WO2018070265A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2018070265A1
WO2018070265A1 PCT/JP2017/035394 JP2017035394W WO2018070265A1 WO 2018070265 A1 WO2018070265 A1 WO 2018070265A1 JP 2017035394 W JP2017035394 W JP 2017035394W WO 2018070265 A1 WO2018070265 A1 WO 2018070265A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing ring
side sealing
sliding surface
sliding
fluid
Prior art date
Application number
PCT/JP2017/035394
Other languages
English (en)
French (fr)
Inventor
壮敏 板谷
和正 砂川
哲三 岡田
啓一 千葉
健二 吉柳
忠弘 木村
晶子 古賀
Original Assignee
イーグル工業株式会社
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社, Nok株式会社 filed Critical イーグル工業株式会社
Priority to JP2018544749A priority Critical patent/JP6937766B2/ja
Priority to US16/341,413 priority patent/US11009130B2/en
Priority to EP17859594.8A priority patent/EP3527859B1/en
Priority to CN201780063225.3A priority patent/CN109906330B/zh
Priority to AU2017341527A priority patent/AU2017341527A1/en
Publication of WO2018070265A1 publication Critical patent/WO2018070265A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/002Sealings comprising at least two sealings in succession
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3232Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip having two or more lips

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires fluid to be interposed in the sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • a technique for reducing friction can be achieved by providing a dynamic pressure generating mechanism between the sliding surfaces by rotation and sliding in a state where a liquid film is interposed, that is, a so-called fluid lubrication state.
  • a dynamic pressure generating mechanism a Rayleigh step that generates positive dynamic pressure on a sliding surface and a reverse Rayleigh step that generates negative dynamic pressure are formed.
  • a positive pressure is generated between the sliding surfaces by the Rayleigh step with relative rotation, and a fluid film is actively interposed between the sliding surfaces to maintain the fluid lubrication state, and a negative pressure is generated by the reverse Rayleigh step. Leakage is prevented and the conflicting conditions of "lubrication" and "sealing" are compatible.
  • silicon carbide SiC
  • cemented carbide and the like have been conventionally used as sliding materials for mechanical seals from the viewpoint of extending the service life.
  • silicon carbide is often used because it has excellent corrosion resistance and wear resistance (see, for example, Patent Documents 2 and 3).
  • Silicon carbide is a suitable material as a sliding material for mechanical seals, but it is expensive and has poor workability, so it is inexpensive, more excellent in corrosion resistance and wear resistance, and improves workability.
  • a material in which the sliding surface of the sealing ring is coated with diamond-like carbon (hereinafter sometimes referred to as “DLC”) has been proposed (see, for example, Patent Document 4).
  • DLC diamond-like carbon
  • Patent Document 5 it is also known that the sliding surface of the sealing ring is coated with DLC (for example, see Patent Document 5).
  • LLC long life coolant
  • phosphates phosphates
  • the generation of this deposit is considered to be a phenomenon that also occurs in mechanical seals of equipment that handles chemicals and oil.
  • Patent Document 1 When the sliding component of Patent Document 1 is used for a fluid containing an LLC additive, silicate (silicate), phosphate, and the like are concentrated on the sliding surface, and the Rayleigh step groove, There is a risk of accumulation in the reverse Rayleigh step groove, impairing the functions of the Rayleigh step and the reverse Rayleigh step.
  • Silicon carbide as a sliding material for mechanical seals described in Patent Documents 2 and 3 has high affinity for silicon contained in silicon carbide with silicate in the sealed fluid, and the sliding material is made of silicon carbide. When it is formed, the silicate compound is likely to be deposited on the sliding surface, and the smoothness of the sliding surface is lost due to the deposit, leading to the leakage of LLC.
  • Patent Documents 4 and 5 a DLC film is provided to improve wear resistance and familiarity, and silicon carbide has a high affinity with silicate in the sealed fluid. This is the same in that the silicate compound accumulates on the sliding surface with the passage of time, the smoothness of the sliding surface is lost, and the leakage of LLC occurs.
  • an object of the present invention is to provide a sliding part that can prevent the problem.
  • a sliding component of the present invention includes, firstly, an annular fixed-side sealing ring fixed to a fixed side, and an annular rotating-side sealing ring that rotates together with a rotating shaft, By sealingly rotating the opposed sliding surfaces of the fixed-side sealing ring and the rotating-side sealing ring, the silicate-containing sealed fluid existing on one side in the radial direction of the relatively rotating sliding surface is sealed.
  • a sliding surface of at least one of the fixed side sealing ring or the rotation side sealing ring is provided with an amorphous carbon film formed using a hydrocarbon gas not containing a silicon compound, and the amorphous The silicon content of the carbon film is 1.5 at% or less.
  • the sliding component of the present invention is secondly characterized in that, in the first feature, the base material of the stationary seal ring or the rotary seal ring is silicon carbide.
  • silicon carbide which is a suitable material having good heat dissipation and excellent wear resistance as a sliding material such as a mechanical seal, is used as a base material for a stationary seal ring or a rotation seal ring. Even if it exists, the leakage of the sealed fluid containing silicate can be prevented.
  • At least one sliding surface of the fixed side sealing ring or the rotation side sealing ring is the fixed side sealing ring or the rotation side sealing.
  • a dynamic pressure generating mechanism that generates dynamic pressure by relative rotation with the ring is provided. According to this feature, low pressure friction is generated by generating dynamic pressure between the sliding surfaces without depositing silicate on the dynamic pressure generating mechanism provided on at least one sliding surface of the fixed side sealing ring or the rotating side sealing ring.
  • a sliding component with almost no leakage can be provided.
  • the present invention has the following excellent effects.
  • An amorphous carbon having a silicon content of 1.5 at% or less on a sliding surface of at least one of a stationary side sealing ring and a rotating side sealing ring using a hydrocarbon gas not containing a silicon compound By forming the film, the sliding surface of the fixed side sealing ring or the rotating side sealing ring has a low affinity with silicate, and it is possible to prevent the silicate compound contained in the sealed fluid from being deposited on the sliding surface. Thus, the smoothness of the sliding surface can be maintained and leakage of the sealed fluid can be prevented.
  • the dynamic pressure generating mechanism formed on at least one sliding surface of the fixed-side sealing ring or the rotating-side sealing ring is a fluid to be sealed by an amorphous carbon film having a silicon content of 1.5 at% or less. Since accumulation of the silicate compound contained can be prevented, dynamic pressure can be generated between the sliding surfaces without losing the function of the dynamic pressure generating mechanism, and sliding can be performed with low friction and low leakage.
  • FIG. 4 is a view showing an embodiment in which four sets of dynamic pressure generating grooves each consisting of a positive pressure generating mechanism and a negative pressure generating mechanism extending in opposite directions with a fluid circulation groove interposed therebetween are arranged on a sliding surface of a stationary seal ring. . It is the figure which compared the test result of Example 9, and Comparative Examples 8 and 9.
  • a first dynamic pressure generating mechanism comprising a first positive pressure generating mechanism and a negative pressure generating mechanism extending in opposite directions across the first fluid circulation groove, and a second positive pressure generation communicating with the second fluid circulation groove
  • production mechanisms which consist of mechanisms alternately on a sliding surface, respectively.
  • Eight sets of dynamic pressure generating mechanisms consisting of a positive pressure generating mechanism and a negative pressure generating mechanism extending in opposite directions across the fluid circulation groove are arranged on the sliding surface of the stationary seal ring, and the width of the negative pressure generating mechanism It is a figure which shows embodiment which formed narrower than the width
  • the sliding component of this invention is demonstrated.
  • a mechanical seal which is an example of a sliding component will be described as an example.
  • the outer peripheral side of the sliding part which comprises a mechanical seal is demonstrated as a high pressure fluid side (sealed fluid side) and an inner peripheral side is a low pressure fluid side (atmosphere side)
  • this invention is not limited to this
  • the present invention can also be applied to the case where the high pressure fluid side and the low pressure fluid side are reversed.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, which is an inside type that seals a sealed fluid on a high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • a mechanical seal which is an inside type that seals a sealed fluid on a high-pressure fluid side that is about to leak from the outer periphery of the sliding surface toward the inner peripheral direction.
  • annular ring which is one sliding component provided on the rotary shaft 1 side for driving a pump impeller (not shown) on the high pressure fluid side via a sleeve 2 so as to be rotatable integrally with the rotary shaft 1.
  • a ring-shaped stationary side sealing ring 5 which is the other sliding part provided in the pump housing 4 in a non-rotating state and capable of moving in the axial direction.
  • . 1 shows a case where the width of the sliding surface of the rotation-side sealing ring 3 is wider than the width of the sliding surface of the stationary-side sealing ring 5, but the present invention is not limited to this. Of course, the present invention can also be applied.
  • the sealed fluid is a silicate-containing fluid such as LLC to which silicate is added.
  • the material of the rotating side sealing ring and the stationary side sealing ring 5 is selected from carbon having excellent self-lubricating property and silicon carbide (SiC) having excellent wear resistance.
  • SiC silicon carbide
  • silicon carbide is a suitable material having good heat dissipation and excellent wear resistance as a sliding material such as a mechanical seal.
  • silicon itself contained in silicon carbide has a high affinity with the silicate contained in the sealed fluid. For this reason, when a sliding component made of silicon carbide is used to seal a fluid containing a silicate compound such as LLC, silicate is deposited and adhered to the sliding surface, and the smoothness of the sliding surface is lost. There is a problem that leads to leakage.
  • the surface of the sliding material of the mechanical seal has been coated with a DLC film in order to improve wear resistance, improve familiarity, and lower the friction coefficient.
  • a DLC film in order to improve wear resistance, improve familiarity, and lower the friction coefficient.
  • a hydrocarbon gas containing no silicon compound in the plasma CVD method (chemical vapor deposition method) is applied to at least one sliding surface S of the rotation-side sealing ring 3 or the stationary-side sealing ring 5.
  • Amorphous carbon films formed using a source gas are stacked. That is, the amorphous carbon film of the present invention is characterized in that silicon is not contained as much as possible. As will be described later, even when a film is formed using a hydrocarbon gas not containing a silicon compound, an extremely small amount of silicon derived from the base material may be contained in the amorphous carbon film.
  • the amorphous carbon film is a carbon film having an amorphous structure (amorphous structure) in which carbon having sp3 bonds corresponding to the diamond structure and carbon having sp2 bonds corresponding to the graphite structure are irregularly mixed. like. It is generally called carbon (DLC).
  • DLC carbon
  • the amorphous carbon film formed using a hydrocarbon gas containing no silicon compound on the sliding surfaces S of the rotation-side sealing ring 3 and the stationary-side sealing ring 5. 8 are stacked.
  • the amorphous carbon film 8 is formed by, for example, a plasma CVD method (chemical vapor deposition method) such as a direct current plasma CVD method. In this plasma CVD method, while introducing a raw material gas composed of a hydrocarbon gas such as acetylene gas, ethylene gas, propylene gas, methane gas, etc.
  • the plasma source gas is present around the substrate surface of the rotating side sealing ring 3 and the stationary side sealing ring 5.
  • the plasma-formed source gas is laminated on the base material of the rotating side sealing ring 3 and the stationary side sealing ring 5 arranged on the electrode side, and the amorphous carbon film 8 is formed.
