WO2018072432A1 - 管腔支架 - Google Patents

管腔支架 Download PDF

Info

Publication number
WO2018072432A1
WO2018072432A1 PCT/CN2017/083722 CN2017083722W WO2018072432A1 WO 2018072432 A1 WO2018072432 A1 WO 2018072432A1 CN 2017083722 W CN2017083722 W CN 2017083722W WO 2018072432 A1 WO2018072432 A1 WO 2018072432A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
development
segment
lumen
bare
Prior art date
Application number
PCT/CN2017/083722
Other languages
English (en)
French (fr)
Inventor
肖本好
姜密
Original Assignee
先健科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先健科技(深圳)有限公司 filed Critical 先健科技(深圳)有限公司
Publication of WO2018072432A1 publication Critical patent/WO2018072432A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts

Definitions

  • the invention relates to a cardiovascular interventional medical device, in particular to a lumen support.
  • Intracavitary isolation with a stent graft isolates the location of the lesion in the human lumen, with the advantages of small surgical trauma, low intraoperative blood transfusion, and rapid postoperative recovery, and has gradually replaced traditional open surgery.
  • the stent graft isolates the blood flow from the lesion by the membrane, and eliminates the influence of blood pressure on the lesion location to achieve the purpose of healing.
  • the proximal end of the stent can maintain good adherence, and the stent as a whole can maintain good flexibility.
  • the proximal stent is connected to the bare stent segment at the proximal end of the stent graft.
  • the bare stent segment can enhance the friction between the stent and the vessel wall.
  • a development mark is usually provided at the proximal end of the film segment as a positioning mark during the release process of the stent graft.
  • a stent graft is mounted in a sheath tube, the length of the bare stent segment 11 is L1, and the development marker 1 is disposed at the proximal end of the stent graft segment 12, and the stent is released when the development marker 1 reaches a predetermined position. Due to the radial pressure exerted by the bare stent segment in the sheath within the sheath, it is in a compressed state and will become longer in the axial direction. Referring to Fig.
  • the proximal end of the bare stent segment is fixed on the conveyor.
  • the bare stent segment gradually expands and adapts to the shape of the blood vessel.
  • the length of the bare stent segment is shortened to L2, and the film attached thereto is attached.
  • the stent segment is pulled to the proximal end and may cover a branch vessel adjacent to the lesion site, or even completely cover the branch vessel, causing branch vessel occlusion, affecting blood supply to other important organs, and even causing organ failure.
  • a lumen stent comprising a bare stent segment and a stent graft segment that are axially connected.
  • the bare stent segment is provided with at least one first development mark, the first development mark.
  • the axial distance from the proximal end of the stent graft segment is not less than the axial shape variable produced when the bare stent segment is loaded into the predetermined structure by radial compression.
  • the distance may be a distance between the proximal end of the first development mark and the proximal end of the stent graft segment, or may be the distal end of the first development mark and the proximal end of the stent graft segment in the axial direction. The distance on.
  • the predetermined structure may be a sheath tube for supporting the lumen support to the lesion position, and the predetermined structure may also be an in vitro simulation tool provided with the delivery of the lumen support.
  • the sheath core of the sheath has the same diameter and length of the through hole, and the axial deformation amount refers to the difference between the length of the lumen bracket received in the through hole and the natural length thereof.
  • the bare stent segment includes at least one closed axially disposed first support structure, and the first development marker is disposed on the first support structure.
  • the first support structure is a wave-shaped annular structure including at least one peak and at least one trough, in a natural state, between the peak and the adjacent trough
  • the maximum distance along the axial direction is a first length
  • the maximum length of the peak to the adjacent trough is a second length.
  • the first support structure When pressed by a radial force, has an axial shape variable of the second length. The difference between the length and the first length.
  • the first support structure is a mesh structure comprising at least one mesh.
  • a fixing rod is disposed between the adjacent first supporting structures, and a proximal end of the fixing rod is connected to a trough of the first supporting structure, and the fixing The distal end of the rod is coupled to the crest of the first support structure.
  • the proximal end of the stent graft segment is provided with a second development marker for observing the stent stent segment after the stent stent is completely released at the lesion site. Whether the proximal end is below the lower edge of the lumen branch.
  • the first development mark and the second development mark are aligned in the circumferential direction, that is, the line connecting the first development mark and the second development mark is parallel to the bus bar of the lumen bracket.
  • the busbar refers to a line that can obtain the outer contour of the stent graft after rotating about the axis of the stent graft.
