WO2018070426A1 - Anti-glare hard coat laminate - Google Patents

Anti-glare hard coat laminate Download PDF

Info

Publication number
WO2018070426A1
WO2018070426A1 PCT/JP2017/036822 JP2017036822W WO2018070426A1 WO 2018070426 A1 WO2018070426 A1 WO 2018070426A1 JP 2017036822 W JP2017036822 W JP 2017036822W WO 2018070426 A1 WO2018070426 A1 WO 2018070426A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hard coat
meth
poly
primer layer
Prior art date
Application number
PCT/JP2017/036822
Other languages
French (fr)
Japanese (ja)
Inventor
元信 松山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780060909.8A priority Critical patent/CN109791225B/en
Priority to JP2018545025A priority patent/JP6799283B2/en
Priority to KR1020197003830A priority patent/KR102507695B1/en
Publication of WO2018070426A1 publication Critical patent/WO2018070426A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/408Matt, dull surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an antiglare hard coat laminate comprising a hard coat layer excellent in antiglare property (antiglare function) and a method for producing the same.
  • a large number of products in which a touch panel is mounted on a flat panel display such as a personal computer, a mobile phone, a mobile game machine, and an ATM have been commercialized.
  • a touch panel is mounted on a flat panel display such as a personal computer, a mobile phone, a mobile game machine, and an ATM.
  • smartphones and tablet PCs the number of capacitive touch panels having a multi-touch function is rapidly increasing.
  • An anti-glare hard coat film having a hard coat layer of about several ⁇ m with irregularities formed on the surface is bonded to the surface of these touch panel displays in order to prevent a decrease in visibility due to reflection of external light on the screen.
  • the method is used.
  • a method for forming irregularities on the surface a method in which fine particles having a particle size of about several ⁇ m are contained in a hard coat layer is generally used.
  • the capacitive touch panel is operated by touching it with a human finger. For this reason, fingerprints are attached to the surface of the touch panel every time an operation is performed, causing problems that the visibility of the image on the display is remarkably impaired and the appearance of the display is impaired.
  • the fingerprint contains moisture derived from sweat and oil derived from sebum, and it is strongly desired to impart water repellency and oil repellency to the hard coat layer on the display surface in order to prevent both of them from adhering. ing.
  • capacitive touch panels are touched by a finger every day, even if the initial antifouling property has reached a considerable level, their functions often deteriorate due to scratches during use. . In particular, the antiglare hard coat layer has irregularities on its surface, so that it tends to be caught and easily damaged. Therefore, the durability of the antifouling property in the process of use has been a problem.
  • a hard coat layer having antiglare and scratch resistance as a component for imparting antifouling and scratch resistance to the surface of the hard coat layer, a poly (oxyperfluoroalkylene) structure and (meth) in the molecule
  • MS methyl methacrylate-styrene copolymer
  • the hard cord layer using an acrylic resin is particularly inferior in adhesion to a glass substrate, and it has been a subject to be easily peeled off from the substrate.
  • a hard coat layer that is excellent in antiglare properties, exhibits high scratch resistance, and has excellent adhesion to a substrate.
  • the present inventors have provided a primer layer between the base material and the hard coat layer in order to improve the adhesion to the base material, particularly the formation of the primer layer. It has been found that a siloxane oligomer having a radical polymerizable double bond is employed as a material. An active energy ray polymerizable group is attached to both ends of a molecular chain containing a poly (oxyperfluoroalkylene) structure via a poly (oxyalkylene) group or via a poly (oxyalkylene) group and one urethane bond group.
  • An antiglare hard coat laminate comprising a base material, a primer layer above the base material, and a hard coat layer above the primer layer
  • the primer layer is (A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] It consists of a cured product of a primer layer forming composition containing a siloxane oligomer,
  • R 1 represents a monovalent organic group having a radical polymerizable double bond
  • R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms)
  • the present invention relates to an antiglare hard coat laminate.
  • the siloxane oligomer of the component (A) is a radical obtained by hydrolytic condensation of an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2].
  • the antiglare hard coat laminate according to the first aspect which is a siloxane oligomer having a polymerizable double bond.
  • R 1 represents a monovalent organic group having a radical polymerizable double bond
  • R 3 represents an alkyl group having 1 to 6 carbon atoms which may be substituted with a fluorine atom, or a phenyl group.
  • R 1 in the formula [1] is a monovalent organic group having a vinyl group or a (meth) acryl group
  • the antiglare hard coat laminate according to the first aspect or the second aspect is about the body.
  • the present invention relates to the antiglare hard coat laminate according to the third aspect, in which the alkoxysilane A is a compound represented by the following formula [3].
  • any one of the first to fourth aspects, wherein the siloxane oligomer having a radical polymerizable double bond as the component (A) is a siloxane oligomer containing 10 to 99 mol% of the alkoxysilane A unit.
  • the poly (oxyperfluoroalkylene) group of the perfluoropolyether of the component (b) is a group having — [OCF 2 ] — and — [OCF 2 CF 2 ] — as repeating units. It is related with the anti-glare hard-coat laminated body as described in any one among a 1st viewpoint thru
  • the poly (oxyalkylene) group of the perfluoropolyether of the component (b) is a poly (oxyethylene) group, as described in any one of the first aspect to the sixth aspect.
  • the present invention relates to a dazzling hard coat laminate.
  • the polyfunctional monomer of the component (a) is at least one selected from the group consisting of a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound. It is related with the anti-glare hard-coat laminated body as described in any one of viewpoints.
  • the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the eighth aspect, wherein the organic fine particles of the component (c) are spherical particles.
  • the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the ninth aspect, wherein the organic fine particles of the component (c) are polymethyl methacrylate particles.
  • the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the tenth aspect, wherein the polymerization initiator of the component (d) is an alkylphenone polymerization initiator.
  • the hard coat layer has a thickness of 1 to 10/3 times the average particle diameter of the organic fine particles of the component (c).
  • the antiglare hard coat laminate according to one item.
  • the present invention relates to the antiglare hard coat laminate according to any one of the first to twelfth aspects, wherein the hard coat layer has a thickness of 1 to 20 ⁇ m.
  • the present invention relates to the antiglare hard coat laminate according to the thirteenth aspect, wherein the hard coat layer has a thickness of 3 to 10 ⁇ m.
  • the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the fourteenth aspect, in which the substrate is glass.
  • a method for producing an antiglare hard coat laminate comprising a primer layer on at least one surface of a substrate and a hard coat layer above the primer layer, Applying a primer layer forming composition on a substrate to form a coating film; Heating the coating film of the primer layer forming composition to cure the coating film and forming a primer layer; A step of applying a curable composition on the primer layer to form a coating film, and a step of irradiating the coating film of the curable composition with active energy rays to cure the coating film to form a hard coat layer Including,
  • the primer layer forming composition is (A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] Containing siloxane oligomers, (In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R
  • the antiglare hard coat laminate of the present invention comprises a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer.
  • the primer layer comprises a cured product of a primer layer forming composition containing a siloxane oligomer having a radical polymerizable double bond
  • the hard coat layer has an active energy. It consists of hardened
  • the base material in the antiglare hard coat laminate of the present invention is not particularly limited.
  • plastic polycarbonate, polymethacrylate, polystyrene, polyester, PET (polyethylene terephthalate), polyolefin, epoxy resin, melamine resin, triacetyl cellulose, ABS (acrylonitrile-butadiene-styrene copolymer), AS (acrylonitrile-styrene copolymer), norbornene resin, etc.
  • the shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
  • glass can be used conveniently as a base material.
  • the thickness of the substrate is not particularly limited, but can be, for example, 10 to 1,000 ⁇ m.
  • the primer layer in the antiglare hard coat laminate of the present invention comprises a cured product of a primer layer forming composition containing the following component (A): (A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] Siloxane oligomer.
  • R 1 represents a monovalent organic group having a radical polymerizable double bond
  • R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms)
  • R 2 and R 4 are each independently methyl A group or an ethyl group
  • a represents an integer of 1 or 2
  • b represents an integer of 0 to 2.
  • the (A) siloxane oligomer having a radical polymerizable double bond (hereinafter, also simply referred to as (A) siloxane oligomer) is represented by alkoxysilane A represented by the following formula [1] and the following formula [2]. It is a siloxane oligomer obtained by hydrolyzing and condensing at least alkoxysilane B as an essential alkoxysilane unit.
  • R 1 represents a monovalent organic group having a radical polymerizable double bond
  • R 2 represents a methyl group or an ethyl group
  • a represents an integer of 1 or 2.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is substituted with a fluorine atom, an amino group substituted with at least an alkyl group having 1 to 6 carbon atoms, or at least a phenyl group). Or a phenyl group, preferably R 3 represents an alkyl group having 1 to 6 carbon atoms or a phenyl group which may be substituted with a fluorine atom.
  • R 4 represents a methyl group or an ethyl group
  • b represents an integer of 0 to 2.
  • the monovalent organic group having a radically polymerizable double bond of R 1 in the above formula [1] is preferably a monovalent organic group having a vinyl group or a (meth) acryl group.
  • the (meth) acryl group means both an acryl group and a methacryl group.
  • the alkyl group having 1 to 10 carbon atoms represented by R 3 in the above formula [2] (the alkyl group is a fluorine atom, an amino group substituted with at least an alkyl group having 1 to 6 carbon atoms, and at least a phenyl group).
  • methyl group ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Examples thereof include a butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclohexyl group, n-octyl group and n-decyl group.
  • the amino group substituted with at least an alkyl group having 1 to 6 carbon atoms represented by R 3 in the above formula [2] includes a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, and n-propylamino.
  • a methylamino group a dimethylamino group, an ethylamino group, a diethylamino group, and n-propylamino.
  • examples of the amino group substituted with at least a phenyl group represented by R 3 in the above formula [2] include a phenylamino group and a di
  • R 2 represents the same meaning as defined in the above formula [1]
  • R 5 represents a hydrogen atom or a methyl group
  • L 1 represents an alkylene group having 1 to 10 carbon atoms, preferably 1 to 1 carbon atom
  • 8 represents an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms.
  • Examples of the alkylene group having 1 to 10 carbon atoms represented by L 1 include a methylene group, an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, a pentamethylene group, and 2,2-dimethyl.
  • a trimethylene group, a hexamethylene group, an octamethylene group, a decamethylene group, etc. are mentioned. Among these, a trimethylene group is preferable.
  • alkoxysilane A examples include trimethoxy (vinyl) silane, triethoxy (vinyl) silane, 3- (meth) acryloyloxypropyltrimethoxysilane, triethoxy (3- (meth) acryloyloxypropyl) silane, 8 -(Meth) acryloyloxyoctyltrimethoxysilane, triethoxy (8- (meth) acryloyloxyoctyl) silane, 3- (meth) acryloyloxypropyl (dimethoxy) (methyl) silane, diethoxy (3- (meth) acryloyloxypropyl) ) (Methyl) silane, trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane and the like.
  • alkoxysilane B represented by the above formula [2] include tetramethoxysilane, tetraethoxysilane, trimethoxy (methyl) silane, triethoxy (methyl) silane, ethyltrimethoxysilane, triethoxy (ethyl) silane, Trimethoxy (propyl) silane, triethoxy (propyl) silane, trimethoxy (3,3,3-trifluoropropyl) silane, triethoxy (3,3,3-trifluoropropyl) silane, butyltrimethoxysilane, butyltriethoxysilane, Trimethoxy (pentyl) silane, triethoxy (pentyl) silane, hexyltrimethoxysilane, triethoxy (hexyl) silane, trimethoxy (phenyl) silane, triethoxy (phenyl) silane, dimethoxyd
  • tetramethoxysilane, tetraethoxysilane, trimethoxy (3- (phenylamino) propyl) silane, and triethoxy (3- (phenylamino) propyl) silane are preferable.
  • the siloxane oligomer is preferably a siloxane oligomer containing 10 to 99 mol% of the alkoxysilane A unit in the total alkoxysilane units.
  • the (A) siloxane oligomer is preferably a siloxane oligomer containing at least 10 to 99 mol% of the structural unit represented by the following formula [4] in all the structural units.
  • R 2 , R 5 and L 1 represent the same meaning as defined in the formula [3].
  • the method for obtaining the (A) siloxane oligomer is not particularly limited.
  • it can be obtained by condensing an alkoxysilane containing the alkoxysilane A and alkoxysilane B in an organic solvent.
  • Examples of the method of polycondensing alkoxysilane include a method of hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole.
  • the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 times mol of all alkoxy groups in alkoxysilane.
  • the heating temperature and the heating time can be appropriately selected as desired.
  • a method of heating / stirring at 50 ° C. for 24 hours, a method of heating / stirring under reflux for 1 hour, and the like can be mentioned.
  • a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to make an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated.
  • the amount of oxalic acid used is preferably 0.05 to 5 mol% with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
  • the weight average molecular weight (Mw) measured in terms of polystyrene by gel permeation chromatography of the (A) siloxane oligomer used in the primer layer forming composition used in the present invention is 100 to 10,000, preferably 500 to 5 , 000.
  • the primer layer forming material by using the above siloxane oligomer as the primer layer forming material, a partial hydrolysis condensation reaction proceeds between the oligomers at the time of forming the primer layer, and the alcohol generated at this time volatilizes, so that the primer layer has gaps. As a result, it is presumed that it contributes to improving the adhesion between the primer layer as a whole and the hard coat layer.
  • the composition for forming a primer layer used in the present invention may further include a solvent to form a varnish.
  • the solvent used at this time may be any solvent that dissolves or disperses the component (A) and other components described later if desired.
  • aromatic hydrocarbons such as toluene and xylene; ethyl acetate, butyl acetate , Isobutyl acetate, ⁇ -butyrolactone, methyl pyruvate, ethyl pyruvate, hydroxyethyl acetate, ethyl lactate, butyl lactate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, ethyl ethoxyacetate , Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl cellosolve
  • the solid content concentration in the primer layer forming composition used in the present invention is, for example, 0.01 to 70% by mass, 0.1 to 50% by mass, or 1 to 30% by mass.
  • the solid content is obtained by removing the solvent component from all the components of the primer layer forming composition.
  • additives that are generally added to the composition for forming a primer layer used in the present invention as needed, for example, photosensitizers, polymerization inhibitors, polymerizations, as long as the effects of the present invention are not impaired.
  • Initiators, leveling agents, surfactants, adhesion promoters, plasticizers, UV absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc., and active energy ray curing A functional polyfunctional monomer or the like may be appropriately blended.
  • the primer layer forming composition used in the present invention may further contain an active energy ray-curable polyfunctional monomer in order to improve the adhesion with the hard coat layer thereabove.
  • the active energy ray-curable polyfunctional monomer used in the primer layer forming composition include polyfunctional (meth) acrylate compounds and polyfunctional urethanes exemplified in ⁇ (a) Active energy ray-curable polyfunctional monomer> described below. Examples include monomers selected from the group consisting of (meth) acrylate compounds, polyfunctional epoxy (meth) acrylate compounds, polyfunctional polyester (meth) acrylate compounds, and unsaturated polyesters.
  • the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
  • (meth) acrylic acid refers to acrylic acid and methacrylic acid.
  • an active energy ray-curable polyfunctional monomer when used, it is preferably in an amount of 1 to 300 parts by mass with respect to 100 parts by mass of the above-mentioned (A) siloxane oligomer. Is used in an amount of 1 to 200 parts by weight, particularly preferably in an amount of 10 to 100 parts by weight.
  • composition for forming a primer layer used in the present invention contains the above ⁇ active energy ray-curable polyfunctional monomer>, it is further exemplified in ⁇ (d) polymerization initiator that generates radicals by active energy rays> described later.
  • Various polymerization initiators may be included.
  • the polymerization initiator when the polymerization initiator is included, it is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) siloxane oligomer, preferably 0. Used in an amount of 1 to 20 parts by weight, particularly preferably in an amount of 1 to 20 parts by weight.
  • the hard coat layer in the antiglare hard coat laminate of the present invention comprises a cured product (that is, a cured film) of a curable composition containing the following (a) to (d).
  • A 100 parts by mass of an active energy ray-curable polyfunctional monomer
  • B the active energy at both ends of the molecular chain containing the poly (oxyperfluoroalkylene) group via the poly (oxyalkylene) group or via the poly (oxyalkylene) group and one urethane bond group in this order; 0.1 to 10 parts by mass of perfluoropolyether to which a linear polymerizable group is bonded,
  • C 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 ⁇ m, and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
  • the components (a) to (d) will be described.
  • the active energy ray-curable polyfunctional monomer refers to a monomer that is cured by a polymerization reaction that proceeds by irradiation with an active energy ray such as ultraviolet rays.
  • Preferred (a) active energy ray-curable polyfunctional monomer in the curable composition used in the present invention is a monomer selected from the group consisting of polyfunctional (meth) acrylate compounds and polyfunctional urethane (meth) acrylate compounds. is there.
  • polyfunctional (meth) acrylate compound examples include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol diester.
  • pentaerythritol tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like.
  • the polyfunctional urethane (meth) acrylate compound is a compound having a plurality of acryloyl groups or methacryloyl groups in one molecule and one or more urethane bonds (—NHCOO—).
  • the polyfunctional urethane (meth) acrylate compound is obtained by a reaction between a polyfunctional isocyanate and a (meth) acrylate having a hydroxy group, or a reaction between a polyfunctional isocyanate and a (meth) acrylate having a hydroxy group and a polyol.
  • the polyfunctional urethane (meth) acrylate compound that can be used in the present invention is not limited to such examples.
  • Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and hexamethylene diisocyanate.
  • Examples of the (meth) acrylate having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth).
  • An acrylate, tripentaerythritol hepta (meth) acrylate, etc. are mentioned.
  • polyols examples include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, and dipropylene glycol; these diols, succinic acid, malein Examples include polyester polyols which are reaction products with aliphatic dicarboxylic acids or dicarboxylic anhydrides such as acids and adipic acid; polyether polyols; polycarbonate diols and the like.
  • the (a) active energy ray-curable polyfunctional monomer one kind is selected from the group consisting of the polyfunctional (meth) acrylate compound and the polyfunctional urethane (meth) acrylate compound, or two or more kinds are used. Can be used in combination. From the viewpoint of scratch resistance of the resulting cured product, it is preferable to use a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound in combination. Moreover, it is preferable to use together 5 or more functional polyfunctional (meth) acrylate compound and 4 or less polyfunctional (meth) acrylate compound as said polyfunctional (meth) acrylate compound.
  • the polyfunctional urethane (meth) acrylate compound 20 with respect to 100 mass parts of polyfunctional (meth) acrylate compounds. It is preferable to use ⁇ 100 parts by mass, and it is more preferable to use 30 to 70 parts by mass. Furthermore, in the polyfunctional (meth) acrylate compound, when the polyfunctional (meth) acrylate compound having 5 or more functions and the polyfunctional (meth) acrylate compound having 4 or less functions are used in combination, the polyfunctional (meth) acrylate compound has 5 or more functions.
  • polyfunctional urethane (meth) acrylate compound 20 to 100 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound and polyfunctional (meth) acrylate compounds having a functionality of 4 or less with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound.
  • (Meth) acrylate compound to be used at 10 to 100 parts by mass Polyfunctional (meth) acrylate compound 20 to 100 parts by mass with respect to 100 parts by mass of polyfunctional (meth) acrylate compound and polyfunctional (meth) acrylate compound with a functionality of 4 or less with respect to 100 parts by mass of polyfunctional (meth) acrylate compound having 5 or more functions ) Use at 20-60 parts by mass of acrylate compound, Polyfunctional (meth) acrylate compound 100 parts by mass Polyfunctional urethane (meth) acrylate compound 30 to 70 parts by mass and pentafunctional or higher polyfunctional (meth) acrylate compound 100 parts by mass ) Use at 10 to 100 parts by mass of acrylate compound, Polyfunctional (meth) acrylate compound 100 parts by mass Polyfunctional urethane (meth) acrylate compound 30 to 70 parts by mass and pentafunctional or higher polyfunctional (meth) acrylate compound 100 parts by mass )
  • the acrylate compound is preferably used in an amount of 20 to
  • a perfluoropolyether (hereinafter also referred to as “(b) a perfluoropolyether having a polymerizable group at both ends”) to which an active energy ray polymerizable group is bonded is used.
  • the component (b) serves as a surface modifier in the hard coat layer to which the curable composition used in the present invention is applied.
  • the number of carbon atoms of the alkylene group in the poly (oxyperfluoroalkylene) group is not particularly limited, but preferably 1 to 4 carbon atoms. That is, the poly (oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and oxygen atoms are alternately connected, and the oxyperfluoroalkylene group is a carbon atom. This refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked.
  • — [OCF 2 ] (oxyperfluoromethylene group), — [OCF 2 CF 2 ] — (oxyperfluoroethylene group), — [OCF 2 CF 2 CF 2 ] — (oxyperfluoropropane) -1,3-diyl group) and-[OCF 2 C (CF 3 ) F]-(oxyperfluoropropane-1,2-diyl group).
  • the above oxyperfluoroalkylene groups may be used alone or in combination of two or more. In such a case, the bonds of plural types of oxyperfluoroalkylene groups are block bonds and random bonds. Any of these may be used.
  • the poly (oxyperfluoroalkylene) group -[OCF 2 ]-(oxyperfluoromethylene group) and-[ It is preferable to use a group having both of OCF 2 CF 2 ]-(oxyperfluoroethylene group) as a repeating unit.
  • the bond of these repeating units may be either a block bond or a random bond.
  • the number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, more preferably in the range of 7 to 21, as the total number of repeating units.
  • the weight average molecular weight (Mw) of the poly (oxyperfluoroalkylene) group measured in terms of polystyrene by gel permeation chromatography is 1,000 to 5,000, preferably 1,500 to 2,000. .
  • the number of carbon atoms of the alkylene group in the poly (oxyalkylene) group is not particularly limited, but preferably 1 to 4 carbon atoms. That is, the poly (oxyalkylene) group refers to a group having a structure in which an alkylene group having 1 to 4 carbon atoms and oxygen atoms are alternately connected, and the oxyalkylene group is a divalent alkylene having 1 to 4 carbon atoms. A group having a structure in which a group and an oxygen atom are linked. Examples of the alkylene group include an ethylene group, a 1-methylethylene group, a trimethylene group, and a tetramethylene group. The oxyalkylene groups may be used singly or in combination of two or more.
  • the bonds of the plural oxyalkylene groups may be either block bonds or random bonds. May be.
  • the poly (oxyalkylene) group is preferably a poly (oxyethylene) group.
  • the number of repeating units of the oxyalkylene group in the poly (oxyalkylene) group is, for example, in the range of 1 to 15, and more preferably in the range of 5 to 12, for example, 7 to 12.
  • Examples of the active energy ray-polymerizable group that bonds the poly (oxyalkylene) group or the poly (oxyalkylene) group and one urethane bond group in this order include a (meth) acryloyl group and a urethane (meth) acryloyl group. Group, vinyl group and the like.
  • the active energy ray polymerizable group is not limited to one having one active energy ray polymerizable portion such as a (meth) acryloyl moiety, and may have two or more active energy ray polymerizable portions,
  • the following structures A1 to A5 and structures in which the acryloyl group in these structures is substituted with a methacryloyl group can be mentioned.
  • A represents one of the structures represented by the formulas [A1] to [A5]
  • PFPE represents the poly (oxyperfluoroalkylene) group
  • n is independently selected. Represents the number of repeating units of the oxyethylene group, preferably a number of 1 to 15, more preferably a number of 5 to 12, and still more preferably a number of 7 to 12.
  • the (b) perfluoropolyether having a polymerizable group at both ends used in the present invention has a poly (oxyalkylene) group and one at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group.
  • poly (oxyalkylene) groups are bonded to both ends of the molecular chain containing the poly (oxyperfluoroalkylene) group, respectively, and each poly (oxyalkylene) group at each end is bonded to each end.
  • the perfluoropolyether in which one urethane bond group is bonded and active energy ray polymerizable groups are bonded to the urethane bonds at both ends.
  • the active energy ray polymerizable group is preferably a perfluoropolyether which is a group having at least two active energy ray polymerizable moieties.
  • the perfluoropolyether having a polymerizable group at both ends is 0.1 to 10 parts by weight, preferably 100 parts by weight, preferably 100 parts by weight of the active energy ray-curable polyfunctional monomer. It is desirable to use at a ratio of 0.2 to 5 parts by mass.
  • the perfluoropolyether having a polymerizable group at both ends (b) is, for example, a compound having a hydroxy group at both ends of a poly (oxyperfluoroalkylene) group via a poly (oxyalkylene) group.
  • the curable composition used in the present invention includes (b) a poly (oxyalkylene) group at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group or a poly (oxyalkylene) group and In addition to the perfluoropolyether to which the active energy ray polymerizable group is bonded through one urethane bonding group in this order, a poly (oxyalkylene) group is added to one end of the molecular chain containing the poly (oxyperfluoroalkylene) group.
  • organic fine particles having an average particle diameter of 1 to 10 ⁇ m are hard coat layers formed from the curable composition.
  • the anti-glare property is imparted by making the surface of the surface uneven.
  • the organic fine particles can also play a role of controlling the haze value of the hard coat layer by controlling the difference between the refractive index and the refractive index of the curable composition that is the hard coat layer forming material.
  • the shape of the organic fine particles is not particularly limited, but may be, for example, a bead-like substantially spherical shape or an irregular shape such as a powder, but is preferably substantially spherical, more preferably an aspect.
  • organic fine particles examples include polymethyl methacrylate particles (PMMA particles), silicone particles, polystyrene particles, polycarbonate particles, acrylic styrene particles, benzoguanamine particles, melamine particles, polyolefin particles, polyester particles, polyamide particles, polyimide particles, polyfluoride particles. And ethylene oxide particles.
  • PMMA particles polymethyl methacrylate particles
  • silicone particles silicone particles
  • polystyrene particles polycarbonate particles
  • acrylic styrene particles acrylic styrene particles
  • benzoguanamine particles benzoguanamine particles
  • melamine particles polyolefin particles
  • polyester particles polyamide particles
  • polyimide particles polyimide particles
  • polyfluoride particles polyfluoride particles.
  • ethylene oxide particles examples include polyethylene oxide particles.
  • the average particle size of the organic fine particles used in the present invention is in the range of 1 to 10 ⁇ m, preferably in the range of 2 to 8 ⁇ m, more preferably in the range of 3 to 8 ⁇ m.
  • the average particle diameter ( ⁇ m) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction / scattering method based on the Mie theory.
  • the average particle size of the organic fine particles is larger than the above numerical range, the image sharpness of the display is deteriorated, and when the average particle size is smaller than the above numerical range, sufficient antiglare property cannot be obtained and glare increases. It becomes easy.
  • the organic fine particles are not particularly limited in terms of particle size distribution, but are preferably monodispersed fine particles having a uniform particle size.
  • the organic fine particles are preferably organic fine particles having a refractive index of 0 to 0.20 in refractive index difference from the cured product of the active energy ray-curable polyfunctional monomer (a).
  • the refractive index difference is preferably 0 to 0.10.
  • the organic fine particles have an average particle diameter b / film with respect to the cured product obtained from the curable composition used in the present invention described later, that is, the film thickness of the hard coat layer.
  • the thickness a is preferably selected so as to satisfy the range of 0.3 to 1.0.
  • the organic fine particles (c) are used in an amount of 8 to 30 parts by weight, preferably 8 to 20 parts by weight, based on 100 parts by weight of the above-mentioned (a) active energy ray-curable polyfunctional monomer. desirable.
  • (D) Polymerization initiator that generates radicals by active energy rays In the curable composition used in the present invention, preferred polymerization initiators that generate radicals by active energy rays (hereinafter also simply referred to as “(d) polymerization initiator”) include, for example, electron beams, ultraviolet rays, and X-rays. It is a polymerization initiator that generates radicals by active energy rays, particularly when irradiated with ultraviolet rays.
  • Examples of the above (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, benzophenones. Biscumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, or onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
  • an alkylphenone polymerization initiator as the polymerization initiator (d) from the viewpoints of transparency, surface curability, and thin film curability.
  • an alkylphenone polymerization initiator By using an alkylphenone polymerization initiator, a cured product (hard coat layer) with improved scratch resistance can be obtained.
  • the polymerization initiator is used in a proportion of 1 to 20 parts by weight, preferably 2 to 10 parts by weight, based on 100 parts by weight of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Is desirable.
  • the curable composition used in the present invention may further include (e) a solvent, that is, a varnish (film forming material).
  • a solvent that is, a varnish (film forming material).
  • the components (a) to (d) are dissolved and dispersed, and the workability at the time of coating for forming a cured product (hard coat layer) to be described later and the drying property before and after curing are taken into consideration.
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit and cyclohexane; Halides such as methyl, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate , Ethyl cellosolve acetate, propylene glycol monomethyl ether Esters such as cetate or ester ethers; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve
  • a solvent having a high boiling point can be used for the purpose of controlling the dispersibility of the fine particles during drying after coating.
  • solvents include cyclohexyl acetate, propylene glycol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol monobutyl ether acetate.
  • the amount of these (e) solvents to be used is not particularly limited.
  • the solvent is used in such a concentration that the solid content in the curable composition used in the present invention is 1 to 70% by mass, preferably 5 to 50% by mass.
  • the solid content concentration also referred to as non-volatile content concentration
  • additives that are generally added as necessary to the curable composition used in the present invention, for example, a polymerization accelerator, a polymerization inhibitor, and a photosensitizer, as long as the effects of the present invention are not impaired.
  • Leveling agents, surfactants, adhesion-imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, and the like may be appropriately blended.
  • the antiglare hard coat laminate of the present invention is a three-layer laminate comprising a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer.
  • the antiglare hard coat laminate of the present invention is (I) applying a primer layer forming composition on a substrate to form a coating film; (Ii) heating and curing the coating film of the primer layer forming composition to form a primer layer; (Iii) applying a curable composition on the primer layer to form a coating film; and (iv) irradiating the coating film of the curable composition with an active energy ray to form a hard coat layer.
  • the manufacturing process is included.
  • the respective compositions described above can be applied to the primer layer forming composition and the curable composition.
  • the primer layer forming composition and the curable composition coating method in the steps (i) and (iii) are cast coating method, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, Die coating method, spray coating method, curtain coating method, ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.) can be selected as appropriate, and even a highly volatile solution can be applied in a short time. It is desirable to use a spin coat method because of the advantage that it can be used and uniform coating can be easily performed.
  • the primer layer forming composition and the curable composition used here those in the form of the aforementioned varnish can be suitably used. It is preferable that the primer layer forming composition and the curable composition are filtered in advance using a filter having a pore diameter of about 2 ⁇ m in advance and then used for coating.
  • heat treatment is performed with a hot plate or an oven to cure the coating film and form a primer layer.
  • the heat treatment conditions at this time are preferably 40 to 150 ° C. and about 30 seconds to 10 minutes, for example. If the primer layer forming composition contains an active energy ray-curable polyfunctional monomer or a polymerization initiator that generates radicals by active energy rays, the active energy applied to the coating film of the curable composition described later. A beam irradiation process may be applied.
  • active energy rays such as ultraviolet rays for photocuring and hard coating Form a layer.
  • active energy rays include ultraviolet rays, electron beams, and X-rays.
  • a light source used for ultraviolet irradiation sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a UV-LED, or the like can be used.
  • post-baking specifically, polymerization and polycondensation can be completed by heating using a hot plate, oven, or the like.
  • the thickness of the primer layer is not particularly limited, but can be, for example, in the range of 0.01 to 1 ⁇ m.
  • the hard coat layer is preferably set to have a thickness of 1 to 10/3 times the average particle diameter of the organic fine particles (c).
  • the thickness of the hard coat layer is in the range of 1 to 30 ⁇ m, preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • PFPE1 Perfluoropolyether having a hydroxy group via a poly (oxyalkylene) group (repeating unit number 8 to 9) at both ends
  • BEI 1,1-bis (acryloyloxymethyl) ethyl isocyanate
  • DBTDL Dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • HTES Triethoxy (hexyl) silane [Shin-Etsu Chemical Co., Ltd.
  • NK ester A-TMM-3LM-N] UA Hexafunctional aliphatic urethane acrylate oligomer [EBECRYL (registered trademark) 5129, manufactured by Daicel Ornex Co., Ltd.]
  • SM2 UV-reactive fluorine-based surface modifier having a perfluoropolyether structure [Megafac (registered trademark) RS-75, manufactured by DIC Corporation, 40% by mass MEK / MIBK solution]
  • FP1 Cross-linked polymethyl methacrylate true spherical particles [Techpolymer (registered trademark) SSX-105, manufactured by Sekisui Plastics Co., Ltd., average particle size: 5 ⁇ m]
  • FP2 Cross-linked polymethyl methacrylate true spherical particles [Techpolymer (registered trademark) SSX-103, manufactured by Sekisui Plastics Co., Ltd., average particle size: 3 ⁇ m]
  • FP3 Cross
  • the weight average molecular weight Mw measured by GPC of the obtained SM1 in terms of polystyrene was 3,400, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.2.
  • primer composition (primer layer forming composition)
  • a reaction flask was charged with alkoxysilane and ethanol according to the description in Table 1, and stirred under a nitrogen stream for 5 minutes.
  • a silane / ethanol solution was prepared.
  • an oxalic acid-water / ethanol solution separately prepared according to the description in Table 1 was added dropwise over 10 minutes. The solution was stirred for 30 minutes, then heated until the internal solution was refluxed (approximately 80 ° C.) and stirred for 1 hour.
  • the reaction mixture was cooled to room temperature (approximately 23 ° C.) to obtain a primer composition (PR1 to PR3) having a siloxane oligomer concentration of 40% by mass.
  • Weight average molecular weight Mw and dispersity Mw / Mn measured by polystyrene conversion by GPC of the obtained siloxane oligomer are 1,400, 1.1 (PR1), 1,500, 1.1 (PR2), respectively. 1,500, 1.1 (PR3).
  • Polyfunctional monomer DPHA 50 parts by mass, UA 30 parts by mass, and PETA 20 parts by mass
  • Surface modifier 1 part by mass of the surface modifier described in Table 2 (in terms of solid content or active ingredient)
  • Organic fine particles Organic fine particles described in Table 2 in the amount described in Table 2
  • Polymerization initiator I2959 5 parts by mass
  • Polymerization accelerator EPA 0.1 parts by mass
  • Solvent PGME Amounts listed in Table 2
  • a primer composition diluted with PGME so as to have a solid content concentration (siloxane oligomer concentration) shown in Table 3 is spin-coated (1,000 rpm ⁇ 30) on a glass substrate (10 cm ⁇ 10 cm, thickness 0.7 mm). Second) to obtain a coating film. This coating film was heated on a hot plate at 120 ° C. for 1 hour to form a primer layer (cured film) having the thickness shown in Table 3. On this primer layer, the hard coat composition shown in Table 3 was spin-coated (the number of revolutions shown in Table 3 ⁇ 30 seconds) to obtain a coating film. The coating film was dried on a hot plate at 120 ° C. for 3 minutes to remove the solvent. The obtained film is exposed to UV light with an exposure amount of 500 mJ / cm 2 in a nitrogen atmosphere to expose a hard coat laminate having a hard coat layer (cured film) with the thickness shown in Table 3. did.
  • the obtained hard coat laminate was evaluated for antiglare properties, adhesion, scratch resistance, total light transmittance, haze, and contact angles of water and oleic acid.
  • the procedure for evaluating the antiglare property, adhesion, scratch resistance, and contact angle is shown below. The results are also shown in Table 4.
  • the hard coat layer was cut with a square grid pattern of 25 squares (5 ⁇ 5, 2 mm spacing) using a guide [Cortech Co., Ltd. Cross Cut Guide CCI-2], and a transparent tape [Nichiban ( The cross-cut method (based on JIS 5600-5-6) using Cellotape (registered trademark) CT-18] manufactured by Co., Ltd. was used, and evaluation was performed according to the following criteria.
  • A The line drawn with the oil-based marker can be wiped clean without scratching
  • B The line drawn with the oil-based marker can be wiped off cleanly, but the ink drawn with the oil-based marker enters the scratch and cannot be wiped off
  • a hard coat layer using a perfluoropolyether SM1 that binds an acryloyl group via a poly (oxyalkylene) group and one urethane bond group at both ends as a surface modifier As shown in Tables 1 to 4, a hard coat layer using a perfluoropolyether SM1 that binds an acryloyl group via a poly (oxyalkylene) group and one urethane bond group at both ends as a surface modifier.
  • the laminated body 10 and the laminated body 11 of Example 1 to Example 8 provided with the primer layer, the antiglare property is excellent, and the adhesion and scratch resistance are also good. It became a satisfactory quality in actual use, and it became a laminate with excellent transparency.
  • a material containing a specific siloxane oligomer having a radical polymerizable double bond By providing a primer layer made of a cured product, a laminate satisfying all the properties of antiglare property, scratch resistance, and adhesion to a substrate can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