  • the formed amorphous carbon film 8 contains almost no silicon. . Therefore, since the rotation side sealing ring 3 and the stationary side sealing ring 5 are covered with an amorphous carbon film 8 not containing silicon, the sliding surfaces of the stationary side sealing ring and the rotation side sealing ring have an affinity for silicate. Almost no silicate compound contained in the sealed fluid can be prevented from depositing and adhering to the sliding surface.
  • the material of the base material of the rotation side sealing ring 3 and the stationary side sealing ring 5 includes silicon like silicon carbide
  • the silicon carbide A silicon component is released from the substrate as an outgas by plasma treatment.
  • the deposited amorphous carbon film 8 contains a small amount of silicon.
  • the silicate compound contained in the sealed fluid is deposited on the sliding surface. It is possible to prevent the leakage of the sealed fluid while maintaining the smoothness of the sliding surface.
  • the amorphous carbon film 8 contains 1 at% to 20 at% of hydrogen in order to improve the adhesion with the base material.
  • the amorphous carbon film 8 is less likely to be peeled off from the base material, and exposure of the base material containing silicon can be prevented, thereby preventing the silicate compound contained in the fluid to be sealed from being deposited on the sliding surface. It is possible to maintain the smoothness of the sliding surface and prevent leakage of the sealed fluid.
  • Example 1 The sliding surface S of the annular base material made of silicon carbide formed for the rotating side sealing ring 3 and the stationary side sealing ring 5 was processed smoothly by lapping.
  • the amorphous carbon film having a thickness of 150 nm is laminated on the sliding surface S of the base material of the rotation side sealing ring 3 and the stationary side sealing ring 5 using a hydrocarbon gas not containing a silicon compound in a plasma CVD apparatus, A sliding test was performed under the following sliding test conditions. In this case, the silicon content contained in the amorphous carbon film released from the substrate made of silicon carbide as outgas by the plasma treatment was 0.07 at%.
  • the silicon content contained in the amorphous carbon film is narrowly measured by a X-ray photoelectron spectroscopy (XPS) (PHI Quantera SMX manufactured by ULVAC-PHI Co., Ltd.) for a smooth portion where a dynamic pressure generating groove or the like is not processed.
  • XPS X-ray photoelectron spectroscopy
  • PHI Quantera SMX manufactured by ULVAC-PHI Co., Ltd.
  • the film thickness was obtained by performing a cross-section with a cross-section sample preparation device (CP) and observing with a FE-SEM (SU8220 manufactured by Hitachi, Ltd.).
  • Example 2 In Example 1, an amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 3 In Example 1, an amorphous carbon film having a silicon content of 0.24 at% and a film thickness of 150 nm contained in the amorphous carbon film is converted into a rotation-side sealing ring 3 using a hydrocarbon gas not containing a silicon compound. And it laminated
  • FIG. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 4 In Example 3, an amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 5 an amorphous carbon film having a silicon content of 0.67 at% and a film thickness of 150 nm contained in the amorphous carbon film is converted to a rotation-side sealing ring 3 using a hydrocarbon gas not containing a silicon compound. And it laminated
  • FIG. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 6 In Example 5, the amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 7 an amorphous carbon film having a silicon content of 1.5 at% and a film thickness of 150 nm contained in the amorphous carbon film is converted to a rotation-side sealing ring 3 using a hydrocarbon gas not containing a silicon compound. And it laminated
  • FIG. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 8 In Example 7, an amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 9 The sliding surface S of the annular base material made of silicon carbide formed for the rotation side sealing ring 3 and the stationary side sealing ring 15 is processed smoothly by lapping, and the sliding surface of the stationary side sealing ring 15 is lapped.
  • the dynamic pressure generating mechanism 17 shown in FIG. an amorphous carbon film having a silicon content of 0.07 at% and a thickness of 150 nm contained in the amorphous carbon film is rotated using a hydrocarbon gas not containing a silicon compound in a plasma CVD apparatus.
  • the sealing ring 3 and the stationary sealing ring 5 were laminated on the sliding surface S of the base material. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • the dynamic pressure generating mechanism 17 shown in FIG. 3 will be described.
  • the outer peripheral side of the sliding surface S of the stationary seal ring 15 is the high-pressure fluid side
  • the inner peripheral side is the low-pressure fluid side, for example, the atmospheric side
  • the counterpart sliding surface rotates counterclockwise.
  • the dynamic pressure generating mechanism 17 is processed into four equal parts in the circumferential direction on the sliding surface S of the fixed-side sealing ring 15.
  • the dynamic pressure generation mechanism 17 communicates with the fluid circulation groove 10, and a positive pressure generation mechanism 11 and a negative pressure generation mechanism 12 that are circumferentially provided in opposite directions with the fluid circulation groove 10 interposed therebetween. Is composed of.
  • the fluid circulation groove 10 includes an inlet portion 10a, an outlet portion 10b, and an inlet portion 10a and an outlet portion 10b that communicate with a pair of openings that are opened on the peripheral surface on the high-pressure fluid side of the stationary seal ring 15 in the circumferential direction.
  • the communication portion 10c communicates with the low-pressure fluid side and is separated by a land portion R.
  • the fluid circulation groove 10 plays a role of positively introducing and discharging the sealed fluid from the high-pressure fluid side to the sliding surface in order to prevent the fluid containing corrosion products and the like from being concentrated on the sliding surface.
  • the inlet portion 10a and the outlet portion 10b are formed so that the fluid to be sealed is taken into the sliding surface in accordance with the rotation direction of the mating sliding surface and is easily discharged, while reducing leakage. Therefore, it is isolated from the low-pressure fluid side by the land portion R.
  • a positive pressure generating mechanism 11 shallower than the fluid circulation groove 10 is provided in a portion surrounded by the fluid circulation groove 10 and the high-pressure fluid side.
  • the positive pressure generation mechanism 11 includes a Rayleigh step mechanism including a positive pressure generation groove 11 a communicating with the inlet 10 a of the fluid circulation groove 10 and a Rayleigh step 11 b.
  • the positive pressure generating mechanism 11 increases the fluid film between the sliding surfaces by generating a positive pressure (dynamic pressure), thereby improving the lubrication performance.
  • the positive pressure generating groove 11a communicates with the inlet portion of the fluid circulation groove 10, and is separated from the outlet portion 10b and the high pressure fluid side by the land portion R.
  • the fluid circulation groove 10 is arranged outside the portion surrounded by the fluid circulation groove 10 and the high pressure fluid side, that is, between the adjacent fluid circulation grooves 10 and 10 and on the low pressure side in the radial direction of the sliding surface.
  • a shallow negative pressure generating mechanism 12 is provided.
  • the negative pressure generating mechanism 12 includes a negative pressure generating groove 12a communicating with the inlet 10a of the fluid circulation groove 10 and a reverse Rayleigh step 12b.
  • the negative pressure generating groove 12a is separated from the low pressure fluid side by a land portion R.
  • the upstream reverse Rayleigh step 12b is isolated from the upstream fluid circulation groove 10 by the land portion R.
  • the reverse Rayleigh step 12b constituting the negative pressure generating mechanism 12 takes in the sealed fluid that is about to leak from the high-pressure fluid side to the low-pressure fluid side due to the generation of negative pressure (dynamic pressure) into the negative pressure generation groove 12a.
  • 10 is used to return to the high-pressure fluid side through 10 and to improve the sealing performance. This prevents leakage between the fluid circulation grooves 10 and 10 and improves the sealing performance of the entire sliding surface.
  • the width of the positive pressure generating groove 11a and the negative pressure generating groove 12a is set to 20 to 60% of the sliding surface width, and the width of the inner peripheral seal surface 16 is set to 10 to 25% of the sliding surface width.
  • the positive pressure generating groove 11a and the negative pressure generating groove 12a have a width of 0.4 to 1.2 mm and a depth of several hundred nanometers. -1 ⁇ m, and the width of the inner peripheral seal surface 16 is 0.2-0.5 mm.
  • the width of the fluid circulation groove 10 is sufficient to circulate a high-pressure fluid, and the depth is several tens ⁇ m to several hundreds ⁇ m.
  • the stationary side sealing ring 15 and the stationary side sealing ring 15 are covered with an amorphous carbon film 8 having a silicon content of 1.5 at% or less, so that the stationary side sealing ring 15 and the rotational side sealing ring 3 are silicate.
  • the silicate compound contained in the sealed fluid is prevented from depositing and adhering to the sliding surface.
  • Example 10 (Example 10) In Example 9, an amorphous carbon film having a silicon content of 0.24 at% and a film thickness of 150 nm contained in the amorphous carbon film was converted to a rotation-side sealing ring 3 using a hydrocarbon gas containing no silicon compound. And laminated on the sliding surface S of the base material of the stationary seal ring 15. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 11 In Example 9, an amorphous carbon film having a silicon content of 0.67 at% and a film thickness of 150 nm contained in the amorphous carbon film was converted to a rotation-side sealing ring 3 using a hydrocarbon gas not containing a silicon compound. And laminated on the sliding surface S of the base material of the stationary seal ring 15. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Example 12 In Example 9, an amorphous carbon film having a silicon content of 1.5 at% and a film thickness of 150 nm contained in the amorphous carbon film is converted to a rotary side sealing ring 3 using a hydrocarbon gas not containing a silicon compound. And laminated on the sliding surface S of the base material of the stationary seal ring 15. Table 1 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 2 In Comparative Example 1, the amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5, and the test was performed under the sliding test conditions of Example 1. The sliding test results are shown in Table 2.
  • Comparative Example 3 In Comparative Example 1, using a hydrocarbon gas containing a silicon compound, an amorphous carbon film having a silicon content of 3.96 at% and a film thickness of 150 nm contained in the amorphous carbon film is transformed into the rotation-side sealing ring 3 and It laminated
  • FIG. Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 4 In Comparative Example 3, an amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5.
  • Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 5 In Comparative Example 1, using a hydrocarbon gas containing a silicon compound, an amorphous carbon film having a silicon content of 25.1 at% and a film thickness of 150 nm contained in the amorphous carbon film is transformed into the rotation-side sealing ring 3 and It laminated
  • FIG. Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 6 (Comparative Example 6) In Comparative Example 5, an amorphous carbon film was laminated only on the sliding surface S of the base material of the stationary seal ring 5. Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 8 In Comparative Example 7, the amorphous carbon film contained in the amorphous carbon film had a silicon content of 3.96 at% and a film thickness of 150 nm was slid on the base material of the rotating side sealing ring 3 and the stationary side sealing ring 15. Laminated on surface S. Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Comparative Example 9 In Comparative Example 7, the amorphous carbon film having a silicon content of 25.1 at% and a film thickness of 150 nm is slid on the base material of the rotation-side sealing ring 3 and the stationary-side sealing ring 15. Laminated on surface S. Table 2 shows the results of the test conducted under the sliding test conditions of Example 1.
  • Table 1 shows the sliding test results of Examples 1 to 12.
  • an amorphous carbon film having a silicon content of 1.5 at% or less is formed by using a hydrocarbon gas that does not contain a silicon compound in a plasma CVD apparatus.
  • the fixed-side sealing rings 5 and 15 were laminated on the sliding surface S of at least one base material.
  • Table 2 shows the sliding test results of Comparative Examples 1 to 9.
  • Comparative Examples 1 to 9 an amorphous carbon film having a silicon content exceeding 1.5 at% is fixed to the rotation-side sealing ring 3 and the stationary gas using a hydrocarbon gas containing a silicon compound in a plasma CVD apparatus.
