WO2018070093A1 - Method and apparatus for manufacturing electronic component, and electronic component - Google Patents

Method and apparatus for manufacturing electronic component, and electronic component Download PDF

Info

Publication number
WO2018070093A1
WO2018070093A1 PCT/JP2017/028038 JP2017028038W WO2018070093A1 WO 2018070093 A1 WO2018070093 A1 WO 2018070093A1 JP 2017028038 W JP2017028038 W JP 2017028038W WO 2018070093 A1 WO2018070093 A1 WO 2018070093A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
conductive paste
film thickness
paste layer
manufacturing
Prior art date
Application number
PCT/JP2017/028038
Other languages
French (fr)
Japanese (ja)
Inventor
英児 佐藤
坂本 仁志
宮澤 誠
健一 石橋
Original Assignee
株式会社クリエゾン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリエゾン filed Critical 株式会社クリエゾン
Priority to KR1020197010023A priority Critical patent/KR20190064586A/en
Priority to MX2019003797A priority patent/MX2019003797A/en
Priority to CN201780057640.8A priority patent/CN109844879A/en
Publication of WO2018070093A1 publication Critical patent/WO2018070093A1/en
Priority to IL265925A priority patent/IL265925A/en
Priority to PH12019500813A priority patent/PH12019500813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/10Connecting leads to windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to an electronic component manufacturing method and apparatus, an electronic component, and the like.
  • Patent Document 1 The inventor has proposed an apparatus and a method for forming an external electrode on an electronic component body by dip-coating a conductive paste layer on an end surface of the electronic component body such as a multilayer ceramic capacitor, inductor, thermistor, etc.
  • Patent Document 1 The film thickness of the conductive paste layer that has been dip-coated is not uniform. Therefore, after pulling up the electronic component body on which the conductive paste is dip-coated from the conductive paste film layer formed on the surface plate surface, the dripping portion of the conductive paste formed on the end of the electronic component body is It has also been proposed to make contact with the surface of the platen from which the conductive paste film layer has been removed (Patent Document 2).
  • This process is referred to as a blot process because excess conductive paste on the electronic component body side is wiped off with a surface plate. By performing this blotting process, it is expected that a substantially uniform conductive paste layer is formed at the end of the electronic component body.
  • the conductive paste of the electronic component main body hangs down by its own weight. Further, a stringing phenomenon in which the conductive paste on the surface plate and the conductive paste on the electronic component main body are connected also occurs. Due to such a phenomenon, the external electrode of the electronic component main body tends to be thick in the portion covering the vicinity of the center of the end face and thin in the portion covering the periphery. Furthermore, the external electrode of the electronic component main body tends to be thinner at a portion covering the side surface of the end portion of the electronic component main body or a portion covering the corner portion where the end surface and the side surface intersect.
  • Such an external electrode hinders the flatness of the surface of the external electrode and causes non-uniformity in the thickness of the external electrode. Further, when an electronic component having such an external electrode is soldered to a substrate, the soldering quality becomes unstable.
  • Some aspects of the present invention may improve the thickness of the conductive layer formed at the end of an electronic component that has been particularly miniaturized by a new method, or form the conductive layer with an intended thickness.
  • An object of the present invention is to provide an electronic component manufacturing method and apparatus and an electronic component.
  • One aspect of the present invention is In the method of manufacturing an electronic component by forming an electrode on the end portion, the end portion of at least one electronic component main body includes an end surface and a side surface continuing to the end surface, A first step of forming a conductive paste layer to be the electrode at the end; A second step of adjusting the film thickness of the conductive paste layer formed on the end face before the conductive paste layer is cured; A third step of adjusting the thickness of the conductive paste layer formed on the side surface before the conductive paste layer is cured; The present invention relates to a method for manufacturing an electronic component having
  • the conductive paste layer formed on the end portion of the electronic component main body is adjusted in thickness on the end surface and the side surface before the conductive paste layer is cured.
  • the unadjusted thick part is shaved or the thick part is removed. Due to an action such as shifting to a thin part, the film thickness of the conductive paste formed on the side surface of the electronic component main body is made uniform and a predetermined thickness is secured.
  • the second step of adjusting the film thickness of the conductive paste layer formed on the end face of the electronic component body can be performed by the conventional blotting process described above, the improved blotting process described later, or the like.
  • the order of a 2nd process and a 3rd process is not ask
  • the second step and the third step may be performed simultaneously. Alternatively, as described later, the first to third steps can be performed simultaneously.
  • the third step may include a step of bringing the conductive paste layer formed on the end face into contact with a film thickness adjusting member. If it carries out like this, the thick part which was not adjusted will be shaved by the film thickness adjusting member, or it will transfer to a thin part.
  • an annular wire is used as the film thickness adjusting member, and the end of the at least one electronic component body is disposed in the annular wire. Steps may be included. If it carries out like this, the film thickness of the electrically conductive paste layer formed in all the side surfaces of an edge part can be adjusted simultaneously.
  • the at least one electronic component main body includes a plurality of electronic component main bodies
  • the third step is a net-like member in which wires are in contact with each other as the film thickness adjusting member.
  • a plurality of annular wires are formed on the mesh member, and each end of each of the plurality of electronic component bodies is disposed in each of the plurality of annular wires.
  • the end portions of each of the plurality of electronic component bodies are arranged in the plurality of annular wires through which sound waves are propagated isotropically, and the film thickness is adjusted on the side surface of each end portion of the plurality of electronic component bodies. Can be performed simultaneously.
  • the third step may include a step of propagating sound waves to the film thickness adjusting member. If it carries out like this, since the vibration energy defined by the frequency and amplitude of a sound wave will be given to film thickness adjustment members, such as an annular wire, film thickness adjustment will become possible more efficiently. In addition, excess conductive paste attached to the film thickness adjusting member is dropped by vibration caused by sound waves, and contamination of the film thickness adjusting member can be prevented.
  • the acoustic wave is propagated from a part of the outline of the mesh member, and the other outline of the mesh member is obtained.
  • a step of reflecting the sound wave in part can be included. Since the sound wave is propagated isotropically, the sound wave can be propagated from a part of the outline of the mesh member. By reflecting the sound wave at the other part of the outline of the mesh member, the energy of the reflected wave can also be used for adjusting the film thickness.
  • the frequency of the sound wave can be changed according to the arrangement pitch of the electronic component main body. For example, it is preferable to adjust the frequency of the sound wave so that one wavelength or half wavelength of the sound wave is substantially equal to the arrangement pitch.
  • the sound wave may be an ultrasonic wave.
  • the film thickness can be adjusted by increasing the frequency-dependent energy using the high frequency of ultrasonic waves.
  • the film thickness adjustment range can be covered by relatively moving the electronic component main body and the film thickness adjustment member.
  • the second step and the third step include a step of accommodating the conductive paste layer formed on the end portion in a concave portion formed on a surface plate. Curing the conductive paste in the recess. If it carries out like this, since the conductive paste layer formed in the end surface and the side surface will be hardened by adjusting the film thickness in the recess, the second step and the third step can be carried out simultaneously.
  • the end in the first step, the second step, and the third step, is immersed in a conductive paste filled in a recess formed in a mold platen. And a step of curing the conductive paste in the recess.
  • the first step is performed by inserting the end of the electronic component main body into the conductive plague filled in the recess, and the thickness of the conductive paste layer formed on the end surface and the side surface is adjusted in the recess.
  • the second and third steps are performed. Therefore, the first step, the second step, and the third step can be performed simultaneously.
  • the at least one electronic component body is sandwiched before at least one of the first step, the second step, and the third step.
  • the method may further include a step of centering the at least one electronic component body by propagating sound waves whose phases are shifted from each other by two wavelengths to the two wires. Since the phases of the peaks in the waveforms of the two types of sound waves that are out of phase with each other by a half wavelength match, the position of the electronic component body is corrected by contact with the two wires through which the sound waves propagate. Thereby, it is possible to center an electronic component body that is misaligned. As a result, the first step, the second step, and / or the third step after the centering step can be realized with higher accuracy.
  • Another aspect of the present invention is: In an electronic component manufacturing apparatus for manufacturing an electronic component by forming an electrode at an end of at least one electronic component main body, An application portion that applies an electrically conductive paste to form an electrically conductive paste layer on an end surface located at the end of the at least one electronic component body and a side surface following the end surface; A first film thickness adjusting member that is in contact with the conductive paste layer formed on the end face and adjusts the film thickness of the conductive paste layer; A second film thickness adjusting member that is in contact with the conductive paste layer formed on the side surface and adjusts the film thickness of the conductive paste layer;
  • the present invention relates to an apparatus for manufacturing an electronic component.
  • the method of manufacturing an electronic component according to one aspect (1) of the present invention can be suitably implemented.
  • the at least one electronic component main body includes a plurality of electronic component main bodies
  • the second film thickness adjusting member includes a net-like member in which wires are in contact at an intersection.
  • the mesh member is formed with a plurality of annular wires, and the ends of each of the plurality of electronic component bodies can be disposed in each of the plurality of annular wires.
  • the present invention may further include a sound wave generation source for propagating sound waves to the second film thickness adjusting member.
  • a sound wave generation source for propagating sound waves to the second film thickness adjusting member.
  • the recess includes a recess formed in a surface plate, the bottom wall of the recess is the first film thickness adjusting member, and the sidewall of the recess is the second film thickness. It may be an adjusting member.
  • the application part includes a recess formed in the mold, the application part is the recess in which the conductive paste is accommodated, and the bottom wall of the recess is the first It may be a film thickness adjusting member, and the side wall of the recess may be the second film thickness adjusting member.
  • Still another aspect of the present invention provides: An electronic component body; An electrode covering an end of the electronic component body; Have The end includes an end surface and a side surface following the end surface; The electrode relates to an electronic component having substantially the same thickness at the end face and the side face.
  • the end portion includes a corner portion where the end surface and the side surface intersect,
  • angular part is an electronic component which is more than the thickness of the said electrode which covers the said end surface.
  • the maximum depth of the irregularities on the surface of the electrode may be 20 ⁇ m or less.
  • FIGS. 2A and 2B are views showing a first step of the manufacturing method according to the first embodiment of the present invention.
  • 3A and 3B are views showing a third step of the manufacturing method according to the first embodiment of the present invention.
  • FIGS. 4A and 4B are views showing that the third step is simultaneously performed on a plurality of electronic component bodies. It is a side view of the process shown to FIG. 4 (A).
  • 6A and 6B are views showing a third step of the manufacturing method according to the second embodiment of the present invention.
  • FIGS. 8A to 8D are views showing the second and third steps of the manufacturing method according to the third embodiment of the present invention.
  • 9A to 9D are views showing first to third steps of the manufacturing method according to the fourth embodiment of the present invention. It is a figure which shows the manufacturing apparatus with which the manufacturing method which concerns on 1st and 2nd embodiment of this invention is enforced.
  • 11A and 11B are views showing the insertion guide and the carrier plate.
  • 12A and 12B are views showing a jig carrying-in step and an electronic component end face height adjusting step.
  • FIGS. 13A to 13C are diagrams showing a dip coating process (first process) of conductive paste.
  • FIGS. 14A to 14C are diagrams showing an outline of a conventional blotting process (second process) used in the first and second embodiments of the present invention.
  • FIGS. 15A to 15C are diagrams showing an improved blotting process (wet method second process) used in the first and second embodiments of the present invention. It is a figure which shows the manufacturing apparatus with which the manufacturing method which concerns on 3rd and 4th embodiment of this invention is enforced. It is a figure explaining the similar shape of the recessed part of a pattern board, and the end surface of an electronic component main body. It is a figure explaining the clearance gap dimension of a recessed part and the edge part of an electronic component main body. It is a schematic perspective view of the electronic component which is embodiment of this invention.
  • 21A and 21B are a front view and a side view of the external electrode formed on the end face of the electronic component according to the embodiment of the present invention.
  • 22A and 22B are a front view and a side view of an external electrode formed on an end surface of an electronic component as a comparative example.
  • 23A and 23B are views showing a centering jig and a centering process of the electronic component main body.
  • FIG. 1 shows an electronic component main body 1 having an end 2 and a dip layer 3 of a conductive paste formed on a surface plate (not shown), for example, with a uniform thickness.
  • the end portion 2 includes an end surface 2A and a side surface 2B following the end surface 2A.
  • the manufacturing method according to the present embodiment for manufacturing an electronic component by forming electrodes on the end 2 of the electronic component body 1 includes a first step of forming a conductive paste layer on the end 2 of the electronic component main body 1, The second step of adjusting the film thickness of the conductive paste layer formed on the end surface 2A of the electronic component main body 1 before the conductive paste layer is cured, and the electronic component main body 1 before the conductive paste layer is cured. And a third step of adjusting the film thickness of the conductive paste layer formed on the side surface 2B.
  • FIGS. 2A and 2B and FIGS. 3A and 3B show a first process and a third process according to the first embodiment.
  • some members in the drawings are drawn with exaggerated dimensions.
  • the dimensions and shapes of the dip layer 3 and the conductive paste layer 4 are the same as those of other members. It is enlarged compared to the shape.
  • the electronic component body 1 and the dip layer 3 are relatively moved (moved up and down) to dip the end 2 of the electronic component body 1. Immerse in layer 3. Thereafter, as shown in FIG. 2B, the electronic component body 1 and the dip layer 3 are relatively moved (moved up and down), and the end 2 of the electronic component body 1 is separated from the dip layer 3. Thereby, the conductive paste layer 4 is applied and formed on the end 2 of the electronic component body 1.
  • 3A and 3B show the third step.
  • a film thickness adjusting member (second film thickness adjusting member) 5A is used.
  • the film thickness adjusting member 5 ⁇ / b> A only needs to be in contact with the conductive paste layer 4 formed on at least one side surface 2 ⁇ / b> B of all side surfaces of the end portion 2 (four side surfaces in the present embodiment having a rectangular cross section).
  • the shape of the film thickness adjusting member 5A is not particularly limited as long as it is in line contact or surface contact with the side surface 2B.
  • a film thickness adjusting member that is not in contact with the conductive paste layer 4 may be used.
  • compressed air is ejected from an ejection nozzle that is a film thickness adjusting member, so that the film thickness of the conductive paste layer 4 on the side surface 2B is increased. You may adjust it.
  • an annular member for example, an annular wire 5A as shown in FIG. 3A
  • an annular wire 5A can be used to adjust the film thickness of the conductive paste layer 4 formed on the entire side surface 2B of the end portion 2 at the same time.
  • the electronic component body 1 and the annular wire 5A are relatively moved (moved up and down), and the end 2 of the electronic component body 1 is moved into the annular wire 5A. Placed in. Thereby, by bringing the conductive paste layer 4 formed on the side surface 2B into contact with the annular member 5A, the thick portion of the unadjusted conductive paste layer 4 formed on the side surface 2B becomes the annular member.
