WO2021095770A1 - Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method - Google Patents

Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method Download PDF

Info

Publication number
WO2021095770A1
WO2021095770A1 PCT/JP2020/042081 JP2020042081W WO2021095770A1 WO 2021095770 A1 WO2021095770 A1 WO 2021095770A1 JP 2020042081 W JP2020042081 W JP 2020042081W WO 2021095770 A1 WO2021095770 A1 WO 2021095770A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
antiglare layer
base material
antiglare
layer according
Prior art date
Application number
PCT/JP2020/042081
Other languages
French (fr)
Japanese (ja)
Inventor
和輝 江口
保坂 和義
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080078781.XA priority Critical patent/CN114730023A/en
Priority to JP2021556125A priority patent/JPWO2021095770A1/ja
Priority to KR1020227015279A priority patent/KR20220099545A/en
Publication of WO2021095770A1 publication Critical patent/WO2021095770A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention has an antiglare layer (anti-glare function), a base material with an antiglare layer that gives good visibility without glare (sparkling), an image display device provided with the base material, and an antiglare layer.
  • an antiglare layer anti-glare function
  • a base material with an antiglare layer that gives good visibility without glare sparkling
  • an image display device provided with the base material
  • an antiglare layer Regarding a method for producing a base material.
  • Image display devices liquid crystal displays, organic EL displays, plasma displays, etc.
  • various devices such as televisions, personal computers, and smartphones reflect external light such as indoor lighting (fluorescent lamps, etc.) and sunlight on the display surface.
  • indoor lighting fluorescent lamps, etc.
  • sunlight sunlight on the display surface.
  • the visibility of the image may decrease due to the reflected image.
  • antiglare treatment As a method of suppressing the reflection of external light, there is a method of applying antiglare treatment (anti-glare treatment) to the display surface of the image display device.
  • antiglare treatment a treatment of etching the surface of a transparent base material such as glass with a chemical such as hydrofluoric acid (see Patent Document 1) and a treatment of forming an organic antiglare layer having irregularities on the surface (Patent). Reference 2) and the like have been proposed.
  • the present invention provides a base material with an antiglare layer which is excellent in antiglare property (anti-glare function) and gives good visibility without causing glare, and an image display device provided with the base material with an antiglare layer.
  • the purpose Furthermore, it is an object of the present invention to provide a base material with an antiglare layer having excellent coatability and adhesion when forming a functional layer, an image display device provided with the base material, and a method for manufacturing the base material with an antiglare layer.
  • the present invention 1. It has a base material and an antiglare layer formed directly on the base material or via another layer and having an uneven structure on the surface, and the antiglare layer contains a polysiloxane having a fluorine-containing organic group.
  • a base material with an antiglare layer which is formed from a cured product of a composition for forming an antiglare film and has a convex surface coverage of 5% to 70%.
  • the antiglare layer is formed on the high refractive index layer, and the refractive index of the high refractive index layer is higher than the refractive index of the antiglare layer 1 to 4.
  • An image display device comprising the base material with an antiglare layer according to any one of 8.1 to 7. 9.
  • a method for producing a base material with an antiglare layer which comprises a step of applying a coating liquid for forming an antiglare film containing a polysiloxane having a fluorine-containing organic group onto the base material to form an antiglare layer. It is in.
  • a base material with an antiglare layer which is excellent in antiglare (anti-glare function) and gives good visibility without causing glare (sparkling), and an image display device provided with the base material. be able to. Further, it is possible to provide a base material with an antiglare layer having excellent coatability and adhesion when forming a functional layer, an image display device provided with the base material, and a method for manufacturing the base material with an antiglare layer.
  • the antiglare-forming composition used in the present invention includes at least a polysiloxane having a fluorine-containing organic group (hereinafter, also referred to as component (A)), and further comprises a solvent for dissolving the polysiloxane.
  • the component (A) is a polysiloxane having an organic group substituted with a fluorine atom in the side chain.
  • Such an organic group substituted with a fluorine atom is an organic group in which a part or all of hydrogen atoms of an aliphatic group or an aromatic group is substituted with a fluorine atom.
  • the organic groups substituted with fluorine atoms are, among others, alkyl groups in which some or all of hydrogen atoms are substituted with fluorine atoms and alkyl groups containing ether bonds in which some or all of hydrogen atoms are substituted with fluorine atoms.
  • An organic group containing a phenyl group in which a part or all of a hydrogen atom is substituted with a fluorine atom and the like are preferable.
  • the number of fluorine atoms contained in the organic group substituted with the fluorine atom is also not particularly limited.
  • the organic group substituted with the fluorine atom has a preferable carbon number of 1 to 20, more preferably 3 to 15, and particularly preferably 3 to 8. Specific examples of these include a trifluoropropyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, and a pentafluorophenylpropyl group.
  • an organic group having a perfluoroalkyl group is preferable, and an organic group represented by the following formula (F) is more preferable, from the viewpoint of easily obtaining a highly transparent film.
  • CF 3 (CF 2 ) k CH 2 CH 2- * (F) (In the formula, k is an integer from 0 to 12. * Indicates the connection position.)
  • Specific examples of the organic group represented by the above formula (F) include a trifluoropropyl group, a tridecafluorooctyl group, and a heptadecafluorodecyl group.
  • a plurality of types of polysiloxane having a side chain as described above may be used in combination.
  • the method for obtaining the polysiloxane having the above-mentioned organic group substituted with a fluorine atom in the side chain is not particularly limited. Generally, it is obtained by polycondensing the above-mentioned alkoxysilane compound having an organic group in the side chain.
  • R 11 of the formula (1) represents an organic group substituted with the above-mentioned fluorine atom, but the number of fluorine atoms contained in this organic group is not particularly limited.
  • R 12 of formula (1) represents a hydrocarbon group having 1 to 5 carbon atoms, preferably a saturated hydrocarbon group having 1 to 5 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, Or it is a butyl group.
  • alkoxysilanes represented by the formula (1) an alkoxysilane in which R 11 is a perfluoroalkyl group is preferable, and an alcoholic silane in which R 11 is an organic group represented by the above formula (F) is more preferable. ..
  • alkoxysilane having an organic group represented by the formula (F) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctylriethoxysilane, and hepta. Examples thereof include decafluorodecyltrimethoxysilane and heptadecafluorodecyltriethoxysilane.
  • k is an integer of 2 to 12.
  • At least one of the alkoxysilanes represented by the formula (1) may be used, but a plurality of types may be used if necessary.
  • the polysiloxane having the organic group substituted with the fluorine atom in the side chain is an alkoxysilane compound other than the alkoxysilane compound represented by the above formula (1) (hereinafter, also referred to as other alkoxysilane compound). It may be a polysiloxane obtained by polycondensing the containing alkoxysilane component.
  • alkoxysilane compounds include at least one selected from the group consisting of the alkoxysilane compound represented by the following formula (2) and the alkoxysilane compound represented by the following formula (3). Not limited to these.
  • R 31 represents an organic group or a hydrogen atom not substituted with a fluorine atom
  • R 32 represents a hydrocarbon group having 1 to 5 carbon atoms
  • n is an integer of 1 to 3
  • R 2 of the formula (2) represents a hydrocarbon group, but a saturated hydrocarbon group having 1 to 5 carbon atoms is preferable, and a methyl group and an ethyl group are more preferable, because the smaller the number of carbon atoms, the higher the reactivity. It is a propyl group or a butyl group.
  • tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc., which are easily available as commercial products.
  • R 32 of the formula (3) independently represents a hydrocarbon group having 1 to 5 carbon atoms. R 32 may be the same or different from each other.
  • R 31 in the formula (3) is preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 15 carbon atoms. R 31 may be the same or different from each other.
  • Examples of the organic group not substituted with a fluorine atom include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a stearyl group (octadecyl group) and the like.
  • alkyl groups 2-18 alkenyl groups such as vinyl groups; cycloalkyl groups such as cyclohexyl groups; (meth) such as 3- (meth) acrylicoxypropyl groups ( ⁇ - (meth) acryloxypropyl groups) Acrylicoxy group-containing alkyl group; hydroxyl group-containing alkyl group such as 3-hydroxypropyl group; ⁇ -ureido (3-ureido) propyl group, ureido group-containing alkyl group; ⁇ -amino (3-amino) propyl group, 2- Amino group-containing alkyl groups such as aminoethylaminomethyl group, 3- (N-styrylmethyl-2-aminoethylamino) propyl group; ⁇ -glycidoxy (3-glycidyloxy) propyl group, 2- (3,4-epoxy) Epoxy group-containing alkyl groups such as cyclohexyl) ethyl groups; mer
  • a xypropyl group and a ⁇ -methacryloxypropyl group are more preferable.
  • alkoxysilane represented by the formula (3) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and butyl.
  • the total amount of the alkoxysilane compound represented by the formula (1) is 3 mol% or more with respect to the total 100 mol% of the alkoxysilane compound used to obtain the component (A) from the viewpoint of easily obtaining a film. Is preferable, and 5 mol% or more is more preferable. Further, from the viewpoint of suppressing the formation of gel or foreign matter, 40 mol% or less is preferable, and 30 mol% or less is more preferable.
  • the upper limit of the amount of the other alkoxysilane compound used is preferably 97 mol% or less, more preferably 95 mol% or less, based on 100 mol% of the total total alkoxysilane compound used to obtain the component (A).
  • the lower limit is preferably 60 mol% or more, more preferably 70 mol% or more.
  • the method for condensing the polysiloxane used in the present invention is not particularly limited, and examples thereof include a method for hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis theoretically, 0.5 times by mole of water of all the alkoxy groups in the alkoxysilane may be added, but usually, an excess amount of water is added by more than 0.5 times by mole.
  • the amount of water used in the above reaction can be appropriately selected as desired, but is usually 0.1 to 7 times the molar amount, preferably 0.1 to 5 times the molar amount of all the alkoxy groups in the alkoxysilane. It is a mole.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid and maleic acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine and triethylamine; hydrochloric acid,
  • a metal salt such as sulfuric acid or nitric acid may be used as a catalyst.
  • the amount of the catalyst used in the reaction is preferably about 0.001 to 0.1 times the molar amount of all the alkoxy groups in the alkoxysilane, and more preferably 0.01 to 0.06 times the molar amount.
  • the heating temperature and the heating time can be appropriately selected as desired, preferably from several tens of minutes in a closed container or under reflux so that the reaction system is set to 50 ° C. to 180 ° C. and the liquid does not evaporate or volatilize. It takes place for dozens of hours.
  • a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring at reflux for 2 to 10 hours can be mentioned.
  • Another method is to heat a mixture of alkoxysilane, solvent and oxalic acid, for example.
  • oxalic acid is added to alcohol in advance to prepare an alcohol solution of oxalic acid, and then the solution and alkoxysilane are mixed and heated.
  • the amount of oxalic acid is generally 0.2 to 2 mol, preferably 0.5 to 2 mol, based on 1 mol of all the alkoxy groups contained in the alkoxysilane.
  • the heating in this method can be performed at a liquid temperature of 50 ° C. to 180 ° C., and preferably, for example, in a closed container or under reflux for several tens of minutes to several tens of hours so that evaporation, volatilization, etc. of the liquid do not occur. Will be done.
  • a plurality of alkoxysilanes may be mixed in advance, or a plurality of alkoxysilanes may be added in sequence.
  • the concentration obtained by converting the total amount of silicon atoms of the charged alkoxysilane into SiO 2 (hereinafter referred to as SiO 2 equivalent concentration) is 20% by mass or less. Generally, 15% by mass or less is preferable.
  • the solvent used for polycondensing the alkoxysilane is not particularly limited as long as it dissolves the above-mentioned alkoxysilane compound. Generally, since alcohol is produced by the polycondensation reaction of alkoxysilane, an organic solvent having good compatibility with alcohols and alcohols is used.
  • the solvent used for the above-mentioned polycondensation include alcohols such as methanol, ethanol, propanol and n-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether and diethylene glycol monoethyl ether. Glycol ether and the like can be mentioned. In the present invention, a plurality of types of the above organic solvents may be mixed and used.
  • the method for preparing the coating liquid (hereinafter, also simply referred to as a coating liquid or a coating liquid for forming an antiglare film), which is the composition for forming an antiglare film of the present invention, is not particularly limited.
  • the following solvent group (A), solvent group (B) and other solvent groups may be added to the polysiloxane solution obtained above, if necessary. Further, if necessary, a method of preparing the polysiloxane solution after concentrating it or replacing it with another solvent may be used.
  • the solvent group (A) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones.
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl Isobutyl ketone is preferred.
  • the content of the solvent group (A) in the coating liquid for forming an antiglare film is 0.1 to 300 with respect to 1 part by mass of the total amount of silicon atoms contained in the component (A) converted to SiO 2. It is by mass, preferably 0.3 to 100 parts by mass, and particularly preferably 0.8 to 50 parts by mass.
  • the solvent group (B) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from alcohols having a boiling point of 120 ° C. or lower. Specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. Among them, the composition. From the viewpoint of storage stability, methanol, ethanol, 2-propanol, 2-butanol, and 2-methyl-1-propanol are preferable.
  • the content of the solvent group (B) in the coating liquid for forming an antiglare film is 0.5 to 500 with respect to 1 part by mass of the total amount of silicon atoms contained in the component (A) converted to SiO 2. It is a part by mass, preferably 1 to 200 parts by mass, and particularly preferably 2 to 150 parts by mass.
  • the coating liquid for forming an antiglare film of the present invention contains a solvent other than the solvent groups (A) and (B) (hereinafter, also referred to as other solvents) as necessary from the viewpoint of the stability of the coating liquid. It may be.
  • solvents examples include alcohols such as hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, diacetone alcohol, ethylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol, Glycos such as propanediol, butanediol, pentanediol, hexanediol, heptanediol, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene Glycoldipropyl ether, propylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, di
  • ethylene glycol diethylene glycol, 2-methyl-2,4-pentanediol, propanediol, butanediol, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene.
  • the concentration obtained by converting the total amount of silicon atoms contained in the component (A) in the coating liquid for forming an antiglare film into SiO 2 is preferably 0.2 to 10% by mass, preferably 0.5 to 10. 8% by mass is more preferable.
  • components other than the component (A), the solvent group (A) and (B), for example, inorganic fine particles, metalloxane oligomer, metalloxane polymer, leveling agent, surfactant and the like are included. May be.
  • the inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and a colloidal solution of these inorganic fine particles is particularly preferable.
  • This colloidal solution may be one in which inorganic fine particle powder is dispersed in a dispersion medium, or may be a commercially available colloidal solution.
  • the inorganic fine particles by containing the inorganic fine particles, it is possible to impart the surface shape and other functions of the cured film to be formed.
  • the average particle size of the inorganic fine particles is preferably 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle size of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed by using the prepared coating liquid may decrease.
  • the dispersion medium for the inorganic fine particles examples include water and an organic solvent.
  • the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating liquid for film formation. More preferably, it is 2 to 7.
  • Organic solvents used as the dispersion medium for the colloidal solution include methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, and ethylene.
  • Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; ethyl acetate and butyl acetate , Esters such as ⁇ -butyrolactone; Esters such as tetrahydrofuran and 1,4-dioxane can be mentioned. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
  • metalloxane oligomer or metalloxane polymer single or composite oxide precursors such as silicon, titanium, zirconium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
  • the metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, a nitrate, a hydrochloride, or a carboxylate by a conventional method such as hydrolysis. ..
  • the antiglare layer of the present invention can be obtained by applying the above-mentioned coating liquid for forming an antiglare film to a base material and heat-curing it. That is, the antiglare layer is made of a cured product of polysiloxane having a fluorine-containing organic group contained in the coating liquid for forming an antiglare film.
  • the concavo-convex structure is a fine concavo-convex structure in which the height of the convex portion is 50 nm to 2,000 nm.
  • the thickness of the entire antiglare layer is 50 nm to 3,000 nm, and the surface side of the antiglare layer has a fine uneven structure. That is, since the fine concavo-convex structure is formed on the uniform and flat film, it can be expressed that the convex portion is intermittently formed on the flat film. In this case, the portion where the convex portion is not formed becomes the concave portion.
  • the convex portion surface coverage ratio which is the occupancy ratio of the convex portion of the fine concavo-convex structure, is 5% to 70%, preferably 10% to 60%.
  • the convex surface coverage can be measured by the following method. That is, the surface shape is measured using a white light interference type optical microscope (ContourGT, manufactured by BRUKER), and the shape is further analyzed.
  • a white light interference type optical microscope ContourGT, manufactured by BRUKER
  • the zoom lens magnification is 0.55 times
  • the objective lens magnification is 50 times
  • the measurement area is 230 ⁇ m ⁇ 170 ⁇ m
  • the light source is a white light source
  • the amount of light and Threshhold are. Perform under appropriate conditions so that noise does not enter the measurement as much as possible.
  • the image is processed into a gray scale of 256 gradations after the filter processing is performed by TermsRemoval (CylinderandTilt).
  • the measurement of the convex surface coverage was performed at an arbitrary position on the film surface, the processed image was divided into 1900, the brightness of the area was obtained, and the high-brightness region was made uniform by the convex portion and the low-brightness region.
  • the region is defined as a flat portion, and the value calculated as convex portion / flat portion ⁇ 100 is defined as the convex portion surface coverage of the film surface.
  • the environment at the time of measurement is 23 ° C. and 30 RH% below.
  • the antiglare layer preferably has a HAZE of 0.3% to 40%, more preferably 0.5% to 30%, from the viewpoint of obtaining an image display device having high visibility while suppressing glare. ..
  • HAZE can be measured using a haze meter (haze meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7163.
  • the flat coating portion and the fine concavo-convex structure can be formed by a single application, but after the flat coating portion is formed, the fine concavo-convex structure can also be formed.
  • the coating liquid for forming an antiglare film forming a flat coating portion and the coating liquid for forming an antiglare film forming a fine concavo-convex structure may be the same coating liquid, but the two coating liquids may be different. ..
  • the solid content compositions of both are the same, the solid content concentration of the coating liquid forming the fine concavo-convex structure may be higher than that of the flat coating portion, or the solid content compositions of both may be different. ..
  • the composition of the solid content of both is the same, the solvent composition of both may be different, but the composition is not limited thereto.
  • the fine uneven structure may be formed by, for example, applying a coating liquid for forming an antiglare film and then blowing wind on the surface before curing to form fine irregularities on the surface, or a flat coating portion may be formed. After the formation, a coating liquid having a slightly higher concentration may be spray-applied so that a convex portion is partially formed. At the time of spray coating, the flow rate of the coating liquid for forming an antiglare film and the gas flow rate described later are adjusted. By adjusting, fine irregularities may be formed, but the present invention is not limited to these.
  • the refractive index of the antiglare layer is selected from, for example, the range of 1.3 to 1.49 from the viewpoint of suppressing reflected light.
  • the application liquid for forming an antiglare film for forming an antiglare layer is, for example, a dip coating method, a flow coating method, a spin coating method, a flexo printing method, an inkjet coating method, a bar coating method, and a gravure roll coating method.
  • Roll coat method, Blade coat method Air doctor coat method, Air knife coat method, Wire doctor coat method, Reverse coat method, Transfer roll coat method, Micro gravure coat method, Kiss coat method, Cast coat method, Slot orifice coat method
  • the coating liquid for forming an antiglare film of the present invention is characterized in that it is particularly suitable for a spray coating method. ..
  • the base material examples include known or well-known base materials such as plastic, glass, and ceramics.
  • Plastics include polycarbonate, poly (meth) acrylate, polyether sulphon, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose. , Plates and films of acetate butyrate cellulose and the like.
  • the uniform film thickness as described above obtained by the spray coating method can be adjusted by adjusting the amount of chemical solution, nozzle / stage distance (distance between nozzle and stage), coating speed, gas flow rate, gas pressure, and the like.
  • the amount of chemical solution is a parameter that determines the film thickness. Increasing the amount of chemical solution increases the film thickness, and decreasing it decreases the film thickness. In spray application, the amount of the chemical solution is, for example, 0.5 to 20 mL (milliliter) / min, preferably 0.8 to 12 mL / min.
  • the gas flow rate is a parameter for forming fine droplets, and examples of the gas used include, but are not limited to , N 2 and dry air.
  • the gas flow rate is, for example, 3 to 70 L (liter) / min, preferably 6 to 60 L / min.
  • gas pressure it is 30 to 700 kPa, preferably 50 to 650 kPa.
  • the preferable flow rate of the gas from the viewpoint of forming fine irregularities is 150 to 140,000 times, preferably 500 to 75,000 times the flow rate of the gas in the air atmosphere with respect to the flow rate of the coating liquid for forming the antiglare film. It is preferable to apply the coating liquid for forming an antiglare film to the surface of the base material by ventilating the particles while making them finer.
  • Nozzle / stage distance is a parameter related to film thickness, coatability, and amount of protrusion on the surface.
  • the film thickness increases as the distance increases, but decreases as the distance increases.
  • the preferred nozzle / stage distance is, for example, 30-200 mm, more preferably 50-150 mm.
  • the coating rate is a parameter related to the film thickness and the amount of the convex portion coated on the surface. For example, the film thickness becomes thinner as the rate increases, and increases as the rate decreases.
  • the coating speed is, for example, 50 to 2000 mm / sec, preferably 100 to 1500 mm / sec.
  • the thickness of the coating film formed on the base material can be adjusted by the above-mentioned parameters at the time of coating, but can also be easily adjusted by the SiO 2 conversion concentration of the coating liquid.
  • the coating film formed on the base material can be obtained by heating.
  • the firing temperature is preferably in the range of 80 ° C. to 300 ° C., and more preferably in the range of 100 ° C. to 250 ° C.
  • a high refractive index layer having a higher refractive index than the antiglare layer may be provided under the antiglare layer of the present invention.
  • the reflected light reflected on the surface of the antiglare layer and the reflected light reflected on the surface of the high refractive index layer interfere with each other in opposite phases. The effect of reducing the reflected light can be further added.
  • the high refractive index layer is not particularly limited as long as it is a layer having a higher refractive index than the antiglare layer, but in consideration of the adhesion to the antiglare layer, the coating liquid containing the metal alkoxide and the alkoxysilane is cured. It is preferably a product, and for example, the coating film disclosed in International Publication No. WO2012-057165 can be used.
  • the high refractive index layer disclosed in the above publication is coated with, for example, a coating liquid containing one or more of the metal alkoxide of the following formula (A), the alkoxysilane of the formula (B), and a condensate thereof.
  • a cured film can be mentioned.
  • M 1 (OR 1 ) n (A)
  • M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc (Zn).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • n represents the valence of M 1.
  • R 102 n Si (OR 103 ) 4-n (B)
  • R 102 contains an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a heteroatom containing a group having a heteroatom between carbons of the alkyl group, alkenyl group, cycloalkyl group and aryl group. Represents a group.
  • R 103 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 1 or 2).
  • Examples of the group having a hetero atom include a group having at least one selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, and -O-, -NR- (R is a hydrogen atom or (Representing an alkyl group having 1 to 6 carbon atoms), -CO-, -S-, -CO-, and a group combining these can be mentioned.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, cyano group, nitro group, hydroxy group, amino group, ureido group, isocyanate group, mercapto group and the like.
  • M 1 is titanium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetran-butoxytitanium, Examples thereof include alkoxy titanium such as tetraisobutoxytitanium, tetrat-butoxytitanium, and tetrapentoxytitanium.
  • M 1 is silicon, alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane can be mentioned.
  • R 102 in the formula (B) include alkyl groups having 1 to 18 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and stearyl group; Alkenyl groups such as vinyl groups; Cycloalkyl groups such as cyclohexyl groups; (meth) acrylicoxy group-containing alkyl groups such as 3- (meth) acrylicoxypropyl groups; 3-chloropropyl groups, trifluoropropyl groups, tridecafluoro Halogen atom-containing alkyl group such as octyl group and heptadecafluorodecyl group; hydroxy group-containing alkyl group such as 3-hydroxypropyl group; ⁇ -ureido (3-ureido) propyl group and ureido group-containing alkyl group; ⁇ -amino ( Amino
  • formula (B) include alkoxylans such as trialkoxysilane and dialkoxysilane.
  • the trialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, and pentyl.
  • the refractive index of the high refractive index layer is higher than that of the antiglare layer, and is the surface of the high refractive index layer which is the interface between the reflected light reflected on the surface of the antiglare layer and the antiglare layer and the high refractive index layer.
  • the refractive index is preferably set so that the reflected reflected light has an opposite phase, and is selected from, for example, a range of 1.5 to 2.1, more preferably a range of 1.5 to 1.8.
  • the refractive index of the high refractive index layer may be adjusted by adjusting the curing temperature.
  • the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
  • the coating film may be further irradiated with ultraviolet rays (UV) to adjust the refractive index of the obtained high refractive index layer.
  • UV irradiation for obtaining a desired refractive index can be performed using, for example, a high-pressure mercury lamp. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 2000mJ / cm 2 ⁇ 10000mJ / cm 2 is more preferable.
  • the UV light source is not particularly specified, and another UV light source may be used. When another light source is used, the same amount of integrated light as when the high-pressure mercury lamp is used may be irradiated.
  • a functional layer obtained from a specific coating agent may be formed on the surface of the antiglare layer.
  • the antiglare layer is formed from the above-mentioned coating liquid, the coating property of the coating liquid forming the functional layer on the antiglare layer and the adhesion to the functional layer are good. ..
  • the functional layer provided on the antiglare layer is not particularly limited. Specific examples include functional layers obtained from antifouling agents, paints, adhesives, antireflection agents, water repellents, hydrophilic agents, oil repellents, lipophilic agents, hard coat agents, antislip agents and the like. it can.
  • the thickness of the antiglare layer and the functional layer is preferably 5 to 1000 nm, more preferably 10 to 400 nm.
  • the coating liquid for film formation of the present invention has excellent coatability and can form a film having high transmittance. In addition, it is also excellent in liquid landing efficiency when spray-applied. Therefore, it can be suitably used in fields such as televisions, computers, car navigation systems, and displays for mobile phones and the like.
  • TEOS Tetraethoxysilane F13: Tridecafluorooctyltrimethoxysilane UPS: ⁇ -ureidopropyltriethoxysilane TTE: Tetraethoxytitanium AN: Aluminum nitrate ninehydrate MeOH: Methanol EtOH: Ethanol IPA: Isopropanol PGME: Propylene glycol monomethyl Ether BCS: Butyl cellosolve PB: Propylene glycol Monobutyl ether PG: Propylene glycol HG: 2-Methyl-2,4-pentanediol NMP: N-methyl-2-pyrrolidone
  • TEOS (31.6 g), F13 (6.2 g), and MeOH (30.3 g) were added to a 200 mL four-necked flask equipped with a reflux tube, and the mixture was stirred, and then MeOH (15.1 g) and water (15.1 g) and water ( 15.0 g) and oxalic acid (0.8 g) were added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, the mixture was stirred at 65 ° C. for 2 hours, then UPS (0.5 g) and MeOH (0.5 g) were added, and the mixture was further reacted at 65 ° C. for 2 hours. Then, the mixture was allowed to cool to room temperature to obtain solution K1.
  • ⁇ Synthesis example 2> AN (2.9 g), water (2.6 g) and EtOH (50.6 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution.
  • TEOS (21.2 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (10.0 g) and EtOH (12.7 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K2.
  • ⁇ Synthesis example 4> AN (2.7 g), water (2.5 g) and EtOH (51.8 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (14.3 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (15.7 g) and EtOH (13.0 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K4.
  • TEOS (33.0 g) and MeOH (32.5 g) were added to a 200 mL four-necked flask equipped with a reflux tube, and the mixture was stirred, and there were MeOH (13.8 g), water (15.0 g) and oxalic acid (0). 0.9 g) was added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, the mixture was stirred at 60 ° C. for 2 hours, then UPS (2.4 g) and MeOH (2.4 g) were added, and the mixture was further reacted at 60 ° C. for 30 minutes. Then, the mixture was allowed to cool to room temperature to obtain solution K5.
  • Spray coating was performed with the equipment and conditions shown below.
  • Device name Spray coater API-240-3D manufactured by Apirosu Co., Ltd.
  • Nozzle model LPVN45, nozzle height: 100 mm, Y-axis pitch: 2 mm, Air pressure: 550 kPa, chemical flow rate 1.0 mL / min, nozzle speed: 900 mm / sec
  • Nozzle model LPVN12, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 560 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 500 mm / sec
  • ⁇ Applying condition II-2> The coating condition II-1 was changed to a nozzle speed of 550 mm / sec, and the other conditions were the same.
  • ⁇ Application condition III> Nozzle model: LPVN45, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 470 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 170 mm / sec
  • ⁇ Application condition IV> Nozzle model: LPVN45, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 365 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 500 mm / sec
  • ⁇ Baking condition B> It was dried in a hot air circulation oven at a temperature of 130 ° C. for 3 minutes, UV-irradiated at 3000 mJ / cm 2 (365 nm conversion, high-pressure mercury lamp), and baked in a hot air circulation oven at 160 ° C. for 30 minutes.
  • ⁇ Baking condition C> It was dried on a hot plate at a temperature of 40 ° C. for 5 minutes and baked in a hot air circulation oven at 160 ° C. for 30 minutes.
  • Example 1 Using soda lime glass as a substrate, the solution KL1-2 obtained in Preparation Example 2 was spray-coated under coating condition III and then fired under firing condition A to form a lower layer. The solution KL1-1 obtained in Preparation Example 1 was spray-coated on the obtained substrate under coating condition I-1, and then fired under firing condition C to obtain a coated substrate. Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 1-2.
  • Examples 2 to 3 Comparative Examples 1 to 4> A substrate with a coating was obtained in the same manner as in Example 1 except that the solution to be used and each condition were changed as shown in Table 1-1 below.
  • Comparative Example 2 and Comparative Example 4 the lower layer was formed to form a coated substrate.
  • Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 1-2.
  • Comparative Example 3 is a case where a solution without a fluoroalkyl component is used, and a shape having a low convex surface coverage cannot be obtained, and the SCI value is high. Further, in Comparative Example 4, although there is no antiglare property, the reflected color is small. However, both SCI and specular reflection become high.
  • Examples 4 to 6 Comparative Examples 5 to 7> A substrate with a coating was obtained in the same manner as in Example 1 except that the solution to be used and each condition were changed as shown in Table 2-1 below. Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 2-2.
  • image display devices liquid crystal displays, organic EL displays, plasma displays, etc.

Abstract

The present invention has a substrate and an antiglare layer that is formed on the substrate directly or via another layer and that has a projection-recess structure on the surface. The antiglare layer is formed from a cured product of an antiglare coating forming composition that contains a polysiloxane having a fluorine-containing organic group.

Description

防眩層付基材及び画像表示装置並びに防眩層付基材の製造方法Manufacturing method of base material with antiglare layer, image display device, and base material with antiglare layer
 本発明は、防眩性(アンチグレア機能)に優れるとともに、ギラツキ(スパークリング)が発生せずに、良好な視認性を与える防眩層付基材及びこれを具備する画像表示装置並びに防眩層付基材の製造方法に関する。 The present invention has an antiglare layer (anti-glare function), a base material with an antiglare layer that gives good visibility without glare (sparkling), an image display device provided with the base material, and an antiglare layer. Regarding a method for producing a base material.
 テレビ、パーソナルコンピュータ、スマートフォン等の各種デバイスが具備する画像表示装置(液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)は、室内照明(蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって画像の視認性が低下することがある。 Image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices such as televisions, personal computers, and smartphones reflect external light such as indoor lighting (fluorescent lamps, etc.) and sunlight on the display surface. As a result, the visibility of the image may decrease due to the reflected image.
 外光の映り込みを抑制する方法として、画像表示装置の表示面に防眩処理(アンチグレア処理)を施す方法がある。防眩処理の方法としては、ガラス等の透明基材の表面をフッ酸等の薬剤によりエッチングする処理(特許文献1参照)、表面に凹凸のある有機系の防眩層を形成する処理(特許文献2参照)等が提案されている。 As a method of suppressing the reflection of external light, there is a method of applying antiglare treatment (anti-glare treatment) to the display surface of the image display device. As a method of antiglare treatment, a treatment of etching the surface of a transparent base material such as glass with a chemical such as hydrofluoric acid (see Patent Document 1) and a treatment of forming an organic antiglare layer having irregularities on the surface (Patent). Reference 2) and the like have been proposed.
特許第5839134号公報Japanese Patent No. 5839134 国際公開2018/070426号公報International Publication No. 2018/070426
 しかし、ガラス基板表面を薬剤でエッチングする処理においては、薬剤の危険性が問題となり、表面に有機系の防眩層を形成する処理においては、ガラス基板への塗布性や、膜上に更なる機能性層を形成させる際の塗布性、密着性に問題が生じる。 However, in the process of etching the surface of the glass substrate with a chemical, the danger of the chemical becomes a problem, and in the process of forming an organic antiglare layer on the surface, the applicability to the glass substrate and further on the film are further improved. Problems arise in coatability and adhesion when forming a functional layer.
 また、最近の画像表示装置の高精細化に伴って、防眩層を表示面側に配置すると、表面にランダムな光の強弱が現れるギラツキ現象が発生しやすいという問題もあった。 In addition, with the recent increase in the definition of image display devices, when the antiglare layer is arranged on the display surface side, there is also a problem that a glare phenomenon in which random light intensity appears on the surface is likely to occur.
 以上の点から、本発明は、防眩性(アンチグレア機能)に優れるとともに、ギラツキが発生せずに、良好な視認性を与える防眩層付基材及びこれを具備する画像表示装置の提供を目的とする。更には、機能性層を形成する際の塗布性と密着性に優れた防眩層付基材及びこれを具備する画像表示装置並びに防眩層付基材の製造方法の提供を目的とする。 From the above points, the present invention provides a base material with an antiglare layer which is excellent in antiglare property (anti-glare function) and gives good visibility without causing glare, and an image display device provided with the base material with an antiglare layer. The purpose. Furthermore, it is an object of the present invention to provide a base material with an antiglare layer having excellent coatability and adhesion when forming a functional layer, an image display device provided with the base material, and a method for manufacturing the base material with an antiglare layer.
 発明者らは、下記構成により上記課題を達成できることを見出し、本発明を完成させた。
 かかる本発明は、
1.基材と、前記基材上に直接又は他の層を介して形成され、表面に凹凸構造を有する防眩層とを有し、前記防眩層は、含フッ素有機基を有するポリシロキサンを含有する防眩性被膜形成用組成物の硬化物から形成され、凸部表面被覆率が5%~70%であることを特徴とする、防眩層付基材、
2.前記凹凸構造の凸部の高さが50nm~2,000nmである、1に記載の防眩層付基材、
3.前記防眩層のHAZEが0.3%~40%である、1又は2に記載の防眩層付基材、
4.前記防眩層の屈折率が1.3~1.49の範囲である、1~3のいずれかに記載の防眩層付基材、
5.前記防眩層が、高屈折率層上に形成されたものであり、該高屈折率層の屈折率は前記防眩層の屈折率よりも高いものであることを特徴とする、1~4のいずれかに記載の防眩層付基材、
6.前記高屈折率層の屈折率が、1.5~2.1の範囲である、5に記載の防眩層付基材、
7.前記防眩層上に形成された機能性層とをさらに具備することを特徴とする、1~6のいずれかに記載の防眩層付基材、
8.1~7のいずれかに記載の防眩層付基材を備えることを特徴とする画像表示装置、
9.含フッ素有機基を有するポリシロキサンを含有する防眩性被膜形成用塗布液を、基材上に塗布して防眩層を形成する工程を含む、防眩層付基材の製造方法、
にある。
The inventors have found that the above problems can be achieved by the following configuration, and have completed the present invention.
The present invention
1. 1. It has a base material and an antiglare layer formed directly on the base material or via another layer and having an uneven structure on the surface, and the antiglare layer contains a polysiloxane having a fluorine-containing organic group. A base material with an antiglare layer, which is formed from a cured product of a composition for forming an antiglare film and has a convex surface coverage of 5% to 70%.
2. The base material with an antiglare layer according to 1, wherein the height of the convex portion of the uneven structure is 50 nm to 2,000 nm.
3. 3. The base material with an antiglare layer according to 1 or 2, wherein the HAZE of the antiglare layer is 0.3% to 40%.
4. The base material with an antiglare layer according to any one of 1 to 3, wherein the refractive index of the antiglare layer is in the range of 1.3 to 1.49.
5. The antiglare layer is formed on the high refractive index layer, and the refractive index of the high refractive index layer is higher than the refractive index of the antiglare layer 1 to 4. Substrate with anti-glare layer according to any of
6. The base material with an antiglare layer according to 5, wherein the refractive index of the high refractive index layer is in the range of 1.5 to 2.1.
7. The base material with an antiglare layer according to any one of 1 to 6, further comprising a functional layer formed on the antiglare layer.
An image display device comprising the base material with an antiglare layer according to any one of 8.1 to 7.
9. A method for producing a base material with an antiglare layer, which comprises a step of applying a coating liquid for forming an antiglare film containing a polysiloxane having a fluorine-containing organic group onto the base material to form an antiglare layer.
It is in.
 本発明によれば、防眩性(アンチグレア機能)に優れるとともに、ギラツキ(スパークリング)が発生せずに、良好な視認性を与える防眩層付基材及びこれを具備する画像表示装置を提供することができる。また、機能性層を形成する際の塗布性と密着性に優れた防眩層付基材及びこれを具備する画像表示装置並びに防眩層付基材の製造方法を提供することができる。 According to the present invention, there is provided a base material with an antiglare layer which is excellent in antiglare (anti-glare function) and gives good visibility without causing glare (sparkling), and an image display device provided with the base material. be able to. Further, it is possible to provide a base material with an antiglare layer having excellent coatability and adhesion when forming a functional layer, an image display device provided with the base material, and a method for manufacturing the base material with an antiglare layer.
 以下、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 <防眩性被膜層形成用組成物>
 本発明に用いる防眩性形成用組成物は、含フッ素有機基を有するポリシロキサン(以下、成分(A)ともいう)を少なくとも具備し、さらにこれを溶解する溶媒を具備する。
<Composition for forming an antiglare coating layer>
The antiglare-forming composition used in the present invention includes at least a polysiloxane having a fluorine-containing organic group (hereinafter, also referred to as component (A)), and further comprises a solvent for dissolving the polysiloxane.
 <成分(A)>
 成分(A)は、フッ素原子で置換された有機基を側鎖に持つポリシロキサンである。このようなフッ素原子で置換された有機基は、脂肪族基や芳香族基の水素原子の一部又は全部をフッ素原子で置換した有機基である。上記フッ素原子で置換された有機基は、中でも、水素原子の一部若しくは全部がフッ素原子で置換されたアルキル基や水素原子の一部若しくは全部がフッ素原子で置換されたエーテル結合を含むアルキル基、水素原子の一部若しくは全部がフッ素原子で置換されたフェニル基を含む有機基などが好ましい。上記フッ素原子で置換された有機基が有するフッ素原子の数も特に限定されない。上記フッ素原子で置換された有機基の好ましい炭素数は、1~20、より好ましくは3~15、特に好ましくは3~8である。これらの具体例を挙げると、トリフルオロプロピル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基、ペンタフルオロフェニルプロピル基が挙げられる。
<Ingredient (A)>
The component (A) is a polysiloxane having an organic group substituted with a fluorine atom in the side chain. Such an organic group substituted with a fluorine atom is an organic group in which a part or all of hydrogen atoms of an aliphatic group or an aromatic group is substituted with a fluorine atom. The organic groups substituted with fluorine atoms are, among others, alkyl groups in which some or all of hydrogen atoms are substituted with fluorine atoms and alkyl groups containing ether bonds in which some or all of hydrogen atoms are substituted with fluorine atoms. , An organic group containing a phenyl group in which a part or all of a hydrogen atom is substituted with a fluorine atom and the like are preferable. The number of fluorine atoms contained in the organic group substituted with the fluorine atom is also not particularly limited. The organic group substituted with the fluorine atom has a preferable carbon number of 1 to 20, more preferably 3 to 15, and particularly preferably 3 to 8. Specific examples of these include a trifluoropropyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, and a pentafluorophenylpropyl group.
 これらの中でも、透明性の高い被膜を得易い観点で、パーフルオロアルキル基を有する有機基が好ましく、更に好ましくは、下記式(F)で表される有機基である。
 CF(CFCHCH-*    (F)
(式中、kは0~12の整数である。*は結合位置を表す。)
 上記式(F)で表される有機基の具体例として、トリフルオロプロピル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基が挙げられる。
Among these, an organic group having a perfluoroalkyl group is preferable, and an organic group represented by the following formula (F) is more preferable, from the viewpoint of easily obtaining a highly transparent film.
CF 3 (CF 2 ) k CH 2 CH 2- * (F)
(In the formula, k is an integer from 0 to 12. * Indicates the connection position.)
Specific examples of the organic group represented by the above formula (F) include a trifluoropropyl group, a tridecafluorooctyl group, and a heptadecafluorodecyl group.
 本発明においては、上記の如き側鎖を有するポリシロキサンを複数種併用してもよい。 In the present invention, a plurality of types of polysiloxane having a side chain as described above may be used in combination.
 上述したフッ素原子で置換された有機基を側鎖に持つポリシロキサンを得る方法は特に限定されない。一般的には、上記した有機基を側鎖に持つアルコキシシラン化合物を重縮合して得られる。 The method for obtaining the polysiloxane having the above-mentioned organic group substituted with a fluorine atom in the side chain is not particularly limited. Generally, it is obtained by polycondensing the above-mentioned alkoxysilane compound having an organic group in the side chain.
 中でも、式(1)で表されるアルコキシシラン化合物を含有するアルコキシシラン成分を重縮合して得られるポリシロキサンが好ましい。
 R11Si(OR12         (1)
Of these, a polysiloxane obtained by polycondensing an alkoxysilane component containing an alkoxysilane compound represented by the formula (1) is preferable.
R 11 Si (OR 12 ) 3 (1)
 ここで、式(1)のR11は、上記したフッ素原子で置換された有機基を表すが、この有機基が有するフッ素原子の数は特に限定されない。 Here, R 11 of the formula (1) represents an organic group substituted with the above-mentioned fluorine atom, but the number of fluorine atoms contained in this organic group is not particularly limited.
 また、式(1)のR12は炭素数1~5の炭化水素基を表し、好ましくは、炭素数1~5の飽和炭化水素基であり、より好ましくはメチル基、エチル基、プロピル基、又はブチル基である。 Further, R 12 of formula (1) represents a hydrocarbon group having 1 to 5 carbon atoms, preferably a saturated hydrocarbon group having 1 to 5 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, Or it is a butyl group.
 このような式(1)で表されるアルコキシシランの中でも、R11がパーフルオロアルキル基であるアルコキシシランが好ましく、R11が上記式(F)で表される有機基であるアルコシシランがより好ましい。 Among the alkoxysilanes represented by the formula (1), an alkoxysilane in which R 11 is a perfluoroalkyl group is preferable, and an alcoholic silane in which R 11 is an organic group represented by the above formula (F) is more preferable. ..
 式(F)で表される有機基を有するアルコキシシランの具体例として、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン等が挙げられる。 Specific examples of the alkoxysilane having an organic group represented by the formula (F) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctylriethoxysilane, and hepta. Examples thereof include decafluorodecyltrimethoxysilane and heptadecafluorodecyltriethoxysilane.
 特に、透明性の高い被膜を得易い観点で、kが2~12の整数の場合が好ましい。 In particular, from the viewpoint of easily obtaining a highly transparent film, it is preferable that k is an integer of 2 to 12.
 本発明においては、式(1)で表されるアルコキシシランのうちの少なくとも1種を用いればよいが、必要に応じて複数種を用いてもよい。 In the present invention, at least one of the alkoxysilanes represented by the formula (1) may be used, but a plurality of types may be used if necessary.
 また、上記フッ素原子で置換された有機基を側鎖に持つポリシロキサンは、上記式(1)で表されるアルコキシシラン化合物以外のアルコキシシラン化合物(以下、その他のアルコキシシラン化合物ともいう。)を含むアルコキシシラン成分を重縮合して得られるポリシロキサンであってもよい。その他のアルコキシシラン化合物の具体例としては、下記式(2)で表されるアルコキシシラン化合物及び下記式(3)で表されるアルコキシシラン化合物からなる群から選ばれる少なくとも1種が挙げられるが、これらに限定されない。
 Si(OR4                    (2)
 R31 Si(OR324-n             (3)
(式中、R31はフッ素原子で置換されていない有機基又は水素原子を表し、R32は炭素数1~5の炭化水素基を表し、nは1~3の整数である。)
Further, the polysiloxane having the organic group substituted with the fluorine atom in the side chain is an alkoxysilane compound other than the alkoxysilane compound represented by the above formula (1) (hereinafter, also referred to as other alkoxysilane compound). It may be a polysiloxane obtained by polycondensing the containing alkoxysilane component. Specific examples of other alkoxysilane compounds include at least one selected from the group consisting of the alkoxysilane compound represented by the following formula (2) and the alkoxysilane compound represented by the following formula (3). Not limited to these.
Si (OR 2 ) 4 (2)
R 31 n Si (OR 32 ) 4-n (3)
(In the formula, R 31 represents an organic group or a hydrogen atom not substituted with a fluorine atom, R 32 represents a hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 1 to 3).
 式(2)のRは、炭化水素基を表すが、炭素数が少ない方が反応性は高いので、炭素数1~5の飽和炭化水素基が好ましく、より好ましくはメチル基、エチル基、プロピル基、又はブチル基である。 R 2 of the formula (2) represents a hydrocarbon group, but a saturated hydrocarbon group having 1 to 5 carbon atoms is preferable, and a methyl group and an ethyl group are more preferable, because the smaller the number of carbon atoms, the higher the reactivity. It is a propyl group or a butyl group.
 このようなテトラアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられ、市販品として容易に入手可能である。 Specific examples of such tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc., which are easily available as commercial products.
 式(3)のR32は、それぞれ独立して、炭素数1~5の炭化水素基を表す。R32は同一でも、それぞれ異なっていてもよい。 R 32 of the formula (3) independently represents a hydrocarbon group having 1 to 5 carbon atoms. R 32 may be the same or different from each other.
 式(3)中のR31は、炭素数1~20の有機基が好ましく、より好ましくは炭素数1~15の有機基である。R31は同一でも、それぞれ異なっていてもよい。上記フッ素原子で置換されていない有機基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基(オクタデシル基)等の炭素数1~18のアルキル基;ビニル基等の2~18のアルケニル基;シクロヘキシル基等のシクロアルキル基;3-(メタ)アクリルオキシプロピル基(γ-(メタ)アクリロキシプロピル基)等の(メタ)アクリルオキシ基含有アルキル基;3-ヒドロキシプロピル基等のヒドロキシル基含有アルキル基;γ-ウレイド(3-ウレイド)プロピル基のウレイド基含有アルキル基;γ-アミノ(3-アミノ)プロピル基、2-アミノエチルアミノメチル基、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピル基等のアミノ基含有アルキル基;γ-グリシドキシ(3-グリシジルオキシ)プロピル基、2-(3,4-エポキシシクロヘキシル)エチル基等のエポキシ基含有アルキル基;γ-メルカプト(3-メルカプト)プロピル基等のメルカプト基含有アルキル基;3-イソシアネートプロピル基等のイソシアネート基含有アルキル基;フェニル基等のアリール基などが挙げられる。
 これらの中でも、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、ドデシル基、ヘキサデシル基、オクタデシル基、フェニル基、ビニル基、γ-アミノプロピル基、γ-グリシドキシプロピル基、γ-メタクリロキシプロピル基がより好ましい。
R 31 in the formula (3) is preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 15 carbon atoms. R 31 may be the same or different from each other. Examples of the organic group not substituted with a fluorine atom include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a stearyl group (octadecyl group) and the like. ~ 18 alkyl groups; 2-18 alkenyl groups such as vinyl groups; cycloalkyl groups such as cyclohexyl groups; (meth) such as 3- (meth) acrylicoxypropyl groups (γ- (meth) acryloxypropyl groups) Acrylicoxy group-containing alkyl group; hydroxyl group-containing alkyl group such as 3-hydroxypropyl group; γ-ureido (3-ureido) propyl group, ureido group-containing alkyl group; γ-amino (3-amino) propyl group, 2- Amino group-containing alkyl groups such as aminoethylaminomethyl group, 3- (N-styrylmethyl-2-aminoethylamino) propyl group; γ-glycidoxy (3-glycidyloxy) propyl group, 2- (3,4-epoxy) Epoxy group-containing alkyl groups such as cyclohexyl) ethyl groups; mercapto group-containing alkyl groups such as γ-mercapto (3-mercapto) propyl groups; isocyanate group-containing alkyl groups such as 3-isocyanuppropyl groups; aryl groups such as phenyl groups, etc. Can be mentioned.
Among these, methyl group, ethyl group, propyl group, butyl group, pentyl group, heptyl group, octyl group, dodecyl group, hexadecyl group, octadecyl group, phenyl group, vinyl group, γ-aminopropyl group, γ-glycid. A xypropyl group and a γ-methacryloxypropyl group are more preferable.
 このような、式(3)で表されるアルコキシシランの具体例として、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン及びジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルコキシシランが挙げられるが、これに限定されない。 Specific examples of the alkoxysilane represented by the formula (3) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and butyl. Trimethoxysilane, Butyltriethoxysilane, Pentyltrimethoxysilane, Pentyltriethoxysilane, Heptiltrimethoxysilane, Heptiltilriethoxysilane, Octiltrimethoxysilane, Octiltriethoxysilane, Dodecyltrimethoxysilane, Dodecyltriethoxysilane, Hexa Decyltrimethoxysilane, hexadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanuppropyltrimethoxysilane, 3 -Isocyanoxide triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane , Γ-Mercaptopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-ureidopropyltri Examples thereof include, but are not limited to, trialkoxysilanes such as methoxysilane and γ-ureidopropyltriethoxysilane and dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane.
 式(1)で表されるアルコキシシラン化合物の合計使用量は、被膜が得られやすい観点から、成分(A)を得るために用いるアルコキシシラン化合物の合計100モル%に対して、3モル%以上が好ましく、5モル%以上がより好ましい。また、ゲルや異物の生成を抑制する観点から、40モル%以下が好ましく、30モル%以下がより好ましい。 The total amount of the alkoxysilane compound represented by the formula (1) is 3 mol% or more with respect to the total 100 mol% of the alkoxysilane compound used to obtain the component (A) from the viewpoint of easily obtaining a film. Is preferable, and 5 mol% or more is more preferable. Further, from the viewpoint of suppressing the formation of gel or foreign matter, 40 mol% or less is preferable, and 30 mol% or less is more preferable.
 その他のアルコキシシラン化合物の使用量は、成分(A)を得るために用いる全アルコキシシラン化合物の合計100モル%に対して、上限は97モル%以下が好ましく、95モル%以下がより好ましい。下限は60モル%以上が好ましく、70モル%以上がより好ましい。 The upper limit of the amount of the other alkoxysilane compound used is preferably 97 mol% or less, more preferably 95 mol% or less, based on 100 mol% of the total total alkoxysilane compound used to obtain the component (A). The lower limit is preferably 60 mol% or more, more preferably 70 mol% or more.
 (ポリシロキサンの合成)
 本発明に用いるポリシロキサンを縮合する方法は特に限定されないが、例えば、アルコキシシランをアルコールやグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加える。
(Synthesis of polysiloxane)
The method for condensing the polysiloxane used in the present invention is not particularly limited, and examples thereof include a method for hydrolyzing and condensing alkoxysilane in a solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, 0.5 times by mole of water of all the alkoxy groups in the alkoxysilane may be added, but usually, an excess amount of water is added by more than 0.5 times by mole.
 本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.1~7倍モル、好ましくは0.1~5倍モルである。 In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but is usually 0.1 to 7 times the molar amount, preferably 0.1 to 5 times the molar amount of all the alkoxy groups in the alkoxysilane. It is a mole.
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸などの酸; アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、又は硝酸などの金属塩を触媒として用いてもよい。この場合、反応に用いる触媒の量は、アルコキシシラン中の全アルコキシ基の0.001~0.1倍モル程度が好ましく、0.01~0.06倍モルがより好ましい。さらに、アルコキシシランが溶解した溶液を加熱することで、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択でき、好ましくは反応系を50℃~180℃にして液の蒸発、揮散等が起こらないように、密閉容器中又は還流下で数十分から数十時間行われる。例えば、50℃で24時間加熱・撹拌したり、還流下で2~10時間加熱・撹拌するなどの方法が挙げられる。 Also, usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, oxalic acid and maleic acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine and triethylamine; hydrochloric acid, A metal salt such as sulfuric acid or nitric acid may be used as a catalyst. In this case, the amount of the catalyst used in the reaction is preferably about 0.001 to 0.1 times the molar amount of all the alkoxy groups in the alkoxysilane, and more preferably 0.01 to 0.06 times the molar amount. Further, it is also common to promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired, preferably from several tens of minutes in a closed container or under reflux so that the reaction system is set to 50 ° C. to 180 ° C. and the liquid does not evaporate or volatilize. It takes place for dozens of hours. For example, a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring at reflux for 2 to 10 hours can be mentioned.
 また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、当該溶液とアルコキシシランを混合し、加熱する方法である。その際、蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが一般的であり、好ましくは0.5~2モルである。この方法における加熱は、液温50℃~180℃で行うことができ、好ましくは、液の蒸発、揮散等が起こらないように、例えば、密閉容器中又は還流下で数十分~数十時間行われる。 Another method is to heat a mixture of alkoxysilane, solvent and oxalic acid, for example. Specifically, it is a method in which oxalic acid is added to alcohol in advance to prepare an alcohol solution of oxalic acid, and then the solution and alkoxysilane are mixed and heated. At that time, the amount of oxalic acid is generally 0.2 to 2 mol, preferably 0.5 to 2 mol, based on 1 mol of all the alkoxy groups contained in the alkoxysilane. The heating in this method can be performed at a liquid temperature of 50 ° C. to 180 ° C., and preferably, for example, in a closed container or under reflux for several tens of minutes to several tens of hours so that evaporation, volatilization, etc. of the liquid do not occur. Will be done.
 上記のそれぞれの方法において、複数のアルコキシシランを用いる場合は、複数のアルコキシシランをあらかじめ混合して用いてもよいし、複数のアルコキシシランを順次加えてもよい。 When a plurality of alkoxysilanes are used in each of the above methods, a plurality of alkoxysilanes may be mixed in advance, or a plurality of alkoxysilanes may be added in sequence.
 上記の方法でアルコキシシランを重縮合する際には、仕込んだアルコキシシランの珪素原子の合計量をSiOに換算した濃度(以下、SiO換算濃度と称す。)が、20質量%以下とされることが一般的であり、15質量%以下が好ましい。このような濃度範囲で任意の濃度を選択することにより、ゲルの生成を抑え、均質なポリシロキサンの溶液を得ることができる。 When polycondensing alkoxysilane by the above method, the concentration obtained by converting the total amount of silicon atoms of the charged alkoxysilane into SiO 2 (hereinafter referred to as SiO 2 equivalent concentration) is 20% by mass or less. Generally, 15% by mass or less is preferable. By selecting an arbitrary concentration in such a concentration range, gel formation can be suppressed and a homogeneous polysiloxane solution can be obtained.
 アルコキシシランを重縮合する際に用いられる溶媒は、前記したアルコキシシラン化合物を溶解するものであれば特に限定されない。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類やアルコール類と相溶性の良好な有機溶媒が用いられる。 The solvent used for polycondensing the alkoxysilane is not particularly limited as long as it dissolves the above-mentioned alkoxysilane compound. Generally, since alcohol is produced by the polycondensation reaction of alkoxysilane, an organic solvent having good compatibility with alcohols and alcohols is used.
 上記の重縮合する際に用いられる溶媒の具体例としては、メタノール、エタノール、プロパノール、n-ブタノールなどのアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのグリコールエーテルなどが挙げられる。本発明においては、上記の有機溶媒を複数種混合して用いてもよい。 Specific examples of the solvent used for the above-mentioned polycondensation include alcohols such as methanol, ethanol, propanol and n-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether and diethylene glycol monoethyl ether. Glycol ether and the like can be mentioned. In the present invention, a plurality of types of the above organic solvents may be mixed and used.
 <防眩性被膜形成用組成物>
 本発明の防眩性被膜形成用組成物である塗布液(以下、単に塗布液又は防眩性被膜形成用塗布液ともいう)を調製する方法は特に限定されない。一例として、上記で得られたポリシロキサン溶液に下記の溶媒群(A)、溶媒群(B)及び必要に応じてその他の溶媒群を添加してもよい。また、必要に応じて、上記ポリシロキサン溶液を、濃縮する又は他の溶媒に置換してから調製する方法を用いてもよい。
<Composition for forming an antiglare film>
The method for preparing the coating liquid (hereinafter, also simply referred to as a coating liquid or a coating liquid for forming an antiglare film), which is the composition for forming an antiglare film of the present invention, is not particularly limited. As an example, the following solvent group (A), solvent group (B) and other solvent groups may be added to the polysiloxane solution obtained above, if necessary. Further, if necessary, a method of preparing the polysiloxane solution after concentrating it or replacing it with another solvent may be used.
 <溶媒群(A)>
 本発明の防眩性被膜形成用塗布液が含有する溶媒群(A)は、沸点160℃未満のグリコールエーテルおよびその誘導体、もしくはケトン類から選ばれる少なくとも1種である。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテルなどのグリコールエーテル類及びその誘導体、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類が挙げられるが、その中でも、塗布安定性の観点から、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトンが好ましい。
<Solvent group (A)>
The solvent group (A) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from glycol ethers having a boiling point of less than 160 ° C. and derivatives thereof, or ketones. Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, Glycol ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol dimethyl ether and propylene glycol diethyl ether and derivatives thereof, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone can be mentioned. Among them, from the viewpoint of coating stability, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl Isobutyl ketone is preferred.
 溶媒群(A)の防眩性被膜形成用塗布液中の含有量は、成分(A)が有する珪素原子の合計量をSiO換算した質量の1質量部に対して、0.1~300質量部であり、好ましくは0.3~100質量部であり、特に好ましくは0.8~50質量部である。 The content of the solvent group (A) in the coating liquid for forming an antiglare film is 0.1 to 300 with respect to 1 part by mass of the total amount of silicon atoms contained in the component (A) converted to SiO 2. It is by mass, preferably 0.3 to 100 parts by mass, and particularly preferably 0.8 to 50 parts by mass.
 <溶媒群(B)>
 本発明の防眩性被膜形成用塗布液が含有する溶媒群(B)は、沸点120℃以下のアルコール類から選ばれる少なくとも1種である。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノールが挙げられるが、その中でも、組成物の貯蔵安定性の観点から、メタノール、エタノール、2-プロパノール、2-ブタノール、2-メチル-1-プロパノールが好ましい。
<Solvent group (B)>
The solvent group (B) contained in the coating liquid for forming an antiglare film of the present invention is at least one selected from alcohols having a boiling point of 120 ° C. or lower. Specific examples thereof include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. Among them, the composition. From the viewpoint of storage stability, methanol, ethanol, 2-propanol, 2-butanol, and 2-methyl-1-propanol are preferable.
 溶媒群(B)の防眩性被膜形成用塗布液中の含有量は、成分(A)が有する珪素原子の合計量をSiO2換算した質量の1質量部に対して、0.5~500質量部であり、好ましくは1~200質量部であり、特に好ましくは2~150質量部である。 The content of the solvent group (B) in the coating liquid for forming an antiglare film is 0.5 to 500 with respect to 1 part by mass of the total amount of silicon atoms contained in the component (A) converted to SiO 2. It is a part by mass, preferably 1 to 200 parts by mass, and particularly preferably 2 to 150 parts by mass.
 <その他の溶媒>
 本発明の防眩性被膜形成用塗布液には、塗布液の安定性等の観点から、溶媒群(A)及び(B)以外の溶媒(以下、その他の溶媒とも称する)が必要に応じ含まれても良い。
<Other solvents>
The coating liquid for forming an antiglare film of the present invention contains a solvent other than the solvent groups (A) and (B) (hereinafter, also referred to as other solvents) as necessary from the viewpoint of the stability of the coating liquid. It may be.
 その他の溶媒の例としては、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、ジアセトンアルコールなどのアルコール類、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、2-メチル-2,4-ペンタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオールなどのグリコール類、エチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテルなどのグリコールエーテル類、酢酸メチル、酢酸エチル、乳酸エチル等のエステル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m-クレゾール、テトラヒドロフランなどが挙げられる。その中でも、入手性および組成物の貯蔵安定性の観点から、エチレングリコール、ジエチレングリコール、2-メチル-2,4-ペンタンジオール、プロパンジオール、ブタンジオール、エチレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、テトラヒドロフランは好ましく用いられる。 Examples of other solvents include alcohols such as hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, diacetone alcohol, ethylene glycol, diethylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol, Glycos such as propanediol, butanediol, pentanediol, hexanediol, heptanediol, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene Glycoldipropyl ether, propylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, glycol ethers such as diethylene glycol dibutyl ether, acetic acid Ethers such as methyl, ethyl acetate, ethyl lactate, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, dimethylsulfoxide, tetramethylurea, hexamethylphosphotriamide , M-cresol, tetrahydrofuran and the like. Among them, from the viewpoint of availability and storage stability of the composition, ethylene glycol, diethylene glycol, 2-methyl-2,4-pentanediol, propanediol, butanediol, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene. Glycol monobutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, N-methyl -2-Pyrrolidone, N, N-dimethylformamide and tetrahydrofuran are preferably used.
 防眩性被膜形成用塗布液中の成分(A)が有する珪素原子の合計量をSiOに換算した濃度(SiO換算濃度)は、0.2~10質量%が好ましく、0.5~8質量%がより好ましい。 The concentration obtained by converting the total amount of silicon atoms contained in the component (A) in the coating liquid for forming an antiglare film into SiO 2 (SiO 2 conversion concentration) is preferably 0.2 to 10% by mass, preferably 0.5 to 10. 8% by mass is more preferable.
 <その他の成分>
 本発明においては、成分(A)、溶媒群(A)および(B)以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。
<Other ingredients>
In the present invention, components other than the component (A), the solvent group (A) and (B), for example, inorganic fine particles, metalloxane oligomer, metalloxane polymer, leveling agent, surfactant and the like are included. May be.
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、フッ化マグネシウム微粒子等の微粒子が好ましく、これらの無機微粒子のコロイド溶液が特に好ましい。このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。 As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and a colloidal solution of these inorganic fine particles is particularly preferable. This colloidal solution may be one in which inorganic fine particle powder is dispersed in a dispersion medium, or may be a commercially available colloidal solution.
 本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状やその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。 In the present invention, by containing the inorganic fine particles, it is possible to impart the surface shape and other functions of the cured film to be formed. The average particle size of the inorganic fine particles is preferably 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle size of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed by using the prepared coating liquid may decrease.
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましい。より好ましくは2~7である。 Examples of the dispersion medium for the inorganic fine particles include water and an organic solvent. As the colloidal solution, it is preferable that the pH or pKa is adjusted to 1 to 10 from the viewpoint of the stability of the coating liquid for film formation. More preferably, it is 2 to 7.
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、2-メチル-2,4-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独でまたは2種以上を混合して分散媒として使用することができる。 Organic solvents used as the dispersion medium for the colloidal solution include methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, and ethylene. Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; ethyl acetate and butyl acetate , Esters such as γ-butyrolactone; Esters such as tetrahydrofuran and 1,4-dioxane can be mentioned. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
 メタロキサンオリゴマー、あるいはメタロキサンポリマーとしては、ケイ素、チタン、ジルコニウム、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、あるいはメタロキサンポリマーとしては、市販品であっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水分解等の常法により得られたものであってもよい。 As the metalloxane oligomer or metalloxane polymer, single or composite oxide precursors such as silicon, titanium, zirconium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, a nitrate, a hydrochloride, or a carboxylate by a conventional method such as hydrolysis. ..
 <防眩層及び防眩層の形成>
 本発明の防眩層は、上述した防眩性被膜形成用塗布液を基材に塗布し、熱硬化することで得ることができる。すなわち、防眩層は、防眩性被膜形成用塗布液に含有される含フッ素有機基を有するポリシロキサンの硬化物からなる。
<Formation of anti-glare layer and anti-glare layer>
The antiglare layer of the present invention can be obtained by applying the above-mentioned coating liquid for forming an antiglare film to a base material and heat-curing it. That is, the antiglare layer is made of a cured product of polysiloxane having a fluorine-containing organic group contained in the coating liquid for forming an antiglare film.
 ここで、防眩層は、表面に凹凸構造を有する。凹凸構造は、凸部の高さが50nm~2,000nmの微細凹凸構造である。防眩層全体の厚さは50nm~3,000nmであり、この防眩層の表面側が微細凹凸構造となっている。すなわち、均一で平坦な被膜の上に微細凹凸構造が形成されていることになるので、平坦な被膜の上に凸部が間欠的に形成されていると表現することもできる。なお、この場合、凸部が形成されていない部分が凹部となる。微細凹凸構造の凸部の占有割合である凸部表面被覆率は、5%~70%、好ましくは、10%~60%である。 Here, the antiglare layer has an uneven structure on the surface. The concavo-convex structure is a fine concavo-convex structure in which the height of the convex portion is 50 nm to 2,000 nm. The thickness of the entire antiglare layer is 50 nm to 3,000 nm, and the surface side of the antiglare layer has a fine uneven structure. That is, since the fine concavo-convex structure is formed on the uniform and flat film, it can be expressed that the convex portion is intermittently formed on the flat film. In this case, the portion where the convex portion is not formed becomes the concave portion. The convex portion surface coverage ratio, which is the occupancy ratio of the convex portion of the fine concavo-convex structure, is 5% to 70%, preferably 10% to 60%.
 上記凸部表面被覆率は、具体的には、以下の方法により測定することができる。即ち、白色光干渉型光学顕微鏡(ContourGT、BRUKER社製)を用いて、表面形状を測定し、更に形状解析することにより行う。表面形状測定は、VSI測定方式で高密度CCDカメラを使用し、ズームレンズ倍率が0.55倍、対物レンズ倍率が50倍、測定領域が230μm×170μm、光源が白色光源、光量及びThreshholdは、ノイズが測定に極力入らない、適切な条件で行う。更に、形状解析として、TermsRemoval(CylinderandTilt)にて、フィルタ処理を行った後、画像を256階調のグレースケールに処理する。上記凸部表面被覆率の測定は、膜面の任意の箇所で行い、前記処理画像を1900分割し、そのエリアの明度を求め、明度が高い領域を凸部、明度が低く、かつ均一化した領域を平坦部とし、凸部/平坦部×100と計算した値をその膜表面の凸部表面被覆率とする。測定時の環境は23℃及び30RH%下である。 Specifically, the convex surface coverage can be measured by the following method. That is, the surface shape is measured using a white light interference type optical microscope (ContourGT, manufactured by BRUKER), and the shape is further analyzed. For surface shape measurement, a high-density CCD camera is used by the VSI measurement method, the zoom lens magnification is 0.55 times, the objective lens magnification is 50 times, the measurement area is 230 μm × 170 μm, the light source is a white light source, the amount of light and Threshhold are. Perform under appropriate conditions so that noise does not enter the measurement as much as possible. Further, as a shape analysis, the image is processed into a gray scale of 256 gradations after the filter processing is performed by TermsRemoval (CylinderandTilt). The measurement of the convex surface coverage was performed at an arbitrary position on the film surface, the processed image was divided into 1900, the brightness of the area was obtained, and the high-brightness region was made uniform by the convex portion and the low-brightness region. The region is defined as a flat portion, and the value calculated as convex portion / flat portion × 100 is defined as the convex portion surface coverage of the film surface. The environment at the time of measurement is 23 ° C. and 30 RH% below.
 上記防眩層は、ギラツキを抑制しつつ、視認性の高い画像表示装置が得られる観点から、HAZEとして、0.3%~40%が好ましく、より好ましくは0.5%~30%となる。なお、本明細書および特許請求の範囲において、HAZEは、JIS K7163に準拠して、ヘイズメーター(スガ試験機(株)社製、ヘイズメーターHZ-V3)を用いて測定できる。 The antiglare layer preferably has a HAZE of 0.3% to 40%, more preferably 0.5% to 30%, from the viewpoint of obtaining an image display device having high visibility while suppressing glare. .. In the present specification and claims, HAZE can be measured using a haze meter (haze meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7163.
 平坦被膜部と、微細凹凸構造とは、一回の塗布で形成することもできるが、平坦被覆部を形成した後、微細凹凸構造を形成することもできる。また、平坦被覆部を形成する防眩性被膜形成用塗布液と微細凹凸構造を形成する防眩性被膜形成用塗布液を同じ塗布液としてもよいが、両者の塗布液を異なるものとしてもよい。例えば、両者の固形分の組成は同一であるが、微細凹凸構造を形成する塗布液の固形分濃度を平坦被覆部より高いものとしてもよいし、両者の固形分の組成を異なるものとしてもよい。更には、両者の固形分の組成は同一であるが、両者の溶媒組成を異なるものとしてもよいが、これらに限定されない。 The flat coating portion and the fine concavo-convex structure can be formed by a single application, but after the flat coating portion is formed, the fine concavo-convex structure can also be formed. Further, the coating liquid for forming an antiglare film forming a flat coating portion and the coating liquid for forming an antiglare film forming a fine concavo-convex structure may be the same coating liquid, but the two coating liquids may be different. .. For example, although the solid content compositions of both are the same, the solid content concentration of the coating liquid forming the fine concavo-convex structure may be higher than that of the flat coating portion, or the solid content compositions of both may be different. .. Furthermore, although the composition of the solid content of both is the same, the solvent composition of both may be different, but the composition is not limited thereto.
 微細凹凸構造は、例えば、防眩性被膜形成用塗布液を塗布した後、硬化する前に表面に風を当てることにより、表面に微細凹凸が形成するようにしてもよいし、平坦被膜部を形成した後、少し濃度が高い塗布液をスプレー塗布して部分的に凸部が形成されるようにしてもよく、スプレー塗布時に防眩性被膜形成用塗布液の流量と後述するガス流量とを調整することで、微細凸凹を形成してもよいが、これらに限定されない。 The fine uneven structure may be formed by, for example, applying a coating liquid for forming an antiglare film and then blowing wind on the surface before curing to form fine irregularities on the surface, or a flat coating portion may be formed. After the formation, a coating liquid having a slightly higher concentration may be spray-applied so that a convex portion is partially formed. At the time of spray coating, the flow rate of the coating liquid for forming an antiglare film and the gas flow rate described later are adjusted. By adjusting, fine irregularities may be formed, but the present invention is not limited to these.
 防眩層の屈折率は、反射光を抑制する観点から、例えば、1.3~1.49の範囲から選択される。 The refractive index of the antiglare layer is selected from, for example, the range of 1.3 to 1.49 from the viewpoint of suppressing reflected light.
 防眩層を形成するための防眩性被膜形成用塗布液の塗布は、例えば、ディップコート法、フローコート法、スピンコート法、フレキソ印刷法、インクジェットコート法、バーコート法、グラビアロールコート法、ロールコート法、ブレードコート法、エアドクターコート法、エアーナイフコート法、ワイヤードクターコート法、リバースコート法、トランスファーロールコート法、マイクログラビアコート法、キスコート法、キャストコート法、スロットオリフィスコート法、カレンダーコート法、ダイコート法等の公知又は周知の方法にも適用することができるが、本発明の防眩性被膜形成用塗布液は、スプレー塗布法に対して特に適している点が特徴である。 The application liquid for forming an antiglare film for forming an antiglare layer is, for example, a dip coating method, a flow coating method, a spin coating method, a flexo printing method, an inkjet coating method, a bar coating method, and a gravure roll coating method. , Roll coat method, Blade coat method, Air doctor coat method, Air knife coat method, Wire doctor coat method, Reverse coat method, Transfer roll coat method, Micro gravure coat method, Kiss coat method, Cast coat method, Slot orifice coat method, Although it can be applied to known or well-known methods such as a calendar coating method and a die coating method, the coating liquid for forming an antiglare film of the present invention is characterized in that it is particularly suitable for a spray coating method. ..
 基材としては、プラスチック、ガラス、セラミックス等の公知又は周知の基材を挙げることができる。プラスチックとしては、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリスルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース等の板及びフィルム等が挙げられる。 Examples of the base material include known or well-known base materials such as plastic, glass, and ceramics. Plastics include polycarbonate, poly (meth) acrylate, polyether sulphon, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose. , Plates and films of acetate butyrate cellulose and the like.
 スプレー塗布法により得られる、上記したような均一な膜厚は、薬液量、ノズル/ステージ距離(ノズルとステージとの距離)、塗布速度、ガス流量もしくはガス圧力等により調整することができる。 The uniform film thickness as described above obtained by the spray coating method can be adjusted by adjusting the amount of chemical solution, nozzle / stage distance (distance between nozzle and stage), coating speed, gas flow rate, gas pressure, and the like.
 薬液量は膜厚を決めるパラメータであり、薬液量を増やすことで膜厚は厚くなり、減らすことで膜厚は薄くなる。スプレー塗布において、薬液量は、例えば0.5~20mL(ミリリットル)/minであり、好ましくは0.8~12mL/minである。 The amount of chemical solution is a parameter that determines the film thickness. Increasing the amount of chemical solution increases the film thickness, and decreasing it decreases the film thickness. In spray application, the amount of the chemical solution is, for example, 0.5 to 20 mL (milliliter) / min, preferably 0.8 to 12 mL / min.
 ガス流量は微細な液滴を形成するパラメータであり、使用されるガスの例としては、Nやドライエアーが挙げられるが、特にこれに限定されるものではない。スプレー塗布において、ガス流量は、例えば3~70L(リットル)/minであり、好ましくは6~60L/minである。ガス圧力の場合は、30~700kPaであり、好ましくは50~650kPaである。 The gas flow rate is a parameter for forming fine droplets, and examples of the gas used include, but are not limited to , N 2 and dry air. In spray coating, the gas flow rate is, for example, 3 to 70 L (liter) / min, preferably 6 to 60 L / min. In the case of gas pressure, it is 30 to 700 kPa, preferably 50 to 650 kPa.
 微細凸凹を形成する観点で好ましいガスの流量としては、防眩性被膜形成用塗布液の流量に対しガスを大気雰囲気中で150~140,000倍、好ましくは500~75,000倍の流量で通気して防眩性被膜形成用塗布液の液滴を微細化しながら基材表面に塗布するのが好ましい。 The preferable flow rate of the gas from the viewpoint of forming fine irregularities is 150 to 140,000 times, preferably 500 to 75,000 times the flow rate of the gas in the air atmosphere with respect to the flow rate of the coating liquid for forming the antiglare film. It is preferable to apply the coating liquid for forming an antiglare film to the surface of the base material by ventilating the particles while making them finer.
 ノズル/ステージ距離は膜厚、塗布性、および表面への凸部被覆量に関係するパラメータである。例えば、膜厚は距離が近づくことで厚くなるが、距離を遠ざけることで膜厚は薄くなる。好ましいノズル/ステージ距離は、例えば30~200mmであり、より好ましくは50~150mmである。 Nozzle / stage distance is a parameter related to film thickness, coatability, and amount of protrusion on the surface. For example, the film thickness increases as the distance increases, but decreases as the distance increases. The preferred nozzle / stage distance is, for example, 30-200 mm, more preferably 50-150 mm.
 塗布速度は膜厚、および表面への凸部被覆量に関係するパラメータであり、例えば、膜厚は速度が速くなると膜厚は薄くなり、遅くなると膜厚は厚くなる。スプレー塗布において、塗布速度は、例えば50~2000mm/secであり、好ましくは100~1500mm/secである。 The coating rate is a parameter related to the film thickness and the amount of the convex portion coated on the surface. For example, the film thickness becomes thinner as the rate increases, and increases as the rate decreases. In spray coating, the coating speed is, for example, 50 to 2000 mm / sec, preferably 100 to 1500 mm / sec.