  • the side sealing rings 5 and 15 were laminated on the sliding surface S of at least one base material.
  • leakage occurred in a short time.
  • the test time was scheduled to be 550H. However, within 25 hours from the start of the test, color leakage due to silicate compound deposition occurred, making it difficult to continue the test. Therefore, the test was completed at the test time shown in Table 2.
  • FIG. 4 is a diagram showing an example of the test results, in which Example 9 is compared with Comparative Example 8 and Comparative Example 9.
  • the shapes of the rotary seal ring 3 and the fixed seal ring 15 in Example 9, Comparative Example 8 and Comparative Example 9 are the same, and the positive pressure generating mechanism formed on the sliding surface S of the fixed seal ring 15 11 and the negative pressure generating mechanism 12 are the same in shape, size and number.
  • an amorphous carbon film having a silicon content of 0.07 at% contained in the amorphous carbon film is fixed to the rotating side sealing ring 3 and the fixed ring by using a hydrocarbon gas not containing a silicon compound.
  • the comparative example 9 having a larger silicon content in the amorphous carbon film has a larger leakage amount than the comparative example 8.
  • the rotation-side sealing ring and the stationary-side sealing ring are covered with the amorphous carbon film 8 containing almost no silicon, so that the stationary-side sealing ring and the rotation-side sealing ring are made of silicon carbide.
  • the affinity with the silicate is almost lost, the silicate compound contained in the sealed fluid can be prevented from accumulating on the sliding surface, and the smoothness of the sliding surface can be maintained to prevent leakage of the sealed fluid. Can be prevented.
  • Example 7 Example 8, and Example 12
  • an amorphous carbon film having a silicon content of 1.5 at% is formed using a hydrocarbon gas not containing a silicon compound, and the rotating side sealing ring 3 and the stationary side
  • a sliding test was performed by laminating the sealing rings 5 and 15 on the sliding surface S of at least one base material. As a result, it was confirmed that leaks due to silicate compound deposition did not occur in Example 7, Example 8, and Example 12.
  • Comparative Example 1 Comparative Example 2 and Comparative Example 7
  • an amorphous carbon film having a silicon content of 1.7 at% was formed using a hydrocarbon gas containing a silicon compound, and the rotation-side sealing ring 3 and the stationary-side sealing.
  • the dynamic pressure generating mechanism 17 composed of the positive pressure generating mechanism 11 and the negative pressure generating mechanism that extend in opposite directions with the fluid circulation groove 10 interposed therebetween is provided on the sliding surface S.
  • the fluid circulation groove 20, the positive pressure generating mechanism 21 and the negative pressure generating mechanism 21 that are circumferentially provided in opposite directions with the fluid circulation groove 20 interposed therebetween are formed on the sliding surface S of the stationary seal ring 25.
  • Eight sets of dynamic pressure generation mechanisms 26 including the pressure generation mechanism 22 may be provided.
  • the number of dynamic pressure generating mechanisms can be determined by the size of the rotation-side sealing ring and the stationary-side sealing ring, the number of rotations, the pressure of the sealed fluid, and the like.
  • the present invention is not limited to this.
  • it is also applicable to an outside type mechanical seal that seals a sealed fluid that is high-pressure fluid on the inner peripheral side and that leaks from the inner periphery of the sliding surface toward the outer peripheral direction. it can.
  • the first dynamic pressure generation mechanism 36 includes a first fluid circulation groove 30, a first positive pressure generation mechanism 31 and a negative pressure generation mechanism 32 that are provided in opposite directions with respect to the first fluid circulation groove 30.
  • the second dynamic pressure generation mechanism includes a second positive pressure generation mechanism 34 that communicates with the second fluid circulation groove 33 and is surrounded by the second fluid circulation groove 33.
  • the configuration of the first dynamic pressure generating mechanism 36 is the same as the configuration of the dynamic pressure generating mechanism 17 of the embodiment of FIG. 3 and the dynamic pressure generating mechanism 26 of the embodiment of FIG. However, since three sets of the first dynamic pressure generating mechanisms 36 shown in FIG.
  • the interval between the adjacent first positive pressure generating mechanisms 31 and 31 is increased, and the adjacent first positive pressure generating mechanisms are generated.
  • the second dynamic pressure generating mechanism between the adjacent first fluid circulation grooves 30 and 30, the fluid film between the sliding surfaces can be increased and the lubrication performance can be improved.
  • the first fluid circulation groove 30 and the second fluid circulation groove 33 include a pair of openings that open to the peripheral surface on the high-pressure fluid side of the fixed-side sealing ring 35 and a communication that communicates the pair of openings. It is composed of a passage and is isolated from the low-pressure fluid side by a land portion R.
  • a first positive pressure generating mechanism 31 (Rayleigh step) is disposed on the high pressure fluid side of the first fluid circulation groove 30, and a negative pressure generating mechanism 32 (reverse Rayleigh step) is disposed on the low pressure fluid side of the first fluid circulation groove 30. It extends to the vicinity of the adjacent first fluid circulation groove 30.
  • a second positive pressure generating mechanism 34 (Rayleigh step) is formed between the adjacent first fluid circulation grooves 30 and 30, which communicates with the second fluid circulation groove 33 and is surrounded by the second fluid circulation groove 33.
  • Two dynamic pressure generating mechanisms are provided. As a result, even if the interval between the adjacent first positive pressure generating mechanisms 31 is greatly separated and a sufficient fluid lubrication state cannot be obtained between the adjacent first positive pressure generating mechanisms 31, 31, A high pressure fluid is supplied between the sliding surfaces by the pressure generating mechanism, and the fluid lubrication state can be maintained.
  • the sliding surface S of the fixed-side sealing ring 45 has a fluid circulation groove 40, a positive pressure generating mechanism 41 that is provided in the opposite direction around the fluid circulation groove 40, and a negative pressure generating mechanism 41.
  • Eight sets of dynamic pressure generation mechanisms 46 including the pressure generation mechanism 42 are arranged.
  • the dynamic pressure generation mechanism in FIG. 7 is the same as the basic configuration of the dynamic pressure generation mechanism in the embodiment of FIGS. However, in the embodiment of FIGS. 3, 5 and 6, when a reverse rotation occurs, a large positive pressure is generated in the negative pressure generating mechanisms 12, 22, 32 (reverse Rayleigh step). The amount of leakage may increase. Therefore, in the dynamic pressure generating mechanism in FIG.
  • the width of the negative pressure generating mechanism 42 (reverse Rayleigh step) is made smaller than the width of the positive pressure generating mechanism 41 (Rayleigh step).
  • the pressure generated in the reverse Rayleigh step 42 during reverse rotation can be reduced, and the amount of leakage during reverse rotation can be reduced.
  • cavitation due to pressure drop occurs in the negative pressure generating mechanism.
  • the silicate precipitates easily accumulate in the negative pressure region where cavitation occurs.
  • the silicate precipitates easily deposit and adhere.
  • the sliding surface S is damaged by the deposits, or the deposits are deposited and adhered to the positive pressure generating mechanism (Rayleigh step), the negative pressure generating mechanism (reverse Rayleigh step), and the like.
  • the function of the pressure generating mechanism is impaired, which is a factor of reducing the sealing performance.
  • the stationary side sealing ring and the stationary side sealing ring are covered with an amorphous carbon film 8 having a silicon content of 1.5 at% or less, so that the stationary side sealing ring and the rotational side sealing ring have an affinity for silicate. Almost no silicate compound contained in the sealed fluid can be prevented from being deposited on the sliding surface.
  • the Rayleigh step and the reverse Rayleigh step are provided on the sliding surface as the dynamic pressure generating mechanism.
  • the present invention is not limited to this, and the dimple 51 and FIG. 9 shown in FIG.
  • a plurality of quadrilateral dimples 51 are provided in the circumferential direction on the sliding surface S of the fixed-side sealing ring 50.
  • the dimples 51 are not in communication with the high-pressure fluid side and the low-pressure fluid side, and the dimples 51 are provided independently of each other.
  • the number, area, and depth of the dimples 51 are set to optimum values depending on conditions such as the diameter and surface width of the fixed-side sealing ring 50 and the pressure difference between the high-pressure fluid side and the low-pressure fluid side.
  • a dimple having a shallow depth is preferable in terms of fluid lubrication and liquid film formation.
  • the sliding surface S and the dimples 51 are covered with an amorphous carbon film having a silicon content of 1.5 at% or less using a hydrocarbon gas not containing a silicon compound.
  • the rotation-side sealing ring 3 and the stationary-side sealing ring 50 are covered with the amorphous carbon film 8 containing almost no silicon, so that the sliding surfaces of the stationary-side sealing ring and the rotation-side sealing ring have an affinity for silicate. Therefore, it is possible to prevent the silicate compound contained in the sealed fluid from being deposited on the sliding surface.
  • the shape of the dimple is not limited to a quadrilateral, and may be a circle, an ellipse, or a triangle.
  • a spiral groove 61 may be provided on the sliding surface S of the stationary seal ring 60 as shown in FIG.
  • the spiral groove 61 has an inclination angle for discharging the fluid to the high-pressure fluid side by sliding relative to the mating sliding surface, and the fluid is pushed back to the high-pressure fluid side by the viscous pump effect of the spiral groove 61 to prevent leakage. Is.
  • Cavitation may occur at the end of the spiral groove 61 on the low-pressure fluid side (upstream portion of the fluid flow accompanying the relative movement with the mating sliding surface; the inner peripheral side in FIG. 9).
  • a silicate-based refrigerant is used as the fluid, precipitates are generated at the low-pressure fluid side end 62 of the spiral groove 61 where cavitation occurs, adhere to and accumulate on the land R, and the sealing performance is deteriorated. It is a factor to make.
  • the sliding surface S and the spiral groove 61 are covered with an amorphous carbon film having a silicon content of 1.5 at% or less using a hydrocarbon gas not containing a silicon compound.
  • the rotation-side sealing ring 3 and the stationary-side sealing ring 60 are covered with the amorphous carbon film 8 containing almost no silicon, so that the sliding surfaces of the stationary-side sealing ring and the rotation-side sealing ring have an affinity for silicate. Therefore, it is possible to prevent the silicate compound contained in the sealed fluid from being deposited on the sliding surface.
  • the sliding component is used as one of the pair of sealing rings for rotation and the sealing ring for fixing in the mechanical seal device.
  • lubrication is performed on one axial side of the cylindrical sliding surface. It can also be used as a sliding part of a bearing that slides on a rotating shaft while sealing oil.
  • the amorphous carbon film only needs to be laminated on the sliding surface of at least one of the rotating side sealing ring and the stationary side sealing ring, and all of the rotating side sealing ring and the stationary side sealing ring base material. It may be laminated so as to cover the surface. Furthermore, the amorphous carbon film may be laminated so as to cover the sliding surface of one of the rotating side sealing ring and the stationary side sealing ring and the entire surface of the other base material.
  • the thickness of the amorphous carbon film 8 formed on the rotating side sealing ring and the stationary side sealing ring is 150 nm, but is not limited thereto. If the amount of silicon contained in the amorphous carbon film 8 is 1.5 at% or less, it depends on the size of the rotation side sealing ring and the stationary side sealing ring, the rotation speed of the rotation side sealing ring, and the type of fluid to be sealed. The thickness of the crystalline carbon film 8 may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Sealing (AREA)
  • Sliding-Contact Bearings (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】シリケートが添加されたLLC等のシリケート含有の被密封流体を密封するメカニカルシールなどの摺動部品において、シリケート化合物の堆積による漏れを防止すること。 【解決手段】固定側に固定される円環状の固定側密封環5と、回転軸とともに回転する円環状の回転側密封環3とを備え、固定側密封環5及び回転側密封環3の対向する各摺動面Sを相対回転させることにより、当該相対回転する摺動面Sの径方向の一方側に存在するシリケート含有の被密封流体を密封する摺動部品において、固定側密封環5又は回転側密封環3の少なくともいずれか一方の摺動面Sには、珪素化合物を含まない炭化水素ガスを用いて成膜された非晶質炭素膜8を備え、非晶質炭素膜8の珪素の含有量は1.5at%以下である。