  • the electronic component main body 1 and the annular wire 5A are relatively moved (moved up and down) to adjust the film thickness of the conductive paste layer (also referred to as an electrode) on the side surface 2B. )
  • the end 2 having 4A is detached from the annular wire 5A.
  • the conductive paste layer 4 of the end portion 2 formed in the first step is subjected to the second and third steps before it is cured, so that the film thickness of the end surface 2A and the side surface 2B. Can be processed into the conductive paste layer 4A having adjusted.
  • FIG. 5 the annular wire 5A is arranged in accordance with the arrangement pitch d of two electronic component bodies 1 and 1 that are adjacent in the row or column direction. In FIG. 5, they are adjacent in the row or column direction.
  • the two annular wires 5A are independent without sharing the wire. In other words, two wires are arranged between two electronic component bodies 1 and 1 that are adjacent in the row or column direction. Instead of this, a single wire shared by both may be disposed between two electronic component bodies 1 and 1 that are adjacent in the row or column direction (see FIG. 7).
  • FIGS. 6A and 6B show a second embodiment of the present invention in which the third step is performed using a film thickness adjusting member through which sound waves are propagated.
  • the end of the film thickness adjusting member for example, the mesh member 5
  • the ultrasonic transducer 6 sound wave generation source in a broad sense.
  • the wire members 5 are in contact with each other at the intersections.
  • the mesh member 5 uses a wire material that easily propagates sound waves and ultrasonic waves, such as a piano wire.
  • the acoustic wave propagates isotropically, the acoustic wave can be propagated to all the wires extending in the row direction and the column direction of the mesh member 5 and contacting at the intersection.
  • the annular wire 5A has vibration energy defined by the frequency and amplitude of the ultrasonic waves. Therefore, the film thickness can be adjusted more efficiently.
  • excess conductive paste attached to the mesh member 5 is dropped by vibration caused by sound waves, and contamination of the mesh member 5 can be prevented.
  • FIG. 6B the electronic component body 1 and the net member 5 are relatively moved (moved up and down), and the end having the conductive paste layer 4A whose thickness is adjusted on the side surface 2B. The part 2 is detached from the annular wire 5A.
  • the frequency of the sound wave propagating through the mesh member 5 can be adjusted.
  • FIG. 7 shows the correlation between the wavelength adjusted by the frequency of the sound wave and the pitch d between the adjacent electronic component bodies 1 and 1.
  • the vibration energy applied to each annular wire 5d is approximately equal, and is uniform on the side surface 2B of each end 2 of the plurality of electronic component bodies 1. Thickness adjustment is expected.
  • the ultrasonic transducer 6 is arranged on a part of the outline of the mesh member 5 (for example, one side of a substantially rectangular shape), and another part of the outline of the mesh member 5 (for example, another side facing the substantially rectangular side)
  • the reflection member 7 is arranged on one side.
  • the energy of the reflected wave can also be used for film thickness adjustment.
  • the sound wave is an ultrasonic wave
  • the high frequency of the ultrasonic wave can be used to increase the energy depending on the frequency to adjust the film thickness.
  • the film thickness adjustment range can be covered by relatively moving the electronic component main body 1 and the film thickness adjusting member 5.
  • a waveform monitor is connected to the reflecting member 7, the length and phase of one wavelength are confirmed while viewing the waveform, and the drive unit connected to the ultrasonic transducer 6 is tuned.
  • the frequency may be adjusted.
  • the ultrasonic transducer 6 is not limited to the one that is disposed along one side of the mesh member 5 as shown in FIG. 7 and supplies ultrasonic waves to all the wires extending in the lateral direction in FIG. You may supply an ultrasonic wave to a book wire. This is because the ultrasonic wave is propagated isotropically and propagates to all the vertical and horizontal wires.
  • a surface plate (also referred to as a platen) 10 having at least one, for example, a plurality of recesses 12 formed on the surface is prepared.
  • the bottom wall and side wall of the recess 12 function as first and second film thickness adjusting members.
  • the electronic component body 1 is held by a carrier plate (jig) 20 with the end 2 exposed.
  • the carrier plate 20 can also be used in the first and second embodiments.
  • the carrier plate 20 is formed of an elastic body, for example.
  • the electronic component body 1 is held in the carrier plate 20 by being fitted into the hole 22 except for one end.
  • the platen 10 and the carrier plate 20 are relatively moved (moved up and down) so as to shift from FIG. 8B to FIG. 8C, and the conductive paste layer is formed in the recess 12 of the platen 10. Insert the end 2 on which 4 is formed. Thereby, the film thickness of the conductive paste layer 4 formed on the end surface 2A and the side surface 2B is adjusted by the bottom wall (first film thickness adjusting member) and the side wall (second film thickness adjusting member) that define the recess 12. The Within the recess 12, the conductive paste layer 4 whose film thickness has been adjusted is cured. Thereafter, as shown in FIG. 8D, the carrier plate 20 is moved relative to the surface plate 10, and the conductive paste layer 4 ⁇ / b> A formed on the end portion 2 of the electronic component body 1 is moved to the surface plate 10. Separate from the recess 12.
  • the conductive paste is an electroconductive substance having fluidity and high viscosity, and is a suspended dispersion system.
  • the conductive paste layers 4, 4 ⁇ / b> A can be placed in the recess 12 while the fluidity is flowing, and the film thickness can be adjusted, and can be quickly cured in the recess 12 by heating or drying the surface plate 10.
  • the amount of the conductive paste layer 4 is preferably adjusted so as not to overflow from the recess 12 of the surface plate 10.
  • Embodiment of this invention implements 1st process, 2nd process, and 3rd process simultaneously.
  • the dip layer 3 of the conductive paste shown in FIG. That is, in this embodiment, the recessed part 12 functions also as an application part in addition to the first and second film thickness adjusting members.
  • the mold 10 and the carrier plate 20 are relatively moved so that the dip layer 3 formed in the recess 12 of the mold 10 has an electron.
  • the end 2 of the component body 1 is immersed.
  • the end surface 2A and the side surface 2B, which are the end portions 2 are formed with the conductive paste layer 4A, and at the same time, the bottom wall (first film thickness adjusting member) and the side wall (second film thickness adjusting member) that define the recess 12. Member) and the film thickness is adjusted.
  • the carrier plate 20 is moved relative to the pattern plate 10 as shown in FIG.
  • the formed conductive paste layer 4 ⁇ / b> A is released from the recess 12 of the mold platen 10.
  • FIG. 10 shows a manufacturing apparatus used for implementing the first or second embodiment.
  • This manufacturing apparatus includes a carrier plate (jig) 20 and a film thickness adjusting member such as FIG. 4 (A) B), FIG. 6 (A) (B), FIG. Or the reflector 7 may or may not be provided) and the surface plate 100.
  • the carrier plate (jig) 20 can have a rectangular hole 22 in plan view as shown in FIGS. 11A and 11B, for example, in accordance with the contour of the end 2 of the electronic component body 1.
  • the rectangular hole 22 is used, the direction of the long side of the dimension L11 and the short side of the dimension L21 of the plurality of electronic component bodies 1 to be batch-processed are aligned. Therefore, the short side of the electronic component main body 1 held by the jig 20 can be matched with, for example, the X direction, and the long side can be matched with, for example, the Y direction.
  • the hole 22 is formed in conformity with the contour of the end 2 of the electronic component body 1 and is not necessarily rectangular.
  • an insertion guide 150 arranged so as to overlap the jig 20 can be used.
  • the insertion guide 150 has a circular tapered hole 152 and a rectangular hole 154 communicating with the circular tapered hole 152.
  • the electronic component main body 1 that has entered the circular tapered hole 152 is guided to the rectangular hole 154 by, for example, applying vibration to the insertion guide 150, and the direction thereof is aligned. Thereafter, the electronic component main body 1 is elastically fitted into the rectangular hole 22 of the rubber jig 20 by the pressing portion 160, for example.
  • a carrier plate (jig) 20 on which the electronic component body 1 is suspended and supported is detachably supported by a jig fixing plate 30.
  • the base plate 40 is fixed above the jig fixing platen 30, and the surface plate 100 is arranged below, for example, a film thickness adjusting member such as the net member 5 is arranged on the side.
  • the base 40 is provided with a moving mechanism 50 that moves the jig fixing plate 30.
  • the orthogonal three-axis directions are X, Y, and Z.
  • the moving mechanism 50 can include an X-axis drive unit 60, a Y-axis drive unit 70, and a Z-axis drive unit 80.
  • the Z-axis drive unit 80 is essential, but the X-axis drive unit 60 and the Y-axis drive unit 70 are optional.
  • the moving mechanism 50 only needs to move at least one of the jig fixing plate 30 and the surface plate 100 at least in the Z-axis direction.
  • the X-axis drive unit 60 can be configured by an X table that can move in the X-axis direction with respect to the base 40 along the X-axis guide 62.
  • the Y-axis drive unit 70 can be configured by a Y table that can move in the Y-axis direction with respect to the X-axis drive unit 60 along the Y-axis guide 72.
  • the Z-axis drive unit 80 is fixed to the Y-axis drive unit 70, for example, and can move the Z-axis 82 in the Z-axis direction.
  • the jig fixing plate 30 is fixed to the Z axis 82. Therefore, the jig fixing plate 30, the jig 20 and the electronic component main body 1 are moved in the Z-axis direction with respect to the surface plate 100 by the moving mechanism 50 and are parallel to the surface of the surface plate 100. It can move along a plane.
  • the mesh member 5 is moved back and forth in the X direction by a moving mechanism (not shown).
  • the net member 5 is disposed below the jig 20 when the third step is performed, and is retracted to the position shown in FIG. 10 at other times.
  • FIG. 12B shows an adjustment process of the end face height of the electronic component main body 1.
  • the electronic component main body 1 held by the jig 20 is lowered by the Z-axis drive unit 80 with respect to the surface plate 100 on which the conductive paste is not spread, and the end surface 2A of the electronic component main body 1 is lowered. Is brought into contact with the surface plate 100. Thereby, the height of the end surface 2A of the electronic component main body 1 held by the jig 20 becomes uniform.
  • FIGS. 13A) to 13C show a dip coating step (first step) of the conductive paste.
  • the blade 112 is moved horizontally by the squeegee unit 110 to form a dip layer 130 having a height h1 of the conductive paste 130 on the surface plate 100.
  • the electronic component main body 1 is lowered by the Z-axis drive unit 80 of FIG. 1, and the end surface 2 ⁇ / b> A of the electronic component main body 1 is brought into contact with the dip layer 130 on the surface plate 100.
  • the electronic component main body 1 is raised.
  • the conductive paste layer 4 is formed on the end 2 of the electronic component body 1.
  • FIGS. 14A to 14C show a conventional blotting step (second step).
  • the blade 114 in contact with the surface 101 of the surface plate 100 is moved horizontally by the squeegee unit 110, and the conductive paste on the surface plate 100 is scraped off.
  • FIG. 15B the electronic component body 1 is lowered and the conductive paste layer 4 formed on the end 2 of the electronic component body 1 is brought into contact with the surface plate 100. Thereafter, the electronic component main body 1 is raised as shown in FIG.
  • FIGS. 15 (A) to 15 (C) show a blotting process performed subsequent to FIG. 14 (A).
  • a paste film layer (wet layer) 140 having a height h2 set by the blade 114 in FIG. 15A is formed. That is, in the conventional blotting process, the blotting process is performed using the dry surface plate 100 without the paste film layer, but in this embodiment, the wet surface plate 100 in which the paste film layer (wet layer) 140 is formed. Perform the blotting process using.
  • the electronic component body 1 is lowered, and the conductive paste layer 4 formed on the end 2 of the electronic component body 1 is brought into contact with the paste film layer (wet layer) 140. Further, the electronic component main body 1 is moved while the conductive paste layer 14 is in contact with the paste film layer (wet layer) 140 by the X-axis drive unit 60 and / or the Y-axis drive unit 70 of the moving mechanism 50 shown in FIG.
  • the surface plate 100 is moved relatively in at least one direction parallel to the surface 101 of the surface plate 100 (for example, at least one of the X-axis direction and the Y-axis direction). Thereafter, the electronic component main body 1 is raised as shown in FIG.
  • the conductive paste layer 14 is flattened by moving while in contact with the paste film layer (wet layer) 140 on the surface plate 100, and excess conductive paste that causes stringing is removed from the surface plate surface 101. Can be transferred to the side and scraped off.
  • the effect of transferring the excess conductive paste onto the surface of the surface plate is that the electronic component main body 1 is placed in parallel with the surface plate 100 as in the embodiment of the present invention, rather than making the electronic component stationary as in Patent Document 2. It is much higher to move.
  • the conductive paste of the electronic component main body 1 is formed on the surface 101 of the surface plate 100 in a dry state where the paste film layer (wet layer) 140 is not formed.
  • the layer 4 may be brought into contact, and the electronic component body 1 may be relatively moved in at least one direction parallel to the surface 101 of the surface plate 100, preferably in two or more different directions. In particular, when moved in two or more different directions, the effect of transferring excess conductive paste, which could not be transferred to the surface plate 100 side in the conventional blotting process, to the surface plate 100 side is enhanced.
  • FIG. 16 shows the manufacturing apparatus 200 used for implementation of 4th Embodiment.
  • the carrier plate 20 shown in FIG. 16 has an elastic body such as rubber (for example, silicon rubber) 20C disposed in a hole 20B formed in a base 20A made of metal, for example, and has a hole 22 in which the electronic component main body 1 is elastically held.
  • the elastic body 20C is formed.
  • a hole 10B1 is formed in the mold part 10B, a recess forming member 10B2 is arranged in the hole 10B1, and a recess 12 filled with the conductive paste 3 is formed in the recess forming member 10B2.
  • the recess forming member 10B2 is preferably formed of a material that can form the recess 12 with high accuracy by molding, such as silicon rubber.
  • the recess forming member B2 can be brought into contact with the temperature adjusting unit 10C as shown in FIG. 16, for example. Thereby, heat exchange between the temperature control unit 10C and the dip layer (conductive paste) 3 in the recess 12 is performed via the recess forming member 10B2.
  • the temperature control unit 10C can be configured as a heating unit such as a heater, or using a Beltier element or the like that can be switched between heating and cooling. Curing can be accelerated by heating the conductive paste.
  • the mold platen (stable plate) 10 is cooled, the mold platen 10 contracts, while the concave portion 12 can be relatively widened, thereby improving the releasability of the conductive paste layer 4A.
  • the base 10 ⁇ / b> A of the template 10 and the base 24 of the carrier plate 20 can be relatively moved (moved up and down). Accordingly, each step of FIG. 9B to FIG. 9D can be performed.
  • the base 10 ⁇ / b> A of the mold plate 10 and the base 24 of the carrier plate 20 are preferably guided by a centering guide member (guide member) 52 during relative movement.
  • the electronic component main body 1 is centered with respect to the concave portion 12 of the pattern board 10 by, for example, a tapered fitting between the female member 52A on the base 10A side and the male member 52B on the base 24 side, for example.
  • FIG. 17 which is a plan view of the pattern board 10 viewed from the direction in which the carrier plate 20 and the pattern board 10 are relatively moved
  • the recess 12 of the pattern board 10 is based on the outline (dashed line) of the end 2 of the electronic component body 1. And has a contour (solid line) similar to the contour (dashed line) of the end 2 of the electronic component main body 1.
  • the center P ⁇ b> 1 of the contour (chain line) of the end 2 of the electronic component body 1 coincides with the center P ⁇ b> 2 of the contour (solid line) of the recess 12.
  • FIG. 18 shows the electronic component main body 1 disposed in the recess 12.
  • the end 2 of the electronic component body 1 includes an end surface 2A and a side surface 2B.
  • the concave portion 12 of the template 10 includes a bottom wall 12A that faces the end surface 2A and a side wall 12B that faces the side surface 2B.
  • the distance T11L from the left side surface 2B of the electronic component main body 1 to the side wall 12B of the concave portion 12 and the distance T11R from the right side surface 2B of the electronic component main body 1 to the side wall 12B of the concave portion 12 can be made substantially equal.
  • the film thickness of the conductive layer 4 formed on the side surface 2B of the end 2 of the electronic component body 1 can be made substantially uniform.
  • the distance T21 from the end surface 2A of the electronic component main body 1 to the bottom wall 12A of the recess 12 and the electronic component main body 1 The distances T11R and T11L from the side surface 2B to the side wall 12B of the recess 12 can be made substantially equal.
  • a conductive layer 4A having a necessary and sufficient thickness and uniform thickness can be secured on the end surface 2A and the side surface 2B of the end portion 2 of the electronic component body 1.
  • the thickness of the conductive layer differs between the end surface and the side surface of the end portion of the electronic component main body due to its own weight or the like before the conductive paste layer descends.
  • the thickness of the conductive layer can be made substantially equal at the side surface 2B.
  • the contour of the first corner 12C where the bottom wall 12A and the side wall 12B of the recess 12 intersect is larger than the contour of the second corner 2C where the end surface 2A and the side surface 2B of the electronic component body 1 intersect, and
  • the shape is similar to the outline of the second corner 2C.
  • the thickness T31 of the conductive layer 4 covering the first corner 2C where the end surface 2A and the side surface 2B of the electronic component body 1 intersect can be set to other thicknesses T11R, T11L, and T21.
  • the manufacturing apparatus used for implementation of the third embodiment is the manufacturing apparatus shown in FIG. 10 (however, the mesh member 5 and the X and Y drive units 60 in the moving mechanism 50, 70) and the manufacturing apparatus shown in FIG. 16 (however, the dip layer 3 in the recess 12 is unnecessary).
  • the first step of applying the conductive paste layer 4 to the end 2 of the electronic component body 1 can be performed as shown in FIG. 8B.
  • the second and third steps shown in FIGS. 8C and 8D can be performed.
  • FIG. 19 shows an electronic component 1A manufactured by the above-described manufacturing method
  • FIG. 20 shows a cross section of a conductive layer 4A formed on the electronic component main body 1.
  • the rectangle here includes not only a corner where two sides meet exactly 90 ° but also a substantially rectangle in which the corner is curved or chamfered. Needless to say, the present invention can also be applied to the electronic component 1A having a rectangular cross section.
  • the substantially uniform thickness T1 of the electrode 4A formed on the end surface 2A and the substantially uniform thickness T2 of the electrode 4A formed on the side surface 2B are substantially equal to each other.
  • T1 T2 can be set.
  • This film thickness is as described with reference to FIG. 18 showing the dimensions after film thickness adjustment (third and fourth embodiments) using the recess 12, but the film thickness adjusting member 5A other than the recess 12 is used. This can be ensured in the first and second embodiments.
  • the thickness T3 of the electrode 4A formed at the corner 2C can satisfy T3 ⁇ T1 or T3 ⁇ T2. These film thicknesses are clearly distinguished from those after the conventional blotting process.
  • FIGS. 21A and 21B show end faces of an electronic component 1A manufactured by the method of this embodiment.
  • FIGS. 9A and 9B show an end face of an electronic component manufactured by performing the blotting process (only Z movement) disclosed in Patent Document 2.
  • FIG. 21A shows end faces of an electronic component manufactured by performing the blotting process (only Z movement) disclosed in Patent Document 2.
  • FIG. 21A of the present embodiment As is clear from comparison between FIG. 21A of the present embodiment and FIG. 22A of the comparative example, in FIG. 21A, an annular trace due to stringing of the conductive paste is formed on the surface of the electrode. While it does not exist, as described above, in FIG. 22A, clear tubular traces are generated in two places.
  • the annular trace shown in FIG. 22A of the comparative example makes the surface of the electrode convex as shown in FIG. Cracks may appear in the traces and may peel off. When the electronic component is soldered to the substrate, only the trace portion that is easily peeled is soldered, and the soldering becomes unstable.
  • the maximum depth of irregularities on the surface of the electrode due to the two annular traces in FIG. 22B was 70 to 180 ⁇ m.
  • the maximum depth of the unevenness on the surface of the electrode is 20 ⁇ m or less, preferably 10 ⁇ m or less. Can have sex.
  • one of the lengths L11 and L21 of the rectangular hole 22 in FIG. 11B for example, the length L21 is made longer than the corresponding one of the electronic component main body 1, and is shown in FIG.
  • the electronic component body 1 may be easily inserted into the rectangular hole 22. In such a case, after the electronic component main body 1 is mounted on the jig 20, the electronic component main body 1 needs to be centered (for example, positioning in the X-axis or Y-axis direction in FIG. 11B).
  • FIGS. 23A and 23B show a centering jig and a centering method of the electronic component body 1.
  • This centering jig has two wires 5B and 5C arranged with the electronic component main body 1 interposed therebetween.
  • the ultrasonic transducer 6 propagates sound waves whose phases are shifted from each other by a half wavelength to the two wires 5B and 5C.
  • the reflecting member 7 When the reflecting member 7 is provided, the reflected energy can be used if the propagated sound wave is reflected without causing a phase shift.
  • FIG. 23 (A) when a plurality of pairs of wires 5B and 5C are provided, a sound wave shifted in phase is supplied to each pair of wires 5B and 5C. In this case, if two types of sound waves supplied to the pair of wires 5B and 5C are supplied in parallel to all the other pairs of wires 5B and 5C, only two ultrasonic transducers are provided. Good. Further, instead of the centering jig shown in FIG. 23A, the mesh member 5 shown in FIGS. 6A, 6B or 7 may be used as the centering jig.
  • the inner dimension of the annular wire 5A included in the net-like member 5 is larger than the distance between the opposing side surfaces of the electronic component main body 1, it serves as a centering jig for the electronic component main body 1 before the conductive paste layer 4 is formed. Can be combined. Further, when two types of sound waves that are out of phase are propagated to the two wires extending in the horizontal direction in FIG. 7, the two types of sound waves are canceled out in the wire material extending in the vertical direction in FIG. 7. Since the wire extending in the vertical direction in FIG. 7 does not vibrate, there is no adverse effect on the centering operation shown in FIG.
  • This centering process is performed at least before the third process in the first and second embodiments, at least before the second and third processes in the third embodiment, and in the first to third processes in the fourth embodiment. If implemented before, the centered electronic component main body 1 can be placed with high accuracy in the annular wire 5A or the recess 12. Therefore, the centering step may be performed before at least one of the first step, the second step, and the third step. Thereby, the first step, the second step and / or the third step after the centering step can be realized with higher accuracy.
  • the centering jig and the centering method are performed before any one of the coating step (first step), the end face film thickness adjusting step (second step), or the side surface film thickness adjusting step (third step).
  • the centering effect can be obtained without necessarily being accompanied by a film thickness adjusting step. Therefore, the electronic component main body mounted on the jig can be broadly defined as a centering jig and a centering method.
  • the improved blotting process (wet method) described in FIGS. 15A to 15C is more effective than the conventional blotting process shown in FIGS. 14A to 14C. Excellent effect can be achieved. Therefore, an improved blotting process (wet method) can be performed as the film thickness adjusting process on the end face without necessarily performing the film thickness adjusting process on the side surface of the present invention.
  • the end 2 of the electronic component main body 1 is immersed in the dip layer 3 of the conductive paste so that the end 2 of the electronic component main body 1 is immersed.
  • the first step of forming the conductive paste layer 4 applied to the surface and the conductive paste layer 4 of the electronic component body 1 to the wet layer 140 formed by applying the conductive paste to the surface plate 100 A second step of contacting, and moving the electronic component body 1 relative to the surface plate 100 while bringing the conductive paste layer 4 into contact with the wet layer 140 on the surface plate 100; A third step of moving the electronic component main body 1 in parallel with the surface of the surface plate 100, and then a fourth step of separating the conductive paste layer 4 of the electronic component main body 1 from the surface plate 100 side.
  • Electronic It is defined as the production method of goods.
  • the second and third steps subsequent to the dip coating step of the first step are formed on the end surface 2A of the electronic component body 1 while preventing or suppressing stringing in the fourth step.
  • the thickness of the conductive paste layer 4 can be made uniform.
  • the blotting process (dry method) described as a modified example of FIGS. 15A to 15C is also higher than the conventional blotting process shown in FIGS. 14A to 14C. Excellent effect can be achieved.
  • the end 2 of the electronic component main body 1 is immersed in the dip layer 3 of the conductive paste, and the end 2 of the electronic component main body 1 is immersed.
  • a first step of forming the conductive paste layer 4 a second step of bringing the conductive paste layer 4 of the electronic component body 1 into contact with the surface 101 of the surface plate 100, and the conductive paste layer 4 being the surface plate.
  • the electronic component body 1 is moved relative to the surface plate 100 while being in contact with the surface 101 of the surface 100, and the electronic component body 1 is moved in parallel with the surface 101 of the surface plate 100.
  • a step of moving the defined comprising the steps of moving in the second direction (e.g., Y direction) which is different from the electronic component body 1 to the first direction, and a method of manufacturing an electronic component including.
  • the conductive paste layer 4 on the end surface 2A is flattened by causing the conductive paste layer 4 to move in parallel in different first and second directions while being in contact with the surface plate 100.
  • the excess conductive paste that causes stringing in the fourth step can be transferred to the surface 101 side of the surface plate 100 and scraped off.
  • 1 electronic component body 1A electronic component, 2 end, 2A end surface, 2B side surface, 3 dip layer, 4 conductive paste layer, 4A electrode (conductive paste layer), 5 mesh member (second film thickness adjusting member), 5A annular wire (second film thickness adjusting member), 5B, 5C wire, 6 sound wave source (ultrasonic vibrator), 7 reflecting member, 10 platen (surface plate), 10C temperature control unit, 12 recess (application unit) , 1st, 2nd film thickness adjusting member), 20 jig, 22 rectangular hole, 24 cross hole, 26 circular hole, 30 jig fixing plate, 40 fixing plate, 50 moving mechanism, 60 X-axis drive unit, 70 Y Axis drive unit, 80 Z-axis drive unit, 100 surface plate (first film thickness adjusting member), 101 surface (surface plate surface), 110 squeegee unit, 112, 114 blade, 130 paste film layer (dip layer) 140 paste film layer (wet layer), 150 insertion guide, 152 circular tapered hole, 154 rectangular hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

Disclosed is a method for manufacturing an electronic component 1A by forming an electrode 4A on an end section 2 of at least one electronic component main body 1, said end section 2 including an end surface 2A and a side surface 2B continuous from the end surface 2A. The method has: a first step for forming a conductive paste layer 4 on the end section 2; a second step for adjusting, before the conductive paste layer 4 hardens, the film thickness of the conductive paste layer 4 formed on the end surface 2A; and a third step for adjusting, before the conductive paste layer 4 hardens, the film thickness of the conductive paste layer 4 formed on the side surface 2B.

Description

電子部品の製造方法及び装置並びに電子部品Electronic component manufacturing method and apparatus, and electronic component
 本発明は、電子部品の製造方法及び装置並びに電子部品等に関する。 The present invention relates to an electronic component manufacturing method and apparatus, an electronic component, and the like.
 本発明者は、例えば積層セラミックコンデンサー、インダクター、サーミスター等の電子部品本体の端面に導電性ペースト層をディップ塗布して、電子部品本体に外部電極を形成する装置及び方法を提案している(特許文献1)。ディップ塗布されたままの導電性ペースト層の膜厚は均一化されない。そこで、導電性ペーストがディップ塗布された電子部品本体を、定盤面に形成された導電性ペースト膜層から引き上げた後に、電子部品本体の端部に形成された導電性ペーストのたれ下がり部を、導電性ペースト膜層が除去された定盤面に接触させることも提案されている(特許文献2)。この工程は、電子部品本体側の余分な導電性ペーストを定盤により拭い取ることから、ブロット(blot)工程と称される。このブロット工程の実施により、電子部品本体の端部にほぼ均一の導電性ペースト層が形成されることが期待される。 The inventor has proposed an apparatus and a method for forming an external electrode on an electronic component body by dip-coating a conductive paste layer on an end surface of the electronic component body such as a multilayer ceramic capacitor, inductor, thermistor, etc. Patent Document 1). The film thickness of the conductive paste layer that has been dip-coated is not uniform. Therefore, after pulling up the electronic component body on which the conductive paste is dip-coated from the conductive paste film layer formed on the surface plate surface, the dripping portion of the conductive paste formed on the end of the electronic component body is It has also been proposed to make contact with the surface of the platen from which the conductive paste film layer has been removed (Patent Document 2). This process is referred to as a blot process because excess conductive paste on the electronic component body side is wiped off with a surface plate. By performing this blotting process, it is expected that a substantially uniform conductive paste layer is formed at the end of the electronic component body.
特開2002-237403号公報JP 2002-237403 A 特開昭63-45813号公報JP-A 63-45813
 しかし、ブロット工程を実施しても、定盤から電子部品本体を引き上げると、電子部品本体の導電性ペーストは自重により垂れ下がる。また、定盤上の導電性ペーストと電子部品本体の導電性ペーストとがつながる糸引き現象も生ずる。このような現象に起因して、電子部品本体の外部電極は、端面の中心付近を覆う部分は厚く周縁付近を覆う部分は薄くなる傾向がある。さらに、電子部品本体の外部電極は、電子部品本体の端部の側面を覆う部分や、端面と側面とが交わる角部を覆う部分ではさらに薄くなる傾向がある。 However, even if the blotting process is performed, when the electronic component main body is pulled up from the surface plate, the conductive paste of the electronic component main body hangs down by its own weight. Further, a stringing phenomenon in which the conductive paste on the surface plate and the conductive paste on the electronic component main body are connected also occurs. Due to such a phenomenon, the external electrode of the electronic component main body tends to be thick in the portion covering the vicinity of the center of the end face and thin in the portion covering the periphery. Furthermore, the external electrode of the electronic component main body tends to be thinner at a portion covering the side surface of the end portion of the electronic component main body or a portion covering the corner portion where the end surface and the side surface intersect.
 このような外部電極は、外部電極の表面の平坦性を阻害する上、外部電極の膜厚の不均一を生ずる。また、このような外部電極を有する電子部品を基板に半田付けすると、はんだ付け品質が不安定となる。 Such an external electrode hinders the flatness of the surface of the external electrode and causes non-uniformity in the thickness of the external electrode. Further, when an electronic component having such an external electrode is soldered to a substrate, the soldering quality becomes unstable.
 近年、電子部品の小型化はさらに進んでいる。この小型化された電子部品の端部に、意図通りの形状と膜厚で導電層を形成するには、定盤を用いたディップ塗布法に、端面の膜厚を調整するブロット工程を追加した従来の方法では限界が生じていた。 In recent years, electronic components have been further miniaturized. In order to form a conductive layer with the desired shape and thickness at the end of this miniaturized electronic component, a blotting process that adjusts the thickness of the end face was added to the dip coating method using a surface plate. The conventional method has a limit.
 本発明の幾つかの態様は、新たな方法により特に小型化された電子部品の端部に形成される導電層の膜厚を改善し、あるいは意図通りの膜厚で導電層を形成することができる電子部品の製造方法及び装置並びに電子部品を提供することを目的とする。 Some aspects of the present invention may improve the thickness of the conductive layer formed at the end of an electronic component that has been particularly miniaturized by a new method, or form the conductive layer with an intended thickness. An object of the present invention is to provide an electronic component manufacturing method and apparatus and an electronic component.
 (1)本発明の一態様は、
 少なくとも一つの電子部品本体の端部が端面と前記端面に続く側面とを含み、前記端部に電極を形成して電子部品を製造する方法において、
 前記端部に、前記電極となる導電性ペースト層を形成する第1工程と、
 前記導電性ペースト層が硬化する前に、前記端面に形成された前記導電性ペースト層の膜厚を調整する第2工程と、
 前記導電性ペースト層が硬化する前に、前記側面に形成された前記導電性ペースト層の膜厚を調整する第3工程と、
を有する電子部品の製造方法に関する。
(1) One aspect of the present invention is
In the method of manufacturing an electronic component by forming an electrode on the end portion, the end portion of at least one electronic component main body includes an end surface and a side surface continuing to the end surface,
A first step of forming a conductive paste layer to be the electrode at the end;
A second step of adjusting the film thickness of the conductive paste layer formed on the end face before the conductive paste layer is cured;
A third step of adjusting the thickness of the conductive paste layer formed on the side surface before the conductive paste layer is cured;
The present invention relates to a method for manufacturing an electronic component having
 本発明の一態様によれば、電子部品本体の端部に形成される導電性ペースト層は、導電性ペースト層が硬化する前に、端面と側面の膜厚がそれぞれ調整される。特に、電子部品本体の側面に形成された導電性ペーストの膜厚が調整される第3工程を有することで、未調整であった膜厚の厚い部分が削られ、あるいは膜厚の厚い部分が薄い部分に移行される等の作用により、電子部品本体の側面に形成された導電性ペーストの膜厚が均一化されると共に所定の厚さが確保される。電子部品本体の端面に形成された導電性ペースト層の膜厚を調整する第2工程は、上述された従来のブロット工程や、後述される改良されたブロット工程等により実施できる。なお、第1工程の後であって導電性ペースト層が硬化される前あれば、第2工程及び第3工程の順序は問わず、第3工程は第2工程の前または後であっても、第2工程と第3工程とを同時に実施しても良い。あるいは後述の通り、第1~第3工程は同時に実施することもできる。 According to one aspect of the present invention, the conductive paste layer formed on the end portion of the electronic component main body is adjusted in thickness on the end surface and the side surface before the conductive paste layer is cured. In particular, by having a third step in which the film thickness of the conductive paste formed on the side surface of the electronic component body is adjusted, the unadjusted thick part is shaved or the thick part is removed. Due to an action such as shifting to a thin part, the film thickness of the conductive paste formed on the side surface of the electronic component main body is made uniform and a predetermined thickness is secured. The second step of adjusting the film thickness of the conductive paste layer formed on the end face of the electronic component body can be performed by the conventional blotting process described above, the improved blotting process described later, or the like. In addition, as long as it is after a 1st process and before an electroconductive paste layer is hardened, the order of a 2nd process and a 3rd process is not ask | required, even if a 3rd process is before or after a 2nd process. The second step and the third step may be performed simultaneously. Alternatively, as described later, the first to third steps can be performed simultaneously.
 (2)本発明の一態様(1)では、前記第3工程は、前記端面に形成された前記導電性ペースト層を膜厚調整部材と接触させる工程を含むことができる。こうすると、未調整であった膜厚の厚い部分は、膜厚調整部材により削られ、あるいは薄い部分に移行される。 (2) In one aspect (1) of the present invention, the third step may include a step of bringing the conductive paste layer formed on the end face into contact with a film thickness adjusting member. If it carries out like this, the thick part which was not adjusted will be shaved by the film thickness adjusting member, or it will transfer to a thin part.
 (3)本発明の一態様(2)では、前記第3工程は、前記膜厚調整部材として環状線材を用い、前記環状線材の中に前記少なくとも一つの電子部品本体の前記端部を配置させる工程を含むことができる。こうすると、端部の全側面に形成された導電性ペースト層の膜厚を同時に調整することができる。 (3) In one aspect (2) of the present invention, in the third step, an annular wire is used as the film thickness adjusting member, and the end of the at least one electronic component body is disposed in the annular wire. Steps may be included. If it carries out like this, the film thickness of the electrically conductive paste layer formed in all the side surfaces of an edge part can be adjusted simultaneously.
 (4)本発明の一態様(2)では、前記少なくとも一つの電子部品本体は複数の電子部品本体を含み、前記第3工程は、前記膜厚調整部材として線材同士が交点で接触する網状部材を用い、前記網状部材には複数の環状線材が形成され、前記複数の環状線材の各々の中に前記複数の電子部品本体の各々の前記端部を配置させる工程を含むことができる。こうすると、音波が等方的に伝搬される複数の環状線材の中に複数の電子部品本体の各々の端部が配置され、複数の電子部品本体の各々の端部の側面での膜厚調整を、同時に行うことができる。 (4) In one aspect (2) of the present invention, the at least one electronic component main body includes a plurality of electronic component main bodies, and the third step is a net-like member in which wires are in contact with each other as the film thickness adjusting member. A plurality of annular wires are formed on the mesh member, and each end of each of the plurality of electronic component bodies is disposed in each of the plurality of annular wires. In this way, the end portions of each of the plurality of electronic component bodies are arranged in the plurality of annular wires through which sound waves are propagated isotropically, and the film thickness is adjusted on the side surface of each end portion of the plurality of electronic component bodies. Can be performed simultaneously.
 (5)本発明の一態様(2)~(4)いずれかでは、前記第3工程は、前記膜厚調整部材に音波を伝搬させる工程を含むことができる。こうすると、環状線材等の膜厚調整部材には、音波の周波数及び振幅により定義される振動エネルギーが付与されるので、より効率的に膜厚調整が可能となる。加えて、膜厚調整部材に付着される余分な導電性ペーストは音波による振動によって落下され、膜厚調整部材の汚染を防止できる。 (5) In any one of aspects (2) to (4) of the present invention, the third step may include a step of propagating sound waves to the film thickness adjusting member. If it carries out like this, since the vibration energy defined by the frequency and amplitude of a sound wave will be given to film thickness adjustment members, such as an annular wire, film thickness adjustment will become possible more efficiently. In addition, excess conductive paste attached to the film thickness adjusting member is dropped by vibration caused by sound waves, and contamination of the film thickness adjusting member can be prevented.
 (6)本発明の一態様(4)に従属する態様(5)では、前記第3工程は、前記網状部材の輪郭の一部から前記音波を伝搬させ、前記網状部材の前記輪郭の他の一部にて前記音波を反射させる工程を含むことができる。音波は等方的に伝搬されるので、網状部材の輪郭の一部から音波を伝搬させることができる。網状部材の輪郭の他の一部にて音波を反射させることで、反射波のエネルギーも膜厚調整に利用することができる。なお、音波の周波数を電子部品本体の配列ピッチに応じて変更できることが好ましく、例えば音波の一波長または半波長が配列ピッチと実質的に等しくなるように、音波の周波数を調整することが好ましい。 (6) In aspect (5) subordinate to aspect (4) of the present invention, in the third step, the acoustic wave is propagated from a part of the outline of the mesh member, and the other outline of the mesh member is obtained. A step of reflecting the sound wave in part can be included. Since the sound wave is propagated isotropically, the sound wave can be propagated from a part of the outline of the mesh member. By reflecting the sound wave at the other part of the outline of the mesh member, the energy of the reflected wave can also be used for adjusting the film thickness. In addition, it is preferable that the frequency of the sound wave can be changed according to the arrangement pitch of the electronic component main body. For example, it is preferable to adjust the frequency of the sound wave so that one wavelength or half wavelength of the sound wave is substantially equal to the arrangement pitch.
 (7)本発明の一態様(5)または(6)では、前記音波は超音波とすることができる。超音波の高周波数を利用して、周波数に依存するエネルギーを高めて膜厚調整することができる。なお、電子部品本体と膜厚調整部材とを相対的に移動させることで、膜厚調整範囲をカバーすることができる。 (7) In one aspect (5) or (6) of the present invention, the sound wave may be an ultrasonic wave. The film thickness can be adjusted by increasing the frequency-dependent energy using the high frequency of ultrasonic waves. In addition, the film thickness adjustment range can be covered by relatively moving the electronic component main body and the film thickness adjustment member.
 (8)本発明の一態様(1)では、前記第2工程及び前記第3工程は、定盤に形成された凹部に、前記端部に形成された前記導電性ペースト層を収容する工程と、前記凹部内の前記導電性ペーストを硬化させる工程と、を含むことができる。こうすると、端面及び側面に形成された導電性ペースト層は凹部内で膜厚調整されて硬化されるので、第2工程及び第3工程を同時に実施することができる。 (8) In one aspect (1) of the present invention, the second step and the third step include a step of accommodating the conductive paste layer formed on the end portion in a concave portion formed on a surface plate. Curing the conductive paste in the recess. If it carries out like this, since the conductive paste layer formed in the end surface and the side surface will be hardened by adjusting the film thickness in the recess, the second step and the third step can be carried out simultaneously.
 (9)本発明の一態様(1)では、前記第1工程、前記第2工程及び前記第3工程は、型盤に形成された凹部に充填された導電性ペーストに、前記端部を浸漬する工程と、前記凹部内の前記導電性ペーストを硬化させる工程と、を含むことができる。こうすると、凹部に充填された導電性ペストに電子部品本体の端部が挿入されることで第1工程が実施され、端面及び側面に形成される導電性ペースト層は凹部内で膜厚調整されて第2,第3工程が実施される。従って、第1工程、第2工程及び第3工程を同時に実施することができる。 (9) In one aspect (1) of the present invention, in the first step, the second step, and the third step, the end is immersed in a conductive paste filled in a recess formed in a mold platen. And a step of curing the conductive paste in the recess. In this way, the first step is performed by inserting the end of the electronic component main body into the conductive plague filled in the recess, and the thickness of the conductive paste layer formed on the end surface and the side surface is adjusted in the recess. Then, the second and third steps are performed. Therefore, the first step, the second step, and the third step can be performed simultaneously.
 (10)本発明の一態様(1)~(9)では、前記第1工程、前記第2工程及び第3工程の少なくとも一つの工程の前に、前記少なくとも一つの電子部品本体を挟んで配置される2本の線材に、半波長だけ位相が互いにずれた音波を伝搬させて、前記少なくとも一つ電子部品本体を芯出しする工程をさらに有することができる。半波長だけ位相が互いにずれた2種の音波の波形中の山同士の位相が一致するので、その音波が伝搬される2本の線材との接触によって電子部品本体の位置が矯正される。それにより、芯ずれしている電子部品本体を芯出しすることができる。その結果、この芯出し工程後の第1工程、第2工程及び/または第3工程を、より精度高く実現することができる。 (10) In one aspect (1) to (9) of the present invention, the at least one electronic component body is sandwiched before at least one of the first step, the second step, and the third step. The method may further include a step of centering the at least one electronic component body by propagating sound waves whose phases are shifted from each other by two wavelengths to the two wires. Since the phases of the peaks in the waveforms of the two types of sound waves that are out of phase with each other by a half wavelength match, the position of the electronic component body is corrected by contact with the two wires through which the sound waves propagate. Thereby, it is possible to center an electronic component body that is misaligned. As a result, the first step, the second step, and / or the third step after the centering step can be realized with higher accuracy.
 (11)本発明の他の態様は、
 少なくとも一つの電子部品本体の端部に電極を形成して電子部品を製造する電子部品の製造装置において、
 前記少なくとも一つの電子部品本体の前記端部に位置する端面と前記端面に続く側面とに、導電性ペーストを塗布して導電性ペースト層を形成する塗布部と、
 前記端面に形成された前記導電性ペースト層と接触されて、前記導電性ペースト層の膜厚を調整する第1膜厚調整部材と、
 前記側面に形成された前記導電性ペースト層と接触されて、前記導電性ペースト層の膜厚を調整する第2膜厚調整部材と、
を有する電子部品の製造装置に関する。
(11) Another aspect of the present invention is:
In an electronic component manufacturing apparatus for manufacturing an electronic component by forming an electrode at an end of at least one electronic component main body,
An application portion that applies an electrically conductive paste to form an electrically conductive paste layer on an end surface located at the end of the at least one electronic component body and a side surface following the end surface;
A first film thickness adjusting member that is in contact with the conductive paste layer formed on the end face and adjusts the film thickness of the conductive paste layer;
A second film thickness adjusting member that is in contact with the conductive paste layer formed on the side surface and adjusts the film thickness of the conductive paste layer;
The present invention relates to an apparatus for manufacturing an electronic component.
 本発明の他の態様によれば、本発明の一態様(1)に係る電子部品の製造方法を好適に実施することができる。 According to another aspect of the present invention, the method of manufacturing an electronic component according to one aspect (1) of the present invention can be suitably implemented.
 (12)本発明の他の態様(11)では、前記少なくとも一つの電子部品本体は複数の電子部品本体を含み、前記第2膜厚調整部材は、線材同士が交点で接触する網状部材を含み、前記網状部材には複数の環状線材が形成され、前記複数の環状線材の各々の中に前記複数の電子部品本体の各々の前記端部を配置させることができる。それにより、本発明の一態様(4)を好適に実施することができる。 (12) In another aspect (11) of the present invention, the at least one electronic component main body includes a plurality of electronic component main bodies, and the second film thickness adjusting member includes a net-like member in which wires are in contact at an intersection. The mesh member is formed with a plurality of annular wires, and the ends of each of the plurality of electronic component bodies can be disposed in each of the plurality of annular wires. Thereby, 1 aspect (4) of this invention can be implemented suitably.
 (13)本発明の他の態様(12)では、前記第2膜厚調整部材に音波を伝搬させる音波発生源をさらに有することができる。それにより、本発明の一態様(5)または(6)を好適に実施することができる。 (13) In another aspect (12) of the present invention, it may further include a sound wave generation source for propagating sound waves to the second film thickness adjusting member. Thereby, one aspect (5) or (6) of the present invention can be suitably implemented.
 (14)本発明の他の態様(11)では、定盤に形成された凹部を含み、前記凹部の底壁が前記第1膜厚調整部材とされ、前記凹部の側壁が前記第2膜厚調整部材とされてもよい。それにより、本発明の一態様(8)を好適に実施することができる。 (14) In another aspect (11) of the present invention, the recess includes a recess formed in a surface plate, the bottom wall of the recess is the first film thickness adjusting member, and the sidewall of the recess is the second film thickness. It may be an adjusting member. Thereby, one aspect (8) of the present invention can be suitably implemented.
 (15)本発明の他の態様(11)では、型盤に形成された凹部を含み、前記塗布部は前記導電性ペーストが収容される前記凹部とされ、前記凹部の底壁が前記第1膜厚調整部材とされ、前記凹部の側壁が前記第2膜厚調整部材とされても良い。それにより、本発明の一態様(9)を好適に実施することができる。 (15) In another aspect (11) of the present invention, the application part includes a recess formed in the mold, the application part is the recess in which the conductive paste is accommodated, and the bottom wall of the recess is the first It may be a film thickness adjusting member, and the side wall of the recess may be the second film thickness adjusting member. Thereby, 1 aspect (9) of this invention can be implemented suitably.
 (16)本発明のさらに他の態様は、
 電子部品本体と、
 前記電子部品本体の端部を覆う電極と、
を有し、
 前記端部は、端面と、前記端面に続く側面とを含み、
 前記電極は、前記端面と前記側面とで実質的に等しい厚さを有する電子部品に関する。
(16) Still another aspect of the present invention provides:
An electronic component body;
An electrode covering an end of the electronic component body;
Have
The end includes an end surface and a side surface following the end surface;
The electrode relates to an electronic component having substantially the same thickness at the end face and the side face.
 (17)本発明のさらに他の態様(16)では、
 前記端部は、前記端面と前記側面とが交わる角部を含み、
 前記角部を覆う前記電極の厚さは、前記端面を覆う前記電極の厚さ以上である電子部品。
(17) In still another aspect (16) of the present invention,
The end portion includes a corner portion where the end surface and the side surface intersect,
The thickness of the said electrode which covers the said corner | angular part is an electronic component which is more than the thickness of the said electrode which covers the said end surface.
 (18)本発明のさらに他の態様(16)または(17)では、前記電極の表面の凹凸の最大深さは20μm以下とすることができる。 (18) In still another aspect (16) or (17) of the present invention, the maximum depth of the irregularities on the surface of the electrode may be 20 μm or less.
本発明に係る製造方法に用いられる電子部品本体と導電性ペースト層のディップ層とを概略的に示す図である。It is a figure which shows roughly the electronic component main body used for the manufacturing method which concerns on this invention, and the dip layer of an electrically conductive paste layer. 図2(A)(B)は本発明の第1実施形態に係る製造方法の第1工程を示す図である。FIGS. 2A and 2B are views showing a first step of the manufacturing method according to the first embodiment of the present invention. 図3(A)(B)は本発明の第1実施形態に係る製造方法の第3工程を示す図である。3A and 3B are views showing a third step of the manufacturing method according to the first embodiment of the present invention. 図4(A)(B)は複数の電子部品本体に対して第3工程を同時に実施することを示す図である。FIGS. 4A and 4B are views showing that the third step is simultaneously performed on a plurality of electronic component bodies. 図4(A)に示す工程の側面図である。It is a side view of the process shown to FIG. 4 (A). 図6(A)(B)は本発明の第2実施形態に係る製造方法の第3工程を示す図である。6A and 6B are views showing a third step of the manufacturing method according to the second embodiment of the present invention. 音波の周波数により調整される波長と、電子部品本体間のピッチとの相関を示す図である。It is a figure which shows the correlation with the wavelength adjusted with the frequency of a sound wave, and the pitch between electronic component main bodies. 図8(A)~図8(D)は本発明の第3実施形態に係る製造方法の第2工程及び第3工程を示す図である。FIGS. 8A to 8D are views showing the second and third steps of the manufacturing method according to the third embodiment of the present invention. 図9(A)~図9(D)は本発明の第4実施形態に係る製造方法の第1~第3工程を示す図である。9A to 9D are views showing first to third steps of the manufacturing method according to the fourth embodiment of the present invention. 本発明の第1及び第2実施形態に係る製造方法が実施される製造装置を示す図である。It is a figure which shows the manufacturing apparatus with which the manufacturing method which concerns on 1st and 2nd embodiment of this invention is enforced. 図11(A)(B)は、挿入ガイドとキャリアプレートとを示す図である。11A and 11B are views showing the insertion guide and the carrier plate. 図12(A)(B)は治具搬入工程及び電子部品の端面高さ調整工程を示す図である。12A and 12B are views showing a jig carrying-in step and an electronic component end face height adjusting step. 図13(A)~図13(C)は、導電性ペーストのディップ塗布工程(第1工程)を示す図である。FIGS. 13A to 13C are diagrams showing a dip coating process (first process) of conductive paste. 図14(A)~図14(C)は、本発明の第1、第2実施形態に用いられる従来のブロット工程(第2工程)の概要を示す図である。FIGS. 14A to 14C are diagrams showing an outline of a conventional blotting process (second process) used in the first and second embodiments of the present invention. 図15(A)~図15(C)は、本発明の第1、第2実施形態に用いられる改良されたブロット工程(ウェット方式の第2工程)を示す図である。FIGS. 15A to 15C are diagrams showing an improved blotting process (wet method second process) used in the first and second embodiments of the present invention. 本発明の第3及び第4実施形態に係る製造方法が実施される製造装置を示す図である。It is a figure which shows the manufacturing apparatus with which the manufacturing method which concerns on 3rd and 4th embodiment of this invention is enforced. 型盤の凹部と電子部品本体の端面との相似形状を説明する図である。It is a figure explaining the similar shape of the recessed part of a pattern board, and the end surface of an electronic component main body. 凹部と電子部品本体の端部との隙間寸法を説明する図である。It is a figure explaining the clearance gap dimension of a recessed part and the edge part of an electronic component main body. 本発明の実施形態である電子部品の概略斜視図である。It is a schematic perspective view of the electronic component which is embodiment of this invention. 電子部品本体の端部に形成される電極の断面を示す図である。It is a figure which shows the cross section of the electrode formed in the edge part of an electronic component main body. 図21(A)(B)は、本発明の実施形態に係る電子部品の端面に形成された外部電極の正面図及び側面図である。21A and 21B are a front view and a side view of the external electrode formed on the end face of the electronic component according to the embodiment of the present invention. 図22(A)(B)は、比較例である電子部品の端面に形成された外部電極の正面図及び側面図である。22A and 22B are a front view and a side view of an external electrode formed on an end surface of an electronic component as a comparative example. 図23(A)(B)は電子部品本体の芯出し治具及び芯出し工程を示す図である。23A and 23B are views showing a centering jig and a centering process of the electronic component main body.
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Note that this embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in this embodiment are indispensable as means for solving the present invention. Not necessarily.
 1.電子部品の製造方法
 図1に、端部2を有する電子部品本体1と、例えば定盤(図示せず)上に均一厚に形成された導電性ペーストのディップ層3と、を示す。端部2は、端面2Aとそれに続く側面2Bとを含む。電子部品本体1の端部2に電極を形成して電子部品を製造する本実施形態に係る製造方法は、電子部品本体1の端部2に導電性ペースト層を形成する第1工程と、導電性ペースト層が硬化する前に、電子部品本体1の端面2Aに形成された導電性ペースト層の膜厚を調整する第2工程と、導電性ペースト層が硬化する前に、電子部品本体1の側面2Bに形成された導電性ペースト層の膜厚を調整する第3工程と、を含む。
1. FIG. 1 shows an electronic component main body 1 having an end 2 and a dip layer 3 of a conductive paste formed on a surface plate (not shown), for example, with a uniform thickness. The end portion 2 includes an end surface 2A and a side surface 2B following the end surface 2A. The manufacturing method according to the present embodiment for manufacturing an electronic component by forming electrodes on the end 2 of the electronic component body 1 includes a first step of forming a conductive paste layer on the end 2 of the electronic component main body 1, The second step of adjusting the film thickness of the conductive paste layer formed on the end surface 2A of the electronic component main body 1 before the conductive paste layer is cured, and the electronic component main body 1 before the conductive paste layer is cured. And a third step of adjusting the film thickness of the conductive paste layer formed on the side surface 2B.
 1.1.第1実施形態
 図2(A)(B)及び図3(A)(B)に、第1実施形態に係る第1工程及び第3工程を示す。なお、説明を分かり易くするために、図面中の一部の部材は寸法が誇張して描かれており、例えばディップ層3や導電性ペースト層4の寸法や形状は、他の部材の寸法や形状と比べて拡大されている。
1.1. First Embodiment FIGS. 2A and 2B and FIGS. 3A and 3B show a first process and a third process according to the first embodiment. For ease of explanation, some members in the drawings are drawn with exaggerated dimensions. For example, the dimensions and shapes of the dip layer 3 and the conductive paste layer 4 are the same as those of other members. It is enlarged compared to the shape.
 第1工程を実施するために、図2(A)に示すように、電子部品本体1とディップ層3とを相対的に移動(上下動)させて、電子部品本体1の端部2をディップ層3に浸漬させる。その後、図2(B)に示すように、電子部品本体1とディップ層3とを相対的に移動(上下動)させて、電子部品本体1の端部2をディップ層3から引き離す。それにより、電子部品本体1の端部2に導電性ペースト層4が塗布されて形成される。 To perform the first step, as shown in FIG. 2A, the electronic component body 1 and the dip layer 3 are relatively moved (moved up and down) to dip the end 2 of the electronic component body 1. Immerse in layer 3. Thereafter, as shown in FIG. 2B, the electronic component body 1 and the dip layer 3 are relatively moved (moved up and down), and the end 2 of the electronic component body 1 is separated from the dip layer 3. Thereby, the conductive paste layer 4 is applied and formed on the end 2 of the electronic component body 1.
 図3(A)(B)は、第3工程を示す。この第3工程の前または後に、例えば特許文献2に記載された公知のブロット工程が第2工程として実施されるが、第2工程については後に説明する。第3工程を実施するために、第3図(A)に示すように、例えば膜厚調整部材(第2膜厚調整部材)5Aが用いられる。膜厚調整部材5Aは、端部2の全側面(矩形断面である本実施形態では4側面)の少なくとも一つの側面2Bに形成された導電性ペースト層4と接触するものであればよい。膜厚調整部材5Aの形状は問わず、側面2Bと線接触または面接触するものであればよい。ただし、導電性ペースト層4とは非接触な膜厚調整部材としても良く、例えば膜厚調整部材である噴出ノズルから圧縮空気を噴出させて、側面2B上の導電性ペースト層4の膜厚を調整しても良い。 3A and 3B show the third step. Before or after the third step, for example, a well-known blotting process described in Patent Document 2 is performed as the second step. The second step will be described later. In order to carry out the third step, as shown in FIG. 3A, for example, a film thickness adjusting member (second film thickness adjusting member) 5A is used. The film thickness adjusting member 5 </ b> A only needs to be in contact with the conductive paste layer 4 formed on at least one side surface 2 </ b> B of all side surfaces of the end portion 2 (four side surfaces in the present embodiment having a rectangular cross section). The shape of the film thickness adjusting member 5A is not particularly limited as long as it is in line contact or surface contact with the side surface 2B. However, a film thickness adjusting member that is not in contact with the conductive paste layer 4 may be used. For example, compressed air is ejected from an ejection nozzle that is a film thickness adjusting member, so that the film thickness of the conductive paste layer 4 on the side surface 2B is increased. You may adjust it.
 膜厚調整部材として、好ましくは環状部材例えば図3(A)のような環状線材5Aを用いると、端部2の全側面2Bに形成された導電性ペースト層4の膜厚を同時に調整できる。第3工程では、図3(A)に示すように、電子部品本体1と環状線材5Aとが相対的に移動(上下動)されて、電子部品本体1の端部2が環状線材5Aの中に配置される。それにより、側面2Bに形成された導電性ペースト層4を環状部材5Aと接触させることで、側面2Bに形成された未調整であった導電性ペースト層4の膜厚の厚い部分は、環状部材5Aにより削られ、あるいは薄い部分に移行される。その後、図3(B)に示すように、電子部品本体1と環状線材5Aとが相対的に移動(上下動)されて、側面2B上の膜厚調整された導電性ペースト層(電極とも言う)4Aを有する端部2が環状線材5Aから離脱される。このように、第1工程にて形成された端部2の導電性ペースト層4は、それが硬化する前に第2及び第3工程が実施されることで、端面2A及び側面2Bの膜厚が調整された導電性ペースト層4Aに加工することができる。 As the film thickness adjusting member, preferably an annular member, for example, an annular wire 5A as shown in FIG. 3A, can be used to adjust the film thickness of the conductive paste layer 4 formed on the entire side surface 2B of the end portion 2 at the same time. In the third step, as shown in FIG. 3A, the electronic component body 1 and the annular wire 5A are relatively moved (moved up and down), and the end 2 of the electronic component body 1 is moved into the annular wire 5A. Placed in. Thereby, by bringing the conductive paste layer 4 formed on the side surface 2B into contact with the annular member 5A, the thick portion of the unadjusted conductive paste layer 4 formed on the side surface 2B becomes the annular member. It is shaved by 5A or transferred to a thin part. Thereafter, as shown in FIG. 3B, the electronic component main body 1 and the annular wire 5A are relatively moved (moved up and down) to adjust the film thickness of the conductive paste layer (also referred to as an electrode) on the side surface 2B. ) The end 2 having 4A is detached from the annular wire 5A. As described above, the conductive paste layer 4 of the end portion 2 formed in the first step is subjected to the second and third steps before it is cured, so that the film thickness of the end surface 2A and the side surface 2B. Can be processed into the conductive paste layer 4A having adjusted.
 図4(A)(B)は、一次元配列または二次元配列された複数の電子部品本体1について、第3工程を同時に実施する工程を示している。この場合、膜厚調整部材として複数の環状線材5Aが一次元又は二次元配列される網状部材5が用いられる。図5に示すように、行または列方向にて隣り合う2つの電子部品本体1,1の配列ピッチdに合わせて環状線材5Aが配列される、図5では、行または列方向にて隣り合う2つの環状線材5Aは線材が共用されることなく独立している。換言すれば、行または列方向にて隣り合う2つの電子部品本体1,1の間には2本の線材が配置される。これに代えて、行または列方向にて隣り合う2つの電子部品本体1,1の間に、両者に共用される1本の線材を配置しても良い(図7参照)。 4 (A) and 4 (B) show a step of simultaneously performing the third step for a plurality of electronic component bodies 1 arranged one-dimensionally or two-dimensionally. In this case, a mesh member 5 in which a plurality of annular wires 5A are arranged one-dimensionally or two-dimensionally is used as the film thickness adjusting member. As shown in FIG. 5, the annular wire 5A is arranged in accordance with the arrangement pitch d of two electronic component bodies 1 and 1 that are adjacent in the row or column direction. In FIG. 5, they are adjacent in the row or column direction. The two annular wires 5A are independent without sharing the wire. In other words, two wires are arranged between two electronic component bodies 1 and 1 that are adjacent in the row or column direction. Instead of this, a single wire shared by both may be disposed between two electronic component bodies 1 and 1 that are adjacent in the row or column direction (see FIG. 7).
 1.2.第2実施形態
 図6(A)(B)は、音波が伝搬される膜厚調整部材を用いて第3工程を実施する、本発明の第2実施形態を示している。図6(A)(B)では、膜厚調整部材例えば網状部材5の端部は超音波振動子6(広義にて音波発生源)に接続される。特に、網状部材5は、線材同士が交点で接触することが好ましい。また、網状部材5は、音波や超音波を伝搬し易い線材例えばピアノ線を用いることが好ましい。音波は等方的に伝搬するので、網状部材5の行方向及び列方向に延び、かつ、交点で接触する全ての線材に音波を伝搬させることができる。図6(A)に示すように、網状部材5に形成された複数の環状線材5Aの中に端部2を配置すると、環状線材5Aには超音波の周波数及び振幅により定義される振動エネルギーが付与されるので、より効率的に膜厚調整が可能となる。加えて、網状部材5に付着される余分な導電性ペーストは音波による振動によって落下され、網状部材5の汚染を防止できる。その後、図6(B)に示すように、電子部品本体1と網状部材5とが相対的に移動(上下動)されて、側面2B上の膜厚調整された導電性ペースト層4Aを有する端部2が環状線材5Aから離脱される。
1.2. Second Embodiment FIGS. 6A and 6B show a second embodiment of the present invention in which the third step is performed using a film thickness adjusting member through which sound waves are propagated. 6A and 6B, the end of the film thickness adjusting member, for example, the mesh member 5, is connected to the ultrasonic transducer 6 (sound wave generation source in a broad sense). In particular, it is preferable that the wire members 5 are in contact with each other at the intersections. Moreover, it is preferable that the mesh member 5 uses a wire material that easily propagates sound waves and ultrasonic waves, such as a piano wire. Since the acoustic wave propagates isotropically, the acoustic wave can be propagated to all the wires extending in the row direction and the column direction of the mesh member 5 and contacting at the intersection. As shown in FIG. 6A, when the end portion 2 is arranged in a plurality of annular wires 5A formed on the mesh member 5, the annular wire 5A has vibration energy defined by the frequency and amplitude of the ultrasonic waves. Therefore, the film thickness can be adjusted more efficiently. In addition, excess conductive paste attached to the mesh member 5 is dropped by vibration caused by sound waves, and contamination of the mesh member 5 can be prevented. Thereafter, as shown in FIG. 6B, the electronic component body 1 and the net member 5 are relatively moved (moved up and down), and the end having the conductive paste layer 4A whose thickness is adjusted on the side surface 2B. The part 2 is detached from the annular wire 5A.
 膜厚調整部材例えば網状部材5を伝搬する音波は、周波数を調整することができる。図7は、音波の周波数により調整される波長と、隣り合う電子部品本体1,1間のピッチdとの相関を示す。例えばピッチd=5.29mmとし、網状部材5の音波伝搬速度を5290m/sとして、周波数を調整してみた。この場合、周波数が250kHzでの一波長≒4×d、500kHzでの一波長≒2d、1MHzでの一波長≒dとなる。音波の一波長がdまたは2dとほぼ等しくなる周波数を選択すると、各々の環状線材5dに付与される振動エネルギーがほぼ等しくなり、複数の電子部品本体1の各端部2の側面2Bにて均一な膜厚調整が期待される。 Thickness adjusting member For example, the frequency of the sound wave propagating through the mesh member 5 can be adjusted. FIG. 7 shows the correlation between the wavelength adjusted by the frequency of the sound wave and the pitch d between the adjacent electronic component bodies 1 and 1. For example, the frequency was adjusted by setting the pitch d = 5.29 mm and the sound wave propagation speed of the mesh member 5 to 5290 m / s. In this case, one wavelength at 250 kHz≈4 × d, one wavelength at 500 kHz≈2d, and one wavelength at 1 MHz≈d. When a frequency at which one wavelength of the sound wave is approximately equal to d or 2d is selected, the vibration energy applied to each annular wire 5d is approximately equal, and is uniform on the side surface 2B of each end 2 of the plurality of electronic component bodies 1. Thickness adjustment is expected.
 図7では、網状部材5の輪郭の一部(例えば略矩形の一辺)に超音波振動子6を配置し、網状部材5の輪郭の他の一部(例えば略矩形の一辺と対向する他の一辺)に反射部材7を配置している。こうすると、反射波のエネルギーも膜厚調整に利用することができる。なお、音波は超音波とすると、超音波の高周波数を利用して、周波数に依存するエネルギーを高めて膜厚調整することができる。電子部品本体1と膜厚調整部材5とを相対的に移動させることで、膜厚調整範囲をカバーすることができる。 In FIG. 7, the ultrasonic transducer 6 is arranged on a part of the outline of the mesh member 5 (for example, one side of a substantially rectangular shape), and another part of the outline of the mesh member 5 (for example, another side facing the substantially rectangular side) The reflection member 7 is arranged on one side. In this way, the energy of the reflected wave can also be used for film thickness adjustment. If the sound wave is an ultrasonic wave, the high frequency of the ultrasonic wave can be used to increase the energy depending on the frequency to adjust the film thickness. The film thickness adjustment range can be covered by relatively moving the electronic component main body 1 and the film thickness adjusting member 5.
 なお、周波数を調整するために、例えば反射部材7に波形モニターを接続し、波形を見ながら一波長の長さや位相を確認して、超音波振動子6に接続される駆動部をチューニングして周波数を調整しても良い。また、図7に示す網状部材5の縦横の線材(例えばピアノ線)にテンションを付与して網形状を維持させる図示しない枠体を設けても良い。また、超音波振動子6は、図7に示すように網状部材5の一辺に沿って配置されて、図7の横方向に延びる全ての線材に超音波を供給するものに限らず、少なくとも一本の線材に超音波を供給しても良い。超音波は等方的に伝搬されて、縦横の全ての線材に伝搬されるからである。 In order to adjust the frequency, for example, a waveform monitor is connected to the reflecting member 7, the length and phase of one wavelength are confirmed while viewing the waveform, and the drive unit connected to the ultrasonic transducer 6 is tuned. The frequency may be adjusted. Moreover, you may provide the frame which is not shown in figure which maintains tension | tensile_strength by providing tension | tensile_strength (for example, piano wire) of the mesh member 5 shown in FIG. Further, the ultrasonic transducer 6 is not limited to the one that is disposed along one side of the mesh member 5 as shown in FIG. 7 and supplies ultrasonic waves to all the wires extending in the lateral direction in FIG. You may supply an ultrasonic wave to a book wire. This is because the ultrasonic wave is propagated isotropically and propagates to all the vertical and horizontal wires.
 1.3.第3実施形態
 本発明の第3実施形態は、例えば図2(A)(B)に示す第1工程の後に、第2工程及び第3工程を同時に実施するものである。この第3実施形態では、図8(A)に示すように、少なくとも一つ例えば複数の凹部12が表面に形成された定盤(型盤とも言う)10が用意される。凹部12の底壁、側壁が第1,第2膜厚調整部材として機能する。なお、電子部品本体1は、端部2を露出させて、キャリアプレート(治具)20に保持される。キャリアプレート20は第1,第2実施形態でも用いることができる。キャリアプレート20は例えば弾性体で形成される。電子部品本体1は、一端部を残して孔22に嵌合されてキャリアプレート20に保持される。
1.3. Third Embodiment In the third embodiment of the present invention, for example, the second step and the third step are performed simultaneously after the first step shown in FIGS. In the third embodiment, as shown in FIG. 8A, a surface plate (also referred to as a platen) 10 having at least one, for example, a plurality of recesses 12 formed on the surface is prepared. The bottom wall and side wall of the recess 12 function as first and second film thickness adjusting members. The electronic component body 1 is held by a carrier plate (jig) 20 with the end 2 exposed. The carrier plate 20 can also be used in the first and second embodiments. The carrier plate 20 is formed of an elastic body, for example. The electronic component body 1 is held in the carrier plate 20 by being fitted into the hole 22 except for one end.
 図8(B)から図8(C)に移行するように、定盤10とキャリアプレート20とを相対的に移動(上下動)させて、定盤10の凹部12内に、導電性ペースト層4が形成された端部2を挿入する。それにより、端面2Aと側面2Bに形成された導電性ペースト層4は、凹部12を区画する底壁(第1膜厚調整部材)と側壁(第2膜厚調整部材)とにより膜厚調整される。凹部12内で、膜厚調整された導電性ペースト層4は硬化される。その後、図8(D)に示すように、キャリアプレート20を定盤10に対して相対移動させて、電子部品本体1の端部2に形成された導電性ペースト層4Aを、定盤10の凹部12から離脱させる。 The platen 10 and the carrier plate 20 are relatively moved (moved up and down) so as to shift from FIG. 8B to FIG. 8C, and the conductive paste layer is formed in the recess 12 of the platen 10. Insert the end 2 on which 4 is formed. Thereby, the film thickness of the conductive paste layer 4 formed on the end surface 2A and the side surface 2B is adjusted by the bottom wall (first film thickness adjusting member) and the side wall (second film thickness adjusting member) that define the recess 12. The Within the recess 12, the conductive paste layer 4 whose film thickness has been adjusted is cured. Thereafter, as shown in FIG. 8D, the carrier plate 20 is moved relative to the surface plate 10, and the conductive paste layer 4 </ b> A formed on the end portion 2 of the electronic component body 1 is moved to the surface plate 10. Separate from the recess 12.
 ここで、導電性ペーストとは、流動性と高い粘性のある導電性物質であり、懸濁した分散系である。導電性ペースト層4,4Aを流動性があるうちに凹部12に入れて膜厚調整し、定盤10の加熱や乾燥等により凹部12内で速やかに硬化させることができる。なお、導電性ペースト層4の量は、定盤10の凹部12から溢れない量に調整されることが好ましい。 Here, the conductive paste is an electroconductive substance having fluidity and high viscosity, and is a suspended dispersion system. The conductive paste layers 4, 4 </ b> A can be placed in the recess 12 while the fluidity is flowing, and the film thickness can be adjusted, and can be quickly cured in the recess 12 by heating or drying the surface plate 10. The amount of the conductive paste layer 4 is preferably adjusted so as not to overflow from the recess 12 of the surface plate 10.
 1.4.第4実施形態
 本発明の第3実施形態は、第1工程、第2工程及び第3工程を同時に実施するものである。この第4実施形態では、図9(A)に示すように、型盤10の凹部12内に、図1に示す導電性ペーストのディップ層3が形成される。つまり、本実施形態では、凹部12は第1,第2膜厚調整部材の他に塗布部としても機能する。
1.4. 4th Embodiment 3rd Embodiment of this invention implements 1st process, 2nd process, and 3rd process simultaneously. In the fourth embodiment, as shown in FIG. 9A, the dip layer 3 of the conductive paste shown in FIG. That is, in this embodiment, the recessed part 12 functions also as an application part in addition to the first and second film thickness adjusting members.
 図9(B)から図9(C)に移行するように、型盤10とキャリアプレート20とを相対的に移動させて、型盤10の凹部12内に形成されたディップ層3に、電子部品本体1の端部2を浸漬する。それにより、端部2である端面2Aと側面2Bは、導電性ペースト層4Aが形成されると同時に、凹部12を区画する底壁(第1膜厚調整部材)と側壁(第2膜厚調整部材)とにより膜厚調整される。凹部12内で、導電性ペースト層4Aが硬化された後、図9(D)に示すように、キャリアプレート20を型盤10に対して相対移動させて、電子部品本体1の端部2に形成された導電性ペースト層4Aを、型盤10の凹部12から離脱させる。 As shown in FIG. 9B to FIG. 9C, the mold 10 and the carrier plate 20 are relatively moved so that the dip layer 3 formed in the recess 12 of the mold 10 has an electron. The end 2 of the component body 1 is immersed. As a result, the end surface 2A and the side surface 2B, which are the end portions 2, are formed with the conductive paste layer 4A, and at the same time, the bottom wall (first film thickness adjusting member) and the side wall (second film thickness adjusting member) that define the recess 12. Member) and the film thickness is adjusted. After the conductive paste layer 4A is cured in the recess 12, the carrier plate 20 is moved relative to the pattern plate 10 as shown in FIG. The formed conductive paste layer 4 </ b> A is released from the recess 12 of the mold platen 10.
 2.第1,第2実施形態の実施に用いられる製造装置
 2.1.電子部品の製造装置
 図10は、第1または第2実施形態の実施に用いられる製造装置を示している。この製造装置は、キャリアプレート(治具)20と、膜厚調整部材例えば図4(A)B)、図6(A)(B)または図7等に示す網状部材5(超音波振動子6または反射体7を備えても備えなくても良い)と、定盤100とを有する。
2. Manufacturing apparatus used to implement the first and second embodiments 2.1. Electronic Device Manufacturing Apparatus FIG. 10 shows a manufacturing apparatus used for implementing the first or second embodiment. This manufacturing apparatus includes a carrier plate (jig) 20 and a film thickness adjusting member such as FIG. 4 (A) B), FIG. 6 (A) (B), FIG. Or the reflector 7 may or may not be provided) and the surface plate 100.
 キャリアプレート(治具)20は、電子部品本体1の端部2の輪郭に合わせて、例えば図11(A)(B)に示すように平面視で矩形孔22を有することができる。矩形孔22を用いると、バッチ処理される複数の電子部品本体1の寸法L11の長辺と寸法L21の短辺の方向が揃えられる。よって、治具20に保持される電子部品本体1の短辺を例えばX方向に一致させ、長辺を例えばY方向に一致させることができる。ただし、孔22は電子部品本体1の端部2の輪郭に合わせて形成され、必ずしも矩形に限らない。 The carrier plate (jig) 20 can have a rectangular hole 22 in plan view as shown in FIGS. 11A and 11B, for example, in accordance with the contour of the end 2 of the electronic component body 1. When the rectangular hole 22 is used, the direction of the long side of the dimension L11 and the short side of the dimension L21 of the plurality of electronic component bodies 1 to be batch-processed are aligned. Therefore, the short side of the electronic component main body 1 held by the jig 20 can be matched with, for example, the X direction, and the long side can be matched with, for example, the Y direction. However, the hole 22 is formed in conformity with the contour of the end 2 of the electronic component body 1 and is not necessarily rectangular.
 図11(A)に示す治具20の矩形孔22に電子部品本体1の挿入する時に、治具20と重ねて配置される挿入ガイド150を用いることができる。挿入ガイド150は、円形テーパー孔152と、それに連通する矩形孔154とを有する。円形テーパー孔152に入った電子部品本体1は、例えば挿入ガイド150への振動付与等により矩形孔154に導かれて方向が揃えられる。その後、押圧部160により電子部品本体1は例えばゴム製治具20の矩形孔22に弾性的に嵌合される。 When the electronic component main body 1 is inserted into the rectangular hole 22 of the jig 20 shown in FIG. 11A, an insertion guide 150 arranged so as to overlap the jig 20 can be used. The insertion guide 150 has a circular tapered hole 152 and a rectangular hole 154 communicating with the circular tapered hole 152. The electronic component main body 1 that has entered the circular tapered hole 152 is guided to the rectangular hole 154 by, for example, applying vibration to the insertion guide 150, and the direction thereof is aligned. Thereafter, the electronic component main body 1 is elastically fitted into the rectangular hole 22 of the rubber jig 20 by the pressing portion 160, for example.
 図10において、電子部品本体1が垂下して保持されるキャリアプレート(治具)20は、治具固定盤30に着脱自在に支持される。治具固定盤30の上方には基盤40が固定され、下方には定盤100が配置され、例えば側方には膜厚調整部材例えば網状部材5が配置される。基盤40には、治具固定盤30を移動させる移動機構50が設けられる。ここで、図10では直交三軸方向をX,Y,Zとする。移動機構50は、X軸駆動部60、Y軸駆動部70及びZ軸駆動部80を含むことができる。Z軸駆動部80は必須であるが、X軸駆動部60及びY軸駆動部70は任意である。なお、移動機構50は、治具固定盤30及び定盤100の少なくとも一方を、少なくともZ軸方向に移動させるものであればよい。 10, a carrier plate (jig) 20 on which the electronic component body 1 is suspended and supported is detachably supported by a jig fixing plate 30. The base plate 40 is fixed above the jig fixing platen 30, and the surface plate 100 is arranged below, for example, a film thickness adjusting member such as the net member 5 is arranged on the side. The base 40 is provided with a moving mechanism 50 that moves the jig fixing plate 30. Here, in FIG. 10, the orthogonal three-axis directions are X, Y, and Z. The moving mechanism 50 can include an X-axis drive unit 60, a Y-axis drive unit 70, and a Z-axis drive unit 80. The Z-axis drive unit 80 is essential, but the X-axis drive unit 60 and the Y-axis drive unit 70 are optional. The moving mechanism 50 only needs to move at least one of the jig fixing plate 30 and the surface plate 100 at least in the Z-axis direction.
 X軸駆動部60は、X軸ガイド62に沿って基盤40に対してX軸方向に移動可能なXテーブルで構成することができる。Y軸駆動部70は、Y軸ガイド72に沿ってX軸駆動部60に対してY軸方向に移動可能なYテーブルで構成することができる。Z軸駆動部80は、例えばY軸駆動部70に固定され、Z軸82をZ軸方向に移動可能である。 The X-axis drive unit 60 can be configured by an X table that can move in the X-axis direction with respect to the base 40 along the X-axis guide 62. The Y-axis drive unit 70 can be configured by a Y table that can move in the Y-axis direction with respect to the X-axis drive unit 60 along the Y-axis guide 72. The Z-axis drive unit 80 is fixed to the Y-axis drive unit 70, for example, and can move the Z-axis 82 in the Z-axis direction.
 治具固定盤30は、Z軸82に固定される。よって、治具固定盤30、治具20及び電子部品本体1は、移動機構50により、定盤100に対して、Z軸方向に移動されると共に、定盤100の表面に平行なX-Y平面に沿って移動可能である。また、網状部材5は図示しない移動機構によりX方向に進退移動される。網状部材5は、第3工程が実施される際に、治具20の下方に配置され、それ以外の時は図10の位置に退避する。 The jig fixing plate 30 is fixed to the Z axis 82. Therefore, the jig fixing plate 30, the jig 20 and the electronic component main body 1 are moved in the Z-axis direction with respect to the surface plate 100 by the moving mechanism 50 and are parallel to the surface of the surface plate 100. It can move along a plane. The mesh member 5 is moved back and forth in the X direction by a moving mechanism (not shown). The net member 5 is disposed below the jig 20 when the third step is performed, and is retracted to the position shown in FIG. 10 at other times.
 2.2.第1工程及び第2工程
 以下にて、本願出願人による台湾特許出願第105133284号に記載された第1工程、第2工程及び改良された第2工程を説明する。
2.2. 1st process and 2nd process Below, the 1st process described in the Taiwan patent application 10533284 by the present applicant, the 2nd process, and the improved 2nd process are demonstrated.
 2.2.1.第1工程前の端面調整工程
 図12(A)に示すように、電子部品本体1が保持された治具20が治具固定盤30に固定される。図12(B)は、電子部品本体1の端面高さの調整工程を示す。図12(B)では、導電性ペーストが敷き詰められていない定盤100に対して、Z軸駆動部80により治具20に保持された電子部品本体1を下降させ、電子部品本体1の端面2Aを定盤100に接触させる。それにより、治具20に保持されている電子部品本体1の端面2Aの高さが均一になる。
2.2.1. End surface adjustment step before the first step As shown in FIG. 12A, the jig 20 holding the electronic component main body 1 is fixed to the jig fixing plate 30. FIG. 12B shows an adjustment process of the end face height of the electronic component main body 1. In FIG. 12B, the electronic component main body 1 held by the jig 20 is lowered by the Z-axis drive unit 80 with respect to the surface plate 100 on which the conductive paste is not spread, and the end surface 2A of the electronic component main body 1 is lowered. Is brought into contact with the surface plate 100. Thereby, the height of the end surface 2A of the electronic component main body 1 held by the jig 20 becomes uniform.
 2.2.2.第1工程
 図13A)~図13(C)は、導電性ペーストの浸漬塗布工程(第1工程)を示す。図13(A)では、ブレード112をスキージユニット110により水平移動させて、定盤100上に導電性ペースト130による高さh1のディップ層130を形成する。図13(B)では、図1のZ軸駆動部80により電子部品本体1を下降させ、電子部品本体1の端面2Aを定盤100上のディップ層130に接触させる。その後、図13(C)に示すように、電子部品本体1は上昇される。それにより、電子部品本体1の端部2に導電性ペースト層4が形成される。
2.2.2. First Step FIGS. 13A) to 13C show a dip coating step (first step) of the conductive paste. In FIG. 13A, the blade 112 is moved horizontally by the squeegee unit 110 to form a dip layer 130 having a height h1 of the conductive paste 130 on the surface plate 100. In FIG. 13B, the electronic component main body 1 is lowered by the Z-axis drive unit 80 of FIG. 1, and the end surface 2 </ b> A of the electronic component main body 1 is brought into contact with the dip layer 130 on the surface plate 100. Thereafter, as shown in FIG. 13C, the electronic component main body 1 is raised. Thereby, the conductive paste layer 4 is formed on the end 2 of the electronic component body 1.
 2.2.3.第2工程
 図14(A)~図14(C)は、従来のブロット工程(第2工程)を示している。図14(A)では、定盤100の表面101と接触するブレード114をスキージユニット110により水平移動させて、定盤100上の導電性ペーストが掻き取られる。図15(B)では、電子部品本体1を下降させ、電子部品本体1の端部2に形成された導電性ペースト層4を定盤100に接触させる。その後、図14(C)に示すように電子部品本体1は上昇される。
2.2.3. Second Step FIGS. 14A to 14C show a conventional blotting step (second step). In FIG. 14A, the blade 114 in contact with the surface 101 of the surface plate 100 is moved horizontally by the squeegee unit 110, and the conductive paste on the surface plate 100 is scraped off. In FIG. 15B, the electronic component body 1 is lowered and the conductive paste layer 4 formed on the end 2 of the electronic component body 1 is brought into contact with the surface plate 100. Thereafter, the electronic component main body 1 is raised as shown in FIG.
 2.2.4.改良された第2工程
 2.2.4.1.ウェット方式
 図15(A)~図15(C)は、図14(A)に続いて実施されるブロット工程を示している。定盤100上から導電性ペーストを掻き取った後に、図15(A)にてブレード114によって設定された高さh2のペースト膜層(ウェット層)140を形成する。つまり、従来のブロット工程ではペースト膜層のないドライ状態の定盤100を用いてブロット工程を実施したが、本実施形態ではペースト膜層(ウェット層)140が形成されたウェット状態の定盤100を用いてブロット工程を実施する。
2.2.4. Improved second step 2.2.4.1. Wet Method FIGS. 15 (A) to 15 (C) show a blotting process performed subsequent to FIG. 14 (A). After scraping off the conductive paste from the surface plate 100, a paste film layer (wet layer) 140 having a height h2 set by the blade 114 in FIG. 15A is formed. That is, in the conventional blotting process, the blotting process is performed using the dry surface plate 100 without the paste film layer, but in this embodiment, the wet surface plate 100 in which the paste film layer (wet layer) 140 is formed. Perform the blotting process using.
 次に、図15(B)に示すように電子部品本体1を下降させ、電子部品本体1の端部2に形成された導電性ペースト層4をペースト膜層(ウェット層)140に接触させる。さらに、図10に示す移動機構50のX軸駆動部60及び/又はY軸駆動部70により、導電性ペースト層14をペースト膜層(ウェット層)140に接触させたまま、電子部品本体1を定盤100の表面101と平行な少なくとも一方向(例えばX軸方向及びY軸方向の少なくとも一方)に相対的に移動させる。その後、図15(C)に示すように電子部品本体1は上昇される。それにより導電性ペースト層14は定盤100上のペースト膜層(ウェット層)140と接触しながら移動することで平坦化されると共に、糸引きの原因となる余分な導電性ペーストを定盤面101側に転写させて擦り取ることができる。この余分な導電性ペーストを定盤面に転写させる効果は、特許文献2のように電子部品を静止状態とするよりも、本発明の実施形態のように定盤100と平行に電子部品本体1を移動させる方がはるかに高い。 Next, as shown in FIG. 15B, the electronic component body 1 is lowered, and the conductive paste layer 4 formed on the end 2 of the electronic component body 1 is brought into contact with the paste film layer (wet layer) 140. Further, the electronic component main body 1 is moved while the conductive paste layer 14 is in contact with the paste film layer (wet layer) 140 by the X-axis drive unit 60 and / or the Y-axis drive unit 70 of the moving mechanism 50 shown in FIG. The surface plate 100 is moved relatively in at least one direction parallel to the surface 101 of the surface plate 100 (for example, at least one of the X-axis direction and the Y-axis direction). Thereafter, the electronic component main body 1 is raised as shown in FIG. As a result, the conductive paste layer 14 is flattened by moving while in contact with the paste film layer (wet layer) 140 on the surface plate 100, and excess conductive paste that causes stringing is removed from the surface plate surface 101. Can be transferred to the side and scraped off. The effect of transferring the excess conductive paste onto the surface of the surface plate is that the electronic component main body 1 is placed in parallel with the surface plate 100 as in the embodiment of the present invention, rather than making the electronic component stationary as in Patent Document 2. It is much higher to move.
 2.2.4.2.ドライ方式
 図15(A)~図15(C)に示すウェット方式に代えて、ペースト膜層(ウェット層)140が形成されないドライ状態の定盤100の表面101に電子部品本体1の導電性ペースト層4を接触させ、かつ、電子部品本体1を定盤100の表面101と平行な少なくとも一方向、好ましくは異なる二方向以上に相対的に移動させても良い。特に異なる二方向以上に移動させると、従来のブロット工程では定盤100側に転写できなかった余分な導電性ペーストを、定盤100側に転写させる効果が高まる。
2.2.4.2. Dry Method Instead of the wet method shown in FIGS. 15A to 15C, the conductive paste of the electronic component main body 1 is formed on the surface 101 of the surface plate 100 in a dry state where the paste film layer (wet layer) 140 is not formed. The layer 4 may be brought into contact, and the electronic component body 1 may be relatively moved in at least one direction parallel to the surface 101 of the surface plate 100, preferably in two or more different directions. In particular, when moved in two or more different directions, the effect of transferring excess conductive paste, which could not be transferred to the surface plate 100 side in the conventional blotting process, to the surface plate 100 side is enhanced.
 3.第3,第4実施形態の実施に用いられる製造装置
 3.1.第4実施形態の実施に用いられる製造装置
 図16は、第4実施形態の実施に用いられる製造装置200を示す。図16に示すキャリアプレート20は、例えば金属製の基部20Aに形成された孔20Bに弾性体例えばゴム(例えばシリコンゴム)20Cが配置され、電子部品本体1が弾性的に保持される孔22が弾性体20Cに形成される。
3. Manufacturing apparatus used for implementation of third and fourth embodiments 3.1. Manufacturing apparatus used for implementation of 4th Embodiment FIG. 16: shows the manufacturing apparatus 200 used for implementation of 4th Embodiment. The carrier plate 20 shown in FIG. 16 has an elastic body such as rubber (for example, silicon rubber) 20C disposed in a hole 20B formed in a base 20A made of metal, for example, and has a hole 22 in which the electronic component main body 1 is elastically held. The elastic body 20C is formed.
 一方、図16に示す型盤10は、型部10Bに孔10B1が形成され、その孔10B1に凹部形成部材10B2が配置され、導電性ペースト3が充填される凹部12が凹部形成部材10B2に形成さる。凹部形成部材10B2は、好ましくは成形により精度高く凹部12を形成できる材料例えばシリコンゴムで形成される。凹部形成部材B2は例えば図16に示すように温調部10Cと接触させることができる。それにより、温調部10Cと凹部12内のディップ層(導電性ペースト)3との熱交換が凹部形成部材10B2を介して行われる。温調部10Cは、加熱部例えばヒーターとするか、加熱/冷却が切り替え可能な例えばベルチェ素子等を用いて構成できる。導電性ペーストを加熱することで硬化を早めることができる。型盤(定盤)10を冷却すると、型盤10が収縮する一方で相対的に凹部12を広げることができ、それにより導電性ペースト層4Aの離型性を高めることができる。 On the other hand, in the mold platen 10 shown in FIG. 16, a hole 10B1 is formed in the mold part 10B, a recess forming member 10B2 is arranged in the hole 10B1, and a recess 12 filled with the conductive paste 3 is formed in the recess forming member 10B2. Monkey. The recess forming member 10B2 is preferably formed of a material that can form the recess 12 with high accuracy by molding, such as silicon rubber. The recess forming member B2 can be brought into contact with the temperature adjusting unit 10C as shown in FIG. 16, for example. Thereby, heat exchange between the temperature control unit 10C and the dip layer (conductive paste) 3 in the recess 12 is performed via the recess forming member 10B2. The temperature control unit 10C can be configured as a heating unit such as a heater, or using a Beltier element or the like that can be switched between heating and cooling. Curing can be accelerated by heating the conductive paste. When the mold platen (stable plate) 10 is cooled, the mold platen 10 contracts, while the concave portion 12 can be relatively widened, thereby improving the releasability of the conductive paste layer 4A.
 図16に示すように、型盤10の基部10Aとキャリアプレート20の基台24とは、相対的に移動(上下動)させることができる。それにより、図9(B)~図9(D)の各工程を実施することができる。型盤10の基部10Aとキャリアプレート20の基台24とは、相対的な移動時に、芯出しガイド部材(案内部材)52によりガイドされることが好ましい。例えば基部10A側の雌部材52Aと、例えば基台24側の雄部材52Bとの例えばテーパー状の嵌合により、型盤10の凹部12に対して電子部品本体1が芯出しされる。 As shown in FIG. 16, the base 10 </ b> A of the template 10 and the base 24 of the carrier plate 20 can be relatively moved (moved up and down). Accordingly, each step of FIG. 9B to FIG. 9D can be performed. The base 10 </ b> A of the mold plate 10 and the base 24 of the carrier plate 20 are preferably guided by a centering guide member (guide member) 52 during relative movement. For example, the electronic component main body 1 is centered with respect to the concave portion 12 of the pattern board 10 by, for example, a tapered fitting between the female member 52A on the base 10A side and the male member 52B on the base 24 side, for example.
 キャリアプレート20及び型盤10が相対移動される方向から見た型盤10の平面図である図17において、型盤10の凹部12は、電子部品本体1の端部2の輪郭(鎖線)よりも大きい輪郭(実線)であって、かつ、電子部品本体1の端部2の輪郭(鎖線)と相似する輪郭(実線)を有する。図17では、案内部材52の作用により、電子部品本体1の端部2の輪郭(鎖線)の中心P1が凹部12の輪郭(実線)の中心P2に一致している。 In FIG. 17, which is a plan view of the pattern board 10 viewed from the direction in which the carrier plate 20 and the pattern board 10 are relatively moved, the recess 12 of the pattern board 10 is based on the outline (dashed line) of the end 2 of the electronic component body 1. And has a contour (solid line) similar to the contour (dashed line) of the end 2 of the electronic component main body 1. In FIG. 17, due to the action of the guide member 52, the center P <b> 1 of the contour (chain line) of the end 2 of the electronic component body 1 coincides with the center P <b> 2 of the contour (solid line) of the recess 12.
 図17に示す芯出し状態(P1=P2)が確保されると、電子部品本体1の端部2に、設計通りの形状と膜厚で導電性ペースト層(電)4Aが形成される。図18は、凹部12に配置された電子部品本体1を示す。電子部品本体1の端部2は、端面2Aと側面2Bとを含む。一方、型盤10の凹部12は、端面2Aに対向する底壁12Aと、側面2Bに対向する側壁12Bとを含む。電子部品本体1の左側面2Bから凹部12の側壁12Bまでの距離T11Lと、電子部品本体1の右側面2Bから凹部12の側壁12Bまでの距離T11Rとを、実質的に等しくすることができる。それにより、電子部品本体1の端部2の側面2Bに形成される導電層4の膜厚を実質的に均一にすることが可能となる。 When the centering state (P1 = P2) shown in FIG. 17 is secured, the conductive paste layer (electricity) 4A is formed at the end 2 of the electronic component body 1 with the shape and thickness as designed. FIG. 18 shows the electronic component main body 1 disposed in the recess 12. The end 2 of the electronic component body 1 includes an end surface 2A and a side surface 2B. On the other hand, the concave portion 12 of the template 10 includes a bottom wall 12A that faces the end surface 2A and a side wall 12B that faces the side surface 2B. The distance T11L from the left side surface 2B of the electronic component main body 1 to the side wall 12B of the concave portion 12 and the distance T11R from the right side surface 2B of the electronic component main body 1 to the side wall 12B of the concave portion 12 can be made substantially equal. Thereby, the film thickness of the conductive layer 4 formed on the side surface 2B of the end 2 of the electronic component body 1 can be made substantially uniform.
 型盤10の基部10Aとキャリアプレート20の基台24の相対的移動距離を管理することで、電子部品本体1の端面2Aから凹部12の底壁12Aまでの距離T21と、電子部品本体1の側面2Bから凹部12の側壁12Bまでの距離T11R,T11Lとを、実質的に等しくすることができる。 By managing the relative movement distance between the base 10A of the template 10 and the base 24 of the carrier plate 20, the distance T21 from the end surface 2A of the electronic component main body 1 to the bottom wall 12A of the recess 12 and the electronic component main body 1 The distances T11R and T11L from the side surface 2B to the side wall 12B of the recess 12 can be made substantially equal.
 こうして、電子部品本体1の端部2のうち、端面2A及び側面2Bに必要十分でかつ均一な厚さの導電層4Aを確保することができる。従来のディップ塗布法では、導電性ペースト層が降下するまでにその自重等によって、電子部品本体の端部のうち端面と側面とでは導電層の厚さが異なるので、本実施形態により初めて端面2A及び側面2Bで導電層の厚さを実質的に等しくすることができる。 Thus, a conductive layer 4A having a necessary and sufficient thickness and uniform thickness can be secured on the end surface 2A and the side surface 2B of the end portion 2 of the electronic component body 1. In the conventional dip coating method, the thickness of the conductive layer differs between the end surface and the side surface of the end portion of the electronic component main body due to its own weight or the like before the conductive paste layer descends. In addition, the thickness of the conductive layer can be made substantially equal at the side surface 2B.
 図18では、凹部12の底壁12Aと側壁12Bとが交わる第1角部12Cの輪郭は、電子部品本体1の端面2Aと側面2Bとが交わる第2角部2Cの輪郭よりも大きく、かつ、第2角部2Cの輪郭と相似形としている。こうすると、電子部品本体1の端面2Aと側面2Bとが交わる第1角部2Cを覆う導電層4の厚さT31を、他の厚さT11R,T11L及びT21以上にすることができる。 In FIG. 18, the contour of the first corner 12C where the bottom wall 12A and the side wall 12B of the recess 12 intersect is larger than the contour of the second corner 2C where the end surface 2A and the side surface 2B of the electronic component body 1 intersect, and The shape is similar to the outline of the second corner 2C. In this way, the thickness T31 of the conductive layer 4 covering the first corner 2C where the end surface 2A and the side surface 2B of the electronic component body 1 intersect can be set to other thicknesses T11R, T11L, and T21.
 3.2.第3実施形態の実施に用いられる製造装置
 第3実施形態の実施に用いられる製造装置は、図10に示す製造装置(ただし、網状部材5と、移動機構50中のX,Y駆動部60,70とは不要)と、図16に示す製造装置(ただし、凹部12内のディップ層3は不要)とで構成される。図10に示す製造装置により、図8(B)に示すように電子部品本体1の端部2に導電性ペースト層4を塗布する第1工程を実施することができる。図16に示す製造装置により、図8(C)(D)に示す第2,第3工程を実施することができる。
3.2. Manufacturing Apparatus Used for Implementation of Third Embodiment The manufacturing apparatus used for implementation of the third embodiment is the manufacturing apparatus shown in FIG. 10 (however, the mesh member 5 and the X and Y drive units 60 in the moving mechanism 50, 70) and the manufacturing apparatus shown in FIG. 16 (however, the dip layer 3 in the recess 12 is unnecessary). With the manufacturing apparatus shown in FIG. 10, the first step of applying the conductive paste layer 4 to the end 2 of the electronic component body 1 can be performed as shown in FIG. 8B. With the manufacturing apparatus shown in FIG. 16, the second and third steps shown in FIGS. 8C and 8D can be performed.
 4.電子部品
 図19は上述した製造方法により製造された電子部品1Aを示し、図20は電子部品本体1に形成された導電層4Aの断面を示している。ここで、本発明が適用される電子部品1Aの大きさに特に制約はないが、ダウンサイジングに従い超小型化された電子部品1Aに好適である。超小型の電子部品1Aとしては、図19に示す例えば矩形(正方形または長方形)断面の一辺の最大長さをL1とし、矩形断面と直交する方向の長さをL2としたとき、L1=500μm以下でかつL2=1000μm以下である。好ましくはL1=300μm以下でかつL2=600μm以下、さらに好ましくはL1=200μm以下でかつL2=400μm以下、さらに好ましくはL1=125μm以下でかつL2=250μm以下である。なお、ここでいう矩形とは、二辺が交わるコーナーが厳密に90°であるものの他、コーナーが湾曲又は面取りされた略矩形も含むものとする。なお、本発明は矩形断面以外の電子部品1Aにも適用できることは言うまでもない。
4). Electronic Component FIG. 19 shows an electronic component 1A manufactured by the above-described manufacturing method, and FIG. 20 shows a cross section of a conductive layer 4A formed on the electronic component main body 1. Here, although there is no restriction | limiting in particular in the magnitude | size of the electronic component 1A to which this invention is applied, It is suitable for the electronic component 1A miniaturized according to downsizing. As the ultra-small electronic component 1A, for example, when the maximum length of one side of a rectangular (square or rectangular) cross section shown in FIG. 19 is L1, and the length in a direction orthogonal to the rectangular cross section is L2, L1 = 500 μm or less And L2 = 1000 μm or less. Preferably, L1 = 300 μm or less and L2 = 600 μm or less, more preferably L1 = 200 μm or less and L2 = 400 μm or less, more preferably L1 = 125 μm or less and L2 = 250 μm or less. In addition, the rectangle here includes not only a corner where two sides meet exactly 90 ° but also a substantially rectangle in which the corner is curved or chamfered. Needless to say, the present invention can also be applied to the electronic component 1A having a rectangular cross section.
 4.1.電極の膜厚
 図20において、端面2Aに形成された電極4Aの実質的に均一な厚さT1と、側面2Bに形成された電極4Aの実質的に均一な厚さT2とは、実質的にT1=T2とすることができる。この膜厚は、凹部12を用いた膜厚調整(第3,第4実施形態)後の寸法を示す図18にて説明した通りであるが、凹部12以外の膜厚調整部材5A等を用いた第1,第2実施形態で確保することができる。加えて、特に第3,第4実施形態によれば、角部2Cに形成された電極4Aの厚さT3は、T3≧T1またはT3≧T2とすることができる。これらの膜厚は、従来のブロット工程後の膜厚と明確に区別される。
4.1. In FIG. 20, the substantially uniform thickness T1 of the electrode 4A formed on the end surface 2A and the substantially uniform thickness T2 of the electrode 4A formed on the side surface 2B are substantially equal to each other. T1 = T2 can be set. This film thickness is as described with reference to FIG. 18 showing the dimensions after film thickness adjustment (third and fourth embodiments) using the recess 12, but the film thickness adjusting member 5A other than the recess 12 is used. This can be ensured in the first and second embodiments. In addition, in particular, according to the third and fourth embodiments, the thickness T3 of the electrode 4A formed at the corner 2C can satisfy T3 ≧ T1 or T3 ≧ T2. These film thicknesses are clearly distinguished from those after the conventional blotting process.
 4.2電極の平坦性評価
 図21(A)(B)は、本実施形態の方法により製造された電子部品1Aの端面を示している。比較例として、特許文献2に開示されたブロット工程(Z移動のみ)が実施されることで製造された電子部品の端面を図9(A)(B)に示す。
4.2 Evaluation of Flatness of Electrodes FIGS. 21A and 21B show end faces of an electronic component 1A manufactured by the method of this embodiment. As a comparative example, FIGS. 9A and 9B show an end face of an electronic component manufactured by performing the blotting process (only Z movement) disclosed in Patent Document 2. FIG.
 本実施形態の図21(A)と、比較例の図22(A)との比較から明らかなように、図21(A)では電極の表面には導電性ペーストの糸引きによる環状の痕跡が存在しないのに対して、上述した通り図22(A)では明確な管状の痕跡が2か所に生じている。比較例の図22(A)に示す環状の痕跡は、図22(B)に示すように電極の表面を凸状として平坦性を阻害する。痕跡部分にひび割れ生じ、剥離することもある。電子部品を基板に半田付けすると、剥離し易い痕跡部分のみが半田付けされ、はんだ付けが不安定となる。 As is clear from comparison between FIG. 21A of the present embodiment and FIG. 22A of the comparative example, in FIG. 21A, an annular trace due to stringing of the conductive paste is formed on the surface of the electrode. While it does not exist, as described above, in FIG. 22A, clear tubular traces are generated in two places. The annular trace shown in FIG. 22A of the comparative example makes the surface of the electrode convex as shown in FIG. Cracks may appear in the traces and may peel off. When the electronic component is soldered to the substrate, only the trace portion that is easily peeled is soldered, and the soldering becomes unstable.
 図22(B)の2か所の環状痕跡に起因した電極の表面の凹凸の最大深さは、70~180μmとなることが判明した。これに対して、図21(B)に示す本実施形態の電子部品では、電極に環状の痕跡が存在しないことから、電極の表面の凹凸の最大深さは20μm以下、好ましくは10μm以下の平坦性を有することができる。 It was found that the maximum depth of irregularities on the surface of the electrode due to the two annular traces in FIG. 22B was 70 to 180 μm. On the other hand, in the electronic component of this embodiment shown in FIG. 21 (B), since there are no annular traces on the electrode, the maximum depth of the unevenness on the surface of the electrode is 20 μm or less, preferably 10 μm or less. Can have sex.
 なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。 Although the present embodiment has been described in detail as described above, it will be readily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention. For example, a term described at least once together with a different term having a broader meaning or the same meaning in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. All combinations of the present embodiment and the modified examples are also included in the scope of the present invention.
 ここで、例えば図11(B)の矩形孔22の長さL11,L21の一方、例えば長さL21を電子部品本体1の対応する一方の長さよりも長くして、図11(A)に示す電子部品本体1を矩形孔22に挿入し易くしてもよい。このