WO2024029537A1 - Substrate with silica film - Google Patents

Substrate with silica film Download PDF

Info

Publication number
WO2024029537A1
WO2024029537A1 PCT/JP2023/028164 JP2023028164W WO2024029537A1 WO 2024029537 A1 WO2024029537 A1 WO 2024029537A1 JP 2023028164 W JP2023028164 W JP 2023028164W WO 2024029537 A1 WO2024029537 A1 WO 2024029537A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica film
substrate
silica
content
antioxidant
Prior art date
Application number
PCT/JP2023/028164
Other languages
French (fr)
Japanese (ja)
Inventor
彩夏 安部
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024029537A1 publication Critical patent/WO2024029537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a substrate with a silica film.
  • Patent Document 1 discloses a method in which a coating solution containing methyltriethoxysilane, an aqueous hydrochloric acid solution, and ethanol is applied onto a substrate such as a glass substrate or a stainless steel plate, and dried to form a water- and oil-repellent film on the substrate. is disclosed.
  • the present invention was made in view of the above problems, and an object of the present invention is to provide a substrate with a silica film that has excellent initial oil repellency and improved oil repellency after heating to 300°C.
  • the silica film of the silica film-coated substrate contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by a predetermined formula, and an antioxidant. found that the desired effect can be obtained when the ratio of the carbon atom content to the silicon atom content in the silica film is 0.90 or more and the thickness of the silica film is 15 nm or more, and the present invention reached.
  • [1] Includes a substrate and a silica film disposed on the substrate,
  • the silica membrane contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by formula (1), and an antioxidant,
  • the content of the antioxidant is 25% by mass or less based on the total mass of the silica film,
  • the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 0.90 or more
  • R 1 is an alkyl group having 1 to 3 carbon atoms
  • R 2 is a methyl group or an ethyl group
  • n is an integer from 1 to 3.
  • [4] The silica film-coated substrate according to any one of [1] to [3], wherein the silica film has a thickness of 120 nm or less.
  • [5] The silica film-coated substrate according to any one of [1] to [4], wherein the antioxidant has a 12% weight loss temperature of 300° C. or higher when measured in air.
  • [6] The silica film-coated substrate according to any one of [1] to [5], wherein the silica film contains two or more types of antioxidants having different reaction mechanisms as the antioxidants.
  • [7] The silica film-coated substrate according to any one of [1] to [6], wherein the silica film contains a phenolic antioxidant and a phosphorus antioxidant as the antioxidant.
  • silica film-coated substrate according to any one of [1] to [7], wherein the content of the antioxidant is 0.05 to 25% by mass based on the total mass of the silica film.
  • the present invention it is possible to provide a substrate with a silica film that has excellent initial oil repellency and improved oil repellency after heating to 300°C.
  • FIG. 1 is a cross-sectional view schematically showing an example of a silica film-coated substrate of the present invention.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
  • one type of substance corresponding to each component may be used alone, or two or more types may be used in combination.
  • the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • a silica film-coated substrate of the present invention includes a substrate and a silica film disposed on the substrate. Further, the content of the antioxidant is 25% by mass or less based on the total mass of the silica film. Further, the silica membrane contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by formula (1) described below, and an antioxidant. Further, the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 0.90 or more. Further, the thickness of the silica film is 15 nm or more.
  • the silica film-coated substrate of the present invention has excellent initial oil repellency and is also improved in oil repellency after heating to 300° C. (hereinafter also referred to as "oil repellency after heating"). Although the details of this reason have not been clarified, it is assumed that it is generally due to the following reasons.
  • the carbon atoms and silicon atoms contained in the silica membrane of the present invention are mainly based on alkyl groups and siloxane bonds contained in the hydrolyzed condensate of the hydrolyzable compound, respectively.
  • the silica film of the present invention since the ratio of the content of carbon atoms to the content of silicon atoms is 0.90 or more, it is considered that alkyl groups are sufficiently present in the silica film. Therefore, it is presumed that the oil repellency effect due to the alkyl group was well expressed and the initial oil repellency was improved.
  • the siloxane film can suppress thermal decomposition when the silica film is heated. In some cases, the effect of the combination cannot be obtained sufficiently.
  • a silica film containing an antioxidant the effect of the antioxidant suppresses thermal oxidation of the silica film, and as a result, the silica film can exhibit excellent oil repellency even after heating. Guessed. It is also presumed that by using a silica film with a thickness of 15 nm or more, the thickness could be maintained to the extent that excellent oil repellency could be exhibited even after the silica film was heated.
  • FIG. 1 is a cross-sectional view schematically showing an example of a silica film-coated substrate of the present invention.
  • the silica film-coated substrate 1A includes a substrate 10 and a silica film 20 formed on one surface of the substrate 10.
  • the silica film 20 is formed on the entire surface of one side of the substrate 10, but the silica film 20 is not limited to this, and the silica film 20 may be formed only on a part of the surface of the substrate 10.
  • the silica film 20 is formed only on one side of the substrate 10, but the present invention is not limited to this, and the silica film 20 may be formed on both sides of the substrate 10.
  • Each member included in the silica film-coated substrate 1A will be described below.
  • the type of substrate 10 is not particularly limited, a glass substrate and a metal substrate are preferable.
  • materials constituting the glass substrate include soda lime glass, aluminosilicate glass, lithium glass, and borosilicate glass.
  • the glass substrate may be chemically strengthened glass, air-cooled strengthened glass, or crystallized glass.
  • the glass substrate may be a glass plate with a smooth surface formed by a float method or the like, a molded glass plate with an uneven surface, or a glass plate with a curved shape.
  • Specific examples of materials constituting the metal substrate include aluminum, titanium, copper, nickel, stainless steel, brass, magnesium, iron, and alloys thereof. These materials may be used alone or in combination of two or more.
  • the thickness of the substrate 10 is appropriately selected depending on the application and is not particularly limited, but is preferably 0.1 to 50 mm.
  • the thickness of the glass substrate is preferably 1 to 10 mm, more preferably 1 to 5 mm.
  • the thickness of the metal substrate is preferably 0.1 to 50 mm, more preferably 1 to 10 mm.
  • the silica membrane 20 contains a hydrolyzed condensate of a hydrolyzable compound including the compound represented by formula (1), and an antioxidant.
  • the ratio of the carbon atom content to the silicon atom content (carbon atom content/silicon atom content; hereinafter also referred to as "C/Si") in the silica film 20 is 0.90 or more. , 1.00 or more is preferable, 1.20 or more is more preferable, and 1.40 or more is still more preferable, since the initial oil repellency of the silica film-coated substrate 1A is more excellent.
  • C/Si is preferably 1.60 or less, more preferably 1.55 or less, and even more preferably 1.50 or less, from the standpoint that the silica film-coated substrate 1A has better oil repellency after heating.
  • C/Si is determined based on analysis of the surface of the silica film 20 by X-ray photoelectron spectroscopy (XPS) with the angle between the surface of the silica film 20 and the detector being 45 degrees, and specifically, It is calculated as follows.
  • the surface of the silica film 20 is analyzed by X-ray photoelectron spectroscopy (XPS) in which the angle between the surface of the silica film 20 and the detector is 45 degrees, and the peak intensities of Si 2p and C 1s are determined. Based on the obtained peak intensity, the content of silicon atoms (at%) and the content of carbon atoms (at%) are determined, and the concentration of carbon atoms (at%) relative to the content of silicon atoms (at%) is determined. Calculate the ratio of C/Si. Note that detailed measurement conditions for XPS are as described in the Examples section below.
  • the thickness of the silica film 20 is 15 nm or more, preferably 20 nm or more, and 25 nm or more from the viewpoint of better chemical resistance, initial oil repellency, oil repellency after heating, and abrasion resistance of the silica film-coated substrate 1A. More preferred.
  • the thickness of the silica film 20 is preferably 240 nm or less, more preferably 120 nm or less, and even more preferably 100 nm or less, in order to improve the scratch resistance of the silica film-coated substrate 1A.
  • the thickness of the silica film 20 can be measured by the method described in the Examples section using an apparatus based on ellipsometry.
  • silica film 20 examples include protective films for glass substrates and metal substrates (eg, anti-scratch film, antifouling film).
  • hydrolytic condensate of a hydrolyzable compound refers to a compound obtained by hydrolyzing a hydrolyzable group in a hydrolyzable compound and condensing the resulting hydrolyzate.
  • the above-mentioned hydrolyzed condensate is one in which all the hydrolyzable groups are hydrolyzed and all the hydrolysates (compounds obtained by hydrolyzing the hydrolysable groups in the hydrolyzable compound) are condensed. It may be a complete hydrolyzed condensate or a partially hydrolyzed condensate in which some hydrolyzable groups are hydrolyzed and some hydrolysates are condensed.
  • the hydrolyzed condensate may be a complete hydrolyzed condensate, a partially hydrolyzed condensate, or a mixture thereof.
  • a hydrolyzed condensate is a hydrolyzed condensate obtained by condensing hydrolyzable compounds, their hydrolysates, and hydrolyzed condensates of two or more compounds with each other. There may be.
  • the hydrolyzable compound includes a compound represented by formula (1). Si(-R 1 ) n (-OR 2 ) 4-n formula (1)
  • R 1 is an alkyl group having 1 to 3 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, or an isopropyl group.
  • R 1 is preferably a methyl group or an ethyl group, and more preferably a methyl group, since the silica film-coated substrate 1A has excellent oil repellency.
  • n is 2 or more, a plurality of R 1 's may be the same or different.
  • R 2 is a methyl group or an ethyl group. That is, the -OR2 group in formula (1) is a methoxy group or an ethoxy group, which is a type of hydrolyzable group.
  • n is 2 or less, a plurality of R 2 's may be the same or different.
  • n is an integer from 1 to 3, and is preferably 1 or 2 from the viewpoint that both the initial oil repellency and the post-heating oil repellency of the silica film-coated substrate 1A can be satisfied at a high level.
  • the compound represented by formula (1) is preferably methyltriethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, or ethyltrimethoxysilane.
  • the compounds represented by formula (1) may be used alone or in combination of two or more.
  • the hydrolyzable compound may contain compounds other than the compound represented by formula (1) (hereinafter also referred to as "other compounds").
  • Other compounds include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane. Addition of tetraalkoxysilane (tetrafunctional silane) increases bonding points and improves wear resistance.
  • the content of tetraalkoxysilane is preferably 15 to 50% by mass, more preferably 25 to 35% by mass, based on the total mass of the hydrolyzable compound including the compound represented by formula (1).
  • the content of the hydrolyzed condensate is preferably 75 to 99.95% by mass, more preferably 90 to 99.50% by mass, and even more preferably 95 to 99.00% by mass, based on the total mass of the silica membrane 20. .
  • antioxidants include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, and sulfur antioxidants.
  • the antioxidant preferably contains two or more kinds of antioxidants having different reaction mechanisms from each other, from the viewpoint that the silica film-coated substrate 1A has better oil repellency after heating, and includes a phenolic antioxidant and a phosphorus antioxidant. It is more preferable to use both.
  • the expression "the reaction mechanisms are different from each other” means that the reaction mechanisms for suppressing the oxidation of the silica film by the antioxidant are different from each other.
  • an antioxidant whose 12% weight loss temperature when measured in air is 300° C. or higher.
  • the upper limit of the above 12% weight loss temperature is usually 400°C or less.
  • the 12% weight loss temperature of the antioxidant is measured using a thermogravimetric differential thermal analyzer (TG-DTA) at a heating rate of 10° C./min in an air atmosphere.
  • TG-DTA thermogravimetric differential thermal analyzer
  • Specific examples of antioxidants having a 12% weight loss temperature of 300°C or higher when measured in air include 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diylbis.
  • the content of the antioxidant is preferably 0.03% by mass or more, more preferably 0.50% by mass or more, and even more preferably 1.0% by mass or more, based on the total mass of the silica film 20. If the content of the antioxidant is 0.03% by mass or more, the oil repellency of the silica film-coated substrate 1A after heating will be more excellent.
  • the content of the antioxidant is 25% by mass or less, preferably 10% by mass or less, and more preferably 5.0% by mass or less, based on the total mass of the silica film 20. When the content of the silica film is 25% by mass or less, the initial oil repellency and the oil repellency after heating of the silica film-coated substrate 1A are excellent. Furthermore, the appearance characteristics of the silica film are also excellent.
  • the silica film 20 preferably further contains silica particles since the silica film-coated substrate 1A has better wear resistance.
  • Silica particles are particles containing silica (SiO 2 ). Specific examples of the shape of the silica particles include spherical, elliptical, needle-like, plate-like, rod-like, conical, cylindrical, cubic, rectangular, diamond-like, star-like, and irregular shapes. Silica particles may be solid particles, hollow particles, or porous particles. "Solid particle” means a particle that does not have an internal cavity. "Hollow particle” means a particle having a cavity inside. “Porous particle” means a particle having a plurality of pores on its surface. The silica particles may exist independently, each particle may be connected in a chain, or each particle may be aggregated.
  • the average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less, from the viewpoint of excellent transparency of the silica film.
  • the average primary particle diameter of the silica particles is preferably 0.1 nm or more, more preferably 0.5 nm or more, and even more preferably 1 nm or more, from the viewpoint of excellent dispersibility in the film.
  • the average primary particle diameter of silica particles is determined by taking an SEM photograph of the particles using a scanning electron microscope (SEM) (for example, an apparatus similar to S-4800 manufactured by Hitachi High Technologies), and determining the long axis of the primary particle in the image. This value is obtained by measuring 100 diameters and taking the arithmetic average. Note that the long axis diameter of the primary particles in the image means the longest line segment when a straight line is drawn from end to end in the primary particles in the image.
  • SEM scanning electron microscope
  • silica particles commercially available products may be used, such as the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
  • the silica particles may be used alone or in combination of two or more.
  • the content of silica particles is preferably 0.05 to 10.00% by mass, more preferably 0.10 to 5.00% by mass, and 0.10 to 1.00% by mass based on the total mass of the silica membrane 20. % is more preferable. If the content of silica particles is 0.05% by mass or more, the wear resistance of the silica film-coated substrate 1A will be better. If the content of silica particles is 10.00% by mass or less, the initial oil repellency of the silica film-coated substrate 1A will be more excellent.
  • the silica film 20 may contain components other than those mentioned above (hereinafter also referred to as "other components"). Specific examples of other components include metal catalysts, acid catalysts (eg, nitric acid), water, alcohols, and other organic solvents.
  • other components include metal catalysts, acid catalysts (eg, nitric acid), water, alcohols, and other organic solvents.
  • the content of the other components is preferably more than 0% by mass and 1.00% by mass or less, and more than 0% by mass and 0.50% by mass, based on the total mass of the silica membrane 20. % or less is more preferable.
  • the silica film-covered substrate 1A may further include an intermediate layer (not shown) between the substrate 10 and the silica film 20.
  • the intermediate layer may be formed on the entire overlapping portion of the substrate 10 and the silica film 20, or may be formed on a part of the overlapping portion of the substrate 10 and the silica film 20.
  • the intermediate layer is preferably a layer that improves the adhesion between the substrate 10 and the silica film 20, and specifically, it is more preferably a layer formed using a silane coupling agent.
  • silane coupling agents include: Tetraethoxysilane, tetramethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyl Epoxysilane such as diethoxysilane; (meth)acrylic silanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane; Vinylsilanes such as vinyltrimethoxysilane, N-2-(N-vinylbenzylaminoethyl)-3
  • Q-configuration or T-configuration silane coupling agents are preferred from the viewpoint of reactivity and adhesion.
  • Commercial products may be used as the silane coupling agent, and specific examples include KBP-90 (product name, manufactured by Shin-Etsu Silicone Co., Ltd., aminosilane) and tetraethoxysilane (Fuji Film Wako Pure Chemical Industries, Ltd.).
  • the intermediate layer may contain a catalyst such as an acid.
  • the thickness of the intermediate layer is preferably 5.00 to 30.00 nm, more preferably 10.00 to 20.00 nm.
  • the thickness of the intermediate layer was determined by acquiring a cross-sectional image of the silica film-coated substrate 1A using a scanning electron microscope (SEM), and measuring the thickness at three different positions corresponding to the thickness of the intermediate layer. Means the arithmetic mean value of the thickness at a location.
  • the contact angle (initial contact angle) of salad oil on the surface of the silica film 20 is preferably 55.0 degrees or more, more preferably 58.0 degrees or more, and still more preferably 60.0 degrees or more. preferable.
  • the upper limit is usually 67.0 degrees or less.
  • the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 300° C. for 400 hours is preferably 35.0 degrees or more, and 37.0 degrees or more. is more preferable, 40.0 degrees or more is still more preferable, and 50.0 degrees or more is particularly preferable.
  • the upper limit is usually 60.0 degrees or less.
  • the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 250° C. for 800 hours is preferably 45.0 degrees or more, and preferably 50.0 degrees or more. is more preferable, and even more preferably 55.0 degrees or more.
  • the upper limit is usually 60.0 degrees or less.
  • the contact angle of salad oil on the surface of the silica film 20 after immersing the silica film-coated substrate 1A in a 0.1N aqueous sodium hydroxide solution adjusted to 25° C. for 2 hours is 40.0. It is preferably at least 45.0 degrees, more preferably at least 50.0 degrees.
  • the upper limit is usually 60.0 degrees or less.
  • the contact angle of salad oil on the surface of these silica films 20 is measured by the method described in the Examples section below.
  • the contact angle (initial contact angle) of salad oil on the surface of the silica film 20 is preferably 55.0 degrees or more, more preferably 58.0 degrees or more, and still more preferably 60.0 degrees or more. preferable.
  • the upper limit is usually 67.0 degrees or less.
  • the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 300° C. for 400 hours is preferably 21.0 degrees or more, and preferably 22.0 degrees or more. is more preferable, 23.0 degrees or more is even more preferable, and 24.0 degrees or more is particularly preferable.
  • the upper limit is usually 40.0 degrees or less.
  • the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 250° C. for 800 hours is preferably 47.0 degrees or more, and preferably 48.0 degrees or more. is more preferable, and even more preferably 49.0 degrees or more.
  • the upper limit is usually 55.0 degrees or less.
  • the contact angle of salad oil on the surface of these silica films 20 is measured by the method described in the Examples section below.
  • the use of the silica film-coated substrate 1A is not particularly limited, but because of its excellent initial oil repellency and oil repellency during heating, it can be used as a stain-proofing member for use on the inside surface of cooking utensils (e.g. ovens, ranges, grills). It is suitable for antifouling members used on the surfaces of kitchen members (for example, stoves, tiles) and antifouling members used for members of machine tools.
  • Examples of the method for manufacturing the silica film-coated substrate 1A include a method in which a silica film-forming composition is applied onto the substrate 10 and dried if necessary to form the silica film 20 on the substrate 10.
  • composition for forming a silica film includes hydrolyzable compounds and an antioxidant.
  • the hydrolyzable compound is at least one selected from the group consisting of a hydrolyzable compound including the compound represented by formula (1), a hydrolyzate thereof, and a hydrolyzed condensate thereof.
  • a hydrolyzable compound including the compound represented by formula (1) is at least one selected from the group consisting of a hydrolyzable compound including the compound represented by formula (1), a hydrolyzate thereof, and a hydrolyzed condensate thereof.
  • Specific examples and preferred embodiments of the hydrolyzable compound including the compound represented by formula (1) are as described above, so their explanation will be omitted.
  • the composition for forming a silica film contains a compound in which n in formula (1) is 1 (for example, methyltrimethoxysilane) and a compound in which n in formula (1) is 2 (for example, dimethyl It is preferable to include a hydrolyzed condensate with dimethoxysilane) and a compound in which n in formula (1) is 1 (for example, methyltriethoxysilane, ethyltriethoxysilane) as a hydrolyzable compound.
  • a hydrolyzed condensate with dimethoxysilane for example, methyltriethoxysilane, ethyltriethoxysilane
  • hydrolyzate of a hydrolyzable compound refers to a compound obtained by hydrolyzing a hydrolyzable group in a hydrolyzable compound.
  • the above hydrolysates may be those in which all of the hydrolyzable groups have been hydrolyzed (completely hydrolyzed products) or those in which some of the hydrolyzable groups have been hydrolyzed (partially hydrolysed products). It may be a thing). That is, the above-mentioned hydrolyzate may be a complete hydrolyzate, a partial hydrolyzate, or a mixture thereof. Note that the details of the hydrolyzed condensate of the hydrolyzable compound are as described above, so the explanation thereof will be omitted.
  • the content of the hydrolyzable compounds is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass, based on the total mass of the silica film-forming composition.
  • antioxidant Specific examples and preferred embodiments of the antioxidant are as described above, so their explanation will be omitted.
  • the content of the antioxidant is preferably 0.0005 to 2.0% by mass, more preferably 0.02 to 0.2% by mass, based on the total mass of the silica film-forming composition.
  • the composition for forming a silica film contains silica particles.
  • Specific examples and preferred embodiments of the silica particles are as described above, so their explanation will be omitted.
  • the content of silica particles is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 1.0% by mass, based on the total mass of the silica film-forming composition.
  • the composition for forming a silica film preferably contains a liquid medium.
  • the liquid medium is preferably a solvent that dissolves or disperses the hydrolyzable compounds and, if necessary, disperses the silica particles used in the composition.
  • liquid medium examples include organic solvents such as alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds, and water.
  • alcohols include methanol, ethanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and diacetone alcohol.
  • ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • ethers include tetrahydrofuran and 1,4-dioxane.
  • cellosolves include methyl cellosolve, ethyl cellosolve, and butyl cellosolve.
  • esters include methyl acetate, ethyl acetate, and butyl acetate.
  • glycol ethers include ethylene glycol monoalkyl ether.
  • nitrogen-containing compounds include N,N-dimethylacetamide, N,N-dimethylformamide, and N-methylpyrrolidone.
  • a specific example of the sulfur-containing compound is dimethyl sulfoxide.
  • the liquid medium may be used alone or in combination of two or more.
  • the liquid medium preferably contains only water or is a mixed solvent of water and an organic solvent.
  • the organic solvent is preferably an alcohol, particularly isopropanol or a mixed alcohol (for example, Solmix AP-11 (manufactured by Nippon Alcohol Sales Co., Ltd.)).
  • an antioxidant it is preferable to dissolve the antioxidant in advance in butyl acetate or acetone, in which the antioxidant has good solubility.
  • the content of the liquid medium is preferably 70.0 to 99.5% by mass, and 88.5 to 99% by mass based on the total mass of the composition for forming a silica film. .0% by mass is more preferable.
  • the composition for forming a silica film may contain other components than those mentioned above.
  • specific examples of other components include metal catalysts, acid catalysts (for example, nitric acid), silicone oils, surfactants, pH adjusters, and antifoaming agents, among which it is preferable to use acid catalysts.
  • the content of the other components is preferably 0.1 to 20% by mass, and 0.5% by mass based on the total mass of the composition for forming a silica film. More preferably 10% by mass.
  • the content of the acid catalyst is determined based on the total mass of the composition for forming a silica film, from the viewpoint of controllability of hydrolysis and condensation of hydrolyzable compounds. It is preferably 0.0001 to 5.0% by weight, more preferably 0.001 to 3.0% by weight.
  • the composition for forming a silica film can be produced by mixing hydrolyzable compounds, an antioxidant, and optional components (for example, silica particles, a liquid medium, and an acid catalyst).
  • hydrolyzable compounds for example, silica particles, a liquid medium, and an acid catalyst.
  • optional components for example, silica particles, a liquid medium, and an acid catalyst.
  • the resulting sol-gel solution, an antioxidant, and optional components may be mixed to produce the sol-gel solution.
  • Application methods include spin coating, spray coating, dip coating, die coating, curtain coating, screen coating, inkjet coating, flow coating, gravure coating, bar coating, flexo coating, and slit coating. , a wet coating method such as a roll coating method.
  • Drying may be performed by heating, or may be performed by natural drying or air drying without heating.
  • the drying temperature is preferably 50°C to 400°C, more preferably 100°C to 350°C, and even more preferably 200 to 300°C, in view of the excellent hardness of the silica film.
  • the drying time may be appropriately set depending on the drying temperature, the size of the substrate, etc., but is preferably 5 minutes to 120 minutes, more preferably 10 minutes to 90 minutes, and even more preferably 30 minutes to 60 minutes.
  • ⁇ Other processes> When it is desired to obtain a substrate 1A with a silica film including the above-mentioned intermediate layer between the substrate 10 and the silica film 20, an intermediate layer is formed on the surface of the substrate 10 before applying the composition for forming a silica film on the substrate 10.
  • the method may further include a step of applying a layer-forming composition to form an intermediate layer.
  • the silica film-forming composition is applied to the surface of the intermediate layer formed on the substrate 10.
  • the intermediate layer forming composition preferably contains a silane coupling agent and a liquid medium, and may also contain a catalyst. Specific examples and preferred embodiments of the silane coupling agent are as described above, so their explanation will be omitted.
  • the content of the silane coupling agent is preferably 0.1 to 5.0% by mass, more preferably 0.3 to 3.0% by mass, based on the total mass of the intermediate layer forming composition.
  • the specific example of the liquid medium in the composition for forming an intermediate layer is the same as the specific example of the liquid medium that can be included in the composition for forming a silica film, so a description thereof will be omitted.
  • the content of the liquid medium is preferably 95.0 to 99.9% by mass, more preferably 97.0 to 99.7% by mass, based on the total mass of the intermediate layer forming composition.
  • the specific example of the method for applying the composition for forming an intermediate layer is the same as the specific example of the method for applying the composition for forming a silica film, so the explanation thereof will be omitted.
  • the step of forming the intermediate layer may include a process of drying the intermediate layer forming composition applied to the substrate 10.
  • Specific examples of the drying conditions for the composition for forming an intermediate layer applied to the substrate 10 are the same as those for the composition for forming a silica film applied to the substrate 10 described above, so the explanation thereof will be omitted.
  • Examples 1-1 to 1-23 and 2-1 are examples, and examples 1-24 to 1-29 and 2-2 are comparative examples. However, the present invention is not limited to these examples. Note that the amounts of each component in the table described below are based on mass.
  • C/Si ratio of carbon atom content to silicon atom content in a silica film
  • XPS X-ray photoelectron spectroscopy
  • the average primary particle diameter of the silica particles was determined by taking an SEM photograph of the silica particles using a scanning electron microscope (S-4800, manufactured by Hitachi High Technologies), and measuring the major axis diameter of 100 primary particles in the image. . The arithmetic mean value was adopted as the average primary particle diameter of the silica particles.
  • silica film forming composition 1 Mix 1.43g of X-40-9246, 3.33g of methyltriethoxysilane (MTES), 2.50g of Snowtex ST-OXS, and 38.83g of Solmix AP-11 (alcohol solvent), and add pure water. After dropping 0.25 g of a 1% nitric acid aqueous solution prepared by diluting 3.67 g of 60% nitric acid aqueous solution and 0.0042 g of a 60% nitric acid aqueous solution with 0.246 g of pure water, the mixture was stirred at 60° C. for 30 minutes to obtain a concentrated liquid.
  • MTES methyltriethoxysilane
  • Solmix AP-11 alcohol solvent
  • compositions 2 to 23 A silica film was formed in the same manner as in the preparation of Composition 1 for forming a silica film, except that the amount of each component used was adjusted so that the content (parts by mass) of each component became the values listed in Tables 1 to 5. Compositions 2 to 23 were obtained.
  • Example 1-1 Silica film-forming composition 1 was applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at 200° C. in the atmosphere for 30 minutes. Thus, a silica film-coated substrate of Example 1-1 was obtained.
  • Example 1-1 except that the silica film-forming composition listed in Table 1 was used instead of silica film-forming composition 1, and the coating conditions were adjusted so that the thickness of the silica film was the value shown in Table 1.
  • silica film-coated substrates of Examples 1-2 to 1-19, 1-21, and 1-24 to 1-29 were produced.
  • Intermediate layer forming composition 1 was obtained by mixing 0.11 g of KBP-90 (manufactured by Shin-Etsu Silicone Co., Ltd., an aminosilane-based silane coupling agent) and 49.9 g of 1-butanol. Intermediate layer forming composition 1 was then applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at room temperature for 5 minutes. An intermediate layer (thickness: 15 nm) was formed on the surface of soda lime glass.
  • composition 1 for forming a silica film was applied to the surface of the intermediate layer by a spin coating method, and dried in the atmosphere at 200°C for 30 minutes to form an intermediate layer between the soda lime glass and the silica film
  • Example 1 A substrate with a silica film of -17 was obtained.
  • Example 1-22 Silica film-forming composition 1 was applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at 300° C. for 60 minutes in the air. Thus, a silica film-coated substrate of Example 1-22 was obtained.
  • Example 1-23 A substrate with a silica film of Example 1-23 was prepared in the same manner as Example 1-22 except that the coating conditions were adjusted so that the thickness of the silica film was as shown in Table 1.
  • Example 2-1 A silica film-coated substrate of Example 2-1 was obtained in the same manner as Example 1-1, except that an aluminum substrate (size: 100 x 100 mm, thickness: 4.0 mm) was used instead of soda lime glass as the substrate. Ta.
  • Example 2-2 A substrate with a silica film of Example 2-2 was produced in the same manner as Example 2-1 except that Composition 22 for forming a silica film was used instead of Composition 1 for forming a silica film.
  • the silica film contains a hydrolyzed condensate of a hydrolyzable compound including the compound represented by formula (1) above, and an antioxidant, and the antioxidant content is the same as that of the silica film.
  • the silica film that is 25% by mass or less based on the mass, has a C/Si of 0.90 or more, and has a thickness of 15 nm or more, the silica film has excellent initial oil repellency and oil repellency after heating at 300°C. It was confirmed that a bonded substrate could be obtained.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2022-123895 filed on August 3, 2022 are cited here, and as a disclosure of the specification of the present invention, It is something to be taken in.