[Problem] To provide a laminate that has excellent anti-glare properties, that achieves high scratch resistance, and that is provided with a hard coat layer having excellent adhesion to a substrate. [Solution] An anti-glare hard coat laminate comprising a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer. The primer layer comprises a cured product of a primer layer-forming composition containing a siloxane oligomer that has a specific radical-polymerizable double bond. The hard coat layer comprises a cured product of a curable composition containing (a) a polyfunctional monomer, (b) a perfluoropolyether in which an active energy ray-polymerizable group is bonded via a poly(oxyalkylene) group or via a poly(oxyalkylene) group and one urethane bonding group in this order to both ends of a molecular chain containing a poly(oxyperfluoroalkylene) group, (c) organic fine particles, and (d) a polymerization initiator. Also provided is a method for producing the anti-glare hard coat laminate.

Description

防眩性ハードコート積層体Antiglare hard coat laminate
 本発明は、防眩性(アンチグレア機能)に優れるハードコート層を備える防眩性ハードコート積層体並びにその製造方法に関する。 The present invention relates to an antiglare hard coat laminate comprising a hard coat layer excellent in antiglare property (antiglare function) and a method for producing the same.
 パーソナルコンピューター、携帯電話、携帯ゲーム機器、ATM等のフラットパネルディスプレイにタッチパネルが搭載された製品が非常に数多く商品化されている。特に、スマートフォンやタブレットPCの登場により、マルチタッチ機能を有する静電容量式タッチパネルが一気にその搭載数を伸ばしている。 A large number of products in which a touch panel is mounted on a flat panel display such as a personal computer, a mobile phone, a mobile game machine, and an ATM have been commercialized. In particular, with the advent of smartphones and tablet PCs, the number of capacitive touch panels having a multi-touch function is rapidly increasing.
 これらタッチパネルディスプレイ表面には、その画面への外部光の映り込みによる視認性の低下を防ぐために、表面に凹凸が形成された数μm程度のハードコート層を備える防眩性ハードコートフィルムを貼り合せる方法が用いられている。表面に凹凸を形成する手法としては、数μm程度の粒径を有する微粒子をハードコート層に含有する方法が一般的に用いられている。 An anti-glare hard coat film having a hard coat layer of about several μm with irregularities formed on the surface is bonded to the surface of these touch panel displays in order to prevent a decrease in visibility due to reflection of external light on the screen. The method is used. As a method for forming irregularities on the surface, a method in which fine particles having a particle size of about several μm are contained in a hard coat layer is generally used.
 ところで、静電容量式タッチパネルでは人間の指で触れることにより操作を行う。このため、操作を行う度にタッチパネルの表面に指紋が付着し、ディスプレイの画像の視認性が著しく損なわれたり、ディスプレイの外観が損なわれたりするという問題が発生している。指紋には汗由来の水分及び皮脂由来の油分が含まれており、それらの何れも付着しにくくするために、ディスプレイ表面のハードコート層には撥水性及び撥油性を付与することが強く望まれている。
 しかし、静電容量式タッチパネルでは、人が毎日指で触れるため、初期の防汚性はかなりのレベルに達しているとしても、使用中に傷が入ることによりそれらの機能が低下する場合が多い。特に防眩性ハードコート層では、その表面に凹凸を有することから、引っ掛かりが発生しやすく、傷がつきやすい。そのため、使用過程での防汚性の耐久性が課題であった。
By the way, the capacitive touch panel is operated by touching it with a human finger. For this reason, fingerprints are attached to the surface of the touch panel every time an operation is performed, causing problems that the visibility of the image on the display is remarkably impaired and the appearance of the display is impaired. The fingerprint contains moisture derived from sweat and oil derived from sebum, and it is strongly desired to impart water repellency and oil repellency to the hard coat layer on the display surface in order to prevent both of them from adhering. ing.
However, since capacitive touch panels are touched by a finger every day, even if the initial antifouling property has reached a considerable level, their functions often deteriorate due to scratches during use. . In particular, the antiglare hard coat layer has irregularities on its surface, so that it tends to be caught and easily damaged. Therefore, the durability of the antifouling property in the process of use has been a problem.
 これまで、防眩性及び耐擦傷性を有するハードコート層として、防汚性及び耐擦傷性をハードコート層表面に付与する成分として、分子内にポリ(オキシパーフルオロアルキレン)構造及び(メタ)アクリロイル基を有する表面改質剤、さらに防眩性をハードコート層に付与する成分として、メタクリル酸メチル-スチレン共重合体(MS)樹脂微粒子を用いた技術が開示されている(特許文献1)。 Up to now, as a hard coat layer having antiglare and scratch resistance, as a component for imparting antifouling and scratch resistance to the surface of the hard coat layer, a poly (oxyperfluoroalkylene) structure and (meth) in the molecule A technique using methyl methacrylate-styrene copolymer (MS) fine particles as a surface modifier having an acryloyl group and a component for imparting antiglare properties to a hard coat layer is disclosed (Patent Document 1). .
特開2013-257359号公報JP 2013-257359 A
 特許文献1に具体的に記載された方法では、分子内にポリ(オキシパーフルオロアルキレン)構造及び(メタ)アクリロイル基を有する表面改質剤のフッ素含有量が低く、十分な防汚性及び耐擦傷性を得られないという課題があった。また、耐擦傷性を得ようとMS樹脂粒子の添加量を低減すると十分な防眩性が得られず、十分な防眩性が得られる程度にMS樹脂粒子を添加した場合には耐擦傷性が著しく低下するという課題があった。さらに、ハードコート層中における樹脂粒子の分散性が悪く、凝集物となり塗膜の外観を損なうことも課題であった。
 また、アクリル系樹脂を使用したハードコード層は、特にガラス基材との密着性に劣り、基材から容易に剥離することも課題であった。
 このように、防眩性に優れ、且つ高い耐擦傷性を発現するとともに、基材に対する密着性に優れるハードコート層が求められていた。
In the method specifically described in Patent Document 1, the fluorine content of the surface modifier having a poly (oxyperfluoroalkylene) structure and a (meth) acryloyl group in the molecule is low, and sufficient antifouling and antifouling properties are obtained. There was a problem that it was impossible to obtain scratch resistance. Also, if the amount of MS resin particles added is reduced to obtain scratch resistance, sufficient antiglare properties cannot be obtained, and if MS resin particles are added to such an extent that sufficient antiglare properties can be obtained, scratch resistance can be obtained. There was a problem that the remarkably decreased. Furthermore, the dispersibility of the resin particles in the hard coat layer is poor, and it becomes an agglomerate, and the appearance of the coating film is impaired.
Moreover, the hard cord layer using an acrylic resin is particularly inferior in adhesion to a glass substrate, and it has been a subject to be easily peeled off from the substrate.
Thus, there has been a demand for a hard coat layer that is excellent in antiglare properties, exhibits high scratch resistance, and has excellent adhesion to a substrate.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、基材との密着性を高めるべく、基材とハードコート層の間にプライマー層を設けること、特に該プライマー層の形成材料にラジカル重合性二重結合を有するシロキサンオリゴマーを採用することを見出した。そして、ポリ(オキシパーフルオロアルキレン)構造を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基を介して活性エネルギー線重合性基を結合する化合物を、フッ素系表面改質剤として用い、さらにそれに有機微粒子を添加した硬化性組成物をハードコート層形成材料に採用することにより、前記プライマー層上に、優れた防眩性及び高い耐擦傷性を有しかつ密着性に優れるハードコート層を設けた積層体となることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have provided a primer layer between the base material and the hard coat layer in order to improve the adhesion to the base material, particularly the formation of the primer layer. It has been found that a siloxane oligomer having a radical polymerizable double bond is employed as a material. An active energy ray polymerizable group is attached to both ends of a molecular chain containing a poly (oxyperfluoroalkylene) structure via a poly (oxyalkylene) group or via a poly (oxyalkylene) group and one urethane bond group. By using a curable composition in which a compound that binds as a fluorine-based surface modifier and further adding organic fine particles to the hard coat layer forming material, excellent anti-glare properties and The present invention was completed by finding that the laminate was provided with a hard coat layer having high scratch resistance and excellent adhesion.
 すなわち本発明は、第1観点として、
基材と、該基材より上方のプライマー層と、該プライマー層より上方のハードコート層からなる、防眩性ハードコート積層体であって、
前記プライマー層が、
(A)式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを少なくとも含むアルコキシシランを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマー
を含むプライマー層形成用組成物の硬化物からなり、
Figure JPOXMLDOC01-appb-C000005
(式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
前記ハードコート層が、
(a)活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して活性エネルギー線重合性基を結合するパーフルオロポリエーテル0.1~10質量部、
(c)1~10μmの平均粒径を有する有機微粒子8~30質量部、及び
(d)活性エネルギー線によりラジカルを発生する重合開始剤1~20質量部
を含む硬化性組成物の硬化物からなる、
防眩性ハードコート積層体に関する。
 第2観点として、前記成分(A)のシロキサンオリゴマーが、式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマーである、第1観点に記載の防眩性ハードコート積層体に関する。
Figure JPOXMLDOC01-appb-C000006
(式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rはフッ素原子で置換されていてもよい炭素原子数1乃至6のアルキル基、又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
 第3観点として、前記式[1]中のRが、ビニル基又は(メタ)アクリル基を有する1価の有機基である、第1観点又は第2観点に記載の防眩性ハードコート積層体に関する。
 第4観点として、前記アルコキシシランAが下記式[3]で表される化合物である、第3観点に記載の防眩性ハードコート積層体に関する。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは前記式[1]における定義と同じ意味を表し、Rは水素原子又はメチル基を表し、Lは炭素原子数1乃至10のアルキレン基を表す。)
 第5観点として、前記成分(A)のラジカル重合性二重結合を有するシロキサンオリゴマーが、前記アルコキシシランA単位を10~99mol%含むシロキサンオリゴマーである、第1観点乃至第4観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第6観点として、前記成分(b)のパーフルオロポリエーテルのポリ(オキシパーフルオロアルキレン)基が、-[OCF]-及び-[OCFCF]-を繰り返し単位として有する基である、第1観点乃至第5観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第7観点として、前記成分(b)のパーフルオロポリエーテルのポリ(オキシアルキレン)基が、ポリ(オキシエチレン)基である、第1観点乃至第6観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第8観点として、前記成分(a)の多官能モノマーが、多官能(メタ)アクリレート化合物及び多官能ウレタン(メタ)アクリレート化合物からなる群から選ばれる少なくとも1つである、第1観点乃至第7観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第9観点として、前記成分(c)の有機微粒子が真球状粒子である、第1観点乃至第8観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第10観点として、前記成分(c)の有機微粒子がポリメタクリル酸メチル粒子である、第1観点乃至第9観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第11観点として、前記成分(d)の重合開始剤がアルキルフェノン類重合開始剤である、第1観点乃至第10観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第12観点として、前記ハードコート層が、前記成分(c)の有機微粒子の平均粒径に比して1~10/3倍の厚さを有する、第1観点乃至第11観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第13観点として、前記ハードコート層が1~20μmの膜厚を有する、第1観点乃至第12観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第14観点として、前記ハードコート層が3~10μmの膜厚を有する、第13観点に記載の防眩性ハードコート積層体に関する。
 第15観点として、前記基材が、ガラスである、第1観点乃至第14観点のうち何れか一項に記載の防眩性ハードコート積層体に関する。
 第16観点として、基材の少なくとも一方の面にプライマー層と、該プライマー層より上方にハードコート層を備える防眩性ハードコート積層体の製造方法であって、
基材上にプライマー層形成用組成物を塗布して塗膜を形成する工程、
該プライマー層形成用組成物の塗膜を加熱し該塗膜を硬化させ、プライマー層を形成する工程、
前記プライマー層上に硬化性組成物を塗布して塗膜を形成する工程、及び
該硬化性組成物の塗膜に活性エネルギー線を照射し該塗膜を硬化させ、ハードコート層を形成する工程、を含み、
前記プライマー層形成用組成物が、
(A)式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを少なくとも含むアルコキシシランを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマーを含み、
Figure JPOXMLDOC01-appb-C000008
(式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
前記硬化性組成物が、
(a)活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して活性エネルギー線重合性基を結合するパーフルオロポリエーテル0.1~10質量部、
(c)1~10μmの平均粒径を有する有機微粒子8~30質量部、及び
(d)活性エネルギー線によりラジカルを発生する重合開始剤1~20質量部
を含む、
防眩性ハードコート積層体の製造方法に関する。
That is, the present invention provides the first aspect as follows:
An antiglare hard coat laminate comprising a base material, a primer layer above the base material, and a hard coat layer above the primer layer,
The primer layer is
(A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] It consists of a cured product of a primer layer forming composition containing a siloxane oligomer,
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms) An amino group substituted with an alkyl group, an amino group substituted with at least a phenyl group, or an ureido group) or a phenyl group, wherein R 2 and R 4 are each independently methyl A group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
The hard coat layer is
(A) 100 parts by mass of an active energy ray-curable polyfunctional monomer,
(B) Active energy rays via a poly (oxyalkylene) group or a poly (oxyalkylene) group and one urethane bonding group in this order at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group 0.1 to 10 parts by mass of perfluoropolyether to which a polymerizable group is bonded,
(C) From a cured product of a curable composition comprising 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 μm and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays. Become,
The present invention relates to an antiglare hard coat laminate.
As a second aspect, the siloxane oligomer of the component (A) is a radical obtained by hydrolytic condensation of an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2]. The antiglare hard coat laminate according to the first aspect, which is a siloxane oligomer having a polymerizable double bond.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, and R 3 represents an alkyl group having 1 to 6 carbon atoms which may be substituted with a fluorine atom, or a phenyl group. , R 2 and R 4 each independently represents a methyl group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
As a third aspect, R 1 in the formula [1] is a monovalent organic group having a vinyl group or a (meth) acryl group, and the antiglare hard coat laminate according to the first aspect or the second aspect. About the body.
As a fourth aspect, the present invention relates to the antiglare hard coat laminate according to the third aspect, in which the alkoxysilane A is a compound represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 2 represents the same meaning as defined in the formula [1], R 5 represents a hydrogen atom or a methyl group, and L 1 represents an alkylene group having 1 to 10 carbon atoms.)
As a fifth aspect, any one of the first to fourth aspects, wherein the siloxane oligomer having a radical polymerizable double bond as the component (A) is a siloxane oligomer containing 10 to 99 mol% of the alkoxysilane A unit. The antiglare hard coat laminate according to one item.
As a sixth aspect, the poly (oxyperfluoroalkylene) group of the perfluoropolyether of the component (b) is a group having — [OCF 2 ] — and — [OCF 2 CF 2 ] — as repeating units. It is related with the anti-glare hard-coat laminated body as described in any one among a 1st viewpoint thru | or a 5th viewpoint.
As a seventh aspect, the poly (oxyalkylene) group of the perfluoropolyether of the component (b) is a poly (oxyethylene) group, as described in any one of the first aspect to the sixth aspect. The present invention relates to a dazzling hard coat laminate.
As an eighth aspect, the polyfunctional monomer of the component (a) is at least one selected from the group consisting of a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound. It is related with the anti-glare hard-coat laminated body as described in any one of viewpoints.
As a ninth aspect, the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the eighth aspect, wherein the organic fine particles of the component (c) are spherical particles.
As a tenth aspect, the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the ninth aspect, wherein the organic fine particles of the component (c) are polymethyl methacrylate particles.
As an eleventh aspect, the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the tenth aspect, wherein the polymerization initiator of the component (d) is an alkylphenone polymerization initiator.
As a twelfth aspect, any one of the first to eleventh aspects, wherein the hard coat layer has a thickness of 1 to 10/3 times the average particle diameter of the organic fine particles of the component (c). The antiglare hard coat laminate according to one item.
As a thirteenth aspect, the present invention relates to the antiglare hard coat laminate according to any one of the first to twelfth aspects, wherein the hard coat layer has a thickness of 1 to 20 μm.
As a fourteenth aspect, the present invention relates to the antiglare hard coat laminate according to the thirteenth aspect, wherein the hard coat layer has a thickness of 3 to 10 μm.
As a fifteenth aspect, the present invention relates to the antiglare hard coat laminate according to any one of the first aspect to the fourteenth aspect, in which the substrate is glass.
As a sixteenth aspect, a method for producing an antiglare hard coat laminate comprising a primer layer on at least one surface of a substrate and a hard coat layer above the primer layer,
Applying a primer layer forming composition on a substrate to form a coating film;
Heating the coating film of the primer layer forming composition to cure the coating film and forming a primer layer;
A step of applying a curable composition on the primer layer to form a coating film, and a step of irradiating the coating film of the curable composition with active energy rays to cure the coating film to form a hard coat layer Including,
The primer layer forming composition is
(A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] Containing siloxane oligomers,
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms) An amino group substituted with an alkyl group, an amino group substituted with at least a phenyl group, or an ureido group) or a phenyl group, wherein R 2 and R 4 are each independently methyl A group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
The curable composition is
(A) 100 parts by mass of an active energy ray-curable polyfunctional monomer,
(B) Active energy rays via a poly (oxyalkylene) group or a poly (oxyalkylene) group and one urethane bonding group in this order at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group 0.1 to 10 parts by mass of perfluoropolyether to which a polymerizable group is bonded,
(C) 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 μm, and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
The present invention relates to a method for producing an antiglare hard coat laminate.
 本発明によれば、厚さ1~15μm程度の薄膜においても優れた耐擦傷性及び高い防眩性を有し外観にも優れるハードコート層、特に、ラジカル重合性二重結合を有するシロキサンオリゴマーを含むプライマー層を基材上に設け、その上に前記ハードコート層を設けることにより、いわば基材との密着性にも優れるハードコート層を有する積層体を提供することができる。 According to the present invention, a hard coat layer having excellent scratch resistance and high antiglare property and excellent appearance even in a thin film having a thickness of about 1 to 15 μm, particularly a siloxane oligomer having a radical polymerizable double bond. By providing the primer layer containing on a base material and providing the hard coat layer thereon, it is possible to provide a laminate having a hard coat layer having excellent adhesion to the base material.
 本発明の防眩性ハードコート積層体は、基材と、該基材の上方のプライマー層と、該プライマー層より上方のハードコート層からなる。
 そして本発明の防眩性ハードコート積層体において、前記プライマー層は、ラジカル重合性二重結合を有するシロキサンオリゴマーを含むプライマー層形成用組成物の硬化物からなり、前記ハードコート層は、活性エネルギー線硬化性多官能モノマー等を含む硬化性組成物の硬化物からなる。
 以下、本発明の防眩性ハードコート積層体を構成する各層について、詳述する。
The antiglare hard coat laminate of the present invention comprises a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer.
In the antiglare hard coat laminate of the present invention, the primer layer comprises a cured product of a primer layer forming composition containing a siloxane oligomer having a radical polymerizable double bond, and the hard coat layer has an active energy. It consists of hardened | cured material of the curable composition containing a linear curable polyfunctional monomer etc.
Hereinafter, each layer constituting the antiglare hard coat laminate of the present invention will be described in detail.
《基材》
 本発明の防眩性ハードコート積層体における基材は特に限定されず、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、PET(ポリエチレンテレフタレート)、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース、ABS(アクリロニトリル-ブタジエン-スチレン共重合物)、AS(アクリロニトリル-スチレン共重合物)、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、二酸化ケイ素、スレート等を挙げることができる。これら基材の形状は板状、フィルム状又は3次元成形体でもよい。
 中でも、本発明において、基材としてガラスを好適に使用できる。
 上記基材の厚さは特に限定されないが、例えば10~1,000μm等とすることができる。
"Base material"