  • the first development mark and the second development mark may also not be aligned in the circumferential direction.
  • the lumen stent of the present invention is provided with a first display mark on the bare stent segment at a predetermined distance from the proximal end of the stent graft segment, the distance being not less than the axial shape of the bare stent segment from the naturally deployed state to the radial compression. variable.
  • the first display marker Prior to release of the lumen stent, can be referenced to release the lumen stent when the first visualization marker is delivered to the lower edge of the branch vessel near the lesion location.
  • the stent graft segment can be prevented from obscuring, covering, and closing the branch vessels near the lesion location.
  • FIG. 1 is a schematic view showing a catheter stent in a state in which a sheath tube is compressed in the prior art
  • FIG. 2 is a schematic view of a prior art lumen stent released after a lesion
  • FIG. 3 is a schematic structural view of a lumen stent according to an embodiment of the present invention.
  • Figure 4 is a partially enlarged schematic view showing the support structure of the bare stent segment of the lumen stent shown in Figure 3;
  • FIG. 5 is a schematic view showing a support structure of a bare stent segment of a lumen stent according to another embodiment of the present invention.
  • Figure 6 is a partial enlarged schematic view of the support structure shown in Figure 5;
  • FIG. 7 is a schematic view showing a support structure of a bare stent segment of a lumen stent according to still another embodiment of the present invention.
  • FIG. 8 is a schematic view showing a support structure of a bare stent segment of a lumen stent according to still another embodiment of the present invention.
  • the embodiments of the present invention are described in detail with reference to the accompanying drawings.
  • the lumen stents provided in the following examples are by way of example only and are not limiting of the invention, and that the teachings of the present invention can be applied to other implanted medical devices without the need for the inventive work.
  • the proximal and distal ends of the lumen stent are defined by the direction of blood flow, i.e., the flow of blood is defined from the proximal end of the lumen stent to the distal end.
  • a lumen stent in accordance with an embodiment of the present invention includes a bare stent segment 100, a stent graft segment 200, and a set of visualization markers that are axially joined.
  • the set of development marks includes two development marks, a first development mark 101 and a second development mark 201.
  • the bare stent segment has a hollow cylindrical shape.
  • the first development indicator 101 is disposed on the bare stent segment 100 and the second development marker 201 is disposed at the proximal end of the stent graft segment 200.
  • the distance between the distal end or the proximal end of the second development mark 201 and the proximal end of the first development mark 101 is the first pitch 102.
  • the length of the first spacing 102 is not less than that of the bare stent segment 100 for transporting the lumen stent to
  • the difference between the length of the sheath in the lesion position when the sheath is radially pressed and the length of the bare stent segment 100 in the natural state is defined as the axial shape variable in this embodiment.
  • other in vitro simulation tools can be used to simulate the sheathing state of the lumen stent.
  • the in vitro simulation tool is provided with a through hole of the same diameter and length as the sheath core of the sheath tube that delivers the lumen stent. It can be understood that the amount of axial deformation at this time refers to the difference between the length of the lumen bracket received in the through hole and being radially pressed and its natural length.
  • the bare stent segment 100 can be compressed under external force and self-expanded or mechanically expanded to a natural length after the external force is removed.
  • the bare stent segment 100 includes at least one closed axially disposed first support structure 110 that may be fabricated from a memory alloy material, such as a nickel titanium alloy.
  • the first support structure 110 may be a corrugated ring including a plurality of waveforms, or may be a mesh structure as shown in FIG.
  • the stent-supporting segment 200 is composed of a second supporting structure 210 and a coating 220.
  • the second supporting structure 210 may be the same shape or shape as the first supporting structure 110.
  • the second supporting structure 210 may be a memory alloy material (for example, a nickel-titanium alloy).
  • the film 220 may be a PET film or a PTFE film, and the film 220 covers the second support structure 210 by stitching or hot melt.
  • the distal end of the bare stent segment 100 and the proximal end of the stent graft segment 200 may be thermally sealed by the coating 220 to the first support structure 110, or may be sealed by the coating 220 to the first support structure 110. .
  • the bare stent segment 100 and the stent graft segment 200 are axially joined and overlap each other with a length of 2.5-5 mm, that is, in the axial direction, a length of the bare stent 100 of about 2.5-5 mm is covered by the stent graft 200. Cover the film.
  • the two development marks are aligned in the circumferential direction of the stent graft.
  • a plurality of first development marks 101 and a plurality of second development marks 201 may be disposed on the circumferential surface of the bare stent segment 100 to form two development rings coaxial with the bare stent segments 100.