Description

摺動部品
 本発明は、例えば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環又は軸受などの摺動部品に関する。
 摺動部品の一例である、メカニカルシールにおいて、密封性を長期的に維持させるためには、「密封」と「潤滑」という相反する条件を両立させなければならない。特に、近年においては、環境対策などのために、被密封流体の漏れ防止を図りつつ、より一層、低摩擦化、長寿命化の要求が高まっている。
 低摩擦化の手法としては、回転により摺動面間に動圧発生機構を設け、液膜を介在させた状態で摺動する、いわゆる流体潤滑状態とすることにより達成できる。たとえば、特許文献1には、動圧発生機構の一例として摺動面に正の動圧を発生させるレイリーステップと負の動圧を発生させる逆レイリーステップとを形成し、一対の摺動部品の相対回転にともないレイリーステップにより摺動面間に正圧を発生させて摺動面間に流体膜を積極的に介在させて流体潤滑状態を維持するとともに、逆レイリーステップにより負圧を発生させて漏れを防止して、「潤滑」と「密封」という相反する条件を両立させている。
 一方、長寿命化の観点から、メカニカルシールの摺動材として、従来からカーボン、炭化珪素(SiC)及び超硬合金などが使用されている。中でも、炭化珪素は耐食性及び耐摩耗性等に優れているという理由から多く用いられている(例えば、特許文献2及び3参照。)。
 また、メカニカルシールの摺動材として炭化珪素は好適な材料であるが、高価であり、加工性が悪いことから、廉価で、より耐食性、耐摩耗性に優れ、加工性の向上を図るため、密封環の摺動面にダイヤモンドライクカーボン(以下、「DLC」ということがある。)を被覆したものが提案されている(例えば、特許文献4参照。)。さらに、メカニカルシールの密封環の摺動面同士の初期馴染みを向上させるため、密封環の摺動面にDLCが被覆されたものも知られている(例えば、特許文献5参照。)。
特許第5693599号 特開平9-132478号公報 特開平5-163495号公報 特開2014-185691号公報 特開平11-108199号公報
 例えば、水冷エンジンの冷却には不凍液に一種であるロングライフクーラント(LLC)広く用いられている。LCCを循環するウォーターポンプに使用されるメカニカルシールにおいては、時間の経過とともにLLCの添加剤、例えばシリケート(ケイ酸塩)やリン酸塩などが、メカニカルシールの摺動面で濃縮され、堆積物が生成され、メカニカルシールの機能が低下する虞のあることが確認されている。この堆積物の生成は薬品やオイルを扱う機器のメカニカルシールにおいても同様に発生する現象と考えられる。
 特許文献1の摺動部品をLLCの添加剤を含む流体に使用した場合には、シリケート(ケイ酸塩)やリン酸塩などが、摺動面で濃縮され、時間の経過とともにレイリーステップ溝、逆レイリーステップ溝内に堆積し、レイリーステップと逆レイリーステップの機能が阻害される虞がある。
 特許文献2及3に記載されるメカニカルシールの摺動材としての炭化珪素は、炭化珪素中に含まれる珪素自身が被密封流体中のシリケートとの親和性が高く、摺動材を炭化珪素から形成した場合には、その摺動面にはシリケート化合物が堆積しやすく、堆積物によって摺動面の平滑さが失われ、LLCの漏れにつながるという問題もある。
 また、上記の特許文献4及び5にあっては、耐摩耗性の向上、馴染み性の向上のためにDLC膜を設けるものであり、炭化珪素が被密封流体中のシリケートとの親和性が高いことについて考慮されておらず、時間の経過とともにシリケート化合物が摺動面に堆積し、摺動面の平滑さが失われ、LLCの漏れにつながる問題を有している点は同様である。
 本発明は、LLC等のシリケート含有の被密封流体を密封するメカニカルシールなどの摺動部品において、摺動面にシリケート化合物が堆積し、平滑さが失われることにより被密封流体の漏れにつながるといった問題を防止できる摺動部品を提供することを目的とするものである。
 上記目的を達成するため本発明の摺動部品は、第1に、固定側に固定される円環状の固定側密封環と、回転軸とともに回転する円環状の回転側密封環とを備え、前記固定側密封環及び前記回転側密封環の対向する各摺動面を相対回転させることにより、当該相対回転する前記摺動面の径方向の一方側に存在するシリケート含有の被密封流体を密封する摺動部品において、
 前記固定側密封環又は前記回転側密封環の少なくともいずれか一方の摺動面には、珪素化合物を含まない炭化水素ガスを用いて成膜された非晶質炭素膜を備え、前記非晶質炭素膜の珪素の含有量は1.5at%以下であることを特徴としている。
 この特徴によれば、LLC等のようにシリケートが添加された被密封流体を密封するメカニカルシールなどの摺動部品において、その摺動面にシリケート化合物が堆積し、平滑さが失われることによる被密封流体の漏れを防止できる。
 また、本発明の摺動部品は、第2に、第1の特徴において、前記固定側密封環又は前記回転側密封環の基材が炭化珪素であることを特徴としている。
 この特徴によれば、メカニカルシール等の摺動材として放熱性が良く、耐摩耗性に優れた好適な材料である炭化珪素を固定側密封環又は回転側密封環の基材として用いた場合であっても、シリケート含有の被密封流体の漏れを防止できる。
 また、本発明の摺動部品は、第3に、第1の特徴において、前記固定側密封環又は前記回転側密封環の少なくとも一方の摺動面は、前記固定側密封環又は前記回転側密封環との相対回転により動圧を発生する動圧発生機構を備えることを特徴としている。
 この特徴によれば、固定側密封環又は回転側密封環の少なくとも一方の摺動面に設けた動圧発生機構にシリケートが堆積することなく、摺動面間に動圧を発生させ低摩擦、漏れのほとんどない摺動部品を提供することができる。
 本発明は、以下のような優れた効果を奏する。
(1)珪素化合物を含まない炭化水素ガスを用いて、固定側密封環又は回転側密封環の少なくともいずれか一方の摺動面に、珪素の含有量が1.5at%以下の非晶質炭素膜を形成することによって、固定側密封環又は回転側密封環の摺動面はシリケートとの親和性が低くなり、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができるので、摺動面の平滑さを維持して、被密封流体の漏れを防止できる。
(2)メカニカルシール等の摺動材として放熱性が良く、耐摩耗性に優れた好適な材料である炭化珪素を固定側密封環又は回転側密封環の基材として用いた場合であっても、珪素の含有量が1.5at%以下の非晶質炭素膜によって被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができるので、摺動面の平滑さを維持して、シリケート含有の被密封流体の漏れを防止できる。
(3)固定側密封環又は回転側密封環の少なくとも一方の摺動面に形成された動圧発生機構は、珪素の含有量が1.5at%以下の非晶質炭素膜によって被密封流体に含まれるシリケート化合物が堆積することを防止できるので、動圧発生機構の機能を失うことなく、摺動面間に動圧を発生させ低摩擦、低漏れ状態で摺動できる。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 図1の要部を拡大した図であって、固定側密封環及び回転側密封環の基材の摺動面にDLC膜を積層した状態を示したものである。 流体循環溝を挟んで互いに逆方向に延設される正圧発生機構と負圧発生機構からなる動圧発生溝を固定側密封環の摺動面に4組配置した実施形態を示す図である。 実施例9、比較例8及び9の試験結果を比較した図である。 流体循環溝を挟んで互いに逆方向に延設される正圧発生機構と負圧発生機構からなる動圧発生溝を固定側密封環の摺動面に8組配置した実施形態を示す図である。 第1流体循環溝を挟んで互いに逆方向に延設される第1正圧発生機構及び負圧発生機構からなる第1動圧発生機構と、第2流体循環溝に連通する第2正圧発生機構からなる第2動圧発生機構とを、摺動面に交互にそれぞれ3組ずつ配置した実施形態を示す図である。 流体循環溝を挟んで互いに逆方向に延設される正圧発生機構と負圧発生機構からなる動圧発生機構を固定側密封環の摺動面に8組配置し、負圧発生機構の幅を正発生機構の幅より狭く形成した実施形態を示す図である。 固定側密封環の摺動面に四辺形のディンプルを周方向に複数設けた実施形態を示す図である。 固定側密封環の摺動面Sにスパイラル溝を複数設けた実施形態を示す図である。
 以下に図面等を参照して、この発明を実施するための形態を例示的に説明する。
 ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。
 図1及び図2を参照して、本発明の摺動部品について説明する。
 なお、本実施形態においては、摺動部品の一例であるメカニカルシールを例にして説明する。また、メカニカルシールを構成する摺動部品の外周側を高圧流体側(被密封流体側)、内周側を低圧流体側(大気側)として説明するが、本発明はこれに限定されることなく、高圧流体側と低圧流体側とが逆の場合も適用可能である。
 図1は、メカニカルシールの一例を示す縦断面図であって、摺動面の外周から内周方向に向かって漏れようとする高圧流体側の被密封流体を密封する形式のインサイド形式のものであり、高圧流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた一方の摺動部品である円環状の回転側密封環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた他方の摺動部品である円環状の固定側密封環5とが設けられ、固定側密封環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、摺動面S同士で密接摺動するようになっている。すなわち、このメカニカルシールは、回転側密封環3と固定側密封環5との互いの摺動面Sにおいて、被密封流体が回転軸1の外周から大気側へ流出するのを防止するものである。
 なお、図1では、回転側密封環3の摺動面の幅が固定側密封環5の摺動面の幅より広い場合を示しているが、これに限定されることなく、逆の場合においても本発明を適用できることはもちろんである。
 被密封流体は、シリケートが添加されたLLC等のシリケート含有の流体である。
 通常、回転側密封環が及び固定側密封環5の材質は、自己潤滑性に優れたカーボン及び耐摩耗性に優れた炭化珪素(SiC)及びなどから選定されるが、例えば、両者が炭化珪素、あるいは、回転側密封環3が炭化珪素であって固定側密封環5がカーボンの組合せが可能である。
 特に、炭化珪素はメカニカルシール等の摺動材として放熱性が良く、耐摩耗性に優れた好適な材料であることが知られている。ところが、上記したように、炭化珪素に含まれる珪素自体が被密封流体に含まれるシリケートと親和性が高い。このため、LLC等のシリケート化合物を含む流体を密封するために炭化珪素からなる摺動部品を使用すると、摺動面にシリケートが堆積、付着し、摺動面の平滑さが失われ、LLCの漏れにつながるという問題がある。
 また、従来より、耐摩耗性の向上、馴染み性の向上、及び、摩擦係数の低下を図るためにメカニカルシールの摺動材の表面にDLC膜が被覆されていたが、このDLC膜は珪素を含有したものである。しかし、DLC膜に含まれる珪素がシリケート化合物と結びつきやすいという点は全く考慮されていないため、珪素を含有したDLC膜に被密封流体に含まれるシリケート化合物が堆積、付着し、摺動面の平滑さが失われ、LLCの漏れにつながるという問題があった。
 そのため、本発明においては、回転側密封環3又は固定側密封環5の少なくともいずれか一方の摺動面Sに、プラズマCVD法(化学気相成長法)において珪素化合物を含まない炭化水素ガス(原料ガス)を用いて成膜された非晶質炭素膜を積層するようにしたものである。すなわち、本発明の非晶質炭素膜にはできるだけ珪素を含有させないところに特徴がある。
 なお、後記するように、珪素化合物を含まない炭化水素ガスを用いて成膜する場合でも、基材由来のきわめて微量の珪素が非晶質炭素膜に含有されることがある。非晶質炭素膜は、ダイヤモンド構造に対応するsp3結合を有する炭素とグラファイト構造に対応するsp2結合を有する炭素が不規則に混在したアモルファス構造(非晶質構造)の炭素膜であり、ダイヤモンド.ライク.カーボン(DLC)と総称されるものである。
 本実施形態においては、図2に示すように、回転側密封環3及び固定側密封環5の摺動面Sに珪素化合物を含まない炭化水素ガスを用いて成膜された非晶質炭素膜8が積層されている。この非晶質炭素膜8は、例えば、直流プラズマCVD法などのプラズマCVD法(化学気相成長法)によって形成される。
 このプラズマCVD法では、回転側密封環3及び固定側密封環5の基材を収容する処理室内にアセチレンガス、エチレンガス、プロピレンガス、メタンガス等の炭化水素ガスからなる原料ガスを導入しつつ、原料ガスに電離電圧以上のエネルギーを持つ電子を衝突させ、化学的に活性なイオンを生成する。これにより、回転側密封環3及び固定側密封環5の基材表面の周辺に、プラズマ化した原料ガスが存在するようになる。このとき、プラズマ化した原料ガスは、電極側に配置された回転側密封環3及び固定側密封環5の基材上に積層され、非晶質炭素膜8が形成される。
 その際、エチレンガス、プロピレンガス等の炭化水素ガスからなる原料ガスには珪素化合物は、一切、含まれていないので、成膜された非晶質炭素膜8は珪素をほとんど含有しないものとなる。そのため、回転側密封環3、固定側密封環5は珪素を含有しない非晶質炭素膜8によって被覆されるので、固定側密封環、回転側密封環の摺動面はシリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積、付着することを防ぐことができる。
 なお、回転側密封環3及び固定側密封環5の基材の材質が炭化珪素のように珪素を含む場合には、原料ガス中に珪素化合物が含まれない場合であっても、炭化珪素の基材からプラズマ処理によってアウトガスとして珪素成分が放出される。このため、成膜された非晶質炭素膜8には微量の珪素が含有される。
 しかし、その場合であっても、成膜された非晶質炭素膜8に含まれる珪素の含有量が1.5at%以下であれば、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができ、摺動面の平滑さを維持して、被密封流体の漏れを防止できる。
 また、非晶質炭素膜8は、基材との密着性を向上させるため水素を1at%~20at%を含んでいる。これにより、非晶質炭素膜8は、基材から剥がれにくくなり、珪素を含む基材の露出を防止できるので、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができ、摺動面の平滑さを維持して、被密封流体の漏れを防止できる。
 以下に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 本発明におけるその他の用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。
(実施例1)
 回転側密封環3及び固定側密封環5用に成形された炭化珪素からなる環状の基材の摺動面Sをラップ仕上げにより平滑に加工した。プラズマCVD装置にて珪素化合物を含まない炭化水素ガスを用いて150nmの厚さの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層させ、以下の摺動試験条件で摺動試験を行った。
 この場合、プラズマ処理によってアウトガスとして炭化珪素からなる基材から放出されて非晶質炭素膜に含まれる珪素含有量は0.07at%であった。
 なお、非晶質炭素膜に含まれる珪素含有量はX線光電子分光法(XPS)(アルバックファイ株式会社製PHI Quantera SMX)で、動圧発生溝等が加工されていない平滑部をナロー測定することにより求めた。また、膜厚は断面試料作成装置(CP)で断面出しを行い、FE-SEM(株式会社日立製作所製 SU8220)で観察することで求めた。
 摺動試験条件
 a 摺動面圧力:0.3MPa
 b 被密封流体:シリケート含有LLC 50wt%水溶液
 c 被密封流体の圧力:0.1MPaG
 d 周速:0m/s(3秒)⇔1m/s(3秒)
 e 試験時間:550時間
 摺動試験結果を表1に示す。
(実施例2)
 実施例1において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例3)
 実施例1において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.24at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例4)
 実施例3において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例5)
 実施例1において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.67at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例6)
 実施例5において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例7)
 実施例1において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が1.5at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例8)
 実施例7において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例9)
 回転側密封環3及び固定側密封環15用に成形された炭化珪素からなる環状の基材の摺動面Sをラップ仕上げにより平滑に加工し、固定側密封環15のラップ仕上げした摺動面Sに、図3に示す動圧発生機構17を加工した。つぎに、プラズマCVD装置にて珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.07at%、150nmの厚さの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
 ここで、図3に示す動圧発生機構17について説明する。図3において、固定側密封環15の摺動面Sの外周側が高圧流体側であり、また、内周側が低圧流体側、例えば大気側であり、相手摺動面は反時計方向に回転するものとする。図3に示すように、固定側密封環15の摺動面Sには、動圧発生機構17が周方向に4等配で加工される。動圧発生機構17は、流体循環溝10と、該流体循環溝10に連通するとともに、流体循環溝10を挟んで互いに逆方向に周設される正圧発生機構11及び負圧発生機構12と、から構成される。
 流体循環溝10は、固定側密封環15の高圧流体側の周面に開口する一対の開口部に連通する入口部10a、出口部10b、及び、入口部10aと出口部10bとを周方向に連通する連通部10cから構成され、低圧流体側とはランド部Rにより隔離されている。流体循環溝10は、摺動面において腐食生成物などを含む流体が濃縮されることを防止するため、積極的に高圧流体側から被密封流体を摺動面上に導入し排出するという役割を担うものであり、相手摺動面の回転方向に合わせて摺動面上に被密封流体を取り入れ、かつ、排出しやすいように入口部10a及び出口部10bが形成される一方、漏れを低減するため、低圧流体側とはランド部Rにより隔離されている。
 流体循環溝10と高圧流体側とで囲まれる部分に流体循環溝10より浅い正圧発生機構11が設けられている。正圧発生機構11は、流体循環溝10の入口部10aに連通する正圧発生溝11a及びレイリーステップ11bを備えたレイリーステップ機構から構成される。正圧発生機構11は、正圧(動圧)を発生することにより摺動面間の流体膜を増加させ、潤滑性能を向上させるものである。正圧発生溝11aは流体循環溝10の入口部に連通し、出口部10b及び高圧流体側とはランド部Rにより隔離されている。
 さらに、流体循環溝10と高圧流体側とで囲まれた部分の外側、すなわち、隣接する流体循環溝10、10の間であって摺動面の径方向における低圧側には流体循環溝10より浅い負圧発生機構12が設けられている。負圧発生機構12は、流体循環溝10の入口部10aに連通する負圧発生溝12a及び逆レイリーステップ12bからなり、負圧発生溝12aは、低圧流体側とはランド部Rにより隔離されているとともに、上流側の逆レイリーステップ12bはランド部Rにより上流側の流体循環溝10と隔離されている。
 負圧発生機構12を構成する逆レイリーステップ12bは、負圧(動圧)の発生により高圧流体側から低圧流体側に漏洩しようとする被密封流体を負圧発生溝12aに取り込み、流体循環溝10を介して高圧流体側に戻し、密封性を向上させる役割を果たすもので、流体循環溝10と10との間における漏洩を防止し、摺動面全体の密封性を向上させるものである。なお、正圧発生溝11a及び負圧発生溝12aの幅は摺動面幅の20~60%、内周側のシール面16の幅は摺動面幅の10~25%に設定される。一例として、摺動部品の径が約20mm、摺動面幅が約2mmの場合、正圧発生溝11a及び負圧発生溝12aの幅は0.4~1.2mm、深さは数百ナノ~1μmであり、内周側のシール面16の幅は0.2~0.5mmである。また、流体循環溝10の幅は高圧の流体を循環させるために十分の幅であり、深さは数十μm~数百μmである。
 そして、図3に示す矢印の方向に、固定側密封環50に相対する回転側密封環3が回転移動すると、負圧発生機構12内では圧力低下によるキャビテーションが発生する。そして、キャビテーションが発生する負圧領域にはシリケート析出物が集積しやすく、該負圧領域に基材の炭化珪素が露出していると、シリケート析出物が容易に堆積、付着する。この結果、堆積物により摺動面Sが損傷したり、析出物が正圧発生機構11及び負圧発生機構12に堆積、付着して、正圧発生機構11及び負圧発生機構12の機能が損なわれ密封性を低下させる要因となっている。そこで、回転側密封環3及び固定側密封環15を珪素含有量が1.5at%以下の非晶質炭素膜8によって被覆することで、固定側密封環15、回転側密封環3はシリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積、付着することを防ぐものである。
(実施例10)
 実施例9において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.24at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例11)
 実施例9において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.67at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
(実施例12)
 実施例9において、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が1.5at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表1に示す。
 次に比較例について説明する。
(比較例1)
 回転側密封環3及び固定側密封環5用に成形された炭化珪素からなる環状の基材の摺動面Sをラップ仕上げにより平滑に加工した後、固定側密封環の摺動面Sに正圧発生機構11と負圧発生機構12を加工を行うことなく、プラズマCVD装置にて珪素化合物を含む炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が1.7at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
(比較例2)
 比較例1において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層させ、実施例1の摺動試験条件で試験を実施した。摺動試験結果を表2に示す。
(比較例3)
 比較例1において、珪素化合物を含む炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が3.96at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
(比較例4)
 比較例3において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
(比較例5)
 比較例1において、珪素化合物を含む炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が25.1at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環5の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
(比較例6)
 比較例5において、非晶質炭素膜を固定側密封環5の基材の摺動面Sにのみ積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
(比較例7)
 回転側密封環3及び固定側密封環15用に成形された炭化珪素からなる環状の基材の摺動面Sをラップ仕上げにより平滑に加工し、ラップ仕上げした固定側密封環の摺動面Sに、図3に示す動圧発生機構を加工した。つぎに、プラズマCVD装置にて珪素化合物を含む炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が1.7at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
 (比較例8)
 比較例7において、非晶質炭素膜に含まれる珪素含有量が3.96at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
 (比較例9)
 比較例7において、非晶質炭素膜に含まれる珪素含有量が25.1at%、膜厚が150nmの非晶質炭素膜を回転側密封環3及び固定側密封環15の基材の摺動面Sに積層した。実施例1の摺動試験条件で試験を実施した結果を表2に示す。
 表1は、実施例1~実施例12の摺動試験結果を示す。実施例1~実施例12においては、プラズマCVD装置にて珪素化合物を含まない炭化水素ガスを用いて、珪素の含有量が1.5at%以下の非晶質炭素膜を回転側密封環3及び固定側密封環5、15の少なくとも一方の基材の摺動面Sに積層させた。そして、摺動試験を行った結果、試験時間550Hの間において観測された漏れは、蒸気漏れのみであり、シリケート化合物堆積によるリークの発生は認められなかった。
Figure JPOXMLDOC01-appb-T000001
(注)実施例1~12においては、550Hの試験中に観測された漏れは、蒸気漏れのみであり、シリケート化合物堆積によるリークの発生は認められなかった。
 一方、表2は、比較例1~比較例9の摺動試験結果を示す。比較例1~比較例9においては、プラズマCVD装置にて珪素化合物を含む炭化水素ガスを用いて、珪素の含有量が1.5at%を超える非晶質炭素膜を回転側密封環3及び固定側密封環5、15の少なくとも一方の基材の摺動面Sに積層させた。そして、摺動試験を行った結果、短時間で漏れが発生した。実施例1~12と同じく比較例1~比較例9においても、試験時間は550Hとする予定であった。しかし、試験開始から25時間以内で、シリケート化合物堆積による特有の着色漏れが発生し、試験続行が困難となったため、表2に示す試験時間で試験を終了した。
Figure JPOXMLDOC01-appb-T000002
(注)試験時間は550Hを予定していたが、比較例1~9においては、試験開始から短時間で着色漏れが発生し、試験続行が困難となったため、表2に示す試験時間で試験を終了した。
 図4は、試験結果の一例を示す図で、実施例9と、比較例8及び比較例9を比較したものである。実施例9、比較例8及び比較例9における回転側密封環3及び固定側密封環15の形状は同一であり、また、固定側密封環15の摺動面Sに形成された正圧発生機構11と負圧発生機構12の形状、大きさ、個数も同一である。しかし、実施例9においては、珪素化合物を含まない炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量が0.07at%の非晶質炭素膜を回転側密封環3及び固定側密封環15の少なくとも一方の基材の摺動面Sに積層したのに対し、比較例8、比較例9においては、珪素化合物を含む炭化水素ガスを用いて、非晶質炭素膜に含まれる珪素含有量がそれぞれ3.96at%、25.1at%の非晶質炭素膜を回転側密封環3及び固定側密封環5の少なくとも一方の基材の摺動面Sに積層した。図4に示すように、実施例9は試験時間に対し緩やな傾斜で蒸気漏れのみが観測されたのに対し、比較例8、比較例9においては、試験開始から短時間で、シリケート化合物堆積によるリークに特有の着色漏れが発生し、試験続行が困難となるほど漏れが発生した。また、非晶質炭素膜に含まれる珪素含有量が多い比較例9の方が、比較例8よりも漏れ量が多いことが認められる。このように、回転側密封環、固定側密封環は、珪素をほとんど含有しない非晶質炭素膜8によって被覆されることにより、固定側密封環、回転側密封環は炭化ケイ素から構成されていても、シリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができ、摺動面の平滑さを維持して、被密封流体の漏れを防止できる。
 さらに、実施例7、実施例8及び実施例12において、珪素化合物を含まない炭化水素ガスを用いて珪素の含有量が1.5at%の非晶質炭素膜を回転側密封環3及び固定側密封環5、15の少なくとも一方の基材の摺動面Sに積層させ摺動試験を実施した。その結果、実施例7、実施例8及び実施例12においても、シリケート化合物堆積によるリークが発生しないことが確認された。一方、比較例1、比較例2及び比較例7において、珪素化合物を含む炭化水素ガスを用いて珪素の含有量が1.7at%の非晶質炭素膜を回転側密封環3及び固定側密封環5、15の少なくとも一方の基材の摺動面Sに積層させたものは、摺動試験の結果、シリケート化合物堆積によるリークが発生することが確認された。これにより、珪素の含有量が1.5at%を越えるか、超えないかがシリケート化合物堆積によるリークの発生を左右することが確認された。