The base material in the antiglare hard coat laminate of the present invention is not particularly limited. For example, plastic (polycarbonate, polymethacrylate, polystyrene, polyester, PET (polyethylene terephthalate), polyolefin, epoxy resin, melamine resin, triacetyl cellulose, ABS (acrylonitrile-butadiene-styrene copolymer), AS (acrylonitrile-styrene copolymer), norbornene resin, etc.), metal, wood, paper, glass, silicon dioxide, slate and the like. The shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
Especially, in this invention, glass can be used conveniently as a base material.
The thickness of the substrate is not particularly limited, but can be, for example, 10 to 1,000 μm.
《プライマー層》
<プライマー層形成用組成物>
 本発明の防眩性ハードコート積層体におけるプライマー層は、下記成分(A)を含むプライマー層形成用組成物の硬化物からなる:
(A)式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを少なくとも含むアルコキシシランを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマー。
Figure JPOXMLDOC01-appb-C000009
(式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
《Primer layer》
<Primer layer forming composition>
The primer layer in the antiglare hard coat laminate of the present invention comprises a cured product of a primer layer forming composition containing the following component (A):
(A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] Siloxane oligomer.
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms) An amino group substituted with an alkyl group, an amino group substituted with at least a phenyl group, or an ureido group) or a phenyl group, wherein R 2 and R 4 are each independently methyl A group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
 以下、上記成分(A)並びにプライマー層形成用組成物に含み得る各成分について説明する。 Hereinafter, each component that can be contained in the component (A) and the primer layer forming composition will be described.
[(A)ラジカル重合性二重結合を有するシロキサンオリゴマー]
 上記(A)ラジカル重合性二重結合を有するシロキサンオリゴマー(以下、単に(A)シロキサンオリゴマーとも称する)は、下記式[1]で表されるアルコキシシランAと、下記式[2]で表されるアルコキシシランBとを必須のアルコキシシラン単位として少なくとも含み、これらを加水分解縮合させることにより得られるシロキサンオリゴマーである。
Figure JPOXMLDOC01-appb-C000010
 上記式[1]中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rはメチル基又はエチル基を表し、aは1又は2の整数を表す。
 また式[2]中、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、好ましくはRはフッ素原子で置換されていてもよい炭素原子数1乃至6のアルキル基又はフェニル基を表し、Rはメチル基又はエチル基を表し、bは0乃至2の整数を表す。
[(A) Siloxane oligomer having radically polymerizable double bond]
The (A) siloxane oligomer having a radical polymerizable double bond (hereinafter, also simply referred to as (A) siloxane oligomer) is represented by alkoxysilane A represented by the following formula [1] and the following formula [2]. It is a siloxane oligomer obtained by hydrolyzing and condensing at least alkoxysilane B as an essential alkoxysilane unit.
Figure JPOXMLDOC01-appb-C000010
In the above formula [1], R 1 represents a monovalent organic group having a radical polymerizable double bond, R 2 represents a methyl group or an ethyl group, and a represents an integer of 1 or 2.
In the formula [2], R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is substituted with a fluorine atom, an amino group substituted with at least an alkyl group having 1 to 6 carbon atoms, or at least a phenyl group). Or a phenyl group, preferably R 3 represents an alkyl group having 1 to 6 carbon atoms or a phenyl group which may be substituted with a fluorine atom. , R 4 represents a methyl group or an ethyl group, and b represents an integer of 0 to 2.
 上記式[1]中のRのラジカル重合性二重結合を有する1価の有機基として、ビニル基又は(メタ)アクリル基を有する1価の有機基であることが好ましい。なお、本発明では(メタ)アクリル基とは、アクリル基とメタクリル基の両方をいう。
 また上記式[2]中のRが表す炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 また上記式[2]中のRが表す少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、n-プロピルアミノ基、イソプロピルアミノ基、n-ブチルアミノ基、tert-ブチルアミノ基、n-ペンチルアミノ基、n-ヘキシルアミノ基、シクロヘキシルアミノ基、N-メチル-N-フェニルアミノ基等が挙げられる。
 さらに上記式[2]中のRが表す少なくともフェニル基で置換されたアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。
The monovalent organic group having a radically polymerizable double bond of R 1 in the above formula [1] is preferably a monovalent organic group having a vinyl group or a (meth) acryl group. In the present invention, the (meth) acryl group means both an acryl group and a methacryl group.
In addition, the alkyl group having 1 to 10 carbon atoms represented by R 3 in the above formula [2] (the alkyl group is a fluorine atom, an amino group substituted with at least an alkyl group having 1 to 6 carbon atoms, and at least a phenyl group). And may be substituted with a substituted amino group or ureido group.) As methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Examples thereof include a butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclohexyl group, n-octyl group and n-decyl group.
In addition, the amino group substituted with at least an alkyl group having 1 to 6 carbon atoms represented by R 3 in the above formula [2] includes a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group, and n-propylamino. Group, isopropylamino group, n-butylamino group, tert-butylamino group, n-pentylamino group, n-hexylamino group, cyclohexylamino group, N-methyl-N-phenylamino group and the like.
Furthermore, examples of the amino group substituted with at least a phenyl group represented by R 3 in the above formula [2] include a phenylamino group and a diphenylamino group.
 上記式[1]で表されるアルコキシシランAの中でも、下記式[3]で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、Rは前記式[1]における定義と同じ意味を表し、Rは水素原子又はメチル基を表し、Lは炭素原子数1乃至10のアルキレン基、好ましくは炭素原子数1乃至8のアルキレン基、さらに好ましくは炭素原子数1乃至6のアルキレン基を表す。
Among the alkoxysilanes A represented by the above formula [1], a compound represented by the following formula [3] is preferable.
Figure JPOXMLDOC01-appb-C000011
In the formula, R 2 represents the same meaning as defined in the above formula [1], R 5 represents a hydrogen atom or a methyl group, L 1 represents an alkylene group having 1 to 10 carbon atoms, preferably 1 to 1 carbon atom. 8 represents an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms.
 上記Lが表す炭素原子数1乃至10のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等が挙げられる。これらの中でも、トリメチレン基が好ましい。 Examples of the alkylene group having 1 to 10 carbon atoms represented by L 1 include a methylene group, an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, a pentamethylene group, and 2,2-dimethyl. A trimethylene group, a hexamethylene group, an octamethylene group, a decamethylene group, etc. are mentioned. Among these, a trimethylene group is preferable.
 このようなアルコキシシランAの具体例としては、トリメトキシ(ビニル)シラン、トリエトキシ(ビニル)シラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、トリエトキシ(3-(メタ)アクリロイルオキシプロピル)シラン、8-(メタ)アクリロイルオキシオクチルトリメトキシシラン、トリエトキシ(8-(メタ)アクリロイルオキシオクチル)シラン、3-(メタ)アクリロイルオキシプロピル(ジメトキシ)(メチル)シラン、ジエトキシ(3-(メタ)アクリロイルオキシプロピル)(メチル)シラン、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン等が挙げられる。
 これらの中でも、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、トリエトキシ(3-(メタ)アクリロイルオキシプロピル)シランが好ましい。
Specific examples of such alkoxysilane A include trimethoxy (vinyl) silane, triethoxy (vinyl) silane, 3- (meth) acryloyloxypropyltrimethoxysilane, triethoxy (3- (meth) acryloyloxypropyl) silane, 8 -(Meth) acryloyloxyoctyltrimethoxysilane, triethoxy (8- (meth) acryloyloxyoctyl) silane, 3- (meth) acryloyloxypropyl (dimethoxy) (methyl) silane, diethoxy (3- (meth) acryloyloxypropyl) ) (Methyl) silane, trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane and the like.
Among these, 3- (meth) acryloyloxypropyltrimethoxysilane and triethoxy (3- (meth) acryloyloxypropyl) silane are preferable.
 また上記式[2]で表されるアルコキシシランBの具体例としては、テトラメトキシシラン、テトラエトキシシラン、トリメトキシ(メチル)シラン、トリエトキシ(メチル)シラン、エチルトリメトキシシラン、トリエトキシ(エチル)シラン、トリメトキシ(プロピル)シラン、トリエトキシ(プロピル)シラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、トリエトキシ(3,3,3-トリフルオロプロピル)シラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、トリメトキシ(ペンチル)シラン、トリエトキシ(ペンチル)シラン、ヘキシルトリメトキシシラン、トリエトキシ(ヘキシル)シラン、トリメトキシ(フェニル)シラン、トリエトキシ(フェニル)シラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、ジエチルジメトキシシラン、ジエトキシジエチルシラン、ジメトキシジプロピルシラン、ジエトキシジプロピルシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジメトキシジペンチルシラン、ジエトキシジペンチルシラン、ジヘキシルジメトキシシラン、ジエトキシジヘキシルシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、トリメトキシ((フェニルアミノ)メチル)シラン、トリメトキシ(3-(フェニルアミノ)プロピル)シラン、トリエトキシ(3-(フェニルアミノ)プロピル)シラン、ジメトキシ(メチル)(3-(フェニルアミノ)プロピル)シラン等が挙げられる。
 これらの中でも、テトラメトキシシラン、テトラエトキシシラン、トリメトキシ(3-(フェニルアミノ)プロピル)シラン、トリエトキシ(3-(フェニルアミノ)プロピル)シランが好ましい。
Specific examples of the alkoxysilane B represented by the above formula [2] include tetramethoxysilane, tetraethoxysilane, trimethoxy (methyl) silane, triethoxy (methyl) silane, ethyltrimethoxysilane, triethoxy (ethyl) silane, Trimethoxy (propyl) silane, triethoxy (propyl) silane, trimethoxy (3,3,3-trifluoropropyl) silane, triethoxy (3,3,3-trifluoropropyl) silane, butyltrimethoxysilane, butyltriethoxysilane, Trimethoxy (pentyl) silane, triethoxy (pentyl) silane, hexyltrimethoxysilane, triethoxy (hexyl) silane, trimethoxy (phenyl) silane, triethoxy (phenyl) silane, dimethoxydimethylsilane, dimethoxy Toxidimethylsilane, diethyldimethoxysilane, diethoxydiethylsilane, dimethoxydipropylsilane, diethoxydipropylsilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dimethoxydipentylsilane, diethoxydipentylsilane, dihexyldimethoxysilane, diethoxydihexylsilane , Dimethoxydiphenylsilane, diethoxydiphenylsilane, trimethoxy ((phenylamino) methyl) silane, trimethoxy (3- (phenylamino) propyl) silane, triethoxy (3- (phenylamino) propyl) silane, dimethoxy (methyl) (3 -(Phenylamino) propyl) silane and the like.
Among these, tetramethoxysilane, tetraethoxysilane, trimethoxy (3- (phenylamino) propyl) silane, and triethoxy (3- (phenylamino) propyl) silane are preferable.
 (A)シロキサンオリゴマーは、前記アルコキシシランA単位を、全アルコキシシラン単位のうち10~99mol%含むシロキサンオリゴマーであることが好ましい。 (A) The siloxane oligomer is preferably a siloxane oligomer containing 10 to 99 mol% of the alkoxysilane A unit in the total alkoxysilane units.
 特に(A)シロキサンオリゴマーは、下記式[4]で表される構造単位を、全構造単位中少なくとも10~99mol%含むシロキサンオリゴマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式中、R、R及びLは前記式[3]における定義と同じ意味を表す。
In particular, the (A) siloxane oligomer is preferably a siloxane oligomer containing at least 10 to 99 mol% of the structural unit represented by the following formula [4] in all the structural units.
Figure JPOXMLDOC01-appb-C000012
In the formula, R 2 , R 5 and L 1 represent the same meaning as defined in the formula [3].
 上記(A)シロキサンオリゴマーを得る方法は特に限定されない。
 例えば前記アルコキシシランA及びアルコキシシランBを含むアルコキシシランを有機溶媒中で縮合させて得られる。アルコキシシランを重縮合する方法としては、例えば、アルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解の何れであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5~2.5倍モルであるのが好ましい。
 また、通常、加水分解・縮合反応を促進する目的で、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、2-エチルヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、シュウ酸、マロン酸、メチルマロン酸、コハク酸、酒石酸、マレイン酸、フマル酸、アジピン酸、セバシン酸、クエン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、安息香酸、p-アミノ安息香酸、サリチル酸、没食子酸、フタル酸、メリト酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;塩酸、硝酸、硫酸、フッ酸、リン酸等の無機酸及びその金属塩;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミン等のアルカリなどの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する方法、還流下で1時間加熱・撹拌する方法などが挙げられる。
 また、別法として、例えば、アルコキシシラン、溶媒及びシュウ酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールにシュウ酸を加えてシュウ酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いるシュウ酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.05~5モル%とすることが好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分~十数時間加熱する方法である。
The method for obtaining the (A) siloxane oligomer is not particularly limited.
For example, it can be obtained by condensing an alkoxysilane containing the alkoxysilane A and alkoxysilane B in an organic solvent. Examples of the method of polycondensing alkoxysilane include a method of hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 times mole of water of all alkoxy groups in the alkoxysilane, but it is usually preferable to add an excess amount of water more than 0.5 times mole. In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 times mol of all alkoxy groups in alkoxysilane.
Usually, for the purpose of promoting hydrolysis / condensation reaction, formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, 2-ethylhexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, stearin Acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, oxalic acid, malonic acid, methylmalonic acid, succinic acid, tartaric acid, maleic acid, fumaric acid, adipic acid, sebacic acid, citric acid, monochloroacetic acid, dichloroacetic acid, Organic acids such as trichloroacetic acid, trifluoroacetic acid, benzoic acid, p-aminobenzoic acid, salicylic acid, gallic acid, phthalic acid, mellitic acid, benzenesulfonic acid, p-toluenesulfonic acid; hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, Inorganic acids such as phosphoric acid and metal salts thereof; ammonia, methylamine, ethylamine, ethanolamine, triethylamine Catalysts such as alkali emissions and the like are used. In addition, it is also common to further promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours, a method of heating / stirring under reflux for 1 hour, and the like can be mentioned.
As another method, for example, a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to make an alcohol solution of oxalic acid, the alkoxysilane is mixed while the solution is heated. At that time, the amount of oxalic acid used is preferably 0.05 to 5 mol% with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
 本発明で使用するプライマー層形成用組成物に使用する(A)シロキサンオリゴマーのゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、100~10,000、好ましくは500~5,000である。 The weight average molecular weight (Mw) measured in terms of polystyrene by gel permeation chromatography of the (A) siloxane oligomer used in the primer layer forming composition used in the present invention is 100 to 10,000, preferably 500 to 5 , 000.
 本発明において、プライマー層形成材料に上記シロキサンオリゴマーを用いることにより、プライマー層形成時に該オリゴマー相互で一部加水分解縮合反応が進み、その際生成するアルコールが揮発することで、プライマー層が隙間を有する構造となるとみられ、その結果、プライマー層全体の基板並びにハードコート層との密着性向上に寄与すると推定される。 In the present invention, by using the above siloxane oligomer as the primer layer forming material, a partial hydrolysis condensation reaction proceeds between the oligomers at the time of forming the primer layer, and the alcohol generated at this time volatilizes, so that the primer layer has gaps. As a result, it is presumed that it contributes to improving the adhesion between the primer layer as a whole and the hard coat layer.
[溶媒]
 本発明に使用するプライマー層形成用組成物は、さらに溶媒を含みて、ワニスの形態としていてもよい。
 この時用いられる溶媒としては、前記(A)成分、並びに所望により後述するその他成分を溶解又は分散するものであればよく、例えば、トルエン、キシレン等の芳香族炭化水素類;酢酸エチル、酢酸ブチル、酢酸イソブチル、γ-ブチロラクトン、ピルビン酸メチル、ピルビン酸エチル、ヒドロキシ酢酸エチル、乳酸エチル、乳酸ブチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノプロピルエーテルアセテート等のエステル類又はエステルエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル(PGME)等のエーテル類;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン等のケトン類;メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、プロピレングリコール等のアルコール類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミド類などを用いることができる。これらの溶媒は単独又は2種以上の組合せ、或いは水との混合溶媒で使用することができる。
[solvent]
The composition for forming a primer layer used in the present invention may further include a solvent to form a varnish.
The solvent used at this time may be any solvent that dissolves or disperses the component (A) and other components described later if desired. For example, aromatic hydrocarbons such as toluene and xylene; ethyl acetate, butyl acetate , Isobutyl acetate, γ-butyrolactone, methyl pyruvate, ethyl pyruvate, hydroxyethyl acetate, ethyl lactate, butyl lactate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, ethyl ethoxyacetate , Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate (PGMEA), pro Esters or ester ethers such as lenglycol monopropyl ether acetate; ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether (PGME); methyl ethyl ketone (MEK) ), Ketones such as methyl isobutyl ketone (MIBK), cyclopentanone, cyclohexanone; methanol, ethanol, n-propanol, 2-propanol, n-butanol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, propylene glycol Alcohols such as N, N-dimethylformamide (DMF), N, N-dimethyla Amides such as cetamide and N-methyl-2-pyrrolidone (NMP) can be used. These solvents can be used alone or in combination of two or more or in a mixed solvent with water.
 本発明に使用するプライマー層形成用組成物における固形分濃度は、例えば0.01~70質量%、0.1~50質量%、又は1~30質量%である。ここで固形分とはプライマー層形成用組成物の全成分から溶媒成分を除いたものである。 The solid content concentration in the primer layer forming composition used in the present invention is, for example, 0.01 to 70% by mass, 0.1 to 50% by mass, or 1 to 30% by mass. Here, the solid content is obtained by removing the solvent component from all the components of the primer layer forming composition.
[その他添加剤]
 さらに、本発明に使用するプライマー層形成用組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、光増感剤、重合禁止剤、重合開始剤、レベリング剤、界面活性剤、密着性付与剤、可塑剤、紫外線吸収剤、酸化防止剤、貯蔵安定剤、帯電防止剤、無機充填剤、顔料、染料等、さらには、活性エネルギー線硬化性多官能モノマーなどを適宜配合してよい。
[Other additives]
Furthermore, additives that are generally added to the composition for forming a primer layer used in the present invention as needed, for example, photosensitizers, polymerization inhibitors, polymerizations, as long as the effects of the present invention are not impaired. Initiators, leveling agents, surfactants, adhesion promoters, plasticizers, UV absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc., and active energy ray curing A functional polyfunctional monomer or the like may be appropriately blended.
[活性エネルギー線硬化性多官能モノマー]
 本発明で使用するプライマー層形成用組成物は、その上方のハードコート層との密着性を改善させるべく、さらに活性エネルギー線硬化性多官能モノマーを含んでいてもよい。
 プライマー層形成用組成物に使用する活性エネルギー線硬化性多官能モノマーとしては、後述する<(a)活性エネルギー線硬化性多官能モノマー>に例示した多官能(メタ)アクリレート化合物及び多官能ウレタン(メタ)アクリレート化合物からなる群から選択されるモノマーや、多官能エポキシ(メタ)アクリレート化合物、多官能ポリエステル(メタ)アクリレート化合物、不飽和ポリエステル等を挙げることができる。
 なお、本発明において(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
 本発明で使用するプライマー層形成用組成物において、活性エネルギー線硬化性多官能モノマーを使用する場合、前述の(A)シロキサンオリゴマー100質量部に対して1~300質量部の量にて、好ましくは1~200質量部の量にて、特に好ましくは10~100質量部の量にて使用する。
[Active energy ray-curable polyfunctional monomer]
The primer layer forming composition used in the present invention may further contain an active energy ray-curable polyfunctional monomer in order to improve the adhesion with the hard coat layer thereabove.
Examples of the active energy ray-curable polyfunctional monomer used in the primer layer forming composition include polyfunctional (meth) acrylate compounds and polyfunctional urethanes exemplified in <(a) Active energy ray-curable polyfunctional monomer> described below. Examples include monomers selected from the group consisting of (meth) acrylate compounds, polyfunctional epoxy (meth) acrylate compounds, polyfunctional polyester (meth) acrylate compounds, and unsaturated polyesters.
In the present invention, the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound. For example, (meth) acrylic acid refers to acrylic acid and methacrylic acid.
In the composition for forming a primer layer used in the present invention, when an active energy ray-curable polyfunctional monomer is used, it is preferably in an amount of 1 to 300 parts by mass with respect to 100 parts by mass of the above-mentioned (A) siloxane oligomer. Is used in an amount of 1 to 200 parts by weight, particularly preferably in an amount of 10 to 100 parts by weight.
[活性エネルギー線によりラジカルを発生する重合開始剤]
 本発明に使用するプライマー層形成用組成物は、上記<活性エネルギー線硬化性多官能モノマー>を含む場合、さらに後述する<(d)活性エネルギー線によりラジカルを発生する重合開始剤>に例示した各種重合開始剤を含んでいてもよい。
 本発明に使用するプライマー層形成用組成物において、上記重合開始剤を含む場合、前記(A)シロキサンオリゴマーの100質量部に対して、0.1~25質量部の量にて、好ましくは0.1~20質量部の量にて、特に好ましくは1~20質量部の量にて使用する。
[Polymerization initiator that generates radicals by active energy rays]
When the composition for forming a primer layer used in the present invention contains the above <active energy ray-curable polyfunctional monomer>, it is further exemplified in <(d) polymerization initiator that generates radicals by active energy rays> described later. Various polymerization initiators may be included.
In the composition for forming a primer layer used in the present invention, when the polymerization initiator is included, it is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the (A) siloxane oligomer, preferably 0. Used in an amount of 1 to 20 parts by weight, particularly preferably in an amount of 1 to 20 parts by weight.
《ハードコート層》
<硬化性組成物>
 本発明の防眩性ハードコート積層体におけるハードコート層は、下記(a)~(d)を含む硬化性組成物の硬化物(すなわち硬化膜)からなる。
(a)活性エネルギー線硬化性多官能モノマー100質量部、
(b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、活性エネルギー線重合性基を結合するパーフルオロポリエーテル0.1~10質量部、
(c)1~10μmの平均粒径を有する有機微粒子8~30質量部、及び
(d)活性エネルギー線によりラジカルを発生する重合開始剤1~20質量部。
 以下、上記(a)~(d)の各成分について説明する。
《Hard coat layer》
<Curable composition>
The hard coat layer in the antiglare hard coat laminate of the present invention comprises a cured product (that is, a cured film) of a curable composition containing the following (a) to (d).
(A) 100 parts by mass of an active energy ray-curable polyfunctional monomer,
(B) the active energy at both ends of the molecular chain containing the poly (oxyperfluoroalkylene) group via the poly (oxyalkylene) group or via the poly (oxyalkylene) group and one urethane bond group in this order; 0.1 to 10 parts by mass of perfluoropolyether to which a linear polymerizable group is bonded,
(C) 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 μm, and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
Hereinafter, the components (a) to (d) will be described.
[(a)活性エネルギー線硬化性多官能モノマー]
 活性エネルギー線硬化性多官能モノマーとは、紫外線等の活性エネルギー線を照射することで重合反応が進行し、硬化するモノマーを指す。
 本発明で使用する硬化性組成物において好ましい(a)活性エネルギー線硬化性多官能モノマーとしては、多官能(メタ)アクリレート化合物及び多官能ウレタン(メタ)アクリレート化合物からなる群から選択されるモノマーである。
[(A) Active energy ray-curable polyfunctional monomer]
The active energy ray-curable polyfunctional monomer refers to a monomer that is cured by a polymerization reaction that proceeds by irradiation with an active energy ray such as ultraviolet rays.
Preferred (a) active energy ray-curable polyfunctional monomer in the curable composition used in the present invention is a monomer selected from the group consisting of polyfunctional (meth) acrylate compounds and polyfunctional urethane (meth) acrylate compounds. is there.
 上記多官能(メタ)アクリレート化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロポキシ化グリセリントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ビス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)ホスフェート、ε-カプロラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等を挙げることができる。
 中でも好ましいものとして、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
Examples of the polyfunctional (meth) acrylate compound include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol diester. (Meth) acrylate monostearate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (meth) acrylate, propoxylated glycerin tri (meth) acrylate, Ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, ethoxylated pet Taerythritol tetra (meth) acrylate, ethoxylated dipentaerythritol hexa (meth) acrylate, ethoxylated glycerin tri (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, 1, 3-propanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 2-methyl- 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene glycol di (meth) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, bis (2-hydroxyethyl) ) Isocyanurate di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, tricyclo [5.2.1.0 2, 6] decane dimethanol di (meth) acrylate, dioxane glycol di (meth) acrylate, 2-hydroxy-1-acryloyloxy-3-methacryloyloxy-propane, 2-hydroxy-1 3-di (meth) acryloyloxypropane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, bis [4- (meth) acryloylthiophenyl] sulfide, bis [2- ( (Meth) acryloylthioethyl] sulfide, 1,3-adamantanediol di (meth) acrylate, 1,3-adamantane dimethanol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, tris (2- (meth) acryloyloxyethyl) phosphate, ε-caprolactone-modified tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, and the like.
Among them, preferred are pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like.
 上記多官能ウレタン(メタ)アクリレート化合物は、1分子内にアクリロイル基又はメタクリロイル基を複数有し、ウレタン結合(-NHCOO-)を一つ以上有する化合物である。
 例えば上記多官能ウレタン(メタ)アクリレート化合物としては、多官能イソシアネートとヒドロキシ基を有する(メタ)アクリレートとの反応により得られるもの、多官能イソシアネートとヒドロキシ基を有する(メタ)アクリレートとポリオールとの反応により得られるものなどが挙げられるが、本発明で使用可能な多官能ウレタン(メタ)アクリレート化合物はかかる例示のみに限定されるものではない。
The polyfunctional urethane (meth) acrylate compound is a compound having a plurality of acryloyl groups or methacryloyl groups in one molecule and one or more urethane bonds (—NHCOO—).
For example, the polyfunctional urethane (meth) acrylate compound is obtained by a reaction between a polyfunctional isocyanate and a (meth) acrylate having a hydroxy group, or a reaction between a polyfunctional isocyanate and a (meth) acrylate having a hydroxy group and a polyol. However, the polyfunctional urethane (meth) acrylate compound that can be used in the present invention is not limited to such examples.
 なお上記多官能イソシアネートとしては、例えば、トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 また上記ヒドロキシ基を有する(メタ)アクリレートとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート等が挙げられる。
 そして上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール等のジオール類;これらジオール類とコハク酸、マレイン酸、アジピン酸等の脂肪族ジカルボン酸類又はジカルボン酸無水物類との反応生成物であるポリエステルポリオール;ポリエーテルポリオール;ポリカーボネートジオール等が挙げられる。
Examples of the polyfunctional isocyanate include tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and hexamethylene diisocyanate.
Examples of the (meth) acrylate having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth). An acrylate, tripentaerythritol hepta (meth) acrylate, etc. are mentioned.
Examples of the polyol include diols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, and dipropylene glycol; these diols, succinic acid, malein Examples include polyester polyols which are reaction products with aliphatic dicarboxylic acids or dicarboxylic anhydrides such as acids and adipic acid; polyether polyols; polycarbonate diols and the like.
 本発明では、上記(a)活性エネルギー線硬化性多官能モノマーとして、上記多官能(メタ)アクリレート化合物及び上記多官能ウレタン(メタ)アクリレート化合物からなる群から一種を単独で、或いは二種以上を組合せて使用することができる。得られる硬化物の耐擦傷性の観点から、多官能(メタ)アクリレート化合物及び多官能ウレタン(メタ)アクリレート化合物を併用することが好ましい。また、上記多官能(メタ)アクリレート化合物として、5官能以上の多官能(メタ)アクリレート化合物及び4官能以下の多官能(メタ)アクリレート化合物を併用することが好ましい。
 また、上記多官能(メタ)アクリレート化合物と上記多官能ウレタン(メタ)アクリレート化合物とを組み合わせて使用する場合、多官能(メタ)アクリレート化合物100質量部に対し、多官能ウレタン(メタ)アクリレート化合物20~100質量部を使用することが好ましく、30~70質量部を使用することがより好ましい。
 さらに、上記多官能(メタ)アクリレート化合物において、上記5官能以上の多官能(メタ)アクリレート化合物と上記4官能以下の多官能(メタ)アクリレート化合物とを組み合わせて使用する場合、5官能以上の多官能(メタ)アクリレート化合物100質量部に対し、4官能以下の多官能(メタ)アクリレート化合物10~100質量部を使用することが好ましく、20~60質量部を使用することがより好ましい。
 また、多官能(メタ)アクリレート化合物100質量部に対し多官能ウレタン(メタ)アクリレート化合物20~100質量部かつ5官能以上の多官能(メタ)アクリレート化合物100質量部に対し4官能以下の多官能(メタ)アクリレート化合物10~100質量部にて使用すること、
多官能(メタ)アクリレート化合物100質量部に対し多官能ウレタン(メタ)アクリレート化合物20~100質量部かつ5官能以上の多官能(メタ)アクリレート化合物100質量部に対し4官能以下の多官能(メタ)アクリレート化合物20~60質量部にて使用すること、
多官能(メタ)アクリレート化合物100質量部に対し多官能ウレタン(メタ)アクリレート化合物30~70質量部かつ5官能以上の多官能(メタ)アクリレート化合物100質量部に対し4官能以下の多官能(メタ)アクリレート化合物10~100質量部にて使用すること、
多官能(メタ)アクリレート化合物100質量部に対し多官能ウレタン(メタ)アクリレート化合物30~70質量部かつ5官能以上の多官能(メタ)アクリレート化合物100質量部に対し4官能以下の多官能(メタ)アクリレート化合物20~60質量部にて使用することが好ましい。
In the present invention, as the (a) active energy ray-curable polyfunctional monomer, one kind is selected from the group consisting of the polyfunctional (meth) acrylate compound and the polyfunctional urethane (meth) acrylate compound, or two or more kinds are used. Can be used in combination. From the viewpoint of scratch resistance of the resulting cured product, it is preferable to use a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound in combination. Moreover, it is preferable to use together 5 or more functional polyfunctional (meth) acrylate compound and 4 or less polyfunctional (meth) acrylate compound as said polyfunctional (meth) acrylate compound.
Moreover, when using the said polyfunctional (meth) acrylate compound and the said polyfunctional urethane (meth) acrylate compound in combination, the polyfunctional urethane (meth) acrylate compound 20 with respect to 100 mass parts of polyfunctional (meth) acrylate compounds. It is preferable to use ˜100 parts by mass, and it is more preferable to use 30 to 70 parts by mass.
Furthermore, in the polyfunctional (meth) acrylate compound, when the polyfunctional (meth) acrylate compound having 5 or more functions and the polyfunctional (meth) acrylate compound having 4 or less functions are used in combination, the polyfunctional (meth) acrylate compound has 5 or more functions. It is preferable to use 10 to 100 parts by mass of a tetrafunctional or lower polyfunctional (meth) acrylate compound with respect to 100 parts by mass of the functional (meth) acrylate compound, and it is more preferable to use 20 to 60 parts by mass.
In addition, polyfunctional urethane (meth) acrylate compound 20 to 100 parts by mass with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound and polyfunctional (meth) acrylate compounds having a functionality of 4 or less with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound. (Meth) acrylate compound to be used at 10 to 100 parts by mass,
Polyfunctional (meth) acrylate compound 20 to 100 parts by mass with respect to 100 parts by mass of polyfunctional (meth) acrylate compound and polyfunctional (meth) acrylate compound with a functionality of 4 or less with respect to 100 parts by mass of polyfunctional (meth) acrylate compound having 5 or more functions ) Use at 20-60 parts by mass of acrylate compound,
Polyfunctional (meth) acrylate compound 100 parts by mass Polyfunctional urethane (meth) acrylate compound 30 to 70 parts by mass and pentafunctional or higher polyfunctional (meth) acrylate compound 100 parts by mass ) Use at 10 to 100 parts by mass of acrylate compound,
Polyfunctional (meth) acrylate compound 100 parts by mass Polyfunctional urethane (meth) acrylate compound 30 to 70 parts by mass and pentafunctional or higher polyfunctional (meth) acrylate compound 100 parts by mass ) The acrylate compound is preferably used in an amount of 20 to 60 parts by mass.
[(b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、活性エネルギー線重合性基を結合するパーフルオロポリエーテル]
 本発明では、(b)成分として、ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、活性エネルギー線重合性基を結合するパーフルオロポリエーテル(以降、単に「(b)両末端に重合性基を有するパーフルオロポリエーテル」とも称する)を使用する。(b)成分は、本発明で使用する硬化性組成物を適用するハードコート層における表面改質剤としての役割を果たす。
[(B) Active via a poly (oxyalkylene) group or a poly (oxyalkylene) group and one urethane bond group in this order at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group Perfluoropolyether binding energy beam polymerizable groups]
In the present invention, as the component (b), a poly (oxyalkylene) group and one urethane bonding group are bonded to both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group via a poly (oxyalkylene) group. Through this order, a perfluoropolyether (hereinafter also referred to as “(b) a perfluoropolyether having a polymerizable group at both ends”) to which an active energy ray polymerizable group is bonded is used. The component (b) serves as a surface modifier in the hard coat layer to which the curable composition used in the present invention is applied.
 上記ポリ(オキシパーフルオロアルキレン)基におけるアルキレン基の炭素原子数は特に限定されないが、好ましくは炭素原子数1~4であることが好ましい。すなわち、上記ポリ(オキシパーフルオロアルキレン)基は、炭素原子数1~4の2価のフッ化炭素基と酸素原子が交互に連結した構造を有する基を指し、オキシパーフルオロアルキレン基は炭素原子数1~4の2価のフッ化炭素基と酸素原子が連結した構造を有する基を指す。具体的には、-[OCF]-(オキシパーフルオロメチレン基)、-[OCFCF]-(オキシパーフルオロエチレン基)、-[OCFCFCF]-(オキシパーフルオロプロパン-1,3-ジイル基)、-[OCFC(CF)F]-(オキシパーフルオロプロパン-1,2-ジイル基)等の基が挙げられる。
 上記オキシパーフルオロアルキレン基は、一種を単独で使用してもよく、或いは二種以上を組み合わせて使用してもよく、その場合、複数種のオキシパーフルオロアルキレン基の結合はブロック結合及びランダム結合の何れであってもよい。
The number of carbon atoms of the alkylene group in the poly (oxyperfluoroalkylene) group is not particularly limited, but preferably 1 to 4 carbon atoms. That is, the poly (oxyperfluoroalkylene) group refers to a group having a structure in which a divalent fluorocarbon group having 1 to 4 carbon atoms and oxygen atoms are alternately connected, and the oxyperfluoroalkylene group is a carbon atom. This refers to a group having a structure in which a divalent fluorocarbon group of formulas 1 to 4 and an oxygen atom are linked. Specifically, — [OCF 2 ] — (oxyperfluoromethylene group), — [OCF 2 CF 2 ] — (oxyperfluoroethylene group), — [OCF 2 CF 2 CF 2 ] — (oxyperfluoropropane) -1,3-diyl group) and-[OCF 2 C (CF 3 ) F]-(oxyperfluoropropane-1,2-diyl group).
The above oxyperfluoroalkylene groups may be used alone or in combination of two or more. In such a case, the bonds of plural types of oxyperfluoroalkylene groups are block bonds and random bonds. Any of these may be used.
 これらの中でも、耐擦傷性が良好となる硬化物(ハードコート層)が得られる観点から、ポリ(オキシパーフルオロアルキレン)基として、-[OCF]-(オキシパーフルオロメチレン基)と-[OCFCF]-(オキシパーフルオロエチレン基)の双方を繰り返し単位として有する基を用いることが好ましい。
 中でも上記ポリ(オキシパーフルオロアルキレン)基として、繰り返し単位:-[OCF]-と-[OCFCF]-とが、モル比率で[繰り返し単位:-[OCF]-]:[繰り返し単位:-[OCFCF]-]=2:1~1:2となる割合で含む基であることが好ましく、およそ1:1となる割合で含む基であることがより好ましい。これら繰り返し単位の結合は、ブロック結合及びランダム結合の何れであってもよい。
 上記オキシパーフルオロアルキレン基の繰り返し単位数は、その繰り返し単位数の総計として5~30の範囲であることが好ましく、7~21の範囲であることがより好ましい。
 また、上記ポリ(オキシパーフルオロアルキレン)基のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000~5,000、好ましくは1,500~2,000である。
Among these, from the viewpoint of obtaining a cured product (hard coat layer) having good scratch resistance, as the poly (oxyperfluoroalkylene) group,-[OCF 2 ]-(oxyperfluoromethylene group) and-[ It is preferable to use a group having both of OCF 2 CF 2 ]-(oxyperfluoroethylene group) as a repeating unit.
Among them, as the poly (oxyperfluoroalkylene) group, the repeating unit: — [OCF 2 ] — and — [OCF 2 CF 2 ] — are represented by a molar ratio of [Repeating unit: — [OCF 2 ] —]: [Repeating Unit: — [OCF 2 CF 2 ] —] = 2: 1 to 1: 2 is preferable, and a group including about 1: 1 is more preferable. The bond of these repeating units may be either a block bond or a random bond.
The number of repeating units of the oxyperfluoroalkylene group is preferably in the range of 5 to 30, more preferably in the range of 7 to 21, as the total number of repeating units.
The weight average molecular weight (Mw) of the poly (oxyperfluoroalkylene) group measured in terms of polystyrene by gel permeation chromatography is 1,000 to 5,000, preferably 1,500 to 2,000. .
 上記ポリ(オキシアルキレン)基におけるアルキレン基の炭素原子数は特に限定されないが、好ましくは炭素原子数1~4であることが好ましい。すなわち、上記ポリ(オキシアルキレン)基は、炭素原子数1~4のアルキレン基と酸素原子が交互に連結した構造を有する基を指し、オキシアルキレン基は炭素原子数1~4の2価のアルキレン基と酸素原子が連結した構造を有する基を指す。上記アルキレン基としては、エチレン基、1-メチルエチレン基、トリメチレン基、テトラメチレン基等が挙げられる。
 上記オキシアルキレン基は、一種を単独で使用してもよく、或いは二種以上を組み合わせて使用してもよく、その場合、複数種のオキシアルキレン基の結合はブロック結合及びランダム結合の何れであってもよい。
 中でも、上記ポリ(オキシアルキレン)基は、ポリ(オキシエチレン)基であることが好ましい。
 上記ポリ(オキシアルキレン)基におけるオキシアルキレン基の繰り返し単位数は、例えば1~15の範囲であり、例えば5~12の範囲、例えば7~12の範囲であることがより好ましい。
The number of carbon atoms of the alkylene group in the poly (oxyalkylene) group is not particularly limited, but preferably 1 to 4 carbon atoms. That is, the poly (oxyalkylene) group refers to a group having a structure in which an alkylene group having 1 to 4 carbon atoms and oxygen atoms are alternately connected, and the oxyalkylene group is a divalent alkylene having 1 to 4 carbon atoms. A group having a structure in which a group and an oxygen atom are linked. Examples of the alkylene group include an ethylene group, a 1-methylethylene group, a trimethylene group, and a tetramethylene group.
The oxyalkylene groups may be used singly or in combination of two or more. In that case, the bonds of the plural oxyalkylene groups may be either block bonds or random bonds. May be.
Among these, the poly (oxyalkylene) group is preferably a poly (oxyethylene) group.
The number of repeating units of the oxyalkylene group in the poly (oxyalkylene) group is, for example, in the range of 1 to 15, and more preferably in the range of 5 to 12, for example, 7 to 12.
 上記ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して結合する活性エネルギー線重合性基としては、(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基、ビニル基等が挙げられる。 Examples of the active energy ray-polymerizable group that bonds the poly (oxyalkylene) group or the poly (oxyalkylene) group and one urethane bond group in this order include a (meth) acryloyl group and a urethane (meth) acryloyl group. Group, vinyl group and the like.
 上記活性エネルギー線重合性基は、(メタ)アクリロイル部分等の活性エネルギー線重合性部分を1つ有するものに限られず、2つ以上の活性エネルギー線重合性部分を有するものであってもよく、例えば、以下に示すA1~A5の構造、及びこれらの構造中のアクリロイル基をメタクリロイル基に置換した構造が挙げられる。 The active energy ray polymerizable group is not limited to one having one active energy ray polymerizable portion such as a (meth) acryloyl moiety, and may have two or more active energy ray polymerizable portions, For example, the following structures A1 to A5 and structures in which the acryloyl group in these structures is substituted with a methacryloyl group can be mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 このような(b)両末端に重合性基を有するパーフルオロポリエーテルとして、工業的製造が容易であるという点から、以下に示す化合物及びこれらの化合物中のアクリロイル基をメタクリロイル基に置換した化合物を好ましい例として挙げることができる。なお、構造式中、Aは前記式[A1]~式[A5]で表される構造のうちの1つを表し、PFPEは前記ポリ(オキシパーフルオロアルキレン)基を表し、nはそれぞれ独立してオキシエチレン基の繰り返し単位数を表し、好ましくは1~15の数を表し、より好ましくは5~12の数を表し、さらに好ましくは7~12の数を表す。
Figure JPOXMLDOC01-appb-C000014
As the perfluoropolyether having a polymerizable group at both ends (b), the following compounds and compounds obtained by substituting acryloyl groups in these compounds with methacryloyl groups from the viewpoint of easy industrial production Can be mentioned as a preferred example. In the structural formula, A represents one of the structures represented by the formulas [A1] to [A5], PFPE represents the poly (oxyperfluoroalkylene) group, and n is independently selected. Represents the number of repeating units of the oxyethylene group, preferably a number of 1 to 15, more preferably a number of 5 to 12, and still more preferably a number of 7 to 12.
Figure JPOXMLDOC01-appb-C000014
 中でも、本発明で使用する(b)両末端に重合性基を有するパーフルオロポリエーテルは、ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、すなわち、ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端にポリ(オキシアルキレン)基がそれぞれ結合し、該両端の各ポリ(オキシアルキレン)基にそれぞれウレタン結合基が1つ結合し、そして該両端の各ウレタン結合に活性エネルギー線重合性基がそれぞれ結合したパーフルオロポリエーテルであることが好ましい。さらに、前記パーフルオロポリエーテルにおいて、活性エネルギー線重合性基が少なくとも2つ以上の活性エネルギー線重合性部分を有する基であるパーフルオロポリエーテルであることが好ましい。 Among them, the (b) perfluoropolyether having a polymerizable group at both ends used in the present invention has a poly (oxyalkylene) group and one at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group. Through the urethane bonding groups in this order, that is, poly (oxyalkylene) groups are bonded to both ends of the molecular chain containing the poly (oxyperfluoroalkylene) group, respectively, and each poly (oxyalkylene) group at each end is bonded to each end. It is preferably a perfluoropolyether in which one urethane bond group is bonded and active energy ray polymerizable groups are bonded to the urethane bonds at both ends. Further, in the perfluoropolyether, the active energy ray polymerizable group is preferably a perfluoropolyether which is a group having at least two active energy ray polymerizable moieties.