 基材に形成する被膜の厚さは、塗布時の上記のようなパラメータによって調節することができるが、塗布液のSiO換算濃度によっても容易に調節することができる。 The thickness of the coating film formed on the base material can be adjusted by the above-mentioned parameters at the time of coating, but can also be easily adjusted by the SiO 2 conversion concentration of the coating liquid.
 基材上に形成された塗膜は、加熱することにより被膜が得られる。基材などの耐熱性を考慮した場合、焼成温度80℃~300℃の範囲が好ましく、100℃~250℃の範囲内とすることがより好ましい。 The coating film formed on the base material can be obtained by heating. Considering the heat resistance of the base material and the like, the firing temperature is preferably in the range of 80 ° C. to 300 ° C., and more preferably in the range of 100 ° C. to 250 ° C.
 本発明の防眩層の下層に防眩層より高屈折率の高屈折率層を設けてもよい。この場合、防眩層と高屈折率層の屈折率を適宜調整することにより、防眩層表面で反射する反射光と高屈折率層の表面で反射する反射光とが逆位相で干渉させるようにして反射光を低減する効果をさらに付加させることができる。 A high refractive index layer having a higher refractive index than the antiglare layer may be provided under the antiglare layer of the present invention. In this case, by appropriately adjusting the refractive indexes of the antiglare layer and the high refractive index layer, the reflected light reflected on the surface of the antiglare layer and the reflected light reflected on the surface of the high refractive index layer interfere with each other in opposite phases. The effect of reducing the reflected light can be further added.
 ここで、高屈折率層は、防眩層より高屈折率となる層であれば特に限定されないが、防眩層との密着性を考慮すると、金属アルコキシドとアルコキシシランを含有する塗布液の硬化物とするのが好ましく、例えば、国際公開WO2012-057165号公報に開示された被膜を用いることができる。 Here, the high refractive index layer is not particularly limited as long as it is a layer having a higher refractive index than the antiglare layer, but in consideration of the adhesion to the antiglare layer, the coating liquid containing the metal alkoxide and the alkoxysilane is cured. It is preferably a product, and for example, the coating film disclosed in International Publication No. WO2012-057165 can be used.
 上記公報に開示された高屈折率層は、例えば、下記式(A)の金属アルコキシド、式(B)のアルコキシシランやこれらの縮合体を1種または2種以上含有する塗布液を塗布して硬化させた膜を挙げることができる。 The high refractive index layer disclosed in the above publication is coated with, for example, a coating liquid containing one or more of the metal alkoxide of the following formula (A), the alkoxysilane of the formula (B), and a condensate thereof. A cured film can be mentioned.
 M(OR)n         (A)
(式中、Mは珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、錫(Sn)および亜鉛(Zn)などの金属を表し、Rは炭素数1から5のアルキル基を表し、nはMの価数を表す。)
(R102Si(OR1034-n    (B)
(式中、R102はアルキル基、アルケニル基、シクロアルキル基、アリール基、又は前記アルキル基、アルケニル基、シクロアルキル基及びアリール基の炭素-炭素間にヘテロ原子を有する基を含むヘテロ原子含有基を表す。但し、上記アルキル基、アルケニル基、シクロアルキル基、アリール基及びヘテロ原子含有基が有する一部又は全部の水素原子は置換基で置換してもよく、上記アルキル基、アルケニル基は、その一部にシクロアルキル基やアリール基を有していてもよい。R103は炭素数1~5のアルキル基を表し、nは1又は2の整数を表す。)
M 1 (OR 1 ) n (A)
(In the formula, M 1 is silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg), tin (Sn) and zinc (Zn). ), Etc., R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents the valence of M 1.)
(R 102 ) n Si (OR 103 ) 4-n (B)
(In the formula, R 102 contains an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a heteroatom containing a group having a heteroatom between carbons of the alkyl group, alkenyl group, cycloalkyl group and aryl group. Represents a group. However, some or all of the hydrogen atoms of the above alkyl group, alkenyl group, cycloalkyl group, aryl group and hetero atom-containing group may be substituted with a substituent, and the above alkyl group and alkenyl group may be substituted. , It may have a cycloalkyl group or an aryl group as a part thereof. R 103 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 1 or 2).
 上記ヘテロ原子を有する基としては、例えば、酸素原子、窒素原子及び硫黄原子からなる群より選ばれる少なくとも1種を有する基等が挙げられ、-O-、-NR-(Rは、水素原子又は炭素数1~6のアルキル基を表す。)、-CO-、-S-、-CO-及びこれらを組み合わせた基等が挙げられる。 Examples of the group having a hetero atom include a group having at least one selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom, and -O-, -NR- (R is a hydrogen atom or (Representing an alkyl group having 1 to 6 carbon atoms), -CO-, -S-, -CO-, and a group combining these can be mentioned.
 上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、アミノ基、ウレイド基、イソシアネート基、メルカプト基等が挙げられる。 Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, cyano group, nitro group, hydroxy group, amino group, ureido group, isocyanate group, mercapto group and the like.
 式(A)で表される金属アルコキシドの代表的な例としては、Mがチタンの場合、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラn-プロポキシチタン、テトラn-ブトキシチタン、テトライソブトキシチタン、テトラt-ブトキシチタン、テトラペントキシチタン等のアルコキシチタンが挙げられる。
 Mが珪素の場合、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のアルコキシシランを挙げることができる。
As a typical example of the metal alkoxide represented by the formula (A), when M 1 is titanium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetran-butoxytitanium, Examples thereof include alkoxy titanium such as tetraisobutoxytitanium, tetrat-butoxytitanium, and tetrapentoxytitanium.
When M 1 is silicon, alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane can be mentioned.
 式(B)におけるR102の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基等の炭素数1~18のアルキル基;ビニル基等のアルケニル基;シクロヘキシル基等のシクロアルキル基;3-(メタ)アクリルオキシプロピル基等の(メタ)アクリルオキシ基含有アルキル基;3-クロロプロピル基、トリフルオロプロピル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基等のハロゲン原子含有アルキル基;3-ヒドロキシプロピル基等のヒドロキシ基含有アルキル基;γ-ウレイド(3-ウレイド)プロピル基のウレイド基含有アルキル基;γ-アミノ(3-アミノ)プロピル基、2-アミノエチルアミノメチル基、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピル基等のアミノ基含有アルキル基;γ-グリシドキシ(3-グリシジルオキシ)プロピル基、2-(3,4-エポキシシクロヘキシル)エチル基等のエポキシ基含有アルキル基;γ-メルカプト(3-メルカプト)プロピル基等のメルカプト基含有アルキル基;3-イソシアネートプロピル基等のイソシアネート基含有アルキル基;フェニル基等のアリール基が挙げられる。 Specific examples of R 102 in the formula (B) include alkyl groups having 1 to 18 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group and stearyl group; Alkenyl groups such as vinyl groups; Cycloalkyl groups such as cyclohexyl groups; (meth) acrylicoxy group-containing alkyl groups such as 3- (meth) acrylicoxypropyl groups; 3-chloropropyl groups, trifluoropropyl groups, tridecafluoro Halogen atom-containing alkyl group such as octyl group and heptadecafluorodecyl group; hydroxy group-containing alkyl group such as 3-hydroxypropyl group; γ-ureido (3-ureido) propyl group and ureido group-containing alkyl group; γ-amino ( Amino group-containing alkyl groups such as 3-amino) propyl group, 2-aminoethylaminomethyl group, 3- (N-styrylmethyl-2-aminoethylamino) propyl group; γ-glycidoxy (3-glycidyloxy) propyl group , 2- (3,4-epoxycyclohexyl) ethyl group and other epoxy group-containing alkyl groups; γ-mercapto (3-mercapto) propyl group and other mercapto group-containing alkyl groups; 3-isocyanuppropyl group and other isocyanate group-containing alkyl Group: An aryl group such as a phenyl group can be mentioned.
 式(B)の具体的な例として、トリアルコキシシラン、ジアルコキシシラン等のアルコキシラン等が挙げられる。
 トリアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、p-スチリルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、を挙げることができる。
 ジアルコキシシランの具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシランを挙げることができる。
Specific examples of the formula (B) include alkoxylans such as trialkoxysilane and dialkoxysilane.
Specific examples of the trialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, and pentyl. Trimethoxysilane, pentyltrimethoxysilane, heptyltrimethoxysilane, heptiltilriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane , Octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3 -(2-Aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxy Propyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, styrylethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, p-styryltrimethoxy Silane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxy. Silane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, 3- Propyl isocyanate triethoxysilane can be mentioned.
Specific examples of the dialkoxysilane include dimethyldimethoxysilane and dimethyldiethoxysilane.
 上記縮合体の具体例としては、メチルシリケート51、メチルシリケート53、エチルシリケート40、エチルシリケート48(商品名、コルコート社製)、MKCシリケート(商品名、三菱化学社製)、東レ・ダウコーニング社製のシリコンレジン、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製のシリコンレジン、信越化学工業社製のシリコンレジン、ダウコーニング・アジア社製のヒドロキシル基含有ポリジメチルシロキサン、東レ・ダウコーニング社製のシリコンオリゴマー等のシリコンオリゴマー;チタンテトラ-n-ブトキシド,テトラマー(関東化学社製)等のチタンオリゴマー等が挙げられる。 Specific examples of the above-mentioned condensate include methyl silicate 51, methyl silicate 53, ethyl silicate 40, ethyl silicate 48 (trade name, manufactured by Corcote), MKC silicate (trade name, manufactured by Mitsubishi Chemical Corporation), Toray Dow Corning Co., Ltd. Silicone resin manufactured by Momentive Performance Materials Japan, silicon resin manufactured by Shinetsu Chemical Industry Co., Ltd., hydroxyl group-containing polydimethylsiloxane manufactured by Dow Corning Asia, manufactured by Toray Dow Corning Co., Ltd. Silicon oligomers such as silicon oligomers; examples thereof include titanium oligomers such as titanium tetra-n-butoxide and tetramer (manufactured by Kanto Chemical Co., Ltd.).
 高屈折率層の屈折率は、防眩層より高い屈折率であり、防眩層の表面で反射した反射光と防眩層と高屈折率層との界面である高屈折率層の表面で反射した反射光が逆位相となるような屈折率とするのが好ましく、例えば、1.5~2.1の範囲、より好ましくは1.5~1.8の範囲から選択される。 The refractive index of the high refractive index layer is higher than that of the antiglare layer, and is the surface of the high refractive index layer which is the interface between the reflected light reflected on the surface of the antiglare layer and the antiglare layer and the high refractive index layer. The refractive index is preferably set so that the reflected reflected light has an opposite phase, and is selected from, for example, a range of 1.5 to 2.1, more preferably a range of 1.5 to 1.8.
 上記高屈折率層は、硬化温度を調整することで、屈折率を調整してもよい。この場合、硬化温度を高くするほど、高屈折率層の屈折率を高くする点で好ましい。基材などの耐熱性を考慮する観点から、焼成温度は100℃~300℃の範囲が好ましく、150℃~250℃の範囲内とすることがより好ましい。 The refractive index of the high refractive index layer may be adjusted by adjusting the curing temperature. In this case, it is preferable that the higher the curing temperature is, the higher the refractive index of the high refractive index layer is. From the viewpoint of considering the heat resistance of the base material and the like, the firing temperature is preferably in the range of 100 ° C. to 300 ° C., more preferably in the range of 150 ° C. to 250 ° C.
 上記高屈折率層は、硬化後に更に塗膜に紫外線(UV)を照射して、得られる高屈折率層の屈折率を調整してもよい。高屈折率層において、所望の屈折率を得るための紫外線照射は、例えば、高圧水銀ランプを使用して行うことができる。そして、高圧水銀ランプを使用した場合、365nm換算で全光照射1000mJ/cm以上の照射量が好ましく、2000mJ/cm~10000mJ/cmの照射量がより好ましい。また、UV光源としては特に指定はなく、別のUV光源を使用することもできる。別の光源を用いる場合は、上記高圧水銀ランプを使用した場合と同量の積算光量が照射されればよい。 After the high refractive index layer is cured, the coating film may be further irradiated with ultraviolet rays (UV) to adjust the refractive index of the obtained high refractive index layer. In the high refractive index layer, ultraviolet irradiation for obtaining a desired refractive index can be performed using, for example, a high-pressure mercury lamp. Then, using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose is preferably at 365nm terms, the dose of 2000mJ / cm 2 ~ 10000mJ / cm 2 is more preferable. Further, the UV light source is not particularly specified, and another UV light source may be used. When another light source is used, the same amount of integrated light as when the high-pressure mercury lamp is used may be irradiated.
 次いで、防眩層の表面には、特定のコーティング剤から得られる機能性層を形成してもよい。本発明においては、防眩層が上述した塗布液から形成されるので、防眩層上への機能性層を形成する塗布液の塗布性や機能性層との密着性が良好なものとなる。 Next, a functional layer obtained from a specific coating agent may be formed on the surface of the antiglare layer. In the present invention, since the antiglare layer is formed from the above-mentioned coating liquid, the coating property of the coating liquid forming the functional layer on the antiglare layer and the adhesion to the functional layer are good. ..
 本発明において、防眩層上に設けられる機能性層は特に限定されない。具体的な例としては、防汚剤、塗料、接着剤、反射防止剤、撥水剤、親水剤、撥油剤、親油剤、ハードコート剤、防滑剤などから得られる機能性層を挙げることができる。 In the present invention, the functional layer provided on the antiglare layer is not particularly limited. Specific examples include functional layers obtained from antifouling agents, paints, adhesives, antireflection agents, water repellents, hydrophilic agents, oil repellents, lipophilic agents, hard coat agents, antislip agents and the like. it can.
 防眩層や機能性層の厚さは、いずれも、5~1000nmが好ましく、より好ましくは10~400nmである。 The thickness of the antiglare layer and the functional layer is preferably 5 to 1000 nm, more preferably 10 to 400 nm.
 本発明の被膜形成用塗布液は、塗布性に優れ、透過率が高い被膜を形成することができる。また、スプレー塗布した場合の着液効率にも優れている。そのため、テレビ、コンピューター、カーナビゲーション、携帯電話等のディスプレイ等の分野に好適に用いることができる。 The coating liquid for film formation of the present invention has excellent coatability and can form a film having high transmittance. In addition, it is also excellent in liquid landing efficiency when spray-applied. Therefore, it can be suitably used in fields such as televisions, computers, car navigation systems, and displays for mobile phones and the like.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。
 以下で用いる略語は下記の通りである。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
The abbreviations used below are as follows.
 TEOS:テトラエトキシシラン
 F13:トリデカフルオロオクチルトリメトキシシラン
 UPS:γ-ウレイドプロピルトリエトキシシラン
 TTE:テトラエトキシチタン
 AN:硝酸アルミニウム九水和物
 MeOH:メタノール
 EtOH:エタノール
 IPA:イソプロパノール
 PGME:プロピレングリコールモノメチルエーテル
 BCS:ブチルセロソルブ
 PB:プロピレングリコールモノブチルエーテル
 PG:プロピレングリコール
 HG:2-メチル-2,4-ペンタンジオール
 NMP:N-メチル-2-ピロリドン
TEOS: Tetraethoxysilane F13: Tridecafluorooctyltrimethoxysilane UPS: γ-ureidopropyltriethoxysilane TTE: Tetraethoxytitanium AN: Aluminum nitrate ninehydrate MeOH: Methanol EtOH: Ethanol IPA: Isopropanol PGME: Propylene glycol monomethyl Ether BCS: Butyl cellosolve PB: Propylene glycol Monobutyl ether PG: Propylene glycol HG: 2-Methyl-2,4-pentanediol NMP: N-methyl-2-pyrrolidone
 <合成例1>
 還流管を備え付けた200mL四つ口フラスコに、TEOS(31.6g)、F13(6.2g)、及びMeOH(30.3g)を加え、撹拌し、そこにMeOH(15.1g)、水(15.0g)、及び蓚酸(0.8g)を加え、10℃の氷浴中で30分撹拌した。その後、65℃で2時間撹拌し、その後、UPS(0.5g)及びMeOH(0.5g)を加え、さらに65℃で2時間反応させた。その後、室温まで放冷し、溶液K1を得た。
<Synthesis example 1>
TEOS (31.6 g), F13 (6.2 g), and MeOH (30.3 g) were added to a 200 mL four-necked flask equipped with a reflux tube, and the mixture was stirred, and then MeOH (15.1 g) and water (15.1 g) and water ( 15.0 g) and oxalic acid (0.8 g) were added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, the mixture was stirred at 65 ° C. for 2 hours, then UPS (0.5 g) and MeOH (0.5 g) were added, and the mixture was further reacted at 65 ° C. for 2 hours. Then, the mixture was allowed to cool to room temperature to obtain solution K1.