Abstract

The present invention provides a substrate with a silica film, which has excellent initial oil repellency, while having improved oil repellency after being heated to 300°C. A substrate with a silica film according to the present invention comprises a substrate and a silica film that is arranged on the substrate; the silica film contains an antioxidant and a hydrolysis condensation product of a hydrolyzable compound that contains a compound represented by Si(-R1)n(-OR2)4-n; the content of the antioxidant is 25% by mass or less relative to the total mass of the silica film; and the ratio of the carbon atom content to the silicon atom content in the silica film is 0.90 or more; and the thickness of the silica film is 15 nm or more. In the formula, R1 represents an alkyl group having 1 to 3 carbon atoms; R2 represents a methyl group or an ethyl group; and n represents an integer of 1 to 3.

Description

シリカ膜付き基板Substrate with silica film
 本発明は、シリカ膜付き基板に関する。 The present invention relates to a substrate with a silica film.
 基板の保護や所望の機能を付与することを目的として、基板の表面に膜を形成する方法が知られている。
 例えば、特許文献1では、メチルトリエトキシシラン、塩酸水溶液及びエタノールを含む塗布液を、ガラス基板やステンレス鋼板等の基板上に塗布し、乾燥して、基板上に撥水撥油膜を形成する方法が開示されている。
2. Description of the Related Art A method is known in which a film is formed on the surface of a substrate for the purpose of protecting the substrate or imparting a desired function to the substrate.
For example, Patent Document 1 discloses a method in which a coating solution containing methyltriethoxysilane, an aqueous hydrochloric acid solution, and ethanol is applied onto a substrate such as a glass substrate or a stainless steel plate, and dried to form a water- and oil-repellent film on the substrate. is disclosed.
特開2014-185334号公報Japanese Patent Application Publication No. 2014-185334
 近年、基板の表面に配置される膜について更なる性能向上が求められており、例えば、加熱前の初期の撥油性(以下、単に「初期撥油性」ともいう。)に優れ、加熱後の撥油性についても改善された膜が求められている。
 本発明者が、特許文献1に記載の塗布液を用いて、基板上に膜を形成したところ、初期撥油性には優れるが、300℃に加熱後の撥油性については改善の余地があることを知見した。
In recent years, there has been a demand for further improvements in the performance of films placed on the surface of substrates. There is also a need for membranes with improved oil resistance.
When the present inventor formed a film on a substrate using the coating liquid described in Patent Document 1, the initial oil repellency was excellent, but there was room for improvement in oil repellency after heating to 300 ° C. I found out.
 本発明は、上記問題に鑑みてなされ、初期撥油性に優れ、かつ、300℃に加熱後の撥油性が改善されたシリカ膜付き基板の提供を課題とする。 The present invention was made in view of the above problems, and an object of the present invention is to provide a substrate with a silica film that has excellent initial oil repellency and improved oil repellency after heating to 300°C.
 本発明者らは、上記課題について鋭意検討した結果、シリカ膜付き基板におけるシリカ膜が、所定の式で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含み、シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上であり、シリカ膜の厚さが15nm以上であれば、所望の効果が得られることを見出し、本発明に至った。 As a result of intensive studies on the above-mentioned problems, the present inventors found that the silica film of the silica film-coated substrate contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by a predetermined formula, and an antioxidant. found that the desired effect can be obtained when the ratio of the carbon atom content to the silicon atom content in the silica film is 0.90 or more and the thickness of the silica film is 15 nm or more, and the present invention reached.
 すなわち、発明者らは、以下の構成により上記課題が解決できることを見出した。
[1]基板と、上記基板上に配置されたシリカ膜とを含み、
 上記シリカ膜が、式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含み、
 上記酸化防止剤の含有量が、上記シリカ膜の全質量に対して、25質量%以下であり、
 上記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上であり、
 上記シリカ膜の厚さが15nm以上である、シリカ膜付き基板。
  Si(-R(-OR4-n   式(1)
 上記式(1)中、
 Rは、炭素数1~3のアルキル基であり、
 Rは、メチル基又はエチル基であり、
 nは、1~3の整数である。
[2]上記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が1.60以下である、[1]に記載のシリカ膜付き基板。
[3]上記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が1.40~1.60である、[1]又は[2]に記載のシリカ膜付き基板。
[4]上記シリカ膜の厚さが120nm以下である、[1]~[3]のいずれかに記載のシリカ膜付き基板。
[5]空気中で測定した際の上記酸化防止剤の12%重量減少温度が300℃以上である、[1]~[4]のいずれかに記載のシリカ膜付き基板。
[6]上記シリカ膜が、上記酸化防止剤として、反応機構が互いに異なる2種以上の酸化防止剤を含む、[1]~[5]のいずれかに記載のシリカ膜付き基板。
[7]上記シリカ膜が、上記酸化防止剤として、フェノール系酸化防止剤と、リン系酸化防止剤とを含む、[1]~[6]のいずれかに記載のシリカ膜付き基板。
[8]上記酸化防止剤の含有量が、上記シリカ膜の全質量に対して、0.05~25質量%である、[1]~[7]のいずれかに記載のシリカ膜付き基板。
[9]上記シリカ膜が、シリカ粒子を更に含む、[1]~[8]のいずれかに記載のシリカ膜付き基板。
[10]上記基板と上記シリカ膜との間に中間層を更に含む、[1]~[9]のいずれかに記載のシリカ膜付き基板。
That is, the inventors have found that the above problem can be solved by the following configuration.
[1] Includes a substrate and a silica film disposed on the substrate,
The silica membrane contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by formula (1), and an antioxidant,
The content of the antioxidant is 25% by mass or less based on the total mass of the silica film,
The ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 0.90 or more,
A substrate with a silica film, wherein the silica film has a thickness of 15 nm or more.
Si(-R 1 ) n (-OR 2 ) 4-n formula (1)
In the above formula (1),
R 1 is an alkyl group having 1 to 3 carbon atoms,
R 2 is a methyl group or an ethyl group,
n is an integer from 1 to 3.
[2] The substrate with a silica film according to [1], wherein the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 1.60 or less.
[3] The silica film-coated substrate according to [1] or [2], wherein the ratio of the carbon atom content to the silicon atom content in the silica film is 1.40 to 1.60.
[4] The silica film-coated substrate according to any one of [1] to [3], wherein the silica film has a thickness of 120 nm or less.
[5] The silica film-coated substrate according to any one of [1] to [4], wherein the antioxidant has a 12% weight loss temperature of 300° C. or higher when measured in air.
[6] The silica film-coated substrate according to any one of [1] to [5], wherein the silica film contains two or more types of antioxidants having different reaction mechanisms as the antioxidants.
[7] The silica film-coated substrate according to any one of [1] to [6], wherein the silica film contains a phenolic antioxidant and a phosphorus antioxidant as the antioxidant.
[8] The silica film-coated substrate according to any one of [1] to [7], wherein the content of the antioxidant is 0.05 to 25% by mass based on the total mass of the silica film.
[9] The silica film-coated substrate according to any one of [1] to [8], wherein the silica film further contains silica particles.
[10] The silica film-coated substrate according to any one of [1] to [9], further comprising an intermediate layer between the substrate and the silica film.
 本発明によれば、初期撥油性に優れ、かつ、300℃に加熱後の撥油性が改善されたシリカ膜付き基板を提供できる。 According to the present invention, it is possible to provide a substrate with a silica film that has excellent initial oil repellency and improved oil repellency after heating to 300°C.
本発明のシリカ膜付き基板の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a silica film-coated substrate of the present invention.
 本発明における用語の意味は以下の通りである。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
The meanings of terms in the present invention are as follows.
A numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
In this specification, for each component, one type of substance corresponding to each component may be used alone, or two or more types may be used in combination. Here, when two or more types of substances are used together for each component, the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
In this specification, a combination of two or more preferred embodiments is a more preferred embodiment.
[シリカ膜付き基板]
 本発明のシリカ膜付き基板は、基板と、上記基板上に配置されたシリカ膜とを含む。また、上記酸化防止剤の含有量は、上記シリカ膜の全質量に対して25質量%以下である。また、上記シリカ膜は、後述の式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含む。また、上記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上である。また、上記シリカ膜の厚さは、15nm以上である。
 本発明のシリカ膜付き基板は、初期撥油性に優れ、かつ、300℃に加熱後の撥油性(以下、「加熱後撥油性」ともいう。)についても改善されている。この理由の詳細は明らかになっていないが、概ね以下の理由によるものと推測される。
[Substrate with silica film]
A silica film-coated substrate of the present invention includes a substrate and a silica film disposed on the substrate. Further, the content of the antioxidant is 25% by mass or less based on the total mass of the silica film. Further, the silica membrane contains a hydrolyzed condensate of a hydrolyzable compound including a compound represented by formula (1) described below, and an antioxidant. Further, the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 0.90 or more. Further, the thickness of the silica film is 15 nm or more.
The silica film-coated substrate of the present invention has excellent initial oil repellency and is also improved in oil repellency after heating to 300° C. (hereinafter also referred to as "oil repellency after heating"). Although the details of this reason have not been clarified, it is assumed that it is generally due to the following reasons.
 本発明のシリカ膜に含まれる炭素原子及びケイ素原子はそれぞれ、主として加水分解性化合物の加水分解縮合物に含まれるアルキル基及びシロキサン結合に基づくものと考えられる。
 ここで、本発明のシリカ膜は、ケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上であるので、シリカ膜中にアルキル基が充分に存在すると考えられる。そのため、アルキル基による撥油性の効果が良好に発現して、初期撥油性が向上したと推測される。
 一方で、ケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上である場合、膜中のシロキサン結合が少ないので、シリカ膜を加熱した際に膜の熱分解を抑制できるというシロキサン結合による効果が充分に得られない場合がある。この問題に対して、酸化防止剤を含むシリカ膜を用いることで、酸化防止剤の作用によってシリカ膜の熱酸化が抑制される結果、シリカ膜の加熱後においても優れた撥油性を発揮できたと推測される。また、厚さ15nm以上のシリカ膜を用いることで、シリカ膜の加熱後においても、優れた撥油性が発揮できる程度の厚さを維持できたと推測される。このように、酸化防止剤を用いたこと、及び、厚さを15nm以上にしたことの相乗効果によって、300℃という高温でシリカ膜を加熱した後であっても従来の膜よりも撥油性が改善されたと考えられる。
It is believed that the carbon atoms and silicon atoms contained in the silica membrane of the present invention are mainly based on alkyl groups and siloxane bonds contained in the hydrolyzed condensate of the hydrolyzable compound, respectively.
Here, in the silica film of the present invention, since the ratio of the content of carbon atoms to the content of silicon atoms is 0.90 or more, it is considered that alkyl groups are sufficiently present in the silica film. Therefore, it is presumed that the oil repellency effect due to the alkyl group was well expressed and the initial oil repellency was improved.
On the other hand, when the ratio of the carbon atom content to the silicon atom content is 0.90 or more, there are fewer siloxane bonds in the film, so the siloxane film can suppress thermal decomposition when the silica film is heated. In some cases, the effect of the combination cannot be obtained sufficiently. To solve this problem, by using a silica film containing an antioxidant, the effect of the antioxidant suppresses thermal oxidation of the silica film, and as a result, the silica film can exhibit excellent oil repellency even after heating. Guessed. It is also presumed that by using a silica film with a thickness of 15 nm or more, the thickness could be maintained to the extent that excellent oil repellency could be exhibited even after the silica film was heated. In this way, due to the synergistic effect of using an antioxidant and increasing the thickness to 15 nm or more, even after heating the silica film at a high temperature of 300°C, it has better oil repellency than conventional films. It is considered that this has been improved.
 図1は、本発明のシリカ膜付き基板の一例を模式的に示す断面図である。シリカ膜付き基板1Aは、基板10と、基板10の一方の表面に形成されたシリカ膜20と、を有する。
 図1の例では、基板10の一方の表面の全体にシリカ膜20が形成されているが、これに限定されず、基板10の一部の領域のみにシリカ膜20が形成されていてもよい。
 図1の例では、基板10の一方の面のみに、シリカ膜20が形成されているが、これに限定されず、基板10の両面にシリカ膜20が形成されていてもよい。
 以下において、シリカ膜付き基板1Aが有する各部材について説明する。
FIG. 1 is a cross-sectional view schematically showing an example of a silica film-coated substrate of the present invention. The silica film-coated substrate 1A includes a substrate 10 and a silica film 20 formed on one surface of the substrate 10.
In the example of FIG. 1, the silica film 20 is formed on the entire surface of one side of the substrate 10, but the silica film 20 is not limited to this, and the silica film 20 may be formed only on a part of the surface of the substrate 10. .
In the example of FIG. 1, the silica film 20 is formed only on one side of the substrate 10, but the present invention is not limited to this, and the silica film 20 may be formed on both sides of the substrate 10.
Each member included in the silica film-coated substrate 1A will be described below.
〔基板〕
 基板10の種類は特に限定されないが、ガラス基板及び金属基板が好ましい。
 ガラス基板を構成する材料の具体例としては、ソーダライムガラス、アルミノシリケートガラス、リチウムガラス、ホウケイ酸塩ガラスが挙げられる。ガラス基板は、化学強化ガラス、風冷強化ガラス、又は、結晶化ガラスであってもよい。ガラス基板は、フロート法等により成形された表面が平滑なガラス板であってもよく、表面に凹凸を有する型板ガラス板であってもよく、曲面形状を有するガラス板であってもよい。
 金属基板を構成する材料の具体例としては、アルミニウム、チタン、銅、ニッケル、ステンレス、真鍮、マグネシウム、鉄及びそれらの合金が挙げられる。これらの材料は、1種単独で用いても2種以上を併用してもよい。
〔substrate〕
Although the type of substrate 10 is not particularly limited, a glass substrate and a metal substrate are preferable.
Specific examples of materials constituting the glass substrate include soda lime glass, aluminosilicate glass, lithium glass, and borosilicate glass. The glass substrate may be chemically strengthened glass, air-cooled strengthened glass, or crystallized glass. The glass substrate may be a glass plate with a smooth surface formed by a float method or the like, a molded glass plate with an uneven surface, or a glass plate with a curved shape.
Specific examples of materials constituting the metal substrate include aluminum, titanium, copper, nickel, stainless steel, brass, magnesium, iron, and alloys thereof. These materials may be used alone or in combination of two or more.
 基板10の厚さは、用途によって適宜選択され、特に限定されないが、0.1~50mmが好ましい。
 基板10がガラス基板である場合、ガラス基板の厚さは、1~10mmが好ましく、1~5mmがより好ましい。
 基板10が金属基板である場合、金属基板の厚さは、0.1~50mmが好ましく、1~10mmがより好ましい。
The thickness of the substrate 10 is appropriately selected depending on the application and is not particularly limited, but is preferably 0.1 to 50 mm.
When the substrate 10 is a glass substrate, the thickness of the glass substrate is preferably 1 to 10 mm, more preferably 1 to 5 mm.
When the substrate 10 is a metal substrate, the thickness of the metal substrate is preferably 0.1 to 50 mm, more preferably 1 to 10 mm.
〔シリカ膜〕
 シリカ膜20は、式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含む。
[Silica membrane]
The silica membrane 20 contains a hydrolyzed condensate of a hydrolyzable compound including the compound represented by formula (1), and an antioxidant.
 シリカ膜20中のケイ素原子の含有量に対する炭素原子の含有量の比(炭素原子の含有量/ケイ素原子の含有量。以下、「C/Si」ともいう。)は、0.90以上であり、シリカ膜付き基板1Aの初期撥油性がより優れる点から、1.00以上が好ましく、1.20以上がより好ましく、1.40以上が更に好ましい。
 C/Siは、シリカ膜付き基板1Aの加熱後撥油性がより優れる点から、1.60以下が好ましく、1.55以下がより好ましく、1.50以下が更に好ましい。
 ここで、C/Siは、シリカ膜20の表面と検出器のなす角度を45度としたX線光電子分光法(XPS)によるシリカ膜20の表面の分析に基づいて求められ、具体的には次のようにして算出される。
 シリカ膜20の表面と検出器のなす角度を45度としたX線光電子分光法(XPS)によって、シリカ膜20の表面を分析して、Si2p及びC1sのピーク強度を求める。得られたピーク強度に基づいて、ケイ素原子の含有量(at%)及び炭素原子の含有量(at%)を求めて、ケイ素原子の含有量(at%)に対する炭素原子の濃度(at%)の比を算出して、これをC/Siとする。なお、XPSの詳細な測定条件は、後述の実施例欄に記載の通りである。
The ratio of the carbon atom content to the silicon atom content (carbon atom content/silicon atom content; hereinafter also referred to as "C/Si") in the silica film 20 is 0.90 or more. , 1.00 or more is preferable, 1.20 or more is more preferable, and 1.40 or more is still more preferable, since the initial oil repellency of the silica film-coated substrate 1A is more excellent.
C/Si is preferably 1.60 or less, more preferably 1.55 or less, and even more preferably 1.50 or less, from the standpoint that the silica film-coated substrate 1A has better oil repellency after heating.
Here, C/Si is determined based on analysis of the surface of the silica film 20 by X-ray photoelectron spectroscopy (XPS) with the angle between the surface of the silica film 20 and the detector being 45 degrees, and specifically, It is calculated as follows.
The surface of the silica film 20 is analyzed by X-ray photoelectron spectroscopy (XPS) in which the angle between the surface of the silica film 20 and the detector is 45 degrees, and the peak intensities of Si 2p and C 1s are determined. Based on the obtained peak intensity, the content of silicon atoms (at%) and the content of carbon atoms (at%) are determined, and the concentration of carbon atoms (at%) relative to the content of silicon atoms (at%) is determined. Calculate the ratio of C/Si. Note that detailed measurement conditions for XPS are as described in the Examples section below.
 シリカ膜20の厚さは、15nm以上であり、シリカ膜付き基板1Aの耐薬品性、初期撥油性、加熱後撥油性、及び、耐摩耗性がより優れる点から20nm以上が好ましく、25nm以上がより好ましい。
 シリカ膜20の厚さは、シリカ膜付き基板1Aの耐傷性がより優れる点から、240nm以下が好ましく、120nm以下がより好ましく、100nm以下が更に好ましい。
 シリカ膜20の厚さは、エリプソメトリーを測定原理とする装置を用いて、実施例欄に記載の方法により測定できる。
The thickness of the silica film 20 is 15 nm or more, preferably 20 nm or more, and 25 nm or more from the viewpoint of better chemical resistance, initial oil repellency, oil repellency after heating, and abrasion resistance of the silica film-coated substrate 1A. More preferred.
The thickness of the silica film 20 is preferably 240 nm or less, more preferably 120 nm or less, and even more preferably 100 nm or less, in order to improve the scratch resistance of the silica film-coated substrate 1A.
The thickness of the silica film 20 can be measured by the method described in the Examples section using an apparatus based on ellipsometry.
 シリカ膜20の用途の具体例としては、ガラス基板や金属基板の保護膜(例えば、傷防止膜、防汚膜)が挙げられる。 Specific examples of uses of the silica film 20 include protective films for glass substrates and metal substrates (eg, anti-scratch film, antifouling film).
<加水分解性縮合物>
 加水分解性化合物の加水分解縮合物とは、加水分解性化合物中の加水分解性基が加水分解し、得られた加水分解物を縮合して得られる化合物を意図する。なお、上記加水分解縮合物としては、すべての加水分解性基が加水分解され、かつ、加水分解物(加水分解性化合物中の加水分解性基が加水分解して得られる化合物)がすべて縮合された完全加水分解縮合物であっても、一部の加水分解性基が加水分解され、一部の加水分解物が縮合した部分加水分解縮合物であってもよい。つまり、上記加水分解縮合物は、完全加水分解縮合物、部分加水分解縮合物、又は、これらの混合物であってもよい。また、加水分解縮合物は、加水分解性化合物、その加水分解物、及び、その加水分解縮合物のうち、2種以上の化合物の加水分解物が互いに縮合して得られた加水分解縮合物であってもよい。
<Hydrolyzable condensate>
The term "hydrolytic condensate of a hydrolyzable compound" refers to a compound obtained by hydrolyzing a hydrolyzable group in a hydrolyzable compound and condensing the resulting hydrolyzate. In addition, the above-mentioned hydrolyzed condensate is one in which all the hydrolyzable groups are hydrolyzed and all the hydrolysates (compounds obtained by hydrolyzing the hydrolysable groups in the hydrolyzable compound) are condensed. It may be a complete hydrolyzed condensate or a partially hydrolyzed condensate in which some hydrolyzable groups are hydrolyzed and some hydrolysates are condensed. That is, the hydrolyzed condensate may be a complete hydrolyzed condensate, a partially hydrolyzed condensate, or a mixture thereof. In addition, a hydrolyzed condensate is a hydrolyzed condensate obtained by condensing hydrolyzable compounds, their hydrolysates, and hydrolyzed condensates of two or more compounds with each other. There may be.
 加水分解性化合物は、式(1)で表される化合物を含む。
  Si(-R(-OR4-n   式(1)
The hydrolyzable compound includes a compound represented by formula (1).
Si(-R 1 ) n (-OR 2 ) 4-n formula (1)
 式(1)中、Rは、炭素数1~3のアルキル基であり、具体的には、メチル基、エチル基、n-プロピル基、又は、イソプロピル基である。中でも、Rは、シリカ膜付き基板1Aの撥油性が優れる点から、メチル基又はエチル基が好ましく、メチル基がより好ましい。
 nが2以上である場合、複数のRは、互いに同一であってもよく、異なっていてもよい。
In formula (1), R 1 is an alkyl group having 1 to 3 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. Among these, R 1 is preferably a methyl group or an ethyl group, and more preferably a methyl group, since the silica film-coated substrate 1A has excellent oil repellency.
When n is 2 or more, a plurality of R 1 's may be the same or different.
 式(1)中、Rは、メチル基又はエチル基である。すなわち、式(1)中の-OR基は、メトキシ基又はエトキシ基であり、加水分解性基の一種である。
 nが2以下である場合、複数のRは、互いに同一であってもよく、異なっていてもよい。
In formula (1), R 2 is a methyl group or an ethyl group. That is, the -OR2 group in formula (1) is a methoxy group or an ethoxy group, which is a type of hydrolyzable group.
When n is 2 or less, a plurality of R 2 's may be the same or different.
 式(1)中、nは、1~3の整数であり、シリカ膜付き基板1Aの初期撥油性及び加熱後撥油性の両方を高いレベルで満たすことができる点から、1又は2が好ましい。 In formula (1), n is an integer from 1 to 3, and is preferably 1 or 2 from the viewpoint that both the initial oil repellency and the post-heating oil repellency of the silica film-coated substrate 1A can be satisfied at a high level.
 中でも、式(1)で表される化合物は、メチルトリエトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシランが好ましい。式(1)で表される化合物は、1種単独で用いても2種以上を併用してもよい。 Among these, the compound represented by formula (1) is preferably methyltriethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, or ethyltrimethoxysilane. The compounds represented by formula (1) may be used alone or in combination of two or more.
 加水分解性化合物は、式(1)で表される化合物以外の化合物(以下、「他の化合物」ともいう。)を含んでいてもよい。他の化合物としては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランが挙げられる。
 テトラアルコキシシラン(4官能シラン)を添加すると、結合点が増加し、耐摩耗性が良くなる。テトラアルコキシシランの含有量は、式(1)で表される化合物を含む加水分解性化合物の全質量に対して、15~50質量%が好ましく、25~35質量%が更に好ましい。テトラアルコキシシランの含有量が下限値以上であると結合点充分に増加するので耐摩耗性向上効果が大きくなり、テトラアルコキシシランの含有量が上限値以下であると撥油性基(アルキル基)の含有比率が増加して撥油性がより向上する。
The hydrolyzable compound may contain compounds other than the compound represented by formula (1) (hereinafter also referred to as "other compounds"). Other compounds include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane.
Addition of tetraalkoxysilane (tetrafunctional silane) increases bonding points and improves wear resistance. The content of tetraalkoxysilane is preferably 15 to 50% by mass, more preferably 25 to 35% by mass, based on the total mass of the hydrolyzable compound including the compound represented by formula (1). When the content of tetraalkoxysilane is above the lower limit, the bonding points are sufficiently increased and the wear resistance improving effect becomes large, and when the content of tetraalkoxysilane is below the upper limit, the oil repellent group (alkyl group) is As the content ratio increases, oil repellency is further improved.
 加水分解縮合物の含有量は、シリカ膜20の全質量に対して、75~99.95質量%が好ましく、90~99.50質量%がより好ましく、95~99.00質量%が更に好ましい。 The content of the hydrolyzed condensate is preferably 75 to 99.95% by mass, more preferably 90 to 99.50% by mass, and even more preferably 95 to 99.00% by mass, based on the total mass of the silica membrane 20. .
<酸化防止剤>
 酸化防止剤の具体例としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤が挙げられる。
 酸化防止剤は、シリカ膜付き基板1Aの加熱後撥油性がより優れる点から、反応機構が互いに異なる2種以上の酸化防止剤を含むことが好ましく、フェノール系酸化防止剤及びリン系酸化防止剤の両方を用いることがより好ましい。
 ここで、反応機構が互いに異なるとは、酸化防止剤によるシリカ膜の酸化を抑制するための反応機構が互いに異なることを意味する。
<Antioxidant>
Specific examples of antioxidants include phenolic antioxidants, amine antioxidants, phosphorus antioxidants, and sulfur antioxidants.
The antioxidant preferably contains two or more kinds of antioxidants having different reaction mechanisms from each other, from the viewpoint that the silica film-coated substrate 1A has better oil repellency after heating, and includes a phenolic antioxidant and a phosphorus antioxidant. It is more preferable to use both.
Here, the expression "the reaction mechanisms are different from each other" means that the reaction mechanisms for suppressing the oxidation of the silica film by the antioxidant are different from each other.
 シリカ膜付き基板1Aの加熱後撥油性がより優れる点から、空気中で測定した際の12%重量減少温度が300℃以上である酸化防止剤を用いるのが好ましい。上記12%重量減少温度の上限は、通常400℃以下である。
 酸化防止剤の12%重量減少温度は、空気雰囲気下において、10℃/分の昇温速度で熱重量示差熱分析装置(TG-DTA)を用いて測定される。
 空気中で測定した際の12%重量減少温度が300℃以上である酸化防止剤の具体例としては、2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイルビス(2-メチルプロパン-2,1-ジイル)ビス[3-[3-(t-ブチル)-4-ヒドロキシ-5-メチルフェニル]プロパノアート]、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ペンタエリスリトールテトラキス[3-(ドデシルチオ)プロピオネート]が挙げられる。
In order to improve the oil repellency of the silica film-coated substrate 1A after heating, it is preferable to use an antioxidant whose 12% weight loss temperature when measured in air is 300° C. or higher. The upper limit of the above 12% weight loss temperature is usually 400°C or less.
The 12% weight loss temperature of the antioxidant is measured using a thermogravimetric differential thermal analyzer (TG-DTA) at a heating rate of 10° C./min in an air atmosphere.
Specific examples of antioxidants having a 12% weight loss temperature of 300°C or higher when measured in air include 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diylbis. (2-methylpropane-2,1-diyl)bis[3-[3-(t-butyl)-4-hydroxy-5-methylphenyl]propanoate], tris(2,4-di-t-butylphenyl) Examples include phosphite and pentaerythritol tetrakis [3-(dodecylthio)propionate].
 酸化防止剤の含有量は、シリカ膜20の全質量に対して、0.03質量%以上が好ましく、0.50質量%以上がより好ましく、1.0質量%以上が更に好ましい。酸化防止剤の含有量が0.03質量%以上であれば、シリカ膜付き基板1Aの加熱後撥油性がより優れる。
 酸化防止剤の含有量は、シリカ膜20の全質量に対して、25質量%以下であり、10質量%以下が好ましく、5.0質量%以下がより好ましい。シリカ膜の含有量が25質量%以下であることによって、シリカ膜付き基板1Aの初期撥油性及び加熱後撥油性が優れる。また、シリカ膜の外観特性にも優れる。
The content of the antioxidant is preferably 0.03% by mass or more, more preferably 0.50% by mass or more, and even more preferably 1.0% by mass or more, based on the total mass of the silica film 20. If the content of the antioxidant is 0.03% by mass or more, the oil repellency of the silica film-coated substrate 1A after heating will be more excellent.
The content of the antioxidant is 25% by mass or less, preferably 10% by mass or less, and more preferably 5.0% by mass or less, based on the total mass of the silica film 20. When the content of the silica film is 25% by mass or less, the initial oil repellency and the oil repellency after heating of the silica film-coated substrate 1A are excellent. Furthermore, the appearance characteristics of the silica film are also excellent.
<シリカ粒子>
 シリカ膜20は、シリカ膜付き基板1Aの耐摩耗性がより優れる点から、シリカ粒子を更に含むことが好ましい。
<Silica particles>
The silica film 20 preferably further contains silica particles since the silica film-coated substrate 1A has better wear resistance.
 シリカ粒子は、シリカ(SiO)を含む粒子である。
 シリカ粒子の形状の具体例としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状が挙げられる。
 シリカ粒子は、中実粒子、中空粒子、又は、多孔質粒子であってもよい。「中実粒子」とは、内部に空洞を有しない粒子を意味する。「中空粒子」は、内部に空洞を有する粒子を意味する。「多孔質粒子」とは、表面に複数の孔を有する粒子を意味する。
 シリカ粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
Silica particles are particles containing silica (SiO 2 ).
Specific examples of the shape of the silica particles include spherical, elliptical, needle-like, plate-like, rod-like, conical, cylindrical, cubic, rectangular, diamond-like, star-like, and irregular shapes.
Silica particles may be solid particles, hollow particles, or porous particles. "Solid particle" means a particle that does not have an internal cavity. "Hollow particle" means a particle having a cavity inside. "Porous particle" means a particle having a plurality of pores on its surface.
The silica particles may exist independently, each particle may be connected in a chain, or each particle may be aggregated.
 シリカ粒子の平均一次粒子径は、シリカ膜の透明性が優れる点から、100nm以下が好ましく、50nm以下がより好ましく、20nm以下が更に好ましい。
 シリカ粒子の平均一次粒子径は、膜中での分散性に優れる点から、0.1nm以上が好ましく、0.5nm以上がより好ましく、1nm以上が更に好ましい。
 シリカ粒子の平均一次粒子径は、走査型電子顕微鏡(SEM)(例えば、日立ハイテクノロジーズ製のS-4800に準ずる装置)を用いて粒子のSEM写真を撮影し、画像中の一次粒子の長軸径を100個測定して、算術平均して得られた値である。なお、画像中の一次粒子の長軸径とは、画像中の一次粒子において端部から端部までの直線を引いた場合の最も長い線分を意味する。
The average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less, from the viewpoint of excellent transparency of the silica film.
The average primary particle diameter of the silica particles is preferably 0.1 nm or more, more preferably 0.5 nm or more, and even more preferably 1 nm or more, from the viewpoint of excellent dispersibility in the film.
The average primary particle diameter of silica particles is determined by taking an SEM photograph of the particles using a scanning electron microscope (SEM) (for example, an apparatus similar to S-4800 manufactured by Hitachi High Technologies), and determining the long axis of the primary particle in the image. This value is obtained by measuring 100 diameters and taking the arithmetic average. Note that the long axis diameter of the primary particles in the image means the longest line segment when a straight line is drawn from end to end in the primary particles in the image.
 シリカ粒子としては、市販品を用いてもよく、例えば、日産化学工業社製のスノーテックスシリーズが挙げられる。
 シリカ粒子は、1種単独で用いても2種以上を併用してもよい。
As the silica particles, commercially available products may be used, such as the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
The silica particles may be used alone or in combination of two or more.
 シリカ粒子の含有量は、シリカ膜20の全質量に対して、0.05~10.00質量%が好ましく、0.10~5.00質量%がより好ましく、0.10~1.00質量%が更に好ましい。
 シリカ粒子の含有量が0.05質量%以上であれば、シリカ膜付き基板1Aの耐摩耗性がより優れる。シリカ粒子の含有量が10.00質量%以下であれば、シリカ膜付き基板1Aの初期撥油性がより優れる。
The content of silica particles is preferably 0.05 to 10.00% by mass, more preferably 0.10 to 5.00% by mass, and 0.10 to 1.00% by mass based on the total mass of the silica membrane 20. % is more preferable.
If the content of silica particles is 0.05% by mass or more, the wear resistance of the silica film-coated substrate 1A will be better. If the content of silica particles is 10.00% by mass or less, the initial oil repellency of the silica film-coated substrate 1A will be more excellent.
<他の成分>
 シリカ膜20は、上記以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。他の成分の具体例としては、金属触媒、酸触媒(例えば、硝酸)、水、アルコール、その他有機溶媒が挙げられる。
 シリカ膜20が他の成分を含む場合、他の成分の含有量は、シリカ膜20の全質量に対して、0質量%超1.00質量%以下が好ましく、0質量%超0.50質量%以下がより好ましい。
<Other ingredients>
The silica film 20 may contain components other than those mentioned above (hereinafter also referred to as "other components"). Specific examples of other components include metal catalysts, acid catalysts (eg, nitric acid), water, alcohols, and other organic solvents.
When the silica membrane 20 contains other components, the content of the other components is preferably more than 0% by mass and 1.00% by mass or less, and more than 0% by mass and 0.50% by mass, based on the total mass of the silica membrane 20. % or less is more preferable.
〔中間層〕
 シリカ膜付き基板1Aは、基板10とシリカ膜20との間に、図示しない中間層を更に含んでいてもよい。
 中間層は、基板10とシリカ膜20との重複部分の全体に形成されていてもよく、基板10とシリカ膜20との重複部分の一部に形成されていてもよい。
[Middle layer]
The silica film-covered substrate 1A may further include an intermediate layer (not shown) between the substrate 10 and the silica film 20.
The intermediate layer may be formed on the entire overlapping portion of the substrate 10 and the silica film 20, or may be formed on a part of the overlapping portion of the substrate 10 and the silica film 20.
 中間層は、基板10とシリカ膜20との密着性を向上させる層であるのが好ましく、具体的には、シランカップリング剤を用いて形成される層であるのがより好ましい。
 シランカップリング剤の具体例としては、
 テトラエトキシシラン、テトラメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;
 3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン;
 ビニルトリメトキシシラン、N-2-(N-ビニルベンジルアミノエチル)-3-アミノプロピルトリメトキシシラン等のビニルシラン;
 N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-N’-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノシラン;
 3-イソシアネートプロピルトリメトキシシラン等のイソシアネートシラン;
 3-ウレイドプロピルトリエトキシシラン等のウレイドシラン;
 3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン;が挙げられる。
 中でも、反応性、密着性の点から、Q体又はT体のシランカップリング剤が好ましい。
 シランカップリング剤は市販品を用いてもよく、具体的には、KBP-90(製品名、信越シリコーン社製、アミノシラン)、テトラエトキシシラン(富士フイルム和光純薬株式会社)が挙げられる。
 また、中間層は、酸等の触媒を含んでいてもよい。
The intermediate layer is preferably a layer that improves the adhesion between the substrate 10 and the silica film 20, and specifically, it is more preferably a layer formed using a silane coupling agent.
Specific examples of silane coupling agents include:
Tetraethoxysilane, tetramethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyl Epoxysilane such as diethoxysilane;
(meth)acrylic silanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyltrimethoxysilane;
Vinylsilanes such as vinyltrimethoxysilane, N-2-(N-vinylbenzylaminoethyl)-3-aminopropyltrimethoxysilane;
N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-N'-(2-amino Aminosilanes such as ethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane;
Isocyanate silane such as 3-isocyanatepropyltrimethoxysilane;
ureidosilane such as 3-ureidopropyltriethoxysilane;
Examples include mercaptosilanes such as 3-mercaptopropyltrimethoxysilane.
Among these, Q-configuration or T-configuration silane coupling agents are preferred from the viewpoint of reactivity and adhesion.
Commercial products may be used as the silane coupling agent, and specific examples include KBP-90 (product name, manufactured by Shin-Etsu Silicone Co., Ltd., aminosilane) and tetraethoxysilane (Fuji Film Wako Pure Chemical Industries, Ltd.).
Moreover, the intermediate layer may contain a catalyst such as an acid.
 中間層の厚さは、5.00~30.00nmが好ましく、10.00~20.00nmがより好ましい。
 中間層の厚さは、走査型電子顕微鏡(SEM)によってシリカ膜付き基板1Aの断面画像を取得し、中間層の厚さに相当する箇所の異なる位置における厚さを3箇所測定し、その3箇所の厚さの算術平均値を意味する。
The thickness of the intermediate layer is preferably 5.00 to 30.00 nm, more preferably 10.00 to 20.00 nm.
The thickness of the intermediate layer was determined by acquiring a cross-sectional image of the silica film-coated substrate 1A using a scanning electron microscope (SEM), and measuring the thickness at three different positions corresponding to the thickness of the intermediate layer. Means the arithmetic mean value of the thickness at a location.
〔物性〕
 基板10がガラス基板である場合、シリカ膜20の表面におけるサラダ油の接触角(初期接触角)は、55.0度以上が好ましく、58.0度以上がより好ましく、60.0度以上が更に好ましい。上限は、通常67.0度以下である。
 基板10がガラス基板である場合、シリカ膜付き基板1Aを300℃で400時間加熱した後における、シリカ膜20の表面におけるサラダ油の接触角は、35.0度以上が好ましく、37.0度以上がより好ましく、40.0度以上が更に好ましく、50.0度以上が特に好ましい。上限は、通常60.0度以下である。
 基板10がガラス基板である場合、シリカ膜付き基板1Aを250℃で800時間加熱した後における、シリカ膜20の表面におけるサラダ油の接触角は、45.0度以上が好ましく、50.0度以上がより好ましく、55.0度以上が更に好ましい。上限は、通常60.0度以下である。
 基板10がガラス基板である場合、シリカ膜付き基板1Aを25℃に調整した0.1N水酸化ナトリウム水溶液に2時間浸漬した後における、シリカ膜20の表面におけるサラダ油の接触角は、40.0度以上が好ましく、45.0度以上がより好ましく、50.0度以上が更に好ましい。上限は、通常60.0度以下である。
 これらのシリカ膜20の表面におけるサラダ油の接触角は、後述の実施例欄に記載の方法で測定される。
[Physical properties]
When the substrate 10 is a glass substrate, the contact angle (initial contact angle) of salad oil on the surface of the silica film 20 is preferably 55.0 degrees or more, more preferably 58.0 degrees or more, and still more preferably 60.0 degrees or more. preferable. The upper limit is usually 67.0 degrees or less.
When the substrate 10 is a glass substrate, the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 300° C. for 400 hours is preferably 35.0 degrees or more, and 37.0 degrees or more. is more preferable, 40.0 degrees or more is still more preferable, and 50.0 degrees or more is particularly preferable. The upper limit is usually 60.0 degrees or less.
When the substrate 10 is a glass substrate, the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 250° C. for 800 hours is preferably 45.0 degrees or more, and preferably 50.0 degrees or more. is more preferable, and even more preferably 55.0 degrees or more. The upper limit is usually 60.0 degrees or less.
When the substrate 10 is a glass substrate, the contact angle of salad oil on the surface of the silica film 20 after immersing the silica film-coated substrate 1A in a 0.1N aqueous sodium hydroxide solution adjusted to 25° C. for 2 hours is 40.0. It is preferably at least 45.0 degrees, more preferably at least 50.0 degrees. The upper limit is usually 60.0 degrees or less.
The contact angle of salad oil on the surface of these silica films 20 is measured by the method described in the Examples section below.
 基板10が金属基板である場合、シリカ膜20の表面におけるサラダ油の接触角(初期接触角)は、55.0度以上が好ましく、58.0度以上がより好ましく、60.0度以上が更に好ましい。上限は、通常67.0度以下である。
 基板10が金属基板である場合、シリカ膜付き基板1Aを300℃で400時間加熱した後における、シリカ膜20の表面におけるサラダ油の接触角は、21.0度以上が好ましく、22.0度以上がより好ましく、23.0度以上が更に好ましく、24.0度以上が特に好ましい。上限は、通常40.0度以下である。
 基板10が金属基板である場合、シリカ膜付き基板1Aを250℃で800時間加熱した後における、シリカ膜20の表面におけるサラダ油の接触角は、47.0度以上が好ましく、48.0度以上がより好ましく、49.0度以上が更に好ましい。上限は、通常55.0度以下である。
 これらのシリカ膜20の表面におけるサラダ油の接触角は、後述の実施例欄に記載の方法で測定される。
When the substrate 10 is a metal substrate, the contact angle (initial contact angle) of salad oil on the surface of the silica film 20 is preferably 55.0 degrees or more, more preferably 58.0 degrees or more, and still more preferably 60.0 degrees or more. preferable. The upper limit is usually 67.0 degrees or less.
When the substrate 10 is a metal substrate, the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 300° C. for 400 hours is preferably 21.0 degrees or more, and preferably 22.0 degrees or more. is more preferable, 23.0 degrees or more is even more preferable, and 24.0 degrees or more is particularly preferable. The upper limit is usually 40.0 degrees or less.
When the substrate 10 is a metal substrate, the contact angle of salad oil on the surface of the silica film 20 after heating the silica film-coated substrate 1A at 250° C. for 800 hours is preferably 47.0 degrees or more, and preferably 48.0 degrees or more. is more preferable, and even more preferably 49.0 degrees or more. The upper limit is usually 55.0 degrees or less.
The contact angle of salad oil on the surface of these silica films 20 is measured by the method described in the Examples section below.
〔用途〕
 シリカ膜付き基板1Aの用途は、特に限定されないが、初期撥油性及び加熱時撥油性に優れるという点から、調理器具(例えば、オーブン、レンジ、グリル)の庫内の表面に用いる防汚部材、台所用部材(例えば、コンロ、タイル)の表面に用いる防汚部材、工作機器の部材に用いる防汚部材に好適である。
[Application]
The use of the silica film-coated substrate 1A is not particularly limited, but because of its excellent initial oil repellency and oil repellency during heating, it can be used as a stain-proofing member for use on the inside surface of cooking utensils (e.g. ovens, ranges, grills). It is suitable for antifouling members used on the surfaces of kitchen members (for example, stoves, tiles) and antifouling members used for members of machine tools.
〔シリカ膜付き基板の製造方法〕
 シリカ膜付き基板1Aの製造方法としては、基板10上にシリカ膜形成用組成物を塗布し、必要に応じて乾燥して、基板10上にシリカ膜20を形成する方法が挙げられる。
[Method for manufacturing substrate with silica film]
Examples of the method for manufacturing the silica film-coated substrate 1A include a method in which a silica film-forming composition is applied onto the substrate 10 and dried if necessary to form the silica film 20 on the substrate 10.
<シリカ膜形成用組成物>
 シリカ膜形成用組成物は、加水分解性化合物類と、酸化防止剤と、を含む。
<Silica film forming composition>
The composition for forming a silica film includes hydrolyzable compounds and an antioxidant.
(加水分解性化合物類)
 加水分解性化合物類は、式(1)で表される化合物を含む加水分解性化合物、その加水分解物、及び、その加水分解縮合物からなる群から選択される少なくとも1種である。式(1)で表される化合物を含む加水分解性化合物の具体例及び好適態様は、上述した通りであるのでその説明を省略する。
(Hydrolyzable compounds)
The hydrolyzable compound is at least one selected from the group consisting of a hydrolyzable compound including the compound represented by formula (1), a hydrolyzate thereof, and a hydrolyzed condensate thereof. Specific examples and preferred embodiments of the hydrolyzable compound including the compound represented by formula (1) are as described above, so their explanation will be omitted.
 シリカ膜形成用組成物は、加水分解性化合物類として、式(1)のnが1である化合物(例えば、メチルトリメトキシシラン)と式(1)のnが2である化合物(例えば、ジメチルジメトキシシラン)との加水分解縮合物、及び、加水分解性化合物としての式(1)のnが1である化合物(例えば、メチルトリエトキシシラン、エチルトリエトキシシラン)を含むことが好ましい。これにより、加水分解縮合物由来の撥油性を保ちながら、加水分解性化合物の添加による膜骨格の増強効果によって高い耐摩耗性、耐熱性が得られる。 The composition for forming a silica film contains a compound in which n in formula (1) is 1 (for example, methyltrimethoxysilane) and a compound in which n in formula (1) is 2 (for example, dimethyl It is preferable to include a hydrolyzed condensate with dimethoxysilane) and a compound in which n in formula (1) is 1 (for example, methyltriethoxysilane, ethyltriethoxysilane) as a hydrolyzable compound. As a result, while maintaining the oil repellency derived from the hydrolyzed condensate, high abrasion resistance and heat resistance can be obtained due to the effect of strengthening the membrane skeleton by adding the hydrolyzable compound.
 ここで、加水分解性化合物の加水分解物とは、加水分解性化合物中の加水分解性基が加水分解して得られる化合物を意図する。なお、上記加水分解物は、加水分解性基の全てが加水分解されているもの(完全加水分解物)であっても、加水分解性基の一部が加水分解されているもの(部分加水分解物)であってもよい。つまり、上記加水分解物は、完全加水分解物、部分加水分解物、又は、これらの混合物であってもよい。
 なお、加水分解性化合物の加水分解縮合物の詳細は、上述した通りであるのでその説明を省略する。
Here, the term "hydrolyzate of a hydrolyzable compound" refers to a compound obtained by hydrolyzing a hydrolyzable group in a hydrolyzable compound. Note that the above hydrolysates may be those in which all of the hydrolyzable groups have been hydrolyzed (completely hydrolyzed products) or those in which some of the hydrolyzable groups have been hydrolyzed (partially hydrolysed products). It may be a thing). That is, the above-mentioned hydrolyzate may be a complete hydrolyzate, a partial hydrolyzate, or a mixture thereof.
Note that the details of the hydrolyzed condensate of the hydrolyzable compound are as described above, so the explanation thereof will be omitted.
 加水分解性化合物類の含有量は、シリカ膜形成用組成物の全質量に対して、0.1~10.0質量%が好ましく、0.5~5.0質量%がより好ましい。 The content of the hydrolyzable compounds is preferably 0.1 to 10.0% by mass, more preferably 0.5 to 5.0% by mass, based on the total mass of the silica film-forming composition.
(酸化防止剤)
 酸化防止剤の具体例及び好適態様は、上述した通りであるのでその説明を省略する。
 酸化防止剤の含有量は、シリカ膜形成用組成物の全質量に対して、0.0005~2.0質量%が好ましく、0.02~0.2質量%がより好ましい。
(Antioxidant)
Specific examples and preferred embodiments of the antioxidant are as described above, so their explanation will be omitted.
The content of the antioxidant is preferably 0.0005 to 2.0% by mass, more preferably 0.02 to 0.2% by mass, based on the total mass of the silica film-forming composition.
(シリカ粒子)
 シリカ膜形成用組成物は、シリカ粒子を含むことが好ましい。シリカ粒子の具体例及び好適態様は、上述した通りであるのでその説明を省略する。
 シリカ粒子の含有量は、シリカ膜形成用組成物の全質量に対して、0.05~10.0質量%が好ましく、0.1~1.0質量%がより好ましい。
(Silica particles)
It is preferable that the composition for forming a silica film contains silica particles. Specific examples and preferred embodiments of the silica particles are as described above, so their explanation will be omitted.
The content of silica particles is preferably 0.05 to 10.0% by mass, more preferably 0.1 to 1.0% by mass, based on the total mass of the silica film-forming composition.
(液状媒体)
 シリカ膜形成用組成物は、液状媒体を含むことが好ましい。液状媒体は、組成物中において、加水分解性化合物類を溶解又は分散させ、必要に応じて用いられるシリカ粒子を分散させる溶媒であるのが好ましい。
(liquid medium)
The composition for forming a silica film preferably contains a liquid medium. The liquid medium is preferably a solvent that dissolves or disperses the hydrolyzable compounds and, if necessary, disperses the silica particles used in the composition.
 液状媒体の具体例としては、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等の有機溶媒、及び、水が挙げられる。 Specific examples of the liquid medium include organic solvents such as alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds, and water.
 アルコール類の具体例としては、メタノール、エタノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、ジアセトンアルコールが挙げられる。
 ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。
 エーテル類の具体例としては、テトラヒドロフラン、1,4-ジオキサンが挙げられる。
 セロソルブ類の具体例としては、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブが挙げられる。
 エステル類の具体例としては、酢酸メチル、酢酸エチル、酢酸ブチルが挙げられる。
 グリコールエーテル類の具体例としては、エチレングリコールモノアルキルエーテルが挙げられる。
 含窒素化合物の具体例としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドンが挙げられる。
 含硫黄化合物の具体例としては、ジメチルスルホキシドが挙げられる。
Specific examples of alcohols include methanol, ethanol, isopropanol, 1-butanol, 2-butanol, isobutanol, and diacetone alcohol.
Specific examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
Specific examples of ethers include tetrahydrofuran and 1,4-dioxane.
Specific examples of cellosolves include methyl cellosolve, ethyl cellosolve, and butyl cellosolve.
Specific examples of esters include methyl acetate, ethyl acetate, and butyl acetate.
Specific examples of glycol ethers include ethylene glycol monoalkyl ether.
Specific examples of nitrogen-containing compounds include N,N-dimethylacetamide, N,N-dimethylformamide, and N-methylpyrrolidone.
A specific example of the sulfur-containing compound is dimethyl sulfoxide.
 液状媒体は、1種単独で用いても2種以上を併用してもよい。
 液状媒体は、加水分解性化合物の加水分解の点から、水のみを含むか、又は、水と有機溶媒との混合溶媒であるのが好ましい。
 水と有機溶媒との混合溶媒を用いる場合、有機溶媒としては、アルコール類が好ましく、特にイソプロパノールや、混合アルコール(例えば、ソルミックスAP-11(日本アルコール販売社製))が好ましい。
 酸化防止剤を添加する場合、あらかじめ酸化防止剤の溶解性が良い酢酸ブチルやアセトンに溶解すると良い。
The liquid medium may be used alone or in combination of two or more.
From the viewpoint of hydrolysis of the hydrolyzable compound, the liquid medium preferably contains only water or is a mixed solvent of water and an organic solvent.
When a mixed solvent of water and an organic solvent is used, the organic solvent is preferably an alcohol, particularly isopropanol or a mixed alcohol (for example, Solmix AP-11 (manufactured by Nippon Alcohol Sales Co., Ltd.)).
When adding an antioxidant, it is preferable to dissolve the antioxidant in advance in butyl acetate or acetone, in which the antioxidant has good solubility.
 シリカ膜形成用組成物が液状媒体を含む場合、液状媒体の含有量は、シリカ膜形成用組成物の全質量に対して、70.0~99.5質量%が好ましく、88.5~99.0質量%がより好ましい。 When the composition for forming a silica film contains a liquid medium, the content of the liquid medium is preferably 70.0 to 99.5% by mass, and 88.5 to 99% by mass based on the total mass of the composition for forming a silica film. .0% by mass is more preferable.
(他の成分)
 シリカ膜形成用組成物は、上記以外の他の成分を含んでいてもよい。他の成分の具体例としては、金属触媒、酸触媒(例えば、硝酸)、シリコーンオイル、界面活性剤、pH調整剤、消泡剤が挙げられ、中でも、酸触媒を用いることが好ましい。
 シリカ膜形成用組成物が上述した他の成分を含む場合、他の成分の含有量は、シリカ膜形成用組成物の全質量に対して、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
 シリカ膜形成用組成物が酸触媒を含む場合、酸触媒の含有量は、シリカ膜形成用組成物の全質量に対して、加水分解性化合物類の加水分解および縮合の制御性の点から、0.0001~5.0質量%が好ましく、0.001~3.0質量%がより好ましい。
(other ingredients)
The composition for forming a silica film may contain other components than those mentioned above. Specific examples of other components include metal catalysts, acid catalysts (for example, nitric acid), silicone oils, surfactants, pH adjusters, and antifoaming agents, among which it is preferable to use acid catalysts.
When the composition for forming a silica film contains the other components mentioned above, the content of the other components is preferably 0.1 to 20% by mass, and 0.5% by mass based on the total mass of the composition for forming a silica film. More preferably 10% by mass.
When the composition for forming a silica film contains an acid catalyst, the content of the acid catalyst is determined based on the total mass of the composition for forming a silica film, from the viewpoint of controllability of hydrolysis and condensation of hydrolyzable compounds. It is preferably 0.0001 to 5.0% by weight, more preferably 0.001 to 3.0% by weight.
(調製方法)
 シリカ膜形成用組成物は、加水分解性化合物類、酸化防止剤、任意成分(例えば、シリカ粒子、液状媒体、酸触媒)を混合して製造できる。例えば、加水分解性化合物類のゾルゲル溶液を調製した後、得られたゾルゲル溶液と、酸化防止剤と、任意成分と、を混合して製造してもよい。
(Preparation method)
The composition for forming a silica film can be produced by mixing hydrolyzable compounds, an antioxidant, and optional components (for example, silica particles, a liquid medium, and an acid catalyst). For example, after preparing a sol-gel solution of hydrolyzable compounds, the resulting sol-gel solution, an antioxidant, and optional components may be mixed to produce the sol-gel solution.
<工程>
 塗布方法としては、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等のウェットコート法が挙げられる。
<Process>
Application methods include spin coating, spray coating, dip coating, die coating, curtain coating, screen coating, inkjet coating, flow coating, gravure coating, bar coating, flexo coating, and slit coating. , a wet coating method such as a roll coating method.
 乾燥は、加熱により行ってもよく、加熱せずに自然乾燥や風乾により行ってもよい。
 乾燥温度は、シリカ膜の硬度が優れる点から、50℃~400℃が好ましく、100℃~350℃がより好ましく、200~300℃が更に好ましい。
 乾燥時間は、乾燥温度や基板のサイズ等によって適宜設定すればよいが、5分~120分が好ましく、10分~90分がより好ましく、30分~60分が更に好ましい。
Drying may be performed by heating, or may be performed by natural drying or air drying without heating.
The drying temperature is preferably 50°C to 400°C, more preferably 100°C to 350°C, and even more preferably 200 to 300°C, in view of the excellent hardness of the silica film.
The drying time may be appropriately set depending on the drying temperature, the size of the substrate, etc., but is preferably 5 minutes to 120 minutes, more preferably 10 minutes to 90 minutes, and even more preferably 30 minutes to 60 minutes.
<その他の工程>
 基板10とシリカ膜20との間に上述した中間層を含むシリカ膜付き基板1Aを得たい場合には、基板10上にシリカ膜形成用組成物を塗布する前に、基板10の表面に中間層形成用組成物を塗布して中間層を形成する工程を更に含んでいてもよい。この場合、シリカ膜形成用組成物は、基板10上に形成された中間層の表面に塗布される。
<Other processes>
When it is desired to obtain a substrate 1A with a silica film including the above-mentioned intermediate layer between the substrate 10 and the silica film 20, an intermediate layer is formed on the surface of the substrate 10 before applying the composition for forming a silica film on the substrate 10. The method may further include a step of applying a layer-forming composition to form an intermediate layer. In this case, the silica film-forming composition is applied to the surface of the intermediate layer formed on the substrate 10.
 中間層形成用組成物は、シランカップリング剤と、液状媒体とを含むことが好ましく、触媒を含んでもよい。
 シランカップリング剤の具体例及び好適態様は、上述した通りであるのでその説明を省略する。シランカップリング剤の含有量は、中間層形成用組成物の全質量に対して、0.1~5.0質量%が好ましく、0.3~3.0質量%がより好ましい。
 中間層形成用組成物中の液状媒体の具体例は、シリカ膜形成用組成物に含まれ得る液状媒体の具体例と同様であるので、その説明を省略する。液状媒体の含有量は、中間層形成用組成物の全質量に対して、95.0~99.9質量%が好ましく、97.0~99.7質量%がより好ましい。
The intermediate layer forming composition preferably contains a silane coupling agent and a liquid medium, and may also contain a catalyst.
Specific examples and preferred embodiments of the silane coupling agent are as described above, so their explanation will be omitted. The content of the silane coupling agent is preferably 0.1 to 5.0% by mass, more preferably 0.3 to 3.0% by mass, based on the total mass of the intermediate layer forming composition.
The specific example of the liquid medium in the composition for forming an intermediate layer is the same as the specific example of the liquid medium that can be included in the composition for forming a silica film, so a description thereof will be omitted. The content of the liquid medium is preferably 95.0 to 99.9% by mass, more preferably 97.0 to 99.7% by mass, based on the total mass of the intermediate layer forming composition.
 中間層形成用組成物の塗布方法の具体例は、シリカ膜形成用組成物の塗布方法の具体例と同様であるので、その説明を省略する。
 中間層を形成する工程は、基板10に塗布した中間層形成用組成物を乾燥させる処理を有していてもよい。基板10に塗布した中間層形成用組成物の乾燥条件の具体例は、上述した基板10上に塗布したシリカ膜形成用組成物の乾燥条件と同様であるので、その説明を省略する。
The specific example of the method for applying the composition for forming an intermediate layer is the same as the specific example of the method for applying the composition for forming a silica film, so the explanation thereof will be omitted.
The step of forming the intermediate layer may include a process of drying the intermediate layer forming composition applied to the substrate 10. Specific examples of the drying conditions for the composition for forming an intermediate layer applied to the substrate 10 are the same as those for the composition for forming a silica film applied to the substrate 10 described above, so the explanation thereof will be omitted.
 以下、例を挙げて本発明を詳細に説明する。例1-1~例1-23、例2-1は実施例であり、例1-24~例1-29、例2-2は比較例である。ただし本発明はこれらの例に限定されない。なお、後述する表中における各成分の配合量は、質量基準を示す。 Hereinafter, the present invention will be explained in detail by giving examples. Examples 1-1 to 1-23 and 2-1 are examples, and examples 1-24 to 1-29 and 2-2 are comparative examples. However, the present invention is not limited to these examples. Note that the amounts of each component in the table described below are based on mass.
[シリカ膜の厚さの算出]
 エリプソメーター(商品名「XLS-100」、J.A.Woollam Co.Inc製)を用いて、シリカ膜付き基材のシリカ膜に対して、測定角度50~75°の範囲で5°刻みで測定して得られたスペクトルをCauchyの式でフィッティングして、シリカ膜の厚さを求めた。
[Calculation of silica film thickness]
Using an ellipsometer (trade name "XLS-100", manufactured by J.A. Woollam Co. Inc.), the measurement angle was measured in 5° increments in the range of 50 to 75° against the silica film of the silica film-coated base material. The thickness of the silica film was determined by fitting the measured spectrum using Cauchy's equation.
[C/Siの算出]
 C/Si(シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比)は、次のようにして求めた。
 まず、シリカ膜の表面と検出器のなす角度を45度としたX線光電子分光法(XPS)によって、下記条件にてシリカ膜の表面を分析して、Si2p、C1s、O1S、及び、AL2Pの各ピーク強度を求めた。
 得られたピーク強度に基づいて、ケイ素原子の含有量(at%)及び炭素原子の含有量(at%)を求めて、ケイ素原子の含有量(at%)に対する炭素原子の濃度(at%)の比(C/Si)を算出した。
<測定装置及び測定条件>
 装置:表面XPS測定装置(ULVAC-PHI社製 PHI Quantera SXM)
 X線源:Al Kα
 加速電圧電力:24.8W
 測定範囲:φ100.0μm
 検出角度:45度
 パスエネルギー:224.00eV
[Calculation of C/Si]
C/Si (ratio of carbon atom content to silicon atom content in a silica film) was determined as follows.
First, the surface of the silica film was analyzed by X-ray photoelectron spectroscopy (XPS) with the angle between the surface of the silica film and the detector set at 45 degrees under the following conditions, and Si 2p , C 1s , O 1S , and , each peak intensity of AL 2P was determined.
Based on the obtained peak intensity, the content of silicon atoms (at%) and the content of carbon atoms (at%) are determined, and the concentration of carbon atoms (at%) relative to the content of silicon atoms (at%) is determined. The ratio (C/Si) was calculated.
<Measuring device and measurement conditions>
Equipment: Surface XPS measurement device (PHI Quantera SXM manufactured by ULVAC-PHI)
X-ray source: Al Kα
Acceleration voltage power: 24.8W
Measurement range: φ100.0μm
Detection angle: 45 degrees Pass energy: 224.00eV
[平均一次粒子径]
 シリカ粒子の平均一次粒子径は、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-4800)を用いて、シリカ粒子のSEM写真を撮影し、画像中の一次粒子の長軸径を100個測定した。その算術平均値をシリカ粒子の平均一次粒子径として採用した。
[Average primary particle diameter]
The average primary particle diameter of the silica particles was determined by taking an SEM photograph of the silica particles using a scanning electron microscope (S-4800, manufactured by Hitachi High Technologies), and measuring the major axis diameter of 100 primary particles in the image. . The arithmetic mean value was adopted as the average primary particle diameter of the silica particles.
[初期撥油性の評価試験]
 各例のシリカ膜付き基板におけるシリカ膜表面に置いた、1μLのサラダ油(JAS規格に適合する食用植物油脂)の接触角を、接触角測定装置(協和界面科学社製 DM-500)を用いて20℃で測定した。シリカ膜表面における異なる3箇所で測定を行い、その平均値を算出して、サラダ油の接触角とした。接触角の算出には2θ法を用いた。
 基材がガラス基板である場合、サラダ油の接触角が55.0度以上である場合、初期撥油性に優れると評価した。
 基材が金属基板(アルミニウム基板)である場合、サラダ油の接触角が55.0度以上である場合、初期撥油性に優れると評価した。
[Initial oil repellency evaluation test]
The contact angle of 1 μL of salad oil (edible vegetable oil that complies with JAS standards) placed on the silica film surface of the silica film-coated substrate of each example was measured using a contact angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.). Measured at 20°C. Measurements were taken at three different locations on the surface of the silica membrane, and the average value was calculated and used as the contact angle of salad oil. The 2θ method was used to calculate the contact angle.
When the base material was a glass substrate, when the contact angle of salad oil was 55.0 degrees or more, it was evaluated that the initial oil repellency was excellent.
When the base material was a metal substrate (aluminum substrate) and the contact angle of salad oil was 55.0 degrees or more, it was evaluated that the initial oil repellency was excellent.
[300℃加熱後の撥油性の評価試験]
 各例のシリカ膜付き基板を槽内温度300℃のマッフル炉に配置した。400時間経過後にマッフル炉から取り出した各例のシリカ膜付き基板を用いた以外は、上記「初期撥油性の評価試験」と同様にしてサラダ油の接触角を求めた。
 基材がガラス基板である場合、サラダ油の接触角が35.0度以上である場合、300℃加熱後の撥油性に優れると評価した。
 基材が金属基板(アルミニウム基板)である場合、サラダ油の接触角が21.0度以上である場合、300℃加熱後の撥油性に優れると評価した。
[Oil repellency evaluation test after heating at 300°C]
The silica film-coated substrate of each example was placed in a muffle furnace with an internal temperature of 300°C. The contact angle of salad oil was determined in the same manner as in the above "initial oil repellency evaluation test" except that the silica film-coated substrate of each example was taken out from the muffle furnace after 400 hours had elapsed.
When the base material was a glass substrate and the contact angle of salad oil was 35.0 degrees or more, it was evaluated that the oil repellency after heating at 300° C. was excellent.
When the base material was a metal substrate (aluminum substrate) and the contact angle of salad oil was 21.0 degrees or more, it was evaluated that the oil repellency after heating at 300° C. was excellent.
[250℃加熱後の撥油性の評価試験]
 各例のシリカ膜付き基板を槽内温度250℃のマッフル炉に配置した。800時間経過後にマッフル炉から取り出した各例のシリカ膜付き基板を用いた以外は、上記「初期撥油性の評価試験」と同様にしてサラダ油の接触角を求めた。
 基材がガラス基板である場合、サラダ油の接触角が45.0度以上である場合、250℃加熱後の撥油性に優れると評価した。
 基材が金属基板(アルミニウム基板)である場合、サラダ油の接触角が47.0度以上である場合、250℃加熱後の撥油性に優れると評価した。
[Oil repellency evaluation test after heating at 250°C]
The silica film-coated substrate of each example was placed in a muffle furnace with an internal temperature of 250°C. The contact angle of salad oil was determined in the same manner as in the above "initial oil repellency evaluation test" except that the silica film-coated substrate of each example was taken out from the muffle furnace after 800 hours had elapsed.
When the base material was a glass substrate and the contact angle of salad oil was 45.0 degrees or more, it was evaluated that the oil repellency after heating at 250° C. was excellent.
When the base material was a metal substrate (aluminum substrate) and the contact angle of salad oil was 47.0 degrees or more, it was evaluated that the oil repellency after heating at 250° C. was excellent.
[耐薬品性の評価試験]
 各例のシリカ膜付き基板を25℃に調整した0.1N水酸化ナトリウム水溶液に2時間浸漬した後、純水にて洗浄し、エアブローにて乾燥した。
 乾燥後の各例のシリカ膜付き基板を用いた以外は、上記「初期撥油性の評価試験」と同様にしてサラダ油の接触角を求めた。
 基材がガラス基板である場合、サラダ油の接触角が40.0度以上である場合、耐薬品性に優れると評価した。
[Chemical resistance evaluation test]
The silica film-coated substrate of each example was immersed in a 0.1N aqueous sodium hydroxide solution adjusted to 25° C. for 2 hours, washed with pure water, and dried with air blow.
The contact angle of salad oil was determined in the same manner as in the above "initial oil repellency evaluation test" except that the silica film-coated substrate of each example was used after drying.
When the base material was a glass substrate, when the contact angle of salad oil was 40.0 degrees or more, it was evaluated as having excellent chemical resistance.
[耐摩耗性の評価試験]
 各例のシリカ膜付き基板のシリカ膜について、摩耗試験機を用い、荷重:125g/cm、速度:40rpmの条件で不織布(材質:セルロース)を3000回往復させた。摩耗試験後の各例のシリカ膜付き基板を用いた以外は、上記「初期撥油性の評価試験」と同様にしてサラダ油の接触角を求めた。
 基材がガラス基板である場合、サラダ油の接触角が35.0度以上である場合、耐摩耗性に優れると評価した。
[Abrasion resistance evaluation test]
Regarding the silica film of the silica film-coated substrate of each example, a nonwoven fabric (material: cellulose) was reciprocated 3000 times using an abrasion tester at a load of 125 g/cm 2 and a speed of 40 rpm. The contact angle of salad oil was determined in the same manner as in the above "initial oil repellency evaluation test" except that the silica film-coated substrate of each example after the wear test was used.
When the base material was a glass substrate, when the contact angle of salad oil was 35.0 degrees or more, it was evaluated as having excellent abrasion resistance.
[外観特性の評価試験]
 各例のシリカ膜付き基板におけるシリカ膜表面の外観を目視にて観察し、以下の基準によって膜外観を評価した。
 ○:異物に起因する凹凸が確認されない。
 ×:異物に起因する凹凸が確認される。
[Evaluation test of appearance characteristics]
The appearance of the silica film surface of each example of the silica film-coated substrate was visually observed, and the film appearance was evaluated according to the following criteria.
○: No unevenness caused by foreign matter is observed.
×: Unevenness caused by foreign matter is confirmed.
[耐傷性の評価試験]
 各例のシリカ膜付き基板のシリカ膜の表面について、JIS K5600に準拠する方法で鉛筆硬度試験を行った。基材がガラス基板である場合、鉛筆硬度が5H以上である場合、耐傷性に優れると評価した。
[Scratch resistance evaluation test]
A pencil hardness test was conducted on the surface of the silica film of each example of the silica film-coated substrate by a method based on JIS K5600. When the base material was a glass substrate and the pencil hardness was 5H or more, it was evaluated that the scratch resistance was excellent.
[使用成分]
 シリカ膜形成用組成物の調製に使用した成分の概要を以下に示す。
[Ingredients used]
A summary of the components used to prepare the composition for forming a silica film is shown below.
〔式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物〕
・X-40-9246:信越化学工業株式会社製、ジメチルジメトキシシラン50モル%とメチルトリメトキシシラン50モル%からなる平均分子量870の縮合体
〔式(1)で表される化合物(加水分解性化合物)〕
・メチルトリエトキシシラン:東京化成工業株式会社製
・ジメチルジメトキシシラン:東京化成工業株式会社製
・エチルトリエトキシシラン:東京化成工業株式会社製
〔式(1)で表される化合物以外の加水分解性化合物〕
・テトラエトキシシラン:富士フイルム和光純薬株式会社製
〔シリカ粒子〕
・スノーテックスST-OXS:日産化学工業株式会社製、平均一次粒子径5nm、固形分10質量%の水分散コロイダルシリカ
〔液状媒体〕
・アルコール溶媒:ソルミックスAP-11(日本アルコール販売社製)、エタノール:イソプロピルアルコール:メタノール=85.5:9.8:4.7(質量比)の混合溶媒
・水:純水
〔酸化防止剤〕
・フェノール系酸化防止剤:2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイルビス(2-メチルプロパン-2,1-ジイル)ビス[3-[3-(t-ブチル)-4-ヒドロキシ-5-メチルフェニル]プロパノアート]、商品名:アデカスタブ AO-80(株式会社ADEKA製)
・リン系酸化防止剤:トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、商品名:アデカスタブ 2112(株式会社ADEKA製)
・硫黄系酸化防止剤:ペンタエリスリトールテトラキス[3-(ドデシルチオ)プロピオネート]、株式会社ADEKA製
〔酸触媒〕
・硝酸水溶液:60%硝酸、純正化学株式会社製
[Hydrolyzed condensate of a hydrolyzable compound containing the compound represented by formula (1)]
・X-40-9246: Manufactured by Shin-Etsu Chemical Co., Ltd., a condensate with an average molecular weight of 870 consisting of 50 mol% dimethyldimethoxysilane and 50 mol% methyltrimethoxysilane [compound represented by formula (1) (hydrolyzable Compound)〕
・Methyltriethoxysilane: Manufactured by Tokyo Chemical Industry Co., Ltd. ・Dimethyldimethoxysilane: Manufactured by Tokyo Chemical Industry Co., Ltd. ・Ethyltriethoxysilane: Manufactured by Tokyo Chemical Industry Co., Ltd. [Hydrolyzable compounds other than those represented by formula (1)] Compound〕
・Tetraethoxysilane: Manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. [Silica particles]
・Snowtex ST-OXS: manufactured by Nissan Chemical Industries, Ltd., water-dispersed colloidal silica with an average primary particle diameter of 5 nm and a solid content of 10% by mass [liquid medium]
・Alcohol solvent: Solmix AP-11 (manufactured by Nippon Alcohol Sales Co., Ltd.), mixed solvent of ethanol: isopropyl alcohol: methanol = 85.5:9.8:4.7 (mass ratio) ・Water: pure water [antioxidant Agent]
・Phenolic antioxidant: 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diylbis(2-methylpropane-2,1-diyl)bis[3-[3-( t-butyl)-4-hydroxy-5-methylphenyl]propanoate], trade name: ADEKA STAB AO-80 (manufactured by ADEKA Co., Ltd.)
・Phosphorous antioxidant: Tris (2,4-di-t-butylphenyl) phosphite, trade name: ADEKA STAB 2112 (manufactured by ADEKA Co., Ltd.)
・Sulfur-based antioxidant: Pentaerythritol tetrakis [3-(dodecylthio)propionate], manufactured by ADEKA Co., Ltd. [acid catalyst]
・Nitric acid aqueous solution: 60% nitric acid, manufactured by Junsei Kagaku Co., Ltd.
〔シリカ膜形成用組成物1の調製〕
 X-40-9246を1.43g、メチルトリエトキシシラン(MTES)を3.33g、スノーテックスST-OXSを2.50g、ソルミックスAP-11(アルコール溶媒)を38.83g混合し、純水を3.67g、60%硝酸水溶液0.0042gを純水0.246gで希釈した1%硝酸水溶液0.25g滴下後60℃で30分間攪拌して濃厚液を得た。得られた濃厚液を20g、フェノール系酸化防止剤(アデカスタブ AO-80)を0.02g、リン系酸化防止剤(アデカスタブ 2112)を0.04g、ソルミックスAP-11(アルコール溶媒)を79.9g混合し、室温で2分間よく攪拌し、コート液であるシリカ膜形成用組成物1を得た。
[Preparation of silica film forming composition 1]
Mix 1.43g of X-40-9246, 3.33g of methyltriethoxysilane (MTES), 2.50g of Snowtex ST-OXS, and 38.83g of Solmix AP-11 (alcohol solvent), and add pure water. After dropping 0.25 g of a 1% nitric acid aqueous solution prepared by diluting 3.67 g of 60% nitric acid aqueous solution and 0.0042 g of a 60% nitric acid aqueous solution with 0.246 g of pure water, the mixture was stirred at 60° C. for 30 minutes to obtain a concentrated liquid. 20 g of the obtained concentrated liquid, 0.02 g of phenolic antioxidant (ADK STAB AO-80), 0.04 g of phosphorous antioxidant (ADK STAB 2112), and 79 g of Solmix AP-11 (alcohol solvent). 9g of the mixture was mixed and thoroughly stirred at room temperature for 2 minutes to obtain Silica film forming composition 1, which is a coating liquid.
〔シリカ膜形成用組成物2~23の調製〕
 各成分の含有量(質量部)が表1~5に記載の値になるように各成分の使用量を調整した以外は、シリカ膜形成用組成物1の調製と同様にして、シリカ膜形成用組成物2~23を得た。
[Preparation of silica film forming compositions 2 to 23]
A silica film was formed in the same manner as in the preparation of Composition 1 for forming a silica film, except that the amount of each component used was adjusted so that the content (parts by mass) of each component became the values listed in Tables 1 to 5. Compositions 2 to 23 were obtained.
[例1-1]
 表面を洗浄したソーダライムガラス(AGC社製、サイズ:10×10mm、厚さ:2mm)上に、スピンコート法によってシリカ膜形成用組成物1を塗布し、大気中200℃で30分間乾燥させて、例1-1のシリカ膜付き基板を得た。
[Example 1-1]
Silica film-forming composition 1 was applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at 200° C. in the atmosphere for 30 minutes. Thus, a silica film-coated substrate of Example 1-1 was obtained.
[例1-2~1-19、1-21、1-24~1-29]
 シリカ膜形成用組成物1の代わりに、表1に記載のシリカ膜形成用組成物を用い、シリカ膜の厚さが表1の値になるように塗布条件を調節した以外は例1-1と同様にして、例1-2~1-19、1-21、1-24~1-29のシリカ膜付き基板を作製した。
[Examples 1-2 to 1-19, 1-21, 1-24 to 1-29]
Example 1-1 except that the silica film-forming composition listed in Table 1 was used instead of silica film-forming composition 1, and the coating conditions were adjusted so that the thickness of the silica film was the value shown in Table 1. In the same manner as above, silica film-coated substrates of Examples 1-2 to 1-19, 1-21, and 1-24 to 1-29 were produced.
[例1-20]
 KBP-90(信越シリコーン株式会社製、アミノシラン系シランカップリング剤)の0.11g、1-ブタノールの49.9gを混合して、中間層形成用組成物1を得た。
 そして、表面を洗浄したソーダライムガラス(AGC社製、サイズ:10×10mm、厚さ:2mm)上に、スピンコート法によって中間層形成用組成物1を塗布し、室温で5分間乾燥させて、ソーダライムガラスの表面に中間層(厚さ:15nm)を形成した。
 次に、中間層の表面にスピンコート法によってシリカ膜形成用組成物1を塗布し、大気中200℃で30分間乾燥させて、ソーダライムガラスとシリカ膜との間に中間層を有する例1-17のシリカ膜付き基板を得た。
[Example 1-20]
Intermediate layer forming composition 1 was obtained by mixing 0.11 g of KBP-90 (manufactured by Shin-Etsu Silicone Co., Ltd., an aminosilane-based silane coupling agent) and 49.9 g of 1-butanol.
Intermediate layer forming composition 1 was then applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at room temperature for 5 minutes. An intermediate layer (thickness: 15 nm) was formed on the surface of soda lime glass.
Next, the composition 1 for forming a silica film was applied to the surface of the intermediate layer by a spin coating method, and dried in the atmosphere at 200°C for 30 minutes to form an intermediate layer between the soda lime glass and the silica film Example 1 A substrate with a silica film of -17 was obtained.
[例1-22]
 表面を洗浄したソーダライムガラス(AGC社製、サイズ:10×10mm、厚さ:2mm)上に、スピンコート法によってシリカ膜形成用組成物1を塗布し、大気中300℃で60分間乾燥させて、例1-22のシリカ膜付き基板を得た。
[Example 1-22]
Silica film-forming composition 1 was applied by spin coating onto soda lime glass (manufactured by AGC, size: 10 x 10 mm, thickness: 2 mm) whose surface had been cleaned, and dried at 300° C. for 60 minutes in the air. Thus, a silica film-coated substrate of Example 1-22 was obtained.
[例1-23]
 シリカ膜の厚さが表1の値になるように塗布条件を調節した以外は例1-22と同様にして、例1-23のシリカ膜付き基板を作製した。
[Example 1-23]
A substrate with a silica film of Example 1-23 was prepared in the same manner as Example 1-22 except that the coating conditions were adjusted so that the thickness of the silica film was as shown in Table 1.
[例2-1]
 基板としてソーダライムガラスの代わりにアルミニウム基板(サイズ:100×100mm、厚さ:4.0mm)を用いた以外は、例1-1と同様にして、例2-1のシリカ膜付き基板を得た。
[Example 2-1]
A silica film-coated substrate of Example 2-1 was obtained in the same manner as Example 1-1, except that an aluminum substrate (size: 100 x 100 mm, thickness: 4.0 mm) was used instead of soda lime glass as the substrate. Ta.
[例2-2]
 シリカ膜形成用組成物1の代わりに、シリカ膜形成用組成物22を用いた以外は例2-1と同様にして、例2-2のシリカ膜付き基板を作製した。
[Example 2-2]
A substrate with a silica film of Example 2-2 was produced in the same manner as Example 2-1 except that Composition 22 for forming a silica film was used instead of Composition 1 for forming a silica film.
[評価結果]
 例1-1~1-29のシリカ膜付き基板を用いて、上述の各種評価を行った。結果を表1~4に示す。
 また、例2-1~2-2のシリカ膜付き基板を用いて、上述の各種評価を行った。結果を表5に示す。
 なお、例1-29のシリカ膜付き基材は、シリカ膜の外観特性(表面状態)が著しく悪かったので、外観特性以外の評価を実施できなかった。
[Evaluation results]
The various evaluations described above were performed using the silica film-coated substrates of Examples 1-1 to 1-29. The results are shown in Tables 1 to 4.
Further, the various evaluations described above were performed using the silica film-coated substrates of Examples 2-1 and 2-2. The results are shown in Table 5.
Note that the silica film-coated base material of Example 1-29 had extremely poor appearance characteristics (surface condition) of the silica film, so evaluations other than appearance characteristics could not be performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5に示す通り、上述の式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含み、酸化防止剤の含有量がシリカ膜の全質量に対して25質量%以下であり、C/Siが0.90以上であり、厚さが15nm以上であるシリカ膜を用いれば、初期撥油性及び300℃加熱後の撥油性に優れるシリカ膜付き基板が得られることが確認された。
 なお、2022年8月3日に出願された日本特許出願2022-123895号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As shown in Tables 1 to 5, it contains a hydrolyzed condensate of a hydrolyzable compound including the compound represented by formula (1) above, and an antioxidant, and the antioxidant content is the same as that of the silica film. By using a silica film that is 25% by mass or less based on the mass, has a C/Si of 0.90 or more, and has a thickness of 15 nm or more, the silica film has excellent initial oil repellency and oil repellency after heating at 300°C. It was confirmed that a bonded substrate could be obtained.
In addition, the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2022-123895 filed on August 3, 2022 are cited here, and as a disclosure of the specification of the present invention, It is something to be taken in.
 1A  シリカ膜付き基板
 10  基板
 20  シリカ膜
1A Substrate with silica film 10 Substrate 20 Silica film

Claims (10)

  1.  基板と、前記基板上に配置されたシリカ膜とを含み、
     前記シリカ膜が、式(1)で表される化合物を含む加水分解性化合物の加水分解縮合物、及び、酸化防止剤を含み、
     前記酸化防止剤の含有量が、前記シリカ膜の全質量に対して、25質量%以下であり、
     前記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が0.90以上であり、
     前記シリカ膜の厚さが15nm以上である、シリカ膜付き基板。
      Si(-R(-OR4-n   式(1)
     上記式(1)中、
     Rは、炭素数1~3のアルキル基であり、
     Rは、メチル基又はエチル基であり、
     nは、1~3の整数である。
    comprising a substrate and a silica film disposed on the substrate,
    The silica membrane contains a hydrolyzed condensate of a hydrolyzable compound containing the compound represented by formula (1), and an antioxidant,
    The content of the antioxidant is 25% by mass or less based on the total mass of the silica film,
    The ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 0.90 or more,
    A substrate with a silica film, wherein the silica film has a thickness of 15 nm or more.
    Si(-R 1 ) n (-OR 2 ) 4-n formula (1)
    In the above formula (1),
    R 1 is an alkyl group having 1 to 3 carbon atoms,
    R 2 is a methyl group or an ethyl group,
    n is an integer from 1 to 3.
  2.  前記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が1.60以下である、請求項1に記載のシリカ膜付き基板。 The substrate with a silica film according to claim 1, wherein the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 1.60 or less.
  3.  前記シリカ膜中のケイ素原子の含有量に対する炭素原子の含有量の比が1.40~1.60である、請求項1又は2に記載のシリカ膜付き基板。 The substrate with a silica film according to claim 1 or 2, wherein the ratio of the content of carbon atoms to the content of silicon atoms in the silica film is 1.40 to 1.60.
  4.  前記シリカ膜の厚さが120nm以下である、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, wherein the silica film has a thickness of 120 nm or less.
  5.  空気中で測定した際の前記酸化防止剤の12%重量減少温度が300℃以上である、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, wherein the antioxidant has a 12% weight loss temperature of 300°C or higher when measured in air.
  6.  前記シリカ膜が、前記酸化防止剤として、反応機構が互いに異なる2種以上の酸化防止剤を含む、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, wherein the silica film contains two or more types of antioxidants having different reaction mechanisms as the antioxidant.
  7.  前記シリカ膜が、前記酸化防止剤として、フェノール系酸化防止剤と、リン系酸化防止剤とを含む、請求項1又は2に記載のシリカ膜付き基板。 The substrate with a silica film according to claim 1 or 2, wherein the silica film contains a phenolic antioxidant and a phosphorus antioxidant as the antioxidant.
  8.  前記酸化防止剤の含有量が、前記シリカ膜の全質量に対して、0.05~25質量%である、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, wherein the content of the antioxidant is 0.05 to 25% by mass based on the total mass of the silica film.
  9.  前記シリカ膜が、シリカ粒子を更に含む、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, wherein the silica film further contains silica particles.
  10.  前記基板と前記シリカ膜との間に中間層を更に含む、請求項1又は2に記載のシリカ膜付き基板。 The silica film-coated substrate according to claim 1 or 2, further comprising an intermediate layer between the substrate and the silica film.
PCT/JP2023/028164 2022-08-03 2023-08-01 Substrate with silica film WO2024029537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123895 2022-08-03
JP2022-123895 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029537A1 true WO2024029537A1 (en) 2024-02-08

Family

ID=89849362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028164 WO2024029537A1 (en) 2022-08-03 2023-08-01 Substrate with silica film

Country Status (1)

Country Link
WO (1) WO2024029537A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194731A (en) * 1996-01-23 1997-07-29 Asahi Glass Co Ltd Curable composition
JPH1149970A (en) * 1997-07-31 1999-02-23 Asahi Glass Co Ltd Room-temperature-curable composition
JP2000129145A (en) * 1998-10-22 2000-05-09 Asahi Glass Co Ltd Composition curable at room temperature
JP2010197559A (en) * 2009-02-24 2010-09-09 Konica Minolta Opto Inc Composition for anti-reflection layer, anti-reflection film, polarizing plate and image display device
WO2018070426A1 (en) * 2016-10-12 2018-04-19 日産化学工業株式会社 Anti-glare hard coat laminate
WO2019035271A1 (en) * 2017-08-17 2019-02-21 信越化学工業株式会社 Water-repellent member and method for manufacturing water-repellent member
JP2021160225A (en) * 2020-03-31 2021-10-11 マツダ株式会社 Multilayer body, method for producing the same and coating composition for forming moisture-absorbing film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194731A (en) * 1996-01-23 1997-07-29 Asahi Glass Co Ltd Curable composition
JPH1149970A (en) * 1997-07-31 1999-02-23 Asahi Glass Co Ltd Room-temperature-curable composition
JP2000129145A (en) * 1998-10-22 2000-05-09 Asahi Glass Co Ltd Composition curable at room temperature
JP2010197559A (en) * 2009-02-24 2010-09-09 Konica Minolta Opto Inc Composition for anti-reflection layer, anti-reflection film, polarizing plate and image display device
WO2018070426A1 (en) * 2016-10-12 2018-04-19 日産化学工業株式会社 Anti-glare hard coat laminate
WO2019035271A1 (en) * 2017-08-17 2019-02-21 信越化学工業株式会社 Water-repellent member and method for manufacturing water-repellent member
JP2021160225A (en) * 2020-03-31 2021-10-11 マツダ株式会社 Multilayer body, method for producing the same and coating composition for forming moisture-absorbing film

Similar Documents

Publication Publication Date Title
JP6357407B2 (en) Hybrid coating and related application methods
JP5591363B2 (en) Method for producing coating composition, heat exchanger and air conditioner
KR101055596B1 (en) Metal coating composition for corrosion protection
CA2405277C (en) Emulsion and water-repellent composition
KR102468424B1 (en) Invisible fingerprint coatings and process for forming same
JP6454954B2 (en) Composition, antireflection layer using the same, method for forming the same, glass having the same, and solar cell module
JPS63168470A (en) Coating composition
JP5293534B2 (en) Anti-fingerprint coating product and anti-fingerprint coating material composition
US20220010170A1 (en) Easy to clean coating
JP2021525169A (en) Fingerprint invisible coating and how to form it
JP2011195806A (en) Fingerprint-resistant coating film-formed article and fingerprint-resistant coating material composition
WO2024029537A1 (en) Substrate with silica film
JP2010100819A (en) Method of inhibiting fingerprint soil, anti-fingerprint coating material composition, and coated article thereof
JP2005179402A (en) Aqueous emulsion containing fluorocarbon silane hydrolyzate and oil- and stain-resistant/water- and oil-repellent coated material
CN114867793A (en) Antifogging coating composition, antifogging coating film and antifogging article
US20130260156A1 (en) Surface coating with perfluorinated compounds as antifouling
WO2022059353A1 (en) Substrate with silica film
JP2022019380A (en) Substrate with silica film
WO2022014650A1 (en) Glass substrate with silica film
CN111708107A (en) Easy-to-clean coating
WO2019074037A1 (en) Surface treatment agent, metal material having surface-treated coating film and method for producing same
JP6080074B2 (en) Ceramic coating agent composition and coated product thereof
WO2015182657A1 (en) Agent for forming adhesive coating for aluminum oxide or aluminum substrate
CN112218728B (en) Invisible fingerprint coating and forming method thereof
KR101334496B1 (en) Coating liquid for coating film formation, production method thereof, coating film thereof, and antireflection member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850091

Country of ref document: EP

Kind code of ref document: A1