 本発明において(b)両末端に重合性基を有するパーフルオロポリエーテルは、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、0.1~10質量部、好ましくは0.2~5質量部の割合で使用することが望ましい。 In the present invention, (b) the perfluoropolyether having a polymerizable group at both ends is 0.1 to 10 parts by weight, preferably 100 parts by weight, preferably 100 parts by weight of the active energy ray-curable polyfunctional monomer. It is desirable to use at a ratio of 0.2 to 5 parts by mass.
 上記(b)両末端に重合性基を有するパーフルオロポリエーテルは、例えば、ポリ(オキシパーフルオロアルキレン)基の両末端にポリ(オキシアルキレン)基を介してヒドロキシ基を有する化合物において、その両端のヒドロキシ基に対して2-(メタ)アクリロイルオキシエチルイソシアネートや1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等の重合性基を有するイソシアネート化合物をウレタン化反応させる方法、(メタ)アクリル酸クロリド又はクロロメチルスチレンを脱塩酸反応させる方法、(メタ)アクリル酸を脱水反応させる方法、無水イタコン酸をエステル化反応させる方法などにより得られる。
 中でも、ポリ(オキシパーフルオロアルキレン)基の両末端にポリ(オキシアルキレン)基を介してヒドロキシ基を有する化合物において、その両端のヒドロキシ基に対して、2-(メタ)アクリロイルオキシエチルイソシアネートや1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等の重合性基を有するイソシアネート化合物をウレタン化反応させる方法、或いは、該ヒドロキシ基に対して(メタ)アクリル酸クロリド又はクロロメチルスチレンを脱塩酸反応させる方法が、反応が容易である点で特に好ましい。
The perfluoropolyether having a polymerizable group at both ends (b) is, for example, a compound having a hydroxy group at both ends of a poly (oxyperfluoroalkylene) group via a poly (oxyalkylene) group. A urethanization reaction of an isocyanate compound having a polymerizable group such as 2- (meth) acryloyloxyethyl isocyanate or 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate with respect to the hydroxy group of (meth) It can be obtained by a method of dehydrochlorinating acrylic acid chloride or chloromethylstyrene, a method of dehydrating (meth) acrylic acid, a method of esterifying itaconic anhydride, and the like.
In particular, in a compound having a hydroxy group at both ends of a poly (oxyperfluoroalkylene) group via a poly (oxyalkylene) group, 2- (meth) acryloyloxyethyl isocyanate or 1 , 1-bis ((meth) acryloyloxymethyl) ethyl isocyanate or other isocyanate compounds having a polymerizable group, or (meth) acrylic acid chloride or chloromethylstyrene is removed from the hydroxy group. The method of reacting with hydrochloric acid is particularly preferable because the reaction is easy.
 なお本発明で使用する硬化性組成物には、(b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、活性エネルギー線重合性基を結合するパーフルオロポリエーテルに加えて、ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の一端にポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して、活性エネルギー線重合性基を結合し、且つその他端にポリ(オキシアルキレン)基を介してヒドロキシ基を有するパーフルオロポリエーテルや、ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両端にポリ(オキシアルキレン)基を介してヒドロキシ基を有するパーフルオロポリエーテル[活性エネルギー線重合性基を結合していない化合物]が含まれていてもよい。 The curable composition used in the present invention includes (b) a poly (oxyalkylene) group at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group or a poly (oxyalkylene) group and In addition to the perfluoropolyether to which the active energy ray polymerizable group is bonded through one urethane bonding group in this order, a poly (oxyalkylene) group is added to one end of the molecular chain containing the poly (oxyperfluoroalkylene) group. Or a poly (oxyalkylene) group and one urethane bond group in this order to bind an active energy ray-polymerizable group and a perfluoro group having a hydroxy group at the other end via a poly (oxyalkylene) group Via a poly (oxyalkylene) group at both ends of a molecular chain containing a polyether or poly (oxyperfluoroalkylene) group Compound unbound active energy ray-polymerizable group] perfluoropolyether having a hydroxy group may be included.
[(c)1~10μmの平均粒径を有する有機微粒子]
 本発明で使用する硬化性組成物において、1~10μmの平均粒径を有する有機微粒子(以下、単に「(c)有機微粒子」とも称する)は、該硬化性組成物より形成されるハードコート層の表面を凹凸形状にして防眩性を付与する。
 また有機微粒子は、その屈折率とハードコート層形成材料である硬化性組成物との屈折率との差を制御することで、ハードコート層のヘーズ値を制御する役割をも担うことができる。
[(C) Organic fine particles having an average particle diameter of 1 to 10 μm]
In the curable composition used in the present invention, organic fine particles having an average particle diameter of 1 to 10 μm (hereinafter also simply referred to as “(c) organic fine particles”) are hard coat layers formed from the curable composition. The anti-glare property is imparted by making the surface of the surface uneven.
The organic fine particles can also play a role of controlling the haze value of the hard coat layer by controlling the difference between the refractive index and the refractive index of the curable composition that is the hard coat layer forming material.
 前記有機微粒子の形状は特に限定されないが、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは真球状粒子である。 The shape of the organic fine particles is not particularly limited, but may be, for example, a bead-like substantially spherical shape or an irregular shape such as a powder, but is preferably substantially spherical, more preferably an aspect. A substantially spherical particle having a ratio of 1.5 or less, and most preferably a true spherical particle.
 前記有機微粒子としては、例えば、ポリメタクリル酸メチル粒子(PMMA粒子)、シリコーン粒子、ポリスチレン粒子、ポリカーボネート粒子、アクリルスチレン粒子、ベンゾグアナミン粒子、メラミン粒子、ポリオレフィン粒子、ポリエステル粒子、ポリアミド粒子、ポリイミド粒子、ポリフッ化エチレン粒子等があげられる。これらの有機微粒子は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。
 なかでも、前記有機微粒子としてポリメタクリル酸メチル粒子を好適に用いることができる。
Examples of the organic fine particles include polymethyl methacrylate particles (PMMA particles), silicone particles, polystyrene particles, polycarbonate particles, acrylic styrene particles, benzoguanamine particles, melamine particles, polyolefin particles, polyester particles, polyamide particles, polyimide particles, polyfluoride particles. And ethylene oxide particles. These organic fine particles may be used alone or in combination of two or more.
Among them, polymethyl methacrylate particles can be suitably used as the organic fine particles.
 本発明で使用する前記有機微粒子の平均粒径は1~10μmの範囲であり、好ましくは2~8μmの範囲であり、より好ましくは3~8μmの範囲であることが好ましい。ここで平均粒径(μm)とは、Mie理論に基づくレーザー回折・散乱法により測定して得られる50%体積径(メジアン径)である。前記有機微粒子の平均粒径が上記数値範囲より大きくなると、ディスプレイの画像鮮明性が低下し、また上記数値範囲より小さいと、十分な防眩性が得られず、ギラツキも大きくなるという問題が生じやすくなる。なお前記有機微粒子は、その粒度分布については特に限定されないが、粒径の揃った単分散の微粒子であることが好ましい。
 前記有機微粒子は、前記(a)活性エネルギー線硬化性多官能モノマーの硬化物との屈折率差が0~0.20である屈折率を有してなる有機微粒子であることが好ましく、さらに前記屈折率差が0~0.10であることが好ましい。
 また、前記有機微粒子は、その平均粒径が、後述する本発明で使用する硬化性組成物より得られる硬化物、すなわちハードコート層の膜厚に対して、有機微粒子の平均粒径b/膜厚a=0.3~1.0の範囲を満たすように選択することが好ましい。
The average particle size of the organic fine particles used in the present invention is in the range of 1 to 10 μm, preferably in the range of 2 to 8 μm, more preferably in the range of 3 to 8 μm. Here, the average particle diameter (μm) is a 50% volume diameter (median diameter) obtained by measurement by a laser diffraction / scattering method based on the Mie theory. When the average particle size of the organic fine particles is larger than the above numerical range, the image sharpness of the display is deteriorated, and when the average particle size is smaller than the above numerical range, sufficient antiglare property cannot be obtained and glare increases. It becomes easy. The organic fine particles are not particularly limited in terms of particle size distribution, but are preferably monodispersed fine particles having a uniform particle size.
The organic fine particles are preferably organic fine particles having a refractive index of 0 to 0.20 in refractive index difference from the cured product of the active energy ray-curable polyfunctional monomer (a). The refractive index difference is preferably 0 to 0.10.
Further, the organic fine particles have an average particle diameter b / film with respect to the cured product obtained from the curable composition used in the present invention described later, that is, the film thickness of the hard coat layer. The thickness a is preferably selected so as to satisfy the range of 0.3 to 1.0.
 前記有機微粒子は、市販品を好適に用いることができ、例えば、テクポリマー(登録商標)MBXシリーズ、同SBXシリーズ、同MSXシリーズ、同SMXシリーズ、同SSXシリーズ、同BMXシリーズ、同ABXシリーズ、同ARXシリーズ、同AFXシリーズ、同MBシリーズ、同MBPシリーズ、同MB-Cシリーズ、同ACXシリーズ、同ACPシリーズ[以上、積水化成品工業(株)製];トスパール(登録商標)シリーズ[モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製];エポスター(登録商標)シリーズ、同MAシリーズ、同STシリーズ、同MXシリーズ[以上、(株)日本触媒製];オプトビーズ(登録商標)シリーズ[日産化学工業(株)製];フロービーズシリーズ[住友精化(株)製];トレパール(登録商標)PPS、同PAI、同PES、同EP[以上、東レ(株)製];3M(登録商標)ダイニオンTFマイクロパウダーシリーズ[3M社製];ケミスノー(登録商標)MXシリーズ、同MZシリーズ、同MRシリーズ、同KMRシリーズ、同KSRシリーズ、同MPシリーズ、同SXシリーズ、同SGPシリーズ[以上、綜研化学(株)製];タフチック(登録商標)AR650シリーズ、同AR-750シリーズ、同FH-Sシリーズ、同A-20、同YKシリーズ、同ASFシリーズ、同HUシリーズ、同Fシリーズ、同Cシリーズ、同WSシリーズ[以上、東洋紡(株)製];アートパール(登録商標)GRシリーズ、同SEシリーズ、同Gシリーズ、同GSシリーズ、同Jシリーズ、同MFシリーズ、同BEシリーズ[以上、根上工業(株)製];信越シリコーン(登録商標)KMPシリーズ[信越化学工業(株)製]等を用いることができる。 Commercially available products can be suitably used as the organic fine particles. For example, Techpolymer (registered trademark) MBX series, SBX series, MSX series, SMX series, SSX series, BMX series, ABX series, Same ARX series, Same AFX series, Same MB series, Same MBP series, Same MB-C series, Same ACX series, Same ACP series [above, manufactured by Sekisui Plastics Co., Ltd.]; Tospearl (registered trademark) series [Momentive・ Performance Materials Japan (same)]; Eposter (registered trademark) series, MA series, ST series, MX series [above, Nippon Shokubai Co., Ltd.]; Opt Beads (registered trademark) series [ Nissan Chemical Industries, Ltd.]; Flow beads series [Sumitomo Seika Co., Ltd.] Trepearl (registered trademark) PPS, PAI, PES, EP (above, manufactured by Toray Industries, Inc.); 3M (registered trademark) Dionion TF micro powder series (produced by 3M); Chemisnow (registered trademark) MX series, MZ series, MR series, same KMR series, same KSR series, same MP series, same SX series, same SGP series [above, manufactured by Soken Chemical Co., Ltd.]; Tuftic (registered trademark) AR650 series, same AR-750 series FH-S Series, A-20, YK Series, YK Series, ASF Series, HU Series, F Series, C Series, WS Series [above, manufactured by Toyobo Co., Ltd.]; Art Pearl (registered trademark) ) GR series, SE series, G series, GS series, J series, MF series, BE Leeds [above, Negami Chemical Industrial Co., Ltd.]; Shin-Etsu Silicone can be used (registered trademark) KMP series [Shin-Etsu Chemical Co., Ltd.] or the like.
 本発明において(c)有機微粒子は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、8~30質量部、好ましくは8~20質量部の割合で使用することが望ましい。 In the present invention, the organic fine particles (c) are used in an amount of 8 to 30 parts by weight, preferably 8 to 20 parts by weight, based on 100 parts by weight of the above-mentioned (a) active energy ray-curable polyfunctional monomer. desirable.
[(d)活性エネルギー線によりラジカルを発生する重合開始剤]
 本発明で使用する硬化性組成物において好ましい活性エネルギー線によりラジカルを発生する重合開始剤(以下、単に「(d)重合開始剤」とも称する)は、例えば、電子線、紫外線、X線等の活性エネルギー線により、特に紫外線照射によりラジカルを発生する重合開始剤である。
 上記(d)重合開始剤としては、例えばベンゾイン類、アルキルフェノン類、チオキサントン類、アゾ類、アジド類、ジアゾ類、o-キノンジアジド類、アシルホスフィンオキシド類、オキシムエステル類、有機過酸化物、ベンゾフェノン類、ビスクマリン類、ビスイミダゾール類、チタノセン類、チオール類、ハロゲン化炭化水素類、トリクロロメチルトリアジン類、あるいはヨードニウム塩、スルホニウム塩などのオニウム塩類等が挙げられる。これらは一種単独で或いは二種以上を混合して用いてもよい。
 中でも本発明では、透明性、表面硬化性、薄膜硬化性の観点から(d)重合開始剤として、アルキルフェノン類重合開始剤を使用することが好ましい。アルキルフェノン類重合開始剤を使用することにより、耐擦傷性がより向上した硬化物(ハードコート層)を得ることができる。
[(D) Polymerization initiator that generates radicals by active energy rays]
In the curable composition used in the present invention, preferred polymerization initiators that generate radicals by active energy rays (hereinafter also simply referred to as “(d) polymerization initiator”) include, for example, electron beams, ultraviolet rays, and X-rays. It is a polymerization initiator that generates radicals by active energy rays, particularly when irradiated with ultraviolet rays.
Examples of the above (d) polymerization initiator include benzoins, alkylphenones, thioxanthones, azos, azides, diazos, o-quinonediazides, acylphosphine oxides, oxime esters, organic peroxides, benzophenones. Biscumarins, bisimidazoles, titanocenes, thiols, halogenated hydrocarbons, trichloromethyltriazines, or onium salts such as iodonium salts and sulfonium salts. You may use these individually by 1 type or in mixture of 2 or more types.
Among them, in the present invention, it is preferable to use an alkylphenone polymerization initiator as the polymerization initiator (d) from the viewpoints of transparency, surface curability, and thin film curability. By using an alkylphenone polymerization initiator, a cured product (hard coat layer) with improved scratch resistance can be obtained.
 上記アルキルフェノン類重合開始剤としては、例えば、1-ヒドロキシシクロヘキシル=フェニル=ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等のα-ヒドロキシアルキルフェノン類;2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン等のα-アミノアルキルフェノン類;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン;フェニルグリオキシル酸メチルなどが挙げられる。 Examples of the alkylphenone polymerization initiator include 1-hydroxycyclohexyl = phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-1- (4- (2- Hydroxyethoxy) phenyl) -2-methylpropan-1-one, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one Α-hydroxyalkylphenones such as 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) Α-aminoalkylphenones such as butan-1-one; 2,2-dimethoxy-1,2-diphenylethane-1-one; And methyl phenylglyoxylate.
 本発明において(d)重合開始剤は、前述の(a)活性エネルギー線硬化性多官能モノマー100質量部に対して、1~20質量部、好ましくは2~10質量部の割合で使用することが望ましい。 In the present invention, (d) the polymerization initiator is used in a proportion of 1 to 20 parts by weight, preferably 2 to 10 parts by weight, based on 100 parts by weight of the above-mentioned (a) active energy ray-curable polyfunctional monomer. Is desirable.
[(e)溶媒]
 本発明で使用する硬化性組成物は、更に(e)溶媒を含み、すなわちワニス(膜形成材料)の形態とすることができる。
 上記溶媒としては、前記(a)~(d)成分を溶解・分散し、また後述する硬化物(ハードコート層)形成にかかる塗工時の作業性や硬化前後の乾燥性等を考慮して適宜選択すればよく、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素類;塩化メチル、臭化メチル、ヨウ化メチル、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、o-ジクロロベンゼン等のハロゲン化物類;酢酸エチル、酢酸プロピル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類又はエステルエーテル類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;N-メチル-2-ピロリドン等の複素環式化合物類、並びにこれらの2種以上の混合溶媒が挙げられる。
[(E) Solvent]
The curable composition used in the present invention may further include (e) a solvent, that is, a varnish (film forming material).
As the above-mentioned solvent, the components (a) to (d) are dissolved and dispersed, and the workability at the time of coating for forming a cured product (hard coat layer) to be described later and the drying property before and after curing are taken into consideration. For example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit and cyclohexane; Halides such as methyl, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene; ethyl acetate, propyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate , Ethyl cellosolve acetate, propylene glycol monomethyl ether Esters such as cetate or ester ethers; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene Ethers such as glycol monoisopropyl ether and propylene glycol mono-n-butyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone and cyclohexanone; methanol, ethanol, n-propanol, isopropyl alcohol, n- Butanol, isobutyl alcohol, tert-butyl alcohol, 2-ethylhexyl alcohol, ben Alcohols such as alcohol and ethylene glycol; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; sulfoxides such as dimethyl sulfoxide; heterocyclic compounds such as N-methyl-2-pyrrolidone; Moreover, these 2 or more types of mixed solvents are mentioned.
 また、塗工後の乾燥時における前記微粒子の分散性を制御する目的で、高沸点の溶媒を使用することもできる。
 このような溶媒としては、例えば、酢酸シクロヘキシル、プロピレングリコールジアセテート、1,3-ブチンレングリコールジアセテート、1,4-ブタンジオールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノブチルエーテル、3-メトキシブタノール、ジプロピレングリコールジメチルエーテル、ジプロピレングリコール=メチル=プロピル=エーテル等が挙げられる。
In addition, a solvent having a high boiling point can be used for the purpose of controlling the dispersibility of the fine particles during drying after coating.
Examples of such solvents include cyclohexyl acetate, propylene glycol diacetate, 1,3-butylene glycol diacetate, 1,4-butanediol diacetate, 1,6-hexanediol diacetate, ethylene glycol monobutyl ether acetate. , Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, Diethylene glycol monobutyl ether, dipropylene glycol Monomethyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene glycol monobutyl ether, 3-methoxybutanol, dipropylene glycol dimethyl ether, dipropylene glycol = methyl = propyl = ether, etc. Can be mentioned.
 これら(e)溶媒の使用量は特に限定されないが、例えば本発明で使用する硬化性組成物における固形分濃度が1~70質量%、好ましくは5~50質量%となる濃度で使用する。ここで固形分濃度(不揮発分濃度とも称する)とは、本発明で使用する硬化性組成物の前記(a)~(e)成分(及び所望によりその他添加剤)の総質量(合計質量)に対する固形分(全成分から溶媒成分を除いたもの)の含有量を表す。 The amount of these (e) solvents to be used is not particularly limited. For example, the solvent is used in such a concentration that the solid content in the curable composition used in the present invention is 1 to 70% by mass, preferably 5 to 50% by mass. Here, the solid content concentration (also referred to as non-volatile content concentration) is based on the total mass (total mass) of the components (a) to (e) (and other additives as required) of the curable composition used in the present invention. It represents the content of solid content (excluding solvent components from all components).
[その他添加物]
 また、本発明で使用する硬化性組成物には、本発明の効果を損なわない限り、必要に応じて一般的に添加される添加剤、例えば、重合促進剤、重合禁止剤、光増感剤、レベリング剤、界面活性剤、密着性付与剤、可塑剤、紫外線吸収剤、酸化防止剤、貯蔵安定剤、帯電防止剤、無機充填剤、顔料、染料等を適宜配合してよい。
 また、硬化物(ハードコート層)のヘーズ値を制御する目的で、酸化チタン等の無機微粒子を配合してもよい。
[Other additives]
In addition, additives that are generally added as necessary to the curable composition used in the present invention, for example, a polymerization accelerator, a polymerization inhibitor, and a photosensitizer, as long as the effects of the present invention are not impaired. , Leveling agents, surfactants, adhesion-imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, and the like may be appropriately blended.
Moreover, you may mix | blend inorganic fine particles, such as a titanium oxide, in order to control the haze value of hardened | cured material (hard-coat layer).
《防眩性ハードコート積層体》
 前述したとおり、本発明の防眩性ハードコート積層体は、基材と、該基材の上方のプライマー層と、該プライマー層より上方のハードコート層からなる、3層の積層体である。
 本発明の防眩性ハードコート積層体は、
(i)基材上にプライマー層形成用組成物を塗布して塗膜を形成する工程、
(ii)該プライマー層形成用組成物の塗膜を加熱し硬化させ、プライマー層を形成する工程、
(iii)前記プライマー層上に硬化性組成物を塗布して塗膜を形成する工程、及び
(iv)該硬化性組成物の塗膜に活性エネルギー線を照射し硬化させ、ハードコート層を形成する工程、を含みて製造される。
 ここでプライマー層形成用組成物及び硬化性組成物は、上記の各組成物を適用できる。
<Anti-glare hard coat laminate>
As described above, the antiglare hard coat laminate of the present invention is a three-layer laminate comprising a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer.
The antiglare hard coat laminate of the present invention is
(I) applying a primer layer forming composition on a substrate to form a coating film;
(Ii) heating and curing the coating film of the primer layer forming composition to form a primer layer;
(Iii) applying a curable composition on the primer layer to form a coating film; and (iv) irradiating the coating film of the curable composition with an active energy ray to form a hard coat layer. The manufacturing process is included.
Here, the respective compositions described above can be applied to the primer layer forming composition and the curable composition.
