-04 Ixys Corporation 1-wire communication protocol and interface circuit
KR101056289B1 (ko) * 2009-02-27 2011-08-11 삼성모바일디스플레이주식회사 Dc― dc 컨버터 및 그를 이용한 유기전계발광표시장치
KR101042956B1 (ko) * 2009-11-18 2011-06-20 삼성모바일디스플레이주식회사 화소 회로 및 이를 이용한 유기전계발광 표시장치
KR101142637B1 (ko) * 2010-05-10 2012-05-03 삼성모바일디스플레이주식회사 유기 전계발광 표시장치 및 그의 구동방법
JP5770726B2 (ja) * 2010-12-10 2015-08-26 株式会社Joled 表示装置及びその駆動方法
US20140118413A1 (en) * 2012-10-30 2014-05-01 Samsung Display Co., Ltd. Dc-dc converter and organic light emitting display device using the same
KR102054760B1 (ko) * 2013-12-17 2019-12-11 엘지디스플레이 주식회사 유기발광표시장치 및 이의 동작방법
TWI655442B (zh) * 2014-05-02 2019-04-01 日商半導體能源研究所股份有限公司 輸入/輸出裝置
CN104036727B (zh) * 2014-06-04 2015-07-01 京东方科技集团股份有限公司 直流驱动电压调节装置及方法、供电装置和显示面板
CN105469742B (zh) * 2016-01-15 2018-11-13 京东方科技集团股份有限公司 一种有机发光显示器及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372679B1 (en) * 2004-06-18 2008-05-13 Xilinx, Inc. Method and apparatus for RC triggered electrostatic discharge power clamp with hysteresis
CN101426323A (zh) * 2007-10-30 2009-05-06 三星电子株式会社 背光驱动器及包括其的液晶显示装置
CN104933987A (zh) * 2015-05-29 2015-09-23 京东方科技集团股份有限公司 一种为有机发光二极管供电的电源电路和显示面板
CN104900190A (zh) * 2015-06-23 2015-09-09 京东方科技集团股份有限公司 电源电路、有机发光二极管显示装置
CN105976756A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 电源芯片及显示装置
CN106448561A (zh) * 2016-10-21 2017-02-22 京东方科技集团股份有限公司 用于控制显示面板的el驱动电压的装置及方法

Also Published As

Publication number Publication date
CN106448561A (zh) 2017-02-22
US10510295B2 (en) 2019-12-17
CN106448561B (zh) 2017-11-10
US20180315375A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
CN106782319B (zh) 一种像素电路、像素驱动方法、显示装置
WO2018072456A1 (zh) 用于控制显示面板的el驱动电压的装置及方法
US9870082B2 (en) Pixel driver circuit, pixel driving method, pixel circuit and display device
US10971060B2 (en) Method of adjusting display brightness, light-emission control circuit and display device
CN108806599B (zh) 用于补偿oled像素电路的方法
KR101142702B1 (ko) 유기전계발광표시장치 및 그의 구동방법
US10043446B1 (en) Organic light-emitting diode display assembly and display device
US11217183B2 (en) Pixel circuit and driving method thereof and display apparatus
US20160343298A1 (en) Pixel driving circuit of organic light emitting display
WO2020181515A1 (zh) 像素电路及其驱动方法、显示装置
US9799263B2 (en) Power supply circuit and organic light-emitting diode display device
US8953351B2 (en) Power conversion apparatus for electronic apparatus
WO2020181512A1 (zh) 像素电路及其驱动方法、显示装置
WO2017012075A1 (zh) 像素电路及其驱动方法、显示面板
CN105528995B (zh) 显示面板及其驱动方法、显示装置
CN107369410B (zh) 像素电路、驱动方法和显示装置
US9131580B2 (en) Backlight driving circuit and backlight driving circuit
US11875742B2 (en) Display drive circuit and drive method thereof, and display device
US8471478B2 (en) Light control signal generating circuit
CN109036269B (zh) 像素电路、像素驱动方法和有机电致发光显示装置
WO2018210086A1 (zh) 像素电路及其驱动方法、显示装置
WO2020077783A1 (zh) 一种驱动电路及显示装置
US20140327373A1 (en) Led drive device, and lighting system incorporating the same
CN115294923B (zh) 稳压电路及显示面板
TW200417969A (en) Cathode voltage auto-adjusting circuit and method for active matrix organic light meitting diode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15739951

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863135

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17863135

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/12/2019)