  • the development mark can be made of impervious X-ray materials such as tantalum, tungsten and platinum.
  • the bare stent segment 100 is composed of a plurality of closed axially arranged first support structures 110. When squeezed by a radial force, the axial deformation of the bare stent segment 100 is the first on the same axis.
  • the first support structure 110 includes a waveform ring structure of at least one peak 111 and at least one valley 112, at least one peak 111 in the first support structure 110 and the One of the valleys 112 of the other first support structure 110 axially adjacent to the first support structure 110 is axially aligned.
  • any of the crests 111 of each of the first support structures 110 can be axially aligned with one of the adjacent first support structures 110. At least one crest 111 of the first support structure 110 is fixedly coupled to at least one trough 112 of another first support structure 110 that is axially aligned adjacent thereto.
  • each first support structure 110 can include at least one constrained crest 111 or at least one constrained trough 112. The constrained peaks 111 on a first support structure 110 may be connected to the nearest neighboring troughs 112 in the first support structure 110, and the constrained troughs 112 on a first support structure 110 may be adjacent to the first The nearest peaks 111 in the support structure 110 are connected.
  • the length along the axial direction between the peaks 111 and the adjacent valleys 112, that is, the wave height is the first length 113
  • the length to the adjacent trough 112, that is, the length of the support rod is the second length 114.
  • a first support structure 110 of a lumen stent includes a plurality of waveforms, wherein at least two waveforms have different wave heights.
  • the waveform having the maximum wave height in the natural state, the wave height of the waveform is the first length 113, and the maximum length of the support rod constituting the waveform is the second length 114.
  • the first support structure 110 When pressed by the radial force, the first support structure 110 The length of the second length 114 is toward the length of the second length 114.
  • the length of the first support tends to the length of the first length 113.
  • the axial shape of the first support structure 110 is the second length 114 and the first length 113.
  • the length of the first spacing 102 is not less than the product of the number of first support structures 110 and the difference between the second length 114 and the first length 113.
  • the lumen stent When the length of the first spacing 102 is the distance from the lower edge of the first developing mark 101 to the proximal end of the stent-graft segment 200, the lumen stent is released, and the lower edge of the first developing marker 101 is located at the lower edge of the lumen branch; The length of a spacing 102 is the distance from the upper edge of the first developing mark 101 to the proximal end of the stent graft segment 200. Upon exit, the lumen stent is released with the upper edge of the first visualization marker 101 at the lower edge of the lumen branch.
  • the first support structure 110 of the bare stent segment may also be a mesh structure having a mesh as shown in FIG. 7, and may be formed by braiding of a wire or by cutting a metal tube.
  • the plurality of turns of the first support structure 110 of the bare stent segment 100 may also be connected by a fixing rod 120 as shown in FIG.
  • the valleys of each of the first support structures 110 are axially aligned with the peaks of another support structure 110 adjacent thereto.
  • the shape of the development mark may be at least one of an "O” type or an "e” type or an “8” shape, or may be a combination of "e” type, "O” type, and "8” type, but is not limited thereto.
  • the development mark may also be set to at least two groups as shown in FIG. 8, and each development mark may have a different shape, for example, at least two first development marks 101 have different shapes, and the two second development marks 201 have different shapes. It is convenient to distinguish between the left and right sides of the lumen support and the direction of the curved side during the operation.
  • the lumen stent After the lumen stent is compressed, it is transported through the sheath to the lumen of the lesion.
  • the lumen stent When the first development marker 101 is located at the distal or lower edge of the branch vessel, the lumen stent is released. With the shortening effect of the bare stent segment 100, the stent graft segment 200 is proximal. The climb climbed. After the lumen stent is released, the stent graft segment 200 will move the same distance as the axial shape of the bare stent segment 100. At this point, it can be observed that the second development marker 201 does not exceed the lower edge of the branch vessel, and the stent graft segment 200 does not block branch vessels.
  • the lumen stent of the present invention is designed to obtain an axial shape variable of the compressed state of the bare stent segment from the natural state to the inside of the sheath tube, and then the distance between the bare stent segment and the proximal end of the stent graft is not less than The development mark of the axial variable, so that the bare stent segment is released at the predetermined in vivo lesion and the radial expansion of the traction stent stent segment moves proximally without obstructing the branch vessel near the lesion site.