 上記(i)及び(iii)工程におけるプライマー層形成用組成物及び硬化性組成物のコーティング方法は、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、スプレーコート法、カーテンコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等を適宜選択し得、中でも短時間で塗布できることから揮発性の高い溶液であっても利用でき、また、容易に均一な塗布を行うことができるという利点より、スピンコート法を用いることが望ましい。また、簡単に塗布することができ、かつ、大面積に塗装ムラがなく平滑な塗膜を形成することができるという利点より、ロールコート法、ダイコート法、スプレーコート法を用いることが望ましい。ここで用いるプライマー層形成用組成物及び硬化性組成物は、前述のワニスの形態にあるものを好適に使用できる。なお事前に孔径が2μm程度のフィルタなどを用いて、プライマー層形成用組成物及び硬化性組成物を濾過した後、コーティングに供することが好ましい。 The primer layer forming composition and the curable composition coating method in the steps (i) and (iii) are cast coating method, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, Die coating method, spray coating method, curtain coating method, ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.) can be selected as appropriate, and even a highly volatile solution can be applied in a short time. It is desirable to use a spin coat method because of the advantage that it can be used and uniform coating can be easily performed. In addition, it is desirable to use a roll coating method, a die coating method, or a spray coating method because of the advantage that it can be applied easily and a smooth coating film can be formed without coating unevenness in a large area. As the primer layer forming composition and the curable composition used here, those in the form of the aforementioned varnish can be suitably used. It is preferable that the primer layer forming composition and the curable composition are filtered in advance using a filter having a pore diameter of about 2 μm in advance and then used for coating.
 上記(i)工程のプライマー層形成用組成物のコーティング後、(ii)工程としてホットプレート又はオーブン等で加熱処理を行い、塗膜を硬化し、プライマー層を形成させる。この際の加熱処理条件としては、例えば、40~150℃で、30秒~10分程度とすることが好ましい。
 なお、プライマー層形成用組成物に活性エネルギー線硬化性多官能モノマーや活性エネルギー線によりラジカルを発生する重合開始剤が含まれている場合、後述する硬化性組成物の塗膜に適用する活性エネルギー線照射工程を適用してもよい。
After the coating of the composition for forming the primer layer in the step (i), as a step (ii), heat treatment is performed with a hot plate or an oven to cure the coating film and form a primer layer. The heat treatment conditions at this time are preferably 40 to 150 ° C. and about 30 seconds to 10 minutes, for example.
If the primer layer forming composition contains an active energy ray-curable polyfunctional monomer or a polymerization initiator that generates radicals by active energy rays, the active energy applied to the coating film of the curable composition described later. A beam irradiation process may be applied.
 上記(iii)工程の硬化性組成物のコーティング後、好ましくは続いてホットプレート又はオーブン等で予備乾燥した後、(iv)工程として紫外線等の活性エネルギー線を照射して光硬化させ、ハードコート層を形成する。活性エネルギー線としては、紫外線、電子線、X線等が挙げられる。紫外線照射に用いる光源としては、太陽光線、ケミカルランプ、低圧水銀灯、高圧水銀灯、メタルハライドランプ、キセノンランプ、UV-LED等が使用できる。
 その後、ポストベークを行うことにより、具体的にはホットプレート、オーブンなどを用いて加熱することにより重合及び重縮合を完結させることができる。
After the coating of the curable composition in the step (iii), preferably followed by preliminary drying with a hot plate or oven, etc., and then (iv) irradiation with active energy rays such as ultraviolet rays for photocuring and hard coating Form a layer. Examples of active energy rays include ultraviolet rays, electron beams, and X-rays. As a light source used for ultraviolet irradiation, sunlight, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a UV-LED, or the like can be used.
Thereafter, by post-baking, specifically, polymerization and polycondensation can be completed by heating using a hot plate, oven, or the like.
 こうして得られた本発明の積層体において、上記プライマー層の厚さは特に限定されないが、例えば0.01~1μmの範囲とすることができる。
 またハードコート層は、前記有機微粒子(c)の平均粒径に比して1~10/3倍の厚さとなるように設定することが好ましい。例えば前記ハードコート層の厚さは1~30μmの範囲、好ましくは1~20μm、より好ましくは3~10μmである。
In the thus obtained laminate of the present invention, the thickness of the primer layer is not particularly limited, but can be, for example, in the range of 0.01 to 1 μm.
The hard coat layer is preferably set to have a thickness of 1 to 10/3 times the average particle diameter of the organic fine particles (c). For example, the thickness of the hard coat layer is in the range of 1 to 30 μm, preferably 1 to 20 μm, more preferably 3 to 10 μm.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)スピンコート
 装置:ズースマイクロテック社製 スピンコータ LabSpin6TT
(2)ホットプレート
 装置:アズワン(株)製 MH-180CS、MH-3CS
(3)UV照射
 装置:アイグラフィックス(株)製 アイ紫外硬化装置US5-0401 4kW×1灯
(4)擦傷試験
 装置:新東科学(株)製 往復摩耗試験機 TRIBOGEAR TYPE:30S
 荷重:250g/cm
 走査速度:3m/分
(5)ゲル浸透クロマトグラフィー(GPC)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 Shodex(登録商標)GPC KF-804L、GPC KF-805L
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 検出器:RI
(6)膜厚
 装置:(株)ニコン製 デジタル測長機 デジマイクロ MH-15M + カウンタTC-101A
(7)光沢度
 装置:コニカミノルタ(株)製 光沢計 GM-268Plus
 測定角度:60度
(8)全光線透過率、ヘーズ
 装置:日本電色工業(株)製 ヘーズメーター NDH5000
(9)接触角
 装置:協和界面科学(株)製 DropMaster DM-501
 測定温度:20℃
(1) Spin coater: spin coater LabSpin6TT manufactured by SUSS Microtech
(2) Hot plate equipment: MH-180CS, MH-3CS manufactured by AS ONE Corporation
(3) UV irradiation device: Eye Graphics Co., Ltd. eye ultraviolet curing device US5-0401 4kW x 1 lamp (4) Scratch test device: Shinto Kagaku Co., Ltd. reciprocating wear tester TRIBOGEAR TYPE: 30S
Load: 250 g / cm 2
Scanning speed: 3m / min (5) Gel permeation chromatography (GPC)
Equipment: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex (registered trademark) GPC KF-804L, GPC KF-805L manufactured by Showa Denko K.K.
Column temperature: 40 ° C
Eluent: Tetrahydrofuran Detector: RI
(6) Film thickness Equipment: Nikon Digital Length Measuring Machine Digimicro MH-15M + Counter TC-101A
(7) Glossiness Device: Glossmeter GM-268Plus manufactured by Konica Minolta Co., Ltd.
Measurement angle: 60 degrees (8) Total light transmittance, haze Device: Nippon Denshoku Industries Co., Ltd. Haze meter NDH5000
(9) Contact angle device: DropMaster DM-501, manufactured by Kyowa Interface Science Co., Ltd.
Measurement temperature: 20 ° C
 また、略記号は以下の意味を表す。
PFPE1:両末端にポリ(オキシアルキレン)基(繰返し単位数8~9)を介してヒドロキシ基を有するパーフルオロポリエーテル[ソルベイスペシャルティポリマーズ社製 Fluorolink 5147X]
BEI:1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート[昭和電工(株)製 カレンズ(登録商標)BEI]
DBTDL:ジラウリン酸ジブチル錫[東京化成工業(株)製]
HTES:トリエトキシ(ヘキシル)シラン[信越化学工業(株)製 信越シリコーン(登録商標)KBE-3063]
MPTES:トリエトキシ(3-メタクリロイルオキシプロピル)シラン[信越化学工業(株)製 信越シリコーン(登録商標)KBE-503]
TEOS:テトラエトキシシラン[モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製 TSL8124]
DPHA:ジペンタエリスリトールペンタアクリレート/ジペンタエリスリトールヘキサアクリレート混合物[日本化薬(株)製 KAYALAD DPHA]
PETA:ペンタエリスリトールトリアクリレート/ペンタエリスリトールテトラアクリレート混合物[新中村化学工業(株)製 NKエステル A-TMM-3LM-N]
UA:6官能 脂肪族ウレタンアクリレートオリゴマー[ダイセル・オルネクス(株)製 EBECRYL(登録商標)5129]
SM2:パーフルオロポリエーテル構造を有するUV反応型フッ素系表面改質剤[DIC(株)製 メガファック(登録商標)RS-75、有効成分40質量%MEK/MIBK溶液]
FP1:架橋ポリメタクリル酸メチル真球状粒子[積水化成品工業(株)製 テクポリマー(登録商標)SSX-105、平均粒子径5μm]
FP2:架橋ポリメタクリル酸メチル真球状粒子[積水化成品工業(株)製 テクポリマー(登録商標)SSX-103、平均粒子径3μm]
FP3:架橋ポリメタクリル酸メチル真球状粒子[積水化成品工業(株)製 テクポリマー(登録商標)SSX-102、平均粒子径2μm]
I2959:2-ヒドロキシ-1-(4-(2-ヒドロキシエトキシ)フェニル)-2-メチルプロパン-1-オン[BASFジャパン(株)製 IRGACURE 2959]
EPA:p-ジメチルアミノ安息香酸エチル[日本化薬(株)製 KAYACURE EPA]
EtOH:エタノール
MEK:メチルエチルケトン
MIBK:メチルイソブチルケトン
PGME:プロピレングリコールモノメチルエーテル
Abbreviations represent the following meanings.
PFPE1: Perfluoropolyether having a hydroxy group via a poly (oxyalkylene) group (repeating unit number 8 to 9) at both ends [Fluorolink 5147X manufactured by Solvay Specialty Polymers]
BEI: 1,1-bis (acryloyloxymethyl) ethyl isocyanate [Karenz (registered trademark) BEI manufactured by Showa Denko KK]
DBTDL: Dibutyltin dilaurate [manufactured by Tokyo Chemical Industry Co., Ltd.]
HTES: Triethoxy (hexyl) silane [Shin-Etsu Chemical Co., Ltd. Shin-Etsu Silicone (registered trademark) KBE-3063]
MPTES: Triethoxy (3-methacryloyloxypropyl) silane [Shin-Etsu Silicone (registered trademark) KBE-503, manufactured by Shin-Etsu Chemical Co., Ltd.]
TEOS: Tetraethoxysilane [Momentive Performance Materials Japan (same) TSL8124]
DPHA: Dipentaerythritol pentaacrylate / dipentaerythritol hexaacrylate mixture [KAYALAD DPHA manufactured by Nippon Kayaku Co., Ltd.]
PETA: Pentaerythritol triacrylate / pentaerythritol tetraacrylate mixture [Shin-Nakamura Chemical Co., Ltd. NK ester A-TMM-3LM-N]
UA: Hexafunctional aliphatic urethane acrylate oligomer [EBECRYL (registered trademark) 5129, manufactured by Daicel Ornex Co., Ltd.]
SM2: UV-reactive fluorine-based surface modifier having a perfluoropolyether structure [Megafac (registered trademark) RS-75, manufactured by DIC Corporation, 40% by mass MEK / MIBK solution]
FP1: Cross-linked polymethyl methacrylate true spherical particles [Techpolymer (registered trademark) SSX-105, manufactured by Sekisui Plastics Co., Ltd., average particle size: 5 μm]
FP2: Cross-linked polymethyl methacrylate true spherical particles [Techpolymer (registered trademark) SSX-103, manufactured by Sekisui Plastics Co., Ltd., average particle size: 3 μm]
FP3: Cross-linked polymethyl methacrylate true spherical particles [Techpolymer (registered trademark) SSX-102, average particle diameter 2 μm, manufactured by Sekisui Plastics Co., Ltd.]
I2959: 2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methylpropan-1-one [IRGACURE 2959 manufactured by BASF Japan Ltd.]
EPA: ethyl p-dimethylaminobenzoate [KAYACURE EPA manufactured by Nippon Kayaku Co., Ltd.]
EtOH: Ethanol MEK: Methyl ethyl ketone MIBK: Methyl isobutyl ketone PGME: Propylene glycol monomethyl ether
[製造例1]両末端にポリ(オキシアルキレン)基及び1つのウレタン結合を介してアクリロイル基を有するパーフルオロポリエーテルSM1の製造
 スクリュー管に、PFPE1 1.05g(0.5mmol)、BEI 0.26g(1.0mmol)、DBTDL 10mg(0.016mmol)、及びMEK 1.30gを仕込んだ。この混合物を、スターラーチップを用いて室温(およそ23℃)で24時間撹拌した。この反応混合物をMEK 3.93gで希釈して、目的化合物であるSM1の20質量%MEK溶液を得た。
 得られたSM1のGPCによるポリスチレン換算で測定される重量平均分子量Mwは3,400、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は1.2であった。
[Production Example 1] Production of perfluoropolyether SM1 having a poly (oxyalkylene) group at both ends and an acryloyl group via one urethane bond In a screw tube, 1.05 g (0.5 mmol) of PFPE1 and BEI 0. 26 g (1.0 mmol), DBTDL 10 mg (0.016 mmol), and MEK 1.30 g were charged. The mixture was stirred for 24 hours at room temperature (approximately 23 ° C.) using a stirrer tip. This reaction mixture was diluted with 3.93 g of MEK to obtain a 20 mass% MEK solution of SM1, which is the target compound.
The weight average molecular weight Mw measured by GPC of the obtained SM1 in terms of polystyrene was 3,400, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.2.
[製造例2-1~2-3]プライマー組成物(プライマー層形成用組成物)の調製
 反応フラスコに、表1の記載に従ってアルコキシシラン及びエタノールを仕込み、窒素気流下で5分間撹拌し、アルコキシシラン/エタノール溶液を調製した。この溶液へ、表1の記載に従って別途調製したシュウ酸-水/エタノール溶液を、10分間かけて滴下した。この溶液を30分間撹拌後、内液が還流するまで(およそ80℃)加熱し1時間撹拌した。反応混合物を室温(およそ23℃)まで冷却し、シロキサンオリゴマー濃度40質量%のプライマー組成物(PR1~PR3)を得た。
 得られたシロキサンオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量Mw及び分散度:Mw/Mnは、それぞれ、1,400、1.1(PR1)、1,500、1.1(PR2)、1,500、1.1(PR3)であった。
[Production Examples 2-1 to 2-3] Preparation of primer composition (primer layer forming composition) A reaction flask was charged with alkoxysilane and ethanol according to the description in Table 1, and stirred under a nitrogen stream for 5 minutes. A silane / ethanol solution was prepared. To this solution, an oxalic acid-water / ethanol solution separately prepared according to the description in Table 1 was added dropwise over 10 minutes. The solution was stirred for 30 minutes, then heated until the internal solution was refluxed (approximately 80 ° C.) and stirred for 1 hour. The reaction mixture was cooled to room temperature (approximately 23 ° C.) to obtain a primer composition (PR1 to PR3) having a siloxane oligomer concentration of 40% by mass.
Weight average molecular weight Mw and dispersity Mw / Mn measured by polystyrene conversion by GPC of the obtained siloxane oligomer are 1,400, 1.1 (PR1), 1,500, 1.1 (PR2), respectively. 1,500, 1.1 (PR3).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[製造例3-1~3-4]ハードコート組成物(硬化性組成物)の調製
 表2の記載に従って以下の各成分を混合し、固形分濃度40質量%のハードコート組成物(HC1~HC4)を調製した。なお、ここで固形分とは溶媒以外の成分を指す。また、表中、[部]とは[質量部]を表す。
(1)多官能モノマー:DPHA 50質量部、UA 30質量部、及びPETA 20質量部
(2)表面改質剤:表2に記載の表面改質剤 1質量部(固形分又は有効成分換算)
(3)有機微粒子:表2に記載の有機微粒子を表2に記載の量
(4)重合開始剤:I2959 5質量部
(5)重合促進剤:EPA 0.1質量部
(6)溶媒:PGME 表2に記載の量
[Production Examples 3-1 to 3-4] Preparation of Hard Coat Composition (Curable Composition) According to the description in Table 2, the following components were mixed to obtain a hard coat composition (HC 1 to HC4) was prepared. In addition, solid content refers to components other than a solvent here. In the table, [part] represents [part by mass].
(1) Polyfunctional monomer: DPHA 50 parts by mass, UA 30 parts by mass, and PETA 20 parts by mass (2) Surface modifier: 1 part by mass of the surface modifier described in Table 2 (in terms of solid content or active ingredient)
(3) Organic fine particles: Organic fine particles described in Table 2 in the amount described in Table 2 (4) Polymerization initiator: I2959 5 parts by mass (5) Polymerization accelerator: EPA 0.1 parts by mass (6) Solvent: PGME Amounts listed in Table 2
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
[実施例1~8、比較例1~3]
 表3に記載の固形分濃度(シロキサンオリゴマー濃度)になるようにPGMEで希釈したプライマー組成物を、ガラス基板(10cm×10cm、厚さ0.7mm)上に、スピンコート(1,000rpm×30秒間)し塗膜を得た。この塗膜を120℃のホットプレートで1時間加熱することで、表3に示した厚さのプライマー層(硬化膜)を形成した。
 このプライマー層上に、表3に記載のハードコート組成物をスピンコート(表3に記載の回転数×30秒間)し塗膜を得た。この塗膜を120℃のホットプレートで3分間乾燥させ溶媒を除去した。得られた膜を、窒素雰囲気下、露光量500mJ/cmのUV光を照射し露光することで、表3に示した厚さのハードコート層(硬化膜)を有するハードコート積層体を作製した。
[Examples 1 to 8, Comparative Examples 1 to 3]
A primer composition diluted with PGME so as to have a solid content concentration (siloxane oligomer concentration) shown in Table 3 is spin-coated (1,000 rpm × 30) on a glass substrate (10 cm × 10 cm, thickness 0.7 mm). Second) to obtain a coating film. This coating film was heated on a hot plate at 120 ° C. for 1 hour to form a primer layer (cured film) having the thickness shown in Table 3.
On this primer layer, the hard coat composition shown in Table 3 was spin-coated (the number of revolutions shown in Table 3 × 30 seconds) to obtain a coating film. The coating film was dried on a hot plate at 120 ° C. for 3 minutes to remove the solvent. The obtained film is exposed to UV light with an exposure amount of 500 mJ / cm 2 in a nitrogen atmosphere to expose a hard coat laminate having a hard coat layer (cured film) with the thickness shown in Table 3. did.
 得られたハードコート積層体の、防眩性、密着性、耐擦傷性、全光線透過率、ヘーズ、並びに水及びオレイン酸の接触角を評価した。防眩性、密着性、耐擦傷性、及び接触角の評価の手順を以下に示す。また、結果を表4に併せて示す。 The obtained hard coat laminate was evaluated for antiglare properties, adhesion, scratch resistance, total light transmittance, haze, and contact angles of water and oleic acid. The procedure for evaluating the antiglare property, adhesion, scratch resistance, and contact angle is shown below. The results are also shown in Table 4.
[防眩性]
 得られたハードコート積層体を光沢度Gs(60°)が11.8である黒色の台に乗せ、ハードコート層表面の光沢度Gs(60°)を測定し、以下の基準に従い評価した。なおハードコート積層体として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
 A:Gs(60°)≦120
 B:120<Gs(60°)≦125
 C:Gs(60°)>125
[Anti-glare]
The obtained hard coat laminate was placed on a black table having a gloss Gs (60 °) of 11.8, and the gloss Gs (60 °) of the hard coat layer surface was measured and evaluated according to the following criteria. In addition, when an actual use is assumed as a hard-coat laminated body, it is calculated | required that it is at least B, and it is desirable that it is A.
A: Gs (60 °) ≦ 120
B: 120 <Gs (60 °) ≦ 125
C: Gs (60 °)> 125
[密着性]
 ハードコート層に、ガイド[コーテック(株)製 クロスカットガイドCCI-2]を使用して25マス(5×5、2mm間隔)の直角格子パターンの切込みを入れ、幅18mmの透明テープ[ニチバン(株)製 セロテープ(登録商標)CT-18]を用いたクロスカット法(JIS 5600-5-6に準拠)を用い、以下の基準に従い評価した。
 A:25マス全てが剥離しない
 B:1~11マスが剥離
 C:12マス以上が剥離
[Adhesion]
The hard coat layer was cut with a square grid pattern of 25 squares (5 × 5, 2 mm spacing) using a guide [Cortech Co., Ltd. Cross Cut Guide CCI-2], and a transparent tape [Nichiban ( The cross-cut method (based on JIS 5600-5-6) using Cellotape (registered trademark) CT-18] manufactured by Co., Ltd. was used, and evaluation was performed according to the following criteria.
A: All 25 squares do not peel B: 1-11 squares peel C: 12 squares or more peel
[耐擦傷性]
 ハードコート層表面を、往復摩耗試験機に取り付けたスチールウール[ボンスター販売(株)製 ボンスター(登録商標)#0000(超極細)]で250g/cmの荷重を掛けて1,000往復擦り、その擦った部分に油性マーカー[ゼブラ(株)製 マッキー極細(青)、細側を使用]で線を描いた。続けて描いた線を不織布ワイパー[旭化成(株)製 BEMCOT(登録商標)M-1]で拭き取り、傷の程度を目視で確認し以下の基準に従い評価した。なおハードコート積層体として実際の使用を想定した場合、少なくともBであることが求められ、Aであることが望ましい。
 A:傷がつかず油性マーカーで描いた線がきれいに拭き取れる
 B:かすかに傷がつくが油性マーカーで描いた線がきれいに拭き取れる
 C:油性マーカーのインクが傷に入り込み拭き取れない
[Abrasion resistance]
The hard coat layer surface was rubbed back and forth 1,000 times with a load of 250 g / cm 2 with steel wool [Bonster Sales Co., Ltd. Bonstar (registered trademark) # 0000 (super extra fine)] attached to a reciprocating wear tester. A line was drawn on the rubbed portion with an oil-based marker [Mckey extra fine (blue), using fine side made by Zebra Co., Ltd.]. Subsequently, the drawn line was wiped off with a non-woven wiper [BEMCOT (registered trademark) M-1 manufactured by Asahi Kasei Co., Ltd.], and the degree of scratches was visually confirmed and evaluated according to the following criteria. In addition, when an actual use is assumed as a hard-coat laminated body, it is calculated | required that it is at least B, and it is desirable that it is A.
A: The line drawn with the oil-based marker can be wiped clean without scratching B: The line drawn with the oil-based marker can be wiped off cleanly, but the ink drawn with the oil-based marker enters the scratch and cannot be wiped off
[接触角]
 水又はオレイン酸1μLをハードコート層表面に付着させ、その5秒後の接触角θを5点で測定し、その平均値を接触角値とした。
[Contact angle]
1 μL of water or oleic acid was adhered to the surface of the hard coat layer, the contact angle θ after 5 seconds was measured at 5 points, and the average value was taken as the contact angle value.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1乃至表4に示すように、表面改質剤として両末端にポリ(オキシアルキレン)基及び1つのウレタン結合基を介して、アクリロイル基を結合するパーフルオロポリエーテルSM1を用いたハードコート層の形成にあたり、プライマー層を設けた実施例1乃至実施例8の積層体1乃至積層体6、積層体10及び積層体11にあっては、防眩性に優れ、密着性及び耐擦傷性も実使用において満足できる品質であり、さらに透明性に優れる積層体となった。
 一方、プライマー層に、ラジカル重合性二重結合を有さないシロキサンオリゴマー(本発明の規定から外れるシロキサンオリゴマー)を使用した場合(比較例1)、そしてプライマー層を設けない場合(比較例2)、ハードコート層のガラス基板への密着性が低く、また耐擦傷性に劣る結果となった。
 また、ハードコート層に、表面改質剤としてパーフルオロポリエーテル構造を有するUV反応型フッ素系表面改質剤SM2を用いた場合(比較例3)、防眩性や密着性は満足する結果が得られるものの、所望の耐擦傷性を得られなかった。
As shown in Tables 1 to 4, a hard coat layer using a perfluoropolyether SM1 that binds an acryloyl group via a poly (oxyalkylene) group and one urethane bond group at both ends as a surface modifier. In the formation of the laminated body 1 to the laminated body 6, the laminated body 10 and the laminated body 11 of Example 1 to Example 8 provided with the primer layer, the antiglare property is excellent, and the adhesion and scratch resistance are also good. It became a satisfactory quality in actual use, and it became a laminate with excellent transparency.
On the other hand, when a siloxane oligomer having no radical polymerizable double bond (a siloxane oligomer deviating from the definition of the present invention) is used for the primer layer (Comparative Example 1), and when no primer layer is provided (Comparative Example 2) As a result, the adhesion of the hard coat layer to the glass substrate was low, and the scratch resistance was poor.
Further, when the UV reactive fluorine-based surface modifier SM2 having a perfluoropolyether structure is used as the surface modifier for the hard coat layer (Comparative Example 3), the antiglare property and the adhesion are satisfactory. Although obtained, the desired scratch resistance could not be obtained.
 以上、実施例の結果に示すように、表面改質剤として特定のパーフルオロポリエーテルを採用したハードコート層を有する積層体において、ラジカル重合性二重結合を有する特定のシロキサンオリゴマーを含む材料の硬化物からなるプライマー層を設けることにより、防眩性、耐擦傷性、そして基板への密着性のすべての性能を満足する積層体を得ることができる。 As described above, as shown in the results of Examples, in a laminate having a hard coat layer employing a specific perfluoropolyether as a surface modifier, a material containing a specific siloxane oligomer having a radical polymerizable double bond By providing a primer layer made of a cured product, a laminate satisfying all the properties of antiglare property, scratch resistance, and adhesion to a substrate can be obtained.