 以上、本発明を実施例及び図面により説明してきたが、具体的な構成はこれらに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 上記実施の形態の図3において、流体循環溝10を挟んで互いに逆方向に周延される正圧発生機構11と負圧発生機構から構成される動圧発生機構17は、摺動面Sに4組形成されていたが、これに限らない。例えば、図5に示すように、固定側密封環25の摺動面Sに、流体循環溝20と、該流体循環溝20を挟んで互いに逆方向に周設される正圧発生機構21及び負圧発生機構22とから構成される動圧発生機構26を8組配設してもよい。動圧発生機構の個数は、回転側密封環及び固定側密封環の大きさ、回転数、被密封流体の圧力等により決定することができる。
 また、上記実施の形態では、外周側に高圧の被密封流体が存在する場合について説明したが、これに限らない。例えば、図6及び図7に示すように、内周側が高圧流体で、摺動面の内周から外周方向に向かって漏れようとする被密封流体を密封するアウトサイド型のメカニカルシールにも適用できる。
 図6に示ように固定側密封環35の摺動面Sには、第1動圧発生機構36と第2動圧発生機構37とが交互に3組ずつ配設される。第1動圧発生機構36は、第1流体循環溝30、該第1流体循環溝30を挟んで互いに逆方向に周設される第1正圧発生機構31及び負圧発生機構32とからなる。また、第2動圧発生機構は、第2流体循環溝33に連通し、該第2流体循環溝33に囲まれる第2正圧発生機構34からなる。第1動圧発生機構36の構成は、図3の実施の形態の動圧発生機構17及び図5の実施の形態の動圧発生機構26の構成と同じである。しかし、図6に示す第1動圧発生機構36は摺動面Sに3組配設されるため、隣接する第1正圧発生機構31、31の間隔が拡がり、隣接する第1正圧発生機構31の間で十分な流体潤滑状態が得られない虞がある。そこで、隣接する第1流体循環溝30、30の間に、第2動圧発生機構を配設することで、摺動面間の流体膜を増加させ、潤滑性能を向上させることができる。
 具体的には、第1流体循環溝30及び第2流体循環溝33は、固定側密封環35の高圧流体側の周面に開口する一対の開口部と、該一対の開口部を連通する連通路から構成され、低圧流体側とはランド部Rにより隔離されている。第1流体循環溝30の高圧流体側には第1正圧発生機構31(レイリーステップ)が配置され、第1流体循環溝30の低圧流体側には負圧発生機構32(逆レイリーステップ)が隣接する第1流体循環溝30近傍まで延設されている。さらに隣接する第1流体循環溝30、30の間には、第2流体循環溝33に連通し、該第2流体循環溝33によって囲まれる第2正圧発生機構34(レイリーステップ)からなる第2動圧発生機構が配設される。これにより、隣接する第1正圧発生機構31の間隔が大きく離れ、隣接する第1正圧発生機構31、31の間で十分な流体潤滑状態が得られない場合であっても、第2動圧発生機構によって摺動面間に高圧の流体が供給され、流体潤滑状態を維持することができる。
 また、図7に示すように固定側密封環45の摺動面Sには、流体循環溝40と、該流体循環溝40を挟んで互いに逆方向に周設される正圧発生機構41及び負圧発生機構42と、から構成される動圧発生機構46が8組配設される。図7における動圧発生機構は、図3、図5及び図6の実施の形態の動圧発生機構の基本構成と同じである。しかし、図3、図5及び図6の実施の形態において、逆回転が発生した場合、負圧発生機構12、22、32(逆レイリーステップ)にて大きな正圧が発生するため、逆転時の漏れ量が増大する虞がある、そこで、図7における動圧発生機構においては、負圧発生機構42(逆レイリーステップ)の幅を正圧発生機構41(レイリーステップ)の幅より狭くすることにより、逆回転時に逆レイリーステップ42で発生する圧力を小さくし、逆転時の漏れ量を低減することができる。
 図5~図7の実施形態においても、負圧発生機構内では圧力低下によるキャビテーションが発生する。そして、キャビテーションが発生する負圧領域にはシリケート析出物が集積しやすく、該負圧領域に基材の炭化珪素が露出していると、シリケート析出物が容易に堆積、付着する。この結果、堆積物により摺動面Sが損傷したり、析出物が正圧発生機構(レイリーステップ)及び負圧発生機構(逆レイリーステップ)等に堆積、付着して、正圧発生機構及び負圧発生機構の機能が損なわれ密封性を低下させる要因となっている。そこで、回転側密封環及び固定側密封環を珪素含有量が1.5at%以下の非晶質炭素膜8によって被覆することで、固定側密封環、回転側密封環はシリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができる。
 さらに、上記実施の形態において、動圧発生機構としてレイリーステップ、逆レイリーステップを摺動面に設けるものであったが、これに限らず、動圧発生機構として図8に示すディンプル51、図9に示すスパイラル溝61であってもよい。
 例えば、図8において、固定側密封環50の摺動面Sには四辺形のディンプル51が周方向に複数設けられている。ディンプル51は、高圧流体側及び低圧流体側とは連通しておらず、また、各ディンプル51は相互に独立して設けられている。ディンプル51の数、面積及び深さは、固定側密封環50の直径及び面幅並びに高圧流体側と低圧流体側との差圧等の条件により最適な値に設定されるが、面積が大きく、深さの浅いディンプルの方が流体潤滑作用及び液膜形成の点で好ましい。
 図8において、矢印で示すように、固定側密封環50に対して回転側密封環3が反時計方向に回転移動すると、固定側密封環50の摺動面Sにディンプル51の下流側には狭まり隙間(段差)51aが、また、上流側には拡がり隙間(段差)51bが形成される。固定側密封環50及び回転側密封環3の摺動面間に介在する流体が、その粘性によって、回転側密封環3の移動方向に追随移動するため、拡がり隙間(段差)25bの存在によって動圧(負圧)が発生し、狭まり隙間(段差)51aの存在によって正圧が発生して、該正圧によって摺動面Sに摺動面間に流体が供給され、流体潤滑状態を維持することができる。
 また、ディンプル51内の上流側の負圧発生領域にはキャビテーションが発生し、当該負圧発生領域の部分にシリケート析出物が発生し、負圧発生領域及びランド部Rに析出物が付着・堆積し、密封性を低下させる要因となっている。このため、摺動面S及びディンプル51には、珪素化合物を含まない炭化水素ガスを用いて珪素含有量が1.5at%以下の非晶質炭素膜によって被覆されている。
 これにより、回転側密封環3、固定側密封環50は珪素をほとんど含有しない非晶質炭素膜8によって被覆されるので、固定側密封環、回転側密封環の摺動面はシリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができる。なお、ディンプルの形状は四辺形に限らず、円、だ円、三角形でもよい。
 別の動圧発生機構として、図9に示すように、固定側密封環60の摺動面Sにスパイラル溝61を設けたものであってもよい。スパイラル溝61は、相手摺動面との相対摺動により流体を高圧流体側に排出する傾斜角度を有し、該スパイラル溝61の粘性ポンプ効果で流体を高圧流体側に押し戻し、漏れを防止するものである。
 スパイラル溝61の低圧流体側端部(相手摺動面との相対運動に伴う流体流れの上流側部分。図9においては内周側)62の部分にのキャビテーションが発生することがあり、被密封流体として、シリケート系の冷媒を使用した場合などにおいて、キャビテーションが発生するスパイラル溝61の低圧流体側端部62の部分に析出物が発生し、ランド部Rに付着・堆積し、密封性を低下させる要因となっている。
 そこで、摺動面S及びスパイラル溝61には、珪素化合物を含まない炭化水素ガスを用いた珪素含有量が1.5at%以下の非晶質炭素膜によって被覆されている。これにより、回転側密封環3、固定側密封環60は珪素をほとんど含有しない非晶質炭素膜8によって被覆されるので、固定側密封環、回転側密封環の摺動面はシリケートとの親和性がほとんどなくなり、被密封流体に含まれるシリケート化合物が摺動面に堆積することを防ぐことができる。
 また、前記実施の形態では、摺動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。
 なお、非晶質炭素膜は、回転側密封環及び固定側密封環の少なくとも一方の基材の摺動面に積層されていればよく、回転側密封環及び固定側密封環の基材の全表面を覆うように積層されていてもよい。さらに、非晶質炭素膜は、回転側密封環、固定側密封環のうちの一方の基材の摺動面と、他方の基材の全表面を覆うように積層されていてもよい。
 さらに、上記実施形態において、回転側密封環及び固定側密封環に形成された非晶質炭素膜8の厚さは、150nmであったが、これに限らない。非晶質炭素膜8に含まれる珪素量が1.5at%以下あれば、回転側密封環及び固定側密封環の大きさ、回転側密封環の回転速度、被密封流体の種類に応じて非晶質炭素膜8の厚さを変更してよい。
 1        回転軸
 2        スリーブ
 3        回転側密封環
 4        ハウジング
 5        固定側密封環
 6        コイルドウェーブスプリング
 7        ベローズ
 8       非晶質炭素膜
10       流体循環溝(動圧発生機構)
11       正圧発生機構(動圧発生機構)
12       負圧発生機構(動圧発生機構)
15       固定側密封環
17       動圧発生機構
20       流体循環溝(動圧発生機構)
21       正圧発生機構(動圧発生機構)
22       負圧発生機構(動圧発生機構)
25       固定側密封環
26       動圧発生機構
30       第1流体循環溝(動圧発生機構)
31       第1正圧発生機構(動圧発生機構)
32       負圧発生機構(動圧発生機構)
33       第2流体循環溝(動圧発生機構)
34       第2正圧発生機構(動圧発生機構)
35       固定側密封環
36       第1動圧発生機構
37       第2動圧発生機構
40       流体循環溝(動圧発生機構)
41       正圧発生機構(動圧発生機構)
42       負圧発生機構(動圧発生機構)
45       固定側密封環
46       動圧発生機構
50       固定側密封環
51       ディンプル(動圧発生機構)
60       固定側密封環
61       スパイラル溝(動圧発生機構)