 <合成例2>
 200mL容量のフラスコ中に、AN(2.9g)、水(2.6g)及びEtOH(50.6g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(21.2g)を加え、室温で30分撹拌した。その後、TTE(10.0g)及びEtOH(12.7g)を加え、さらに室温で30分撹拌し、溶液K2を得た。
<Synthesis example 2>
AN (2.9 g), water (2.6 g) and EtOH (50.6 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (21.2 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (10.0 g) and EtOH (12.7 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K2.
 <合成例3>
 200mL容量のフラスコ中に、AN(2.8g)、水(2.6g)及びEtOH(51.2g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(17.7g)を加え、室温で30分撹拌した。その後、TTE(12.9g)及びEtOH(12.8g)を加え、さらに室温で30分撹拌し、溶液K3を得た。
<Synthesis example 3>
AN (2.8 g), water (2.6 g) and EtOH (51.2 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (17.7 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (12.9 g) and EtOH (12.8 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K3.
 <合成例4>
 200mL容量のフラスコ中に、AN(2.7g)、水(2.5g)及びEtOH(51.8g)を加えて撹拌し、AN溶液を得た。そのAN溶液に、TEOS(14.3g)を加え、室温で30分撹拌した。その後、TTE(15.7g)及びEtOH(13.0g)を加え、さらに室温で30分撹拌し、溶液K4を得た。
<Synthesis example 4>
AN (2.7 g), water (2.5 g) and EtOH (51.8 g) were added to a flask having a capacity of 200 mL and stirred to obtain an AN solution. TEOS (14.3 g) was added to the AN solution, and the mixture was stirred at room temperature for 30 minutes. Then, TTE (15.7 g) and EtOH (13.0 g) were added, and the mixture was further stirred at room temperature for 30 minutes to obtain a solution K4.
 <合成例5>
 還流管を備え付けた200mL四つ口フラスコに、TEOS(33.0g)及びMeOH(32.5g)を加え、撹拌し、そこにMeOH(13.8g)、水(15.0g)及び蓚酸(0.9g)を加え、10℃の氷浴中で30分撹拌した。その後、60℃で2時間撹拌し、その後、UPS(2.4g)及びMeOH(2.4g)を加え、さらに60℃で30分反応させた。その後、室温まで放冷し、溶液K5を得た。
<Synthesis example 5>
TEOS (33.0 g) and MeOH (32.5 g) were added to a 200 mL four-necked flask equipped with a reflux tube, and the mixture was stirred, and there were MeOH (13.8 g), water (15.0 g) and oxalic acid (0). 0.9 g) was added, and the mixture was stirred in an ice bath at 10 ° C. for 30 minutes. Then, the mixture was stirred at 60 ° C. for 2 hours, then UPS (2.4 g) and MeOH (2.4 g) were added, and the mixture was further reacted at 60 ° C. for 30 minutes. Then, the mixture was allowed to cool to room temperature to obtain solution K5.
 <調製例1>
 K1,K5溶液(60g)に、PGME(20g)及びEtOH(20g)を加え、それぞれ溶液KL1-1,KM2-1を得た。
<Preparation Example 1>
PGME (20 g) and EtOH (20 g) were added to K1 and K5 solutions (60 g) to obtain solutions KL1-1 and KM2-1, respectively.
 <調製例2>
 K1溶液(12g)に、PG(5g)、NMP(20g)及びMeOH(63g)を加え、溶液KL1-2を得た。
<Preparation Example 2>
PG (5 g), NMP (20 g) and MeOH (63 g) were added to K1 solution (12 g) to obtain solution KL1-2.
 <調製例3>
 K2~K4溶液(18g)に、EtOH(2.5g)、IPA(42g)、BCS(9.4g)、PB(9.4g)及びHG(18.7g)を加え、それぞれ溶液KL2~KL4を得た。
<Preparation Example 3>
EtOH (2.5 g), IPA (42 g), BCS (9.4 g), PB (9.4 g) and HG (18.7 g) are added to the K2-K4 solution (18 g), and the solutions KL2-KL4 are added, respectively. Obtained.
 <調製例4>
 K1溶液(40g)に、PGME(20g)及びEtOH(40g)を加え、溶液KM1を得た。
<Preparation Example 4>
PGME (20 g) and EtOH (40 g) were added to the K1 solution (40 g) to obtain a solution KM1.
 <調製例5>
 K5溶液(15g)に、MeOH(1.8g)、EtOH(18.5g)、PGME(18.5g)、PB(27.7g)及びHG(18.5g)を加え、溶液KM2-2を得た。
<Preparation Example 5>
MeOH (1.8 g), EtOH (18.5 g), PGME (18.5 g), PB (27.7 g) and HG (18.5 g) were added to K5 solution (15 g) to obtain solution KM2-2. It was.
 [スプレー塗布条件]
 スプレー塗布は下記に示す装置、条件で行った。
 装置名:(株)アピロス社製スプレーコーターAPI-240-3D
[Spray application conditions]
Spray coating was performed with the equipment and conditions shown below.
Device name: Spray coater API-240-3D manufactured by Apirosu Co., Ltd.
 <塗布条件I-1>
 ノズル型式:LPVN45、ノズル高さ:100mm、Y軸ピッチ:2mm、Air圧力:550kPa、薬液流量1.0mL/min、ノズル速度:900mm/sec
<Applying condition I-1>
Nozzle model: LPVN45, nozzle height: 100 mm, Y-axis pitch: 2 mm, Air pressure: 550 kPa, chemical flow rate 1.0 mL / min, nozzle speed: 900 mm / sec
 <塗布条件I-2>
 塗布条件I-1から、Y軸ピッチ:3mmに変更し、その他の条件は同じにした。
<Applying condition I-2>
The coating condition I-1 was changed to a Y-axis pitch: 3 mm, and the other conditions were the same.
 <塗布条件I-3>
 塗布条件I-1から、Y軸ピッチ:5mmに変更し、その他の条件は同じにした。
<Applying condition I-3>
The coating condition I-1 was changed to a Y-axis pitch: 5 mm, and the other conditions were the same.
 <塗布条件I-4>
 塗布条件I-1から、Y軸ピッチ:1.4mmに変更し、その他の条件は同じにした。
<Applying condition I-4>
The coating condition I-1 was changed to a Y-axis pitch: 1.4 mm, and the other conditions were the same.
 <塗布条件II-1>
 ノズル型式:LPVN12、ノズル高さ:100mm、Y軸ピッチ:7mm、Air圧力:560kPa、薬液流量4.9mL/min、ノズル速度:500mm/sec
<Applying condition II-1>
Nozzle model: LPVN12, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 560 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 500 mm / sec
 <塗布条件II-2>
 塗布条件II-1から、ノズル速度:550mm/secに変更し、その他の条件は同じにした。
<Applying condition II-2>
The coating condition II-1 was changed to a nozzle speed of 550 mm / sec, and the other conditions were the same.
 <塗布条件III>
 ノズル型式:LPVN45、ノズル高さ:100mm、Y軸ピッチ:7mm、Air圧力:470kPa、薬液流量4.9mL/min、ノズル速度:170mm/sec
<Application condition III>
Nozzle model: LPVN45, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 470 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 170 mm / sec
 <塗布条件IV>
 ノズル型式:LPVN45、ノズル高さ:100mm、Y軸ピッチ:7mm、Air圧力:365kPa、薬液流量4.9mL/min、ノズル速度:500mm/sec
<Application condition IV>
Nozzle model: LPVN45, nozzle height: 100 mm, Y-axis pitch: 7 mm, Air pressure: 365 kPa, chemical flow rate 4.9 mL / min, nozzle speed: 500 mm / sec
 <塗布条件V>
 ノズル型式:LPVN45、ノズル高さ:50mm、Y軸ピッチ:3mm、Air圧力:550kPa、薬液流量1.0mL/min、ノズル速度:700mm/sec
<Applying condition V>
Nozzle model: LPVN45, nozzle height: 50 mm, Y-axis pitch: 3 mm, Air pressure: 550 kPa, chemical flow rate 1.0 mL / min, nozzle speed: 700 mm / sec
 [焼成条件]
 <焼成条件A>
 ホットプレート上にて温度70℃で5分乾燥し、熱風循環式オーブンにて160℃で30分焼成した。
[Baking conditions]
<Baking condition A>
It was dried on a hot plate at a temperature of 70 ° C. for 5 minutes and baked in a hot air circulation oven at 160 ° C. for 30 minutes.
 <焼成条件B>
 熱風循環式オーブンにて温度130℃で3分乾燥し、UV照射3000mJ/cm(365nm換算、高圧水銀ランプ)、熱風循環式オーブンにて160℃で30分焼成した。
<Baking condition B>
It was dried in a hot air circulation oven at a temperature of 130 ° C. for 3 minutes, UV-irradiated at 3000 mJ / cm 2 (365 nm conversion, high-pressure mercury lamp), and baked in a hot air circulation oven at 160 ° C. for 30 minutes.
 <焼成条件C>
 ホットプレート上にて温度40℃で5分乾燥し、熱風循環式オーブンにて160℃で30分焼成した。
<Baking condition C>
It was dried on a hot plate at a temperature of 40 ° C. for 5 minutes and baked in a hot air circulation oven at 160 ° C. for 30 minutes.
 <各種評価条件>
 [HAZE]
 基板にソーダライムガラスを用い、スプレー塗布で実施例及び比較例と同じ塗布条件で製膜した。得られた被膜付き基板をスガ試験機(株)社製ヘイズメーターHZ-V3にてHAZEを測定した。
<Various evaluation conditions>
[HAZE]
Soda lime glass was used as a substrate, and a film was formed by spray coating under the same coating conditions as in Examples and Comparative Examples. HAZE was measured on the obtained coated substrate with a haze meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd.
 [表面観察]
 基板にソーダライムガラスを用い、作製した被膜付き基板をブルカージャパン(株)社製3次元白色干渉顕微鏡Contour GTにて観察した。
[Surface observation]
Using soda lime glass as the substrate, the prepared substrate with a coating was observed with a three-dimensional white interference microscope Contour GT manufactured by Bruker Japan Co., Ltd.
 [凸部表面被覆率]
 表面観察で取得した画像から、任意の測定箇所内での凸部、および平坦部の面積比率を画像解析の明るさ成分から算出し、凸部表面被覆率を算出した。凸部表面被覆率は、上記で説明した凸部表面被覆率の算出方法と同様の方法で算出した。
[Convex surface coverage]
From the image acquired by surface observation, the area ratio of the convex portion and the flat portion in an arbitrary measurement point was calculated from the brightness component of the image analysis, and the convex portion surface coverage was calculated. The convex surface coverage was calculated by the same method as the method for calculating the convex surface coverage described above.
 [反射率]
 <正反射、反射色>
 基板にソーダライムガラスを用い、作製した被膜付き基板を、(株)島津製作所社製紫外可視近赤外分光光度計UV-3600にて、光の入射角5°での波長380nmから800nmの範囲での反射率を測定し、得られた分光反射率曲線から、JIS R 3106に従って、平均視感反射率(正反射)および反射色a、bを求めた。
[Reflectance]
<Specular reflection, reflection color>
Using soda lime glass as the substrate, the coated substrate was measured with a UV-3600 ultraviolet-visible near-infrared spectrophotometer manufactured by Shimadzu Corporation in the wavelength range of 380 nm to 800 nm at an incident angle of 5 °. From the obtained spectral reflectance curve, the average visual reflectance (normal reflection) and the reflection colors a * and b * were obtained according to JIS R 3106.
 <SCI、SCE>
 基板にソーダライムガラスを用い、作製した被膜付き基板を、コニカミノルタ(株)製分光測色計CM-3700Aにて、光の入射角8°での波長360nmから740nmの範囲での反射率を測定し、JIS Z 8722に従って、SCI、SCEの平均視感反射率を求めた。なお、SCI(Specular Component Include)は正反射光を考慮に入れた測定であり、SCE(Specular Component Exclude)は正反射光を考慮に入れない測定である。
<SCI, SCE>
Using soda lime glass as the substrate, the coated substrate was measured with a spectrophotometer CM-3700A manufactured by Konica Minolta Co., Ltd. to determine the reflectance in the wavelength range of 360 nm to 740 nm at an incident angle of 8 °. The measurement was performed, and the average visual reflectance of SCI and SCE was determined according to JIS Z 8722. In addition, SCI (Special Component Industry) is a measurement in which specular reflected light is taken into consideration, and SCE (Specular Component Exclude) is a measurement in which specular reflected light is not taken into consideration.
 [スパークリング]
 画素密度350ppiの液晶ディスプレイにて、黄緑色を前面に、かつ輝度を最大にして表示し、その画面上に直接被膜付き基板を置き、スパークリングが発生したものを×、若干確認できるものを△、発生しなかったものを〇として評価した。
[Sparkling]
On a liquid crystal display with a pixel density of 350 ppi, yellow-green is displayed on the front and the brightness is maximized, and a substrate with a coating is placed directly on the screen. Those that did not occur were evaluated as 〇.
 [屈折率]
 基板にシリコン基板(100)を用い、スピンコートにて焼成後の膜厚が100nmとなるように溶液KL2~4を製膜し、上記焼成条件Bにて焼成し、得られた被膜付き基板を用いて、エリプソメーター(溝尻光学工業所社製、DVA-FLVW)で波長633nmにおける屈折率を測定した。
[Refractive index]
Using a silicon substrate (100) as a substrate, solutions KL2 to KL2 to 4 are formed by spin coating so that the film thickness after firing is 100 nm, and the substrate is fired under the above firing condition B to obtain a coated substrate. The refractive index at a wavelength of 633 nm was measured with an ellipsometer (DVA-FLVW, manufactured by Mizojiri Optical Co., Ltd.).
 <実施例1>
 基板にソーダライムガラスを用い、上記調製例2で得られた溶液KL1-2を塗布条件IIIにてスプレー塗布を行った後、焼成条件Aにて焼成を行い、下層を形成した。得られた基板に、上記調製例1で得られた溶液KL1-1を塗布条件I-1にてスプレー塗布を行った後、焼成条件Cにて焼成を行い、被膜付き基板を得た。
 得られた被膜付き基板を用いて各種評価を行った。評価結果を表1-2に示す。
<Example 1>
Using soda lime glass as a substrate, the solution KL1-2 obtained in Preparation Example 2 was spray-coated under coating condition III and then fired under firing condition A to form a lower layer. The solution KL1-1 obtained in Preparation Example 1 was spray-coated on the obtained substrate under coating condition I-1, and then fired under firing condition C to obtain a coated substrate.
Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 1-2.
 <実施例2~3、比較例1~4>
 使用する溶液及び各条件を下記表1-1に示すように変更した点以外は実施例1と同様に行い、被膜付き基板を得た。尚、比較例2及び比較例4においては、下層の形成をもって被膜付き基板とした。
 得られた被膜付き基板を用いて各種評価を行った。評価結果を表1-2に示す。
<Examples 2 to 3, Comparative Examples 1 to 4>
A substrate with a coating was obtained in the same manner as in Example 1 except that the solution to be used and each condition were changed as shown in Table 1-1 below. In Comparative Example 2 and Comparative Example 4, the lower layer was formed to form a coated substrate.
Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1-2に示されるように、実施例1~3では、正反射およびSCI値が低く抑えられており、かつスパークリングも発生していない。さらに、比較例2に対して、反射率のうちの光散乱成分であるSCEが生じていることから、防眩機能が発現できており、以上のことから、反射防止機能を付与した防眩性機能膜が構築できていることが示唆される。 As shown in Table 1-2, in Examples 1 to 3, the specular reflection and the SCI value were suppressed to be low, and sparkling did not occur. Further, as compared with Comparative Example 2, since SCE, which is a light scattering component of the reflectance, is generated, the antiglare function can be exhibited, and from the above, the antiglare property to which the antireflection function is imparted. It is suggested that the functional membrane has been constructed.
 比較例1では、SCI値が非常に大きく、またスパークリングも発生している。 In Comparative Example 1, the SCI value is very large and sparkling also occurs.
 比較例3は、フルオロアルキル成分が無い溶液を用いた場合であり、凸部表面被覆率が低い形状は得られず、SCI値が高くなってしまっている。また、比較例4については、防眩性は無いが、反射色は小さい。しかし、SCI、正反射ともに高くなってしまう。 Comparative Example 3 is a case where a solution without a fluoroalkyl component is used, and a shape having a low convex surface coverage cannot be obtained, and the SCI value is high. Further, in Comparative Example 4, although there is no antiglare property, the reflected color is small. However, both SCI and specular reflection become high.
 <実施例4~6、比較例5~7>
 使用する溶液及び各条件を下記表2-1に示すように変更した点以外は実施例1と同様に行い、被膜付き基板を得た。
 得られた被膜付き基板を用いて各種評価を行った。評価結果を表2-2に示す。
<Examples 4 to 6, Comparative Examples 5 to 7>
A substrate with a coating was obtained in the same manner as in Example 1 except that the solution to be used and each condition were changed as shown in Table 2-1 below.
Various evaluations were performed using the obtained coated substrate. The evaluation results are shown in Table 2-2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2-2に示す通り、実施例4~6では、SCI値を低く抑えることができ、かつスパークリングも発生しなかった。さらに、それぞれ比較例5~7と比較して、反射色の値の絶対値が低減できており、かつSCEが生じていることから、防眩機能が発現できており、以上のことから反射防止機能付き防眩性被膜が形成できていることが示唆される。 As shown in Table 2-2, in Examples 4 to 6, the SCI value could be suppressed to a low level, and sparkling did not occur. Further, as compared with Comparative Examples 5 to 7, the absolute value of the reflected color value can be reduced and SCE is generated, so that the antiglare function can be exhibited. It is suggested that a functional antiglare film can be formed.
 本発明の眩性被膜形成用塗布液およびそれを用いた被膜構成物を用いることにより、ガラス基板上に形成可能で、反射防止性、および防眩性(アンチグレア機能)の両方に優れる積層体の提供が可能となる。これにより、テレビ、パーソナルコンピュータ、スマートフォン等の各種デバイスが具備する画像表示装置(液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)の表示品位の向上に貢献することが出来る。  A laminate that can be formed on a glass substrate and has excellent antireflection and antiglare properties (anti-glare function) by using the coating liquid for forming a glare film of the present invention and a film composition using the same. It will be possible to provide. This can contribute to improving the display quality of image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices such as televisions, personal computers, and smartphones.