Claims (16)

  1. 基材と、該基材より上方のプライマー層と、該プライマー層より上方のハードコート層からなる、防眩性ハードコート積層体であって、
    前記プライマー層が、
    (A)式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを少なくとも含むアルコキシシランを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマー
    を含むプライマー層形成用組成物の硬化物からなり、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
    前記ハードコート層が、
    (a)活性エネルギー線硬化性多官能モノマー100質量部、
    (b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して活性エネルギー線重合性基を結合するパーフルオロポリエーテル0.1~10質量部、
    (c)1~10μmの平均粒径を有する有機微粒子8~30質量部、及び
    (d)活性エネルギー線によりラジカルを発生する重合開始剤1~20質量部
    を含む硬化性組成物の硬化物からなる、
    防眩性ハードコート積層体。
    An antiglare hard coat laminate comprising a base material, a primer layer above the base material, and a hard coat layer above the primer layer,
    The primer layer is
    (A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] It consists of a cured product of a primer layer forming composition containing a siloxane oligomer,
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms) An amino group substituted with an alkyl group, an amino group substituted with at least a phenyl group, or an ureido group) or a phenyl group, wherein R 2 and R 4 are each independently methyl A group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
    The hard coat layer is
    (A) 100 parts by mass of an active energy ray-curable polyfunctional monomer,
    (B) Active energy rays via a poly (oxyalkylene) group or a poly (oxyalkylene) group and one urethane bonding group in this order at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group 0.1 to 10 parts by mass of perfluoropolyether to which a polymerizable group is bonded,
    (C) From a cured product of a curable composition comprising 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 μm and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays. Become,
    Antiglare hard coat laminate.
  2. 前記成分(A)のシロキサンオリゴマーが、式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマーである、請求項1に記載の防眩性ハードコート積層体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rはフッ素原子で置換されていてもよい炭素原子数1乃至6のアルキル基、又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
    The radical polymerizable double bond obtained by hydrolyzing and condensing the alkoxysilane A represented by the formula [1] and the alkoxysilane B represented by the formula [2] with the siloxane oligomer of the component (A) The antiglare hard coat laminate according to claim 1, which is a siloxane oligomer having
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, and R 3 represents an alkyl group having 1 to 6 carbon atoms which may be substituted with a fluorine atom, or a phenyl group. , R 2 and R 4 each independently represents a methyl group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
  3. 前記式[1]中のRが、ビニル基又は(メタ)アクリル基を有する1価の有機基である、請求項1又は請求項2に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to claim 1 or 2, wherein R 1 in the formula [1] is a monovalent organic group having a vinyl group or a (meth) acryl group.
  4. 前記アルコキシシランAが下記式[3]で表される化合物である、請求項3に記載の防眩性ハードコート積層体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは前記式[1]における定義と同じ意味を表し、Rは水素原子又はメチル基を表し、Lは炭素原子数1乃至10のアルキレン基を表す。)
    The antiglare hard coat laminate according to claim 3, wherein the alkoxysilane A is a compound represented by the following formula [3].
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 2 represents the same meaning as defined in the formula [1], R 5 represents a hydrogen atom or a methyl group, and L 1 represents an alkylene group having 1 to 10 carbon atoms.)
  5. 前記成分(A)のラジカル重合性二重結合を有するシロキサンオリゴマーが、前記アルコキシシランA単位を10~99mol%含むシロキサンオリゴマーである、請求項1乃至請求項4のうち何れか一項に記載の防眩性ハードコート積層体。 The siloxane oligomer having a radically polymerizable double bond as the component (A) is a siloxane oligomer containing 10 to 99 mol% of the alkoxysilane A unit. Antiglare hard coat laminate.
  6. 前記成分(b)のパーフルオロポリエーテルのポリ(オキシパーフルオロアルキレン)基が、-[OCF]-及び-[OCFCF]-を繰り返し単位として有する基である、請求項1乃至請求項5のうち何れか一項に記載の防眩性ハードコート積層体。 The poly (oxyperfluoroalkylene) group of the perfluoropolyether of the component (b) is a group having — [OCF 2 ] — and — [OCF 2 CF 2 ] — as repeating units. Item 6. The antiglare hard coat laminate according to any one of Items 5.
  7. 前記成分(b)のパーフルオロポリエーテルのポリ(オキシアルキレン)基が、ポリ(オキシエチレン)基である、請求項1乃至請求項6のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 6, wherein the poly (oxyalkylene) group of the perfluoropolyether of the component (b) is a poly (oxyethylene) group. body.
  8. 前記成分(a)の多官能モノマーが、多官能(メタ)アクリレート化合物及び多官能ウレタン(メタ)アクリレート化合物からなる群から選ばれる少なくとも1つである、請求項1乃至請求項7のうち何れか一項に記載の防眩性ハードコート積層体。 The polyfunctional monomer of the component (a) is at least one selected from the group consisting of a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound. The antiglare hard coat laminate according to one item.
  9. 前記成分(c)の有機微粒子が真球状粒子である、請求項1乃至請求項8のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 8, wherein the organic fine particles of the component (c) are true spherical particles.
  10. 前記成分(c)の有機微粒子がポリメタクリル酸メチル粒子である、請求項1乃至請求項9のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 9, wherein the organic fine particles of the component (c) are polymethyl methacrylate particles.
  11. 前記成分(d)の重合開始剤がアルキルフェノン類重合開始剤である、請求項1乃至請求項10のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 10, wherein the polymerization initiator of the component (d) is an alkylphenone polymerization initiator.
  12. 前記ハードコート層が、前記成分(c)の有機微粒子の平均粒径に比して1~10/3倍の厚さを有する、請求項1乃至請求項11のうち何れか一項に記載の防眩性ハードコート積層体。 The hard coat layer according to any one of claims 1 to 11, wherein the hard coat layer has a thickness of 1 to 10/3 times the average particle size of the organic fine particles of the component (c). Antiglare hard coat laminate.
  13. 前記ハードコート層が1~20μmの膜厚を有する、請求項1乃至請求項12のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 12, wherein the hard coat layer has a thickness of 1 to 20 µm.
  14. 前記ハードコート層が3~10μmの膜厚を有する、請求項13に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to claim 13, wherein the hard coat layer has a thickness of 3 to 10 µm.
  15. 前記基材が、ガラスである、請求項1乃至請求項14のうち何れか一項に記載の防眩性ハードコート積層体。 The antiglare hard coat laminate according to any one of claims 1 to 14, wherein the substrate is glass.
  16. 基材の少なくとも一方の面にプライマー層と、該プライマー層より上方にハードコート層を備える防眩性ハードコート積層体の製造方法であって、
    基材上にプライマー層形成用組成物を塗布して塗膜を形成する工程、
    該プライマー層形成用組成物の塗膜を加熱し該塗膜を硬化させ、プライマー層を形成する工程、
    前記プライマー層上に硬化性組成物を塗布して塗膜を形成する工程、及び
    該硬化性組成物の塗膜に活性エネルギー線を照射し該塗膜を硬化させ、ハードコート層を形成する工程、を含み、
    前記プライマー層形成用組成物が、
    (A)式[1]で表されるアルコキシシランAと、式[2]で表されるアルコキシシランBとを少なくとも含むアルコキシシランを加水分解縮合させることにより得られるラジカル重合性二重結合を有するシロキサンオリゴマーを含み、
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rはラジカル重合性二重結合を有する1価の有機基を表し、Rは炭素原子数1乃至10のアルキル基(該アルキル基はフッ素原子、少なくとも炭素原子数1乃至6のアルキル基で置換されたアミノ基、少なくともフェニル基で置換されたアミノ基、又はウレイド基で置換されていてもよい。)又はフェニル基を表し、R及びRはそれぞれ独立して、メチル基又はエチル基を表し、aは1又は2の整数を表し、bは0乃至2の整数を表す。)
    前記硬化性組成物が、
    (a)活性エネルギー線硬化性多官能モノマー100質量部、
    (b)ポリ(オキシパーフルオロアルキレン)基を含む分子鎖の両末端に、ポリ(オキシアルキレン)基を介して又はポリ(オキシアルキレン)基及び1つのウレタン結合基をこの順に介して活性エネルギー線重合性基を結合するパーフルオロポリエーテル0.1~10質量部、
    (c)1~10μmの平均粒径を有する有機微粒子8~30質量部、及び
    (d)活性エネルギー線によりラジカルを発生する重合開始剤1~20質量部
    を含む、
    防眩性ハードコート積層体の製造方法。
    A method for producing an antiglare hard coat laminate comprising a primer layer on at least one surface of a substrate and a hard coat layer above the primer layer,
    Applying a primer layer forming composition on a substrate to form a coating film;
    Heating the coating film of the primer layer forming composition to cure the coating film and forming a primer layer;
    A step of applying a curable composition on the primer layer to form a coating film, and a step of irradiating the coating film of the curable composition with active energy rays to cure the coating film to form a hard coat layer Including,
    The primer layer forming composition is
    (A) having a radical polymerizable double bond obtained by hydrolytic condensation of an alkoxysilane containing at least an alkoxysilane A represented by the formula [1] and an alkoxysilane B represented by the formula [2] Containing siloxane oligomers,
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 represents a monovalent organic group having a radical polymerizable double bond, R 3 represents an alkyl group having 1 to 10 carbon atoms (the alkyl group is a fluorine atom, at least 1 to 6 carbon atoms) An amino group substituted with an alkyl group, an amino group substituted with at least a phenyl group, or an ureido group) or a phenyl group, wherein R 2 and R 4 are each independently methyl A group or an ethyl group, a represents an integer of 1 or 2, and b represents an integer of 0 to 2.)
    The curable composition is
    (A) 100 parts by mass of an active energy ray-curable polyfunctional monomer,
    (B) Active energy rays via a poly (oxyalkylene) group or a poly (oxyalkylene) group and one urethane bonding group in this order at both ends of a molecular chain containing a poly (oxyperfluoroalkylene) group 0.1 to 10 parts by mass of perfluoropolyether to which a polymerizable group is bonded,
    (C) 8 to 30 parts by mass of organic fine particles having an average particle diameter of 1 to 10 μm, and (d) 1 to 20 parts by mass of a polymerization initiator that generates radicals by active energy rays.
    A method for producing an antiglare hard coat laminate.
PCT/JP2017/036822 2016-10-12 2017-10-11 Anti-glare hard coat laminate WO2018070426A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780060909.8A CN109791225B (en) 2016-10-12 2017-10-11 Anti-glare hard-coated laminate
JP2018545025A JP6799283B2 (en) 2016-10-12 2017-10-11 Anti-glare hard coat laminate
KR1020197003830A KR102507695B1 (en) 2016-10-12 2017-10-11 Anti-glare hard coat laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201358 2016-10-12
JP2016-201358 2016-10-12