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

管腔支架,包括沿轴向相接的裸支架段(100)和覆膜支架段(200),裸支架段(100)上设有至少一个第一显影标识(101),第一显影标识(101)与覆膜支架段(200)近端在轴向上的距离不小于裸支架段(100)装载于预定结构内受径向挤压产生的轴向形变量。可以第一显影标识(101)为参照,在第一显影标识(101)被输送至病灶位置附近的分支血管下缘时释放管腔支架,从而避免覆膜支架段(200)遮挡分支血管。

Description

管腔支架 技术领域
本发明涉及心血管介入医疗器械,尤其涉及一种管腔支架。
背景技术
采用覆膜支架实施腔内隔绝术隔离人体管腔内的病灶位置,具有手术创伤小、术中输血量少、术后恢复快等优点,已逐步取代传统的开腔手术。覆膜支架通过覆膜将血流与病灶位置隔绝,消除血压对病变位置的影响,以达到治愈的目的。
为使管腔支架能治疗更多的适应症,支架近端能保持良好的贴壁性,支架整体能保持良好的柔顺性,通常在覆膜支架的近端连接裸支架段。该裸支架段可以增强支架整体与血管壁之间的摩擦力。
现有技术中,通常在覆膜段的近端设置显影标识作为覆膜支架在释放过程中的定位标识。参见图1,覆膜支架装在鞘管内,裸支架段11的长度为L1,显影标识1设置于覆膜支架段12的近端,当显影标识1到达预定位置时释放支架。由于裸支架段在鞘管内收鞘管施加的径向压力,处于压缩状态,会在轴向变长。参见图2,裸支架段近端是固定于输送器上的,随着输送鞘后撤,裸支架段逐步膨胀并适应血管形态,释放后裸支架段的长度缩短至L2,与其连接的覆膜支架段被牵引向近端移动,可能会覆盖部分临近病灶位置的分支血管,甚至完全覆盖分支血管,造成分支血管闭塞,影响其他重要器官的血流供应,甚至引起器官衰竭。
发明内容
本发明一技术方案提供一种管腔支架,包括沿轴向相接的裸支架段和覆膜支架段。所述裸支架段上设有至少一个第一显影标识,所述第一显影标识 与所述覆膜支架段近端在轴向上的距离不小于所述裸支架段装载于预定结构内受径向挤压时产生的轴向形变量。
所述距离可以是第一显影标识的近端与所述覆膜支架段近端在轴向上的距离,也可以是第一显影标识的远端与所述覆膜支架段近端在轴向上的距离。
所述预定结构可以是与管腔支架配套的、用于输送管腔支架到病灶位置的鞘管;所述预定结构也可以是体外模拟工具,该体外模拟工具设有与输送该管腔支架的鞘管的鞘芯相同直径和长度的通孔,该轴向变形量是指管腔支架收容于该通孔内受挤压时的长度与其自然长度的差值。
在依据本发明一实施例的管腔支架中,所述裸支架段包括至少一圈闭合的沿轴向排布的第一支撑结构,所述第一显影标识设于该第一支撑结构上。
在依据本发明一实施例的管腔支架中,所述第一支撑结构为包括至少一个波峰及至少一个波谷的波形环状结构,在自然状态下,所述波峰和相邻所述波谷之间沿轴向最大距离为第一长度,所述波峰至相邻所述波谷的最大长度为第二长度,受径向力挤压时,所述第一支撑结构轴向形变量为所述第二长度与所述第一长度之差。
在依据本发明一实施例的管腔支架中,所述第一支撑结构为包括至少一个网格的网状结构。
在依据本发明一实施例的管腔支架中,相邻所述第一支撑结构之间还设置有固定杆,所述固定杆的近端与所述第一支撑结构的波谷相连,所述固定杆的远端与所述第一支撑结构的波峰相连。
在依据本发明一实施例的管腔支架中,覆膜支架段的近端设有第二显影标识,该第二显影标识用于观测管腔支架在病灶位置完全释放后,覆膜支架段的近端是否处于管腔分支下缘以下。所述第一显影标识和第二显影标识在周向上对齐,即所述第一显影标识和第二显影标识的连线,平行于所述管腔支架的母线。所述母线,是指一条绕覆膜支架的轴线旋转后能得到该覆膜支架的外轮廓的线。所述第一显影标识和第二显影标识也可不在周向上对齐。
本发明管腔支架在裸支架段上设有距离覆膜支架段近端预定距离的第一显示标识,该距离不小于裸支架段从自然展开状态到受径向压缩时的轴向形 变量。在释放管腔支架前,可以第一显示标识为参照,当第一显影标识被输送至病灶位置附近的分支血管下缘时释放管腔支架。由于管腔支架释放后裸支架的轴向变形量等于覆膜支架段被裸支架牵引向近端移动的距离,因此可避免覆膜支架段遮挡、覆盖、封闭该病灶位置附近的分支血管。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有技术中管腔支架处于鞘管压缩状态下的示意图;
图2是现有技术中管腔支架在病灶位置释放后的示意图;
图3是依本发明一实施例的管腔支架的结构示意图;
图4是依图3所示管腔支架的裸支架段的支撑结构的局部放大示意图;
图5是依本发明另一实施例的管腔支架的裸支架段的支撑结构的示意图;
图6是依图5所示的支撑结构的局部放大示意图;
图7是依本发明再一实施例的管腔支架的裸支架段的支撑结构的示意图;
图8是依本发明又一实施例的管腔支架的裸支架段的支撑结构的示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。应当知晓,以下各实施例提供的管腔支架仅用作举例,并不是对本发明的限制,本领域普通技术人员不需要付出创造性的劳动即可将本发明的教导用于其它植入医疗器械。为描述方便,通过血流方向定义管腔支架的近端和远端,即定义血流从管腔支架的近端流向远端。
参见图3,依据本发明一实施例的管腔支架包括沿轴向相接的裸支架段100、覆膜支架段200和一组显影标识。该组显影标识包括两个显影标识,即第一显影标识101和第二显影标识201。裸支架段呈中空圆筒形。第一显影标识101设在裸支架段100上,第二显影标识201设在覆膜支架段200的近端。第二显影标识201的远端或近端与第一显影标识101的近端的距离为第一间距102。第一间距102的长度不小于裸支架段100装配在用于输送管腔支架至 病变位置的鞘管内受鞘管径向挤压时的长度与裸支架段100在自然状态下的长度之差,本实施例中定义该长度之差为轴向形变量。在本发明其他实施例中,可以用其他体外模拟工具来模拟管腔支架装鞘状态。该体外模拟工具设有与输送该管腔支架的鞘管的鞘芯相同直径和长度的通孔。可以理解的是,此时该轴向变形量是指管腔支架收容于该通孔内受径向挤压时的长度与其自然长度的差值。
具体而言,裸支架段100在外力作用下可被压缩并在外力撤销后自膨胀或机械膨胀至自然长度。裸支架段100包括至少一圈闭合的沿轴向排布的第一支撑结构110,可采用记忆合金材料(例如镍钛合金)制备该第一支撑结构110。参见图3,该第一支撑结构110可以是包括多个波形的波形环状物,也可以是如图7所示的网状结构。
覆膜支架段200由第二支撑结构210及覆膜220构成,第二支撑结构210可以与第一支撑结构110形状相同或者形状不同,第二支撑结构210可采用记忆合金材料(例如镍钛合金)制备,该覆膜220可以是PET膜或PTFE膜,覆膜220通过缝合或热熔方式覆盖第二支撑结构210。裸支架段100的远端与覆膜支架段200的近端可通过覆膜220与第一支撑结构110热熔实现密封连接,也可通过覆膜220与第一支撑结构110缝合来实现密封连接。本领域的普通技术人员可根据需要选择合适的密封方式,此处不再赘述。作为优选,裸支架段100与覆膜支架段200沿轴向相接且重叠的长度为2.5-5mm,即沿轴向方向,裸支架100中长约2.5-5mm的一段由覆膜支架200的覆膜覆盖。
两个显影标识在覆膜支架的周向上对齐。在本发明其他实施例中,可在裸支架段100的周面设置多个第一显影标识101和多个第二显影标识201,形成两个与裸支架段100同轴的显影环。显影标识可选用钽、钨及铂金等不透X光材料制得。
参见图3,该裸支架段100由多圈闭合的沿轴向排布的第一支撑结构110构成,受径向力挤压时,裸支架段100的轴向形变量为同一轴线上第一支撑结构110轴向形变量的集合。第一支撑结构110包括至少一个波峰111及至少一个波谷112的波形环状结构,一第一支撑结构110中至少一个波峰111与该 第一支撑结构110轴向相邻的另一第一支撑结构110中的一个波谷112轴向对齐。例如,每个第一支撑结构110的任一波峰111可与相邻第一支撑结构110中的一个波谷112轴向对齐。第一支撑结构110的至少一个波峰111与其轴向对齐相邻的另一第一支撑结构110的至少一个波谷112固定连接。或者,每个第一支撑结构110可包括至少一个被约束的波峰111或至少一个被约束的波谷112。一第一支撑结构110上被约束的波峰111可以是与相邻第一支撑结构110中最邻近的波谷112相连接,一第一支撑结构110上被约束的波谷112可以是与相邻第一支撑结构110中最邻近的波峰111相连接。应当知晓,此处提及的“约束”方式仅用作举例,并不是对本发明的限制,本领域的普通技术人员可选用任何适合的方式来约束波峰111或波谷112,下面还将举例阐述到,此处不再一一赘述。
参见图4,当第一支撑结构的每一个波峰111及波谷112的波高相同,在自然状态下,波峰111和相邻波谷112之间沿轴向的长度即波高为第一长度113,波峰111至相邻波谷112的长度即支撑杆的长度为第二长度114,受径向力挤压时,第一支撑结构110的长度趋向第二长度114的长度,释放管腔支架时,第一支撑的长度趋向第一长度113的长度,因此,第一支撑结构110轴向形变量为第二长度114与第一长度113之间的差值。
第一支撑结构的多个波形的波高可不相同。参见图5及图6,本发明又一实施例提供的管腔支架的第一支撑结构110包括多个波形,其中至少两个波形的波高不同。依具有最大波高的波形,在自然状态下,该波形的波高为第一长度113,构成该波形的支撑杆的最大长度为第二长度114,受径向力挤压时,第一支撑结构110的长度趋向第二长度114的长度,释放管腔支架时,第一支撑的长度趋向第一长度113的长度,因此,第一支撑结构110轴向形变量为第二长度114与第一长度113之间的差值。因此第一间距102的长度不小于第一支撑结构110数目与第二长度114与第一长度113之差的乘积。
当第一间距102的长度为第一显影标识101下缘至覆膜支架段200近端的距离时,释放管腔支架,其第一显影标识101的下缘位于管腔分支下缘;当第一间距102的长度为第一显影标识101上缘至覆膜支架段200近端的距 离时,释放管腔支架,其第一显影标识101的上缘位于管腔分支下缘。
裸支架段的第一支撑结构110也可如图7所示的具有网格的网状结构,可以由金属丝编织形成,也可通过金属管切割形成。裸支架段100的多圈第一支撑结构110之间还可如图8所示通过固定杆120连接。每个第一支撑结构110的波谷与与其相邻的另一支撑结构110的波峰轴向对齐。
显影标识的形状可以为“O”型或“e”型或“8”字型中至少一种,也可以是“e”型、“O”型和“8”字型的组合,但不限于上述形状以及组合方式。显影标识也可设为如图8所示的至少两组,并且各显影标识可具有不同的形状,例如至少两个第一显影标识101的形状不同,两个第二显影标识201形状也不相同,可便于在操作过程中区分管腔支架的左右及大小弯侧方向。
管腔支架压缩后通过鞘管输送至病灶位置管腔,第一显影标识101位于分支血管远端或下缘时释放管腔支架,随裸支架段100的短缩效应覆膜支架段200向近端爬升。管腔支架释放完毕后,覆膜支架段200将移动与裸支架段100的轴向形变量相同的距离,此时可观察到第二显影标识201不会超过分支血管下缘,覆膜支架段200不会遮挡分支血管。
本发明的管腔支架在设计时通过事先得出裸支架段从自然状态到装入鞘管内的压缩状态的轴向形变量,然后再在裸支架段上设置距离覆膜支架近端不小于该轴向形变量的显影标识,因此裸支架段在预定的体内病灶处释放后径向膨胀牵引覆膜支架段向近端移动也不会遮挡病灶位置附近的分支血管。

Claims (6)

  1. 一种管腔支架,包括沿轴向相接的裸支架段和覆膜支架段,其特征在于,所述裸支架段上设有至少一个第一显影标识,所述第一显影标识与所述覆膜支架段近端在所述裸支架轴向上的距离不小于所述裸支架段装载于预定结构内受径向挤压时产生的轴向形变量。
  2. 根据权利要求1所述的管腔支架,其特征在于,所述管腔支架还包括至少一个设于所述覆膜支架段近端的第二显影标识。
  3. 根据权利要求2所述的管腔支架,其特征在于,所述第一显影标识和第二显影标识在周向对齐。
  4. 根据权利要求1所述的管腔支架,其特征在于,所述裸支架段与所述覆膜支架段沿轴向重叠2.5-5mm。
  5. 根据权利要求1所述的管腔支架,其特征在于,所述第一显影标识与第二显影标识的形状不同;或所述裸支架上设有多个第一显影标识和多个第二显影标识,各第一显影标识形状不同,和/或各第二显影标识形状不同。
  6. 根据权利要求1所述的管腔支架,其特征在于,所述裸支架段包括多个第一显影标识和多个第二显影标识,所述多个第一显影标识的连线和所述多个第二显影标识的连线形成与所述裸支架段同轴的两个显影环。
PCT/CN2017/083722 2016-10-20 2017-05-10 管腔支架 WO2018072432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610919401.6A CN107961097B (zh) 2016-10-20 2016-10-20 管腔支架
CN2016109194016 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018072432A1 true WO2018072432A1 (zh) 2018-04-26

Family

ID=61996495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083722 WO2018072432A1 (zh) 2016-10-20 2017-05-10 管腔支架

Country Status (2)

Country Link
CN (1) CN107961097B (zh)
WO (1) WO2018072432A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109662804A (zh) * 2019-01-15 2019-04-23 李卫校 Tips手术专用的血管内支架
CN110482286A (zh) * 2019-08-23 2019-11-22 东莞市创明电池技术有限公司 锂电池电芯捆扎设备及其胶带安装筒安装机构
WO2022237504A1 (zh) * 2021-05-12 2022-11-17 上海拓脉医疗科技有限公司 一种医用支架

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109498210B (zh) * 2018-11-08 2021-01-26 深圳市先健畅通医疗有限公司 管腔支架
CN109875735B (zh) * 2019-03-08 2023-11-21 王翔宇 一种完全可降解覆膜支架及覆膜支架系统
CN116059019A (zh) * 2021-11-01 2023-05-05 先健科技(深圳)有限公司 管腔支架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730119B1 (en) * 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
CN201303993Y (zh) * 2008-11-05 2009-09-09 复旦大学附属中山医院 模块式主动脉腔内支架
WO2014042900A1 (en) * 2012-09-12 2014-03-20 The Regents Of The University Of California Apparatus and methods for precise stent placement
CN204446185U (zh) * 2014-12-02 2015-07-08 何凡 一种治疗颅内动脉瘤用的纳米电纺覆膜蚀刻支架
CN204951229U (zh) * 2015-04-14 2016-01-13 陈旭东 一种血管内介入治疗颅内动脉瘤用的覆膜支架
CN105997298A (zh) * 2016-06-28 2016-10-12 黄连军 一种主动脉支架

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252040B2 (en) * 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
WO2014036809A1 (en) * 2012-09-06 2014-03-13 The Hong Kong University Of Science And Technology Endoluminal drug delivery devices with applications in blood vessels
CN104434353A (zh) * 2014-12-04 2015-03-25 曾延华 一种治疗颅内动脉瘤电解脱蚀刻覆膜支架及其操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730119B1 (en) * 2000-10-06 2004-05-04 Board Of Regents Of The University Of Texas System Percutaneous implantation of partially covered stents in aneurysmally dilated arterial segments with subsequent embolization and obliteration of the aneurysm cavity
CN201303993Y (zh) * 2008-11-05 2009-09-09 复旦大学附属中山医院 模块式主动脉腔内支架
WO2014042900A1 (en) * 2012-09-12 2014-03-20 The Regents Of The University Of California Apparatus and methods for precise stent placement
CN204446185U (zh) * 2014-12-02 2015-07-08 何凡 一种治疗颅内动脉瘤用的纳米电纺覆膜蚀刻支架
CN204951229U (zh) * 2015-04-14 2016-01-13 陈旭东 一种血管内介入治疗颅内动脉瘤用的覆膜支架
CN105997298A (zh) * 2016-06-28 2016-10-12 黄连军 一种主动脉支架

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109662804A (zh) * 2019-01-15 2019-04-23 李卫校 Tips手术专用的血管内支架
CN110482286A (zh) * 2019-08-23 2019-11-22 东莞市创明电池技术有限公司 锂电池电芯捆扎设备及其胶带安装筒安装机构
CN110482286B (zh) * 2019-08-23 2024-02-09 东莞市创明电池技术有限公司 锂电池电芯捆扎设备及其胶带安装筒安装机构
WO2022237504A1 (zh) * 2021-05-12 2022-11-17 上海拓脉医疗科技有限公司 一种医用支架

Also Published As

Publication number Publication date
CN107961097B (zh) 2020-11-17
CN107961097A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2018072432A1 (zh) 管腔支架
CN109561958B (zh) 血管医疗装置和系统
CN105007865B (zh) 一种支架移植物输送系统
US9675481B2 (en) Hybrid balloon-expandable/self-expanding prosthesis for deployment in a body vessel and method of making
US8672992B2 (en) Stent and stent-graft having one or more conformance struts
US10350096B2 (en) Expandable stent-graft system having diameter reducing connectors
US7691109B2 (en) Method of producing low profile stent and graft combination
CN107072777B (zh) 用于治疗动脉瘤和其它血管病的装置和方法
KR101837113B1 (ko) 관내 디바이스
US20030163188A1 (en) Method and system for deploying multi-part endoluminal devices
JP2020508086A (ja) シースが収縮されたステントグラフト送達システムおよび使用方法
US8128678B2 (en) Stent having less invasive ends and improved radial force
EP3522795A1 (en) Method and apparatus for stent delivery
MX2011001924A (es) Injerto endoprotesico con area de aterrizaje amplia y metodo para uso del mismo.
US20170216068A1 (en) Anti-migration stent deployment delivery systems and methods
CN110448393A (zh) 管腔支架
JP2019072544A (ja) モジュール式ステントグラフト装置
CN107106312A (zh) 支架递送装置
JP2020110584A (ja) カテーテル進入部位を被覆するステント設計
US9763816B2 (en) Endoluminal prosthesis delivery system and method
CN111954504B (zh) 支架移植物假体、用于改进支架移植物假体的输送的系统和方法
US20200405512A1 (en) Systems and methods for controlled release of stent barbs
US20230233312A1 (en) Stent design for transluminal application
AU2007200411B2 (en) Low profile stent and graft combination
JP2003190297A (ja) 二又管内移植片の管内配置のための方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861300

Country of ref document: EP

Kind code of ref document: A1