Claims (17)

  1.  基材と、前記基材上に直接又は他の層を介して形成され、表面に凹凸構造を有する防眩層とを有し、前記防眩層は、含フッ素有機基を有するポリシロキサンを含有する防眩性被膜形成用組成物の硬化物から形成され、凸部表面被覆率が5%~70%であることを特徴とする、防眩層付基材。 It has a base material and an antiglare layer formed directly on the base material or via another layer and having an uneven structure on the surface, and the antiglare layer contains a polysiloxane having a fluorine-containing organic group. A base material with an antiglare layer, which is formed from a cured product of a composition for forming an antiglare film and has a convex surface coverage of 5% to 70%.
  2.  前記含フッ素有機基を有するポリシロキサンが、下記式(F)で表される有機基を含有する、請求項1に記載の防眩層付基材。
     CF(CFCHCH-*    (F)
    (式中、kは0~12の整数である。*は結合位置を表す。)
    The base material with an antiglare layer according to claim 1, wherein the polysiloxane having a fluorine-containing organic group contains an organic group represented by the following formula (F).
    CF 3 (CF 2 ) k CH 2 CH 2- * (F)
    (In the formula, k is an integer from 0 to 12. * Indicates the connection position.)
  3.  前記ポリシロキサンが、下記式(1)で表されるアルコキシシラン化合物を含有するアルコキシシラン成分を重縮合して得られる、請求項1又は2に記載の防眩層付基材。
     R11Si(OR12         (1)
    (R11は、前記フッ素原子で置換された有機基を表し、R12は炭素数1~5の炭化水素基を表す。)
    The base material with an antiglare layer according to claim 1 or 2, wherein the polysiloxane is obtained by polycondensing an alkoxysilane component containing an alkoxysilane compound represented by the following formula (1).
    R 11 Si (OR 12 ) 3 (1)
    (R 11 represents an organic group substituted with the fluorine atom, and R 12 represents a hydrocarbon group having 1 to 5 carbon atoms.)
  4.  前記ポリシロキサンが、更に下記式(2)で表されるアルコキシシラン化合物及び下記式(3)で表されるアルコキシシラン化合物からなる群から選ばれる少なくとも1種を含有するアルコキシシラン成分を重縮合して得られる、請求項3に記載の防眩層付基材。
     Si(OR4                    (2)
     R31 Si(OR324-n             (3)
    (式中、Rは炭化水素基を表す。R31はフッ素原子で置換されていない有機基又は水素原子を表し、R32は炭素数1~5の炭化水素基を表し、nは1~3の整数である。)
    The polysiloxane is further polycondensed with an alkoxysilane component containing at least one selected from the group consisting of an alkoxysilane compound represented by the following formula (2) and an alkoxysilane compound represented by the following formula (3). The base material with an antiglare layer according to claim 3.
    Si (OR 2 ) 4 (2)
    R 31 n Si (OR 32 ) 4-n (3)
    (In the formula, R 2 represents a hydrocarbon group, R 31 represents an organic group or a hydrogen atom not substituted with a fluorine atom, R 32 represents a hydrocarbon group having 1 to 5 carbon atoms, and n represents 1 to 1 to 5. It is an integer of 3.)
  5.  前記フッ素原子で置換されてない有機基が、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、シクロアルキル基、(メタ)アクリルオキシ基含有アルキル基、ヒドロキシ基含有アルキル基、ウレイド基含有アルキル基、アミノ基含有アルキル基、エポキシ基含有アルキル基、メルカプト基含有アルキル基、イソシアネート基含有アルキル基又はアリール基から選ばれる、請求項4に記載の防眩層付基材。 The organic group not substituted with a fluorine atom is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a cycloalkyl group, a (meth) acrylicoxy group-containing alkyl group, a hydroxy group-containing alkyl group, and the like. The base material with an antiglare layer according to claim 4, which is selected from a ureido group-containing alkyl group, an amino group-containing alkyl group, an epoxy group-containing alkyl group, a mercapto group-containing alkyl group, an isocyanate group-containing alkyl group or an aryl group.
  6.  前記式(2)で表されるアルコキシシラン化合物が、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、又はテトラブトキシシランである、請求項4又は5に記載の防眩層付基材。 The base material with an antiglare layer according to claim 4 or 5, wherein the alkoxysilane compound represented by the formula (2) is tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, or tetrabutoxysilane.
  7.  前記式(3)で表されるアルコキシシラン化合物が、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン又はγ-ウレイドプロピルトリエトキシシランである、請求項4~6のいずれか一項に記載の防眩層付基材。 The alkoxysilane compound represented by the formula (3) is methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyl. Triethoxysilane, pentyltrimethoxysilane, penttiltriethoxysilane, heptyltrimethoxysilane, heptiltilriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, Hexadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanoxidetrimethoxysilane, 3-isocyanoxidetriethoxysilane Silane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyl Triethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-ureidopropyltrimethoxysilane or γ- The base material with an antiglare layer according to any one of claims 4 to 6, which is ureidopropyltriethoxysilane.
  8.  前記防眩性被膜形成用組成物が、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート及びメチルイソブチルケトンから選ばれる少なくとも1種を含有する、請求項1~7に記載の防眩層付基材。 The composition for forming an antiglare film includes ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate and the like. The base material with an antiglare layer according to claims 1 to 7, which contains at least one selected from methyl isobutyl ketone.
  9.  前記防眩性被膜形成用組成物が、メタノール、エタノール、2-プロパノール、2-ブタノール及び2-メチル-1-プロパノールから選ばれる少なくとも1種を含有する、請求項1~8に記載の防眩層付基材。 The antiglare according to claims 1 to 8, wherein the antiglare film forming composition contains at least one selected from methanol, ethanol, 2-propanol, 2-butanol and 2-methyl-1-propanol. Layered substrate.
  10.  前記凹凸構造の凸部の高さが50nm~2,000nmである、請求項1~9のいずれか一項に記載の防眩層付基材。 The base material with an antiglare layer according to any one of claims 1 to 9, wherein the height of the convex portion of the uneven structure is 50 nm to 2,000 nm.
  11.  前記防眩層のHAZEが0.3%~40%である、請求項1~10のいずれか一項に記載の防眩層付基材。 The base material with an antiglare layer according to any one of claims 1 to 10, wherein the HAZE of the antiglare layer is 0.3% to 40%.
  12.  前記防眩層の屈折率が1.3~1.49の範囲である、請求項1~11のいずれか一項に記載の防眩層付基材。 The base material with an antiglare layer according to any one of claims 1 to 11, wherein the refractive index of the antiglare layer is in the range of 1.3 to 1.49.
  13.  前記防眩層が、高屈折率層上に形成されたものであり、該高屈折率層の屈折率は前記防眩層の屈折率よりも高いものであることを特徴とする、請求項1~12のいずれか一項に記載の防眩層付基材。 The antiglare layer is formed on the high refractive index layer, and the refractive index of the high refractive index layer is higher than the refractive index of the antiglare layer. The base material with an anti-glare layer according to any one of 12 to 12.
  14.  前記高屈折率層の屈折率が、1.5~2.1の範囲である、請求項13に記載の防眩層付基材。 The base material with an antiglare layer according to claim 13, wherein the refractive index of the high refractive index layer is in the range of 1.5 to 2.1.
  15.  前記防眩層上に形成された機能性層とをさらに具備することを特徴とする、請求項1~14のいずれか一項に記載の防眩層付基材。 The base material with an antiglare layer according to any one of claims 1 to 14, further comprising a functional layer formed on the antiglare layer.
  16.  請求項1~15のいずれか一項に記載の防眩層付基材を備えることを特徴とする画像表示装置。 An image display device comprising the base material with an antiglare layer according to any one of claims 1 to 15.
  17.  含フッ素有機基を有するポリシロキサンを含有する防眩性被膜形成用塗布液を、基材上に塗布して防眩層を形成する工程を含む、防眩層付基材の製造方法。 A method for producing a base material with an antiglare layer, which comprises a step of applying a coating liquid for forming an antiglare film containing a polysiloxane having a fluorine-containing organic group onto the base material to form an antiglare layer.
PCT/JP2020/042081 2019-11-15 2020-11-11 Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method WO2021095770A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080078781.XA CN114730023A (en) 2019-11-15 2020-11-11 Substrate with anti-glare layer, image display device, and method for manufacturing substrate with anti-glare layer
JP2021556125A JPWO2021095770A1 (en) 2019-11-15 2020-11-11
KR1020227015279A KR20220099545A (en) 2019-11-15 2020-11-11 Substrate and image display device with anti-glare layer, and method for manufacturing base with anti-glare layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207410 2019-11-15
JP2019-207410 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095770A1 true WO2021095770A1 (en) 2021-05-20

Family

ID=75912632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042081 WO2021095770A1 (en) 2019-11-15 2020-11-11 Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method

Country Status (5)

Country Link
JP (1) JPWO2021095770A1 (en)
KR (1) KR20220099545A (en)
CN (1) CN114730023A (en)
TW (1) TW202132490A (en)
WO (1) WO2021095770A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343505A (en) * 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd Antireflection film, method for producing the same and image display
JP2002131507A (en) * 2000-10-24 2002-05-09 Fuji Photo Film Co Ltd Antidazzle reflection preventing film and polarizing plate
JP2005162795A (en) * 2003-11-28 2005-06-23 Nof Corp Water- and oil-repellent film and method for producing the same
JP2008020864A (en) * 2006-07-14 2008-01-31 Central Glass Co Ltd Sound absorbing non-woven fabric sheet
WO2009025289A1 (en) * 2007-08-20 2009-02-26 Central Glass Co., Ltd. Display device comprising anti-dazzling substrate
WO2009075201A1 (en) * 2007-12-11 2009-06-18 Konica Minolta Opto, Inc. Anti-glare film, polarizing plate and liquid crystal display device
WO2018070426A1 (en) * 2016-10-12 2018-04-19 日産化学工業株式会社 Anti-glare hard coat laminate
WO2019116204A1 (en) * 2017-12-14 2019-06-20 3M Innovative Properties Company Siloxane-based dual-cure transparent transfer film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839134B2 (en) 1978-06-08 1983-08-27 旭化成株式会社 Method for producing tertiary-butanol from mixed butylene
JP2000262963A (en) * 1999-03-19 2000-09-26 Dainippon Ink & Chem Inc Formation of hydrophilic coating film and coated article
JP2002055205A (en) * 2000-08-11 2002-02-20 Fuji Photo Film Co Ltd Antireflection film and image display
CN101163994B (en) * 2005-02-21 2011-07-13 大日本印刷株式会社 Anti-dazzle property optical stacking body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343505A (en) * 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd Antireflection film, method for producing the same and image display
JP2002131507A (en) * 2000-10-24 2002-05-09 Fuji Photo Film Co Ltd Antidazzle reflection preventing film and polarizing plate
JP2005162795A (en) * 2003-11-28 2005-06-23 Nof Corp Water- and oil-repellent film and method for producing the same
JP2008020864A (en) * 2006-07-14 2008-01-31 Central Glass Co Ltd Sound absorbing non-woven fabric sheet
WO2009025289A1 (en) * 2007-08-20 2009-02-26 Central Glass Co., Ltd. Display device comprising anti-dazzling substrate
WO2009075201A1 (en) * 2007-12-11 2009-06-18 Konica Minolta Opto, Inc. Anti-glare film, polarizing plate and liquid crystal display device
WO2018070426A1 (en) * 2016-10-12 2018-04-19 日産化学工業株式会社 Anti-glare hard coat laminate
WO2019116204A1 (en) * 2017-12-14 2019-06-20 3M Innovative Properties Company Siloxane-based dual-cure transparent transfer film

Also Published As

Publication number Publication date
KR20220099545A (en) 2022-07-13
CN114730023A (en) 2022-07-08
JPWO2021095770A1 (en) 2021-05-20
TW202132490A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
KR101864458B1 (en) Low refractive index film-forming composition and method of forming low refractive index film using the same
JP4437783B2 (en) Silica-containing laminate
TWI454543B (en) Transparent film forming coating and substrate with film
US20070190305A1 (en) Coating material composition and article having coating film formed therewith
US20100168264A1 (en) Antireflective coating compositions
JPWO2005121265A1 (en) Siloxane-based paint, optical article, and method for producing siloxane-based paint
WO2017022638A1 (en) Glass substrate suitable for cover glass, etc., of mobile display device
JP5262722B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JP4251093B2 (en) Lighting device
KR20060125770A (en) Water repellent coating film having low refractive index
TW201700615A (en) Low refractive index film-forming liquid composition
JP5458575B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JP5293180B2 (en) Coating liquid for coating formation containing phosphoric ester compound and antireflection film
JP4893103B2 (en) Coating liquid for coating film formation, coating film therefor, and coating film forming method
KR101970934B1 (en) Application solution for formation of coating film for spray application and coating film
WO2021095770A1 (en) Antiglare layer-provided substrate, image display apparatus, and antiglare layer-provided substrate manufacturing method
KR20070022311A (en) Siloxane coating material, optical articles and process for the production of siloxane coating materials
KR102188211B1 (en) Composition for forming a thin layer of low refractive index, manufacturing method thereof, and manufacturing method of a thin layer of low refractive index
JP2018049075A (en) Optical film, substrate including optical film, and optical device including substrate
JP5310549B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
WO2015141718A1 (en) Low refractive index film and production method therefor
JP2006028322A (en) Siloxane coating film and coating for forming the same
KR101538177B1 (en) Coating solution for forming antireflective coating film comprising polysiloxane modified with mercapto group
JP2018049074A (en) Optical film, substrate including optical film, and optical device including substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888105

Country of ref document: EP

Kind code of ref document: A1