Publications (1)

Publication Number Publication Date
WO2018070426A1 true WO2018070426A1 (en) 2018-04-19

Family

ID=61905455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036822 WO2018070426A1 (en) 2016-10-12 2017-10-11 Anti-glare hard coat laminate

Country Status (5)

Country Link
JP (1) JP6799283B2 (en)
KR (1) KR102507695B1 (en)
CN (1) CN109791225B (en)
TW (1) TWI735678B (en)
WO (1) WO2018070426A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095770A1 (en) * 2019-11-15 2021-05-20 日産化学株式会社 Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method
CN113396127A (en) * 2019-02-06 2021-09-14 日产化学株式会社 Curable composition for flexible hard coat layer
KR20210132679A (en) 2019-03-01 2021-11-04 닛산 가가쿠 가부시키가이샤 Coating liquid for forming an anti-glare film, an anti-glare film, and a laminate having the same
WO2022044598A1 (en) * 2020-08-31 2022-03-03 株式会社巴川製紙所 Anisotropic optical film composition and anisotropic optical film
WO2024029537A1 (en) * 2022-08-03 2024-02-08 Agc株式会社 Substrate with silica film
KR20240019772A (en) 2021-06-14 2024-02-14 다이니폰 인사츠 가부시키가이샤 Anti-glare laminates, optical laminates, polarizers, and image display devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3992673A4 (en) * 2019-06-28 2022-08-17 Showa Denko Materials Co., Ltd. Photocurable composition, hard coating material, cured product, cured product-attached substrate, and image display device
CN115380062A (en) * 2020-12-23 2022-11-22 株式会社Lg化学 Optical laminate and flexible display device including the same
JPWO2022168804A1 (en) * 2021-02-05 2022-08-11

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031467A (en) * 2005-07-22 2007-02-08 Asahi Glass Co Ltd Primer composition for fluorine-containing elastic copolymer
JP2007108725A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Optical film, antireflection film, polarizing plate using the same and display device
JP2010143092A (en) * 2008-12-19 2010-07-01 Jsr Corp Hard coat film
WO2014069634A1 (en) * 2012-11-05 2014-05-08 日産化学工業株式会社 Curable composition containing fluorine-containing hyperbranched polymer and siloxane oligomer
WO2015190526A1 (en) * 2014-06-11 2015-12-17 日産化学工業株式会社 Curable composition containing perfluoropolyether having silyl group

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215650B2 (en) * 2002-03-26 2009-01-28 Tdk株式会社 Object with composite hard coat layer and method for forming composite hard coat layer
JP5484082B2 (en) * 2010-01-07 2014-05-07 三菱レイヨン株式会社 Manufacturing method of laminate
JP2013257359A (en) 2012-06-11 2013-12-26 Nippon Paper Industries Co Ltd Antidazzle hard coat film
US10125267B2 (en) 2013-04-17 2018-11-13 Nissan Chemical Industries, Ltd. Curable composition including siloxane oligomer and inorganic fine particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031467A (en) * 2005-07-22 2007-02-08 Asahi Glass Co Ltd Primer composition for fluorine-containing elastic copolymer
JP2007108725A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Optical film, antireflection film, polarizing plate using the same and display device
JP2010143092A (en) * 2008-12-19 2010-07-01 Jsr Corp Hard coat film
WO2014069634A1 (en) * 2012-11-05 2014-05-08 日産化学工業株式会社 Curable composition containing fluorine-containing hyperbranched polymer and siloxane oligomer
WO2015190526A1 (en) * 2014-06-11 2015-12-17 日産化学工業株式会社 Curable composition containing perfluoropolyether having silyl group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396127A (en) * 2019-02-06 2021-09-14 日产化学株式会社 Curable composition for flexible hard coat layer
KR20210132679A (en) 2019-03-01 2021-11-04 닛산 가가쿠 가부시키가이샤 Coating liquid for forming an anti-glare film, an anti-glare film, and a laminate having the same
WO2021095770A1 (en) * 2019-11-15 2021-05-20 日産化学株式会社 Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method
KR20220099545A (en) 2019-11-15 2022-07-13 닛산 가가쿠 가부시키가이샤 Substrate and image display device with anti-glare layer, and method for manufacturing base with anti-glare layer
WO2022044598A1 (en) * 2020-08-31 2022-03-03 株式会社巴川製紙所 Anisotropic optical film composition and anisotropic optical film
JP7092962B1 (en) * 2020-08-31 2022-06-28 株式会社巴川製紙所 Compositions for anisotropic optical films and anisotropic optical films
KR20240019772A (en) 2021-06-14 2024-02-14 다이니폰 인사츠 가부시키가이샤 Anti-glare laminates, optical laminates, polarizers, and image display devices
WO2024029537A1 (en) * 2022-08-03 2024-02-08 Agc株式会社 Substrate with silica film

Also Published As

Publication number Publication date
TW201827535A (en) 2018-08-01
CN109791225B (en) 2021-02-19
JPWO2018070426A1 (en) 2019-08-08
TWI735678B (en) 2021-08-11
CN109791225A (en) 2019-05-21
KR102507695B1 (en) 2023-03-10
KR20190060977A (en) 2019-06-04
JP6799283B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6799283B2 (en) Anti-glare hard coat laminate
TWI695866B (en) Anti-glare coating curable composition
CN107406564B (en) Curable composition for scratch-resistant coating
JP6331725B2 (en) Laminate
JP6331726B2 (en) Laminate
JP2008197320A (en) Antiglare coating composition, antiglare film, and method for manufacturing the same
WO2015060458A1 (en) Polymerizable composition containing perfluoropolyether having hydroxyl group
JP2017177480A (en) Anti-glare anti-reflection film for insert molding and resin molded product produced using the same
JPWO2018070438A1 (en) Light resistant hard coat material
JP6982280B2 (en) High hardness hardcourt laminate
WO2018056370A1 (en) Scratch-resistant hard coating material
JP2010174125A (en) Composition for use in hard coat layer, and hard coat film
TW202003711A (en) Photosensitive resin composition and anti-glare film
KR102593819B1 (en) Curable composition for anti-glare hard coat
JP2012031312A (en) Optical curable coating material composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545025

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197003830

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860819

Country of ref document: EP

Kind code of ref document: A1