Claims (3)

  1.  固定側に固定される円環状の固定側密封環と、回転軸とともに回転する円環状の回転側密封環とを備え、前記固定側密封環及び前記回転側密封環の対向する各摺動面を相対回転させることにより、当該相対回転する前記摺動面の径方向の一方側に存在するシリケート含有の被密封流体を密封する摺動部品において、
     前記固定側密封環又は前記回転側密封環の少なくともいずれか一方の摺動面には、珪素化合物を含まない炭化水素ガスを用いて成膜された非晶質炭素膜を備え、前記非晶質炭素膜の珪素の含有量は1.5at%以下であることを特徴とする摺動部品。
  2.  前記固定側密封環又は前記回転側密封環の基材が炭化珪素であることを特徴とする請求項1に記載の摺動部品。
  3.  前記固定側密封環又は前記回転側密封環の少なくとも一方の摺動面は、前記固定側密封環又は前記回転側密封環との相対回転により動圧を発生する動圧発生機構を備えることを特徴とする請求項1又は2に記載のメカニカルシール。
PCT/JP2017/035394 2016-10-14 2017-09-29 摺動部品 WO2018070265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018544749A JP6937766B2 (ja) 2016-10-14 2017-09-29 摺動部品
US16/341,413 US11009130B2 (en) 2016-10-14 2017-09-29 Sliding component
EP17859594.8A EP3527859B1 (en) 2016-10-14 2017-09-29 Sliding component
CN201780063225.3A CN109906330B (zh) 2016-10-14 2017-09-29 滑动部件
AU2017341527A AU2017341527A1 (en) 2016-10-14 2017-09-29 Sliding component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-202393 2016-10-14
JP2016202393 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070265A1 true WO2018070265A1 (ja) 2018-04-19

Family

ID=61905658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035394 WO2018070265A1 (ja) 2016-10-14 2017-09-29 摺動部品

Country Status (6)

Country Link
US (1) US11009130B2 (ja)
EP (1) EP3527859B1 (ja)
JP (1) JP6937766B2 (ja)
CN (1) CN109906330B (ja)
AU (1) AU2017341527A1 (ja)
WO (1) WO2018070265A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
US11053975B2 (en) 2017-05-19 2021-07-06 Eagle Industry Co., Ltd Sliding component
US11248707B2 (en) 2017-05-19 2022-02-15 Eagle Industry Co., Ltd Sliding component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891136B (zh) * 2016-11-14 2020-07-03 伊格尔工业股份有限公司 滑动部件
WO2019221231A1 (ja) * 2018-05-17 2019-11-21 イーグル工業株式会社 シールリング
US11530749B2 (en) * 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
US11644100B2 (en) 2018-05-17 2023-05-09 Eagle Industry Co., Ltd. Seal ring
JP7214722B2 (ja) 2018-05-17 2023-01-30 イーグル工業株式会社 シールリング
WO2020040234A1 (ja) 2018-08-24 2020-02-27 イーグル工業株式会社 摺動部材
US11815184B2 (en) * 2018-11-30 2023-11-14 Eagle Industry Co., Ltd. Sliding component
WO2020130087A1 (ja) 2018-12-21 2020-06-25 イーグル工業株式会社 摺動部品
JP7370681B2 (ja) 2019-02-14 2023-10-30 イーグル工業株式会社 摺動部品
EP4345342A2 (en) 2019-07-26 2024-04-03 Eagle Industry Co., Ltd. Sliding component
US11692449B2 (en) 2020-02-14 2023-07-04 Raytheon Technologies Corporation Carbon seal assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194282A (ja) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd メカニカルシール機構
JP2014185691A (ja) * 2013-03-22 2014-10-02 Jtekt Corp メカニカルシール
WO2016121739A1 (ja) * 2015-01-31 2016-08-04 イーグル工業株式会社 摺動部品

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155588B2 (ja) 1991-12-17 2001-04-09 イーグル工業株式会社 メカニカルシール用SiC系摺動材
JPH0610135A (ja) * 1992-06-29 1994-01-18 Matsushita Electric Ind Co Ltd 炭素膜の製造方法
JPH083763Y2 (ja) * 1992-09-03 1996-01-31 日本ピラー工業株式会社 非接触型メカニカルシール
US5501470A (en) * 1992-12-11 1996-03-26 Nippon Pillar Packing Co., Ltd. Non-contacting shaft sealing device with grooved face pattern
JPH09132478A (ja) 1995-11-07 1997-05-20 Eagle Ind Co Ltd 多孔質炭化珪素焼結体及びその製造方法
JPH11108199A (ja) 1997-10-03 1999-04-20 Eagle Ind Co Ltd メカニカルシール用摺動リング
JP2000169266A (ja) * 1998-12-04 2000-06-20 Eagle Ind Co Ltd 摺動材
JP3776754B2 (ja) * 2001-06-12 2006-05-17 Tdk株式会社 Dlcを施したシム
WO2003029685A1 (fr) * 2001-09-27 2003-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Element coulissant a coefficient de frottement eleve
JP2004225725A (ja) * 2003-01-20 2004-08-12 Eagle Ind Co Ltd 摺動部品
WO2006093319A1 (en) * 2005-03-02 2006-09-08 Ebara Corporation Diamond-coated bearing or seal structure and fluid machine comprising the same
JP2006266285A (ja) * 2005-03-22 2006-10-05 Kayaba Ind Co Ltd メカニカルシール
CN101663495B (zh) * 2007-04-20 2012-07-04 株式会社荏原制作所 使用了碳系滑动部件的轴承或密封件
CN101603595B (zh) * 2008-06-10 2013-08-21 宁波安密密封件有限公司 机械密封件及其制造方法
WO2012046749A1 (ja) 2010-10-06 2012-04-12 イーグル工業株式会社 摺動部品
JP6861626B2 (ja) * 2015-04-16 2021-04-21 イーグル工業株式会社 摺動部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194282A (ja) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd メカニカルシール機構
JP2014185691A (ja) * 2013-03-22 2014-10-02 Jtekt Corp メカニカルシール
WO2016121739A1 (ja) * 2015-01-31 2016-08-04 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527859A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053975B2 (en) 2017-05-19 2021-07-06 Eagle Industry Co., Ltd Sliding component
US11248707B2 (en) 2017-05-19 2022-02-15 Eagle Industry Co., Ltd Sliding component
US11035411B2 (en) * 2017-07-14 2021-06-15 Eagle Industry Co., Ltd. Sliding parts
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component

Also Published As

Publication number Publication date
CN109906330A (zh) 2019-06-18
CN109906330B (zh) 2021-12-14
AU2017341527A1 (en) 2019-05-02
EP3527859B1 (en) 2023-12-20
EP3527859A1 (en) 2019-08-21
JP6937766B2 (ja) 2021-09-22
US11009130B2 (en) 2021-05-18
JPWO2018070265A1 (ja) 2019-08-08
US20200182356A1 (en) 2020-06-11
EP3527859A4 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2018070265A1 (ja) 摺動部品
JP6861626B2 (ja) 摺動部品
JP6640121B2 (ja) 摺動部品
JP7179430B2 (ja) 摺動部品
JP6820120B2 (ja) 摺動部品
JP5936079B2 (ja) メカニカルシール
CN107208805B (zh) 滑动部件
WO2013031530A1 (ja) 摺動部品
US10655736B2 (en) Sliding component
WO2021020074A1 (ja) 摺動部品
WO2014024741A1 (ja) 摺動部品
US9695944B2 (en) Electrical corrosion resistant mechanical seal
JP2005325851A (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017341527

Country of ref document: AU

Date of ref document: 20170929

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017859594

Country of ref document: EP

Effective date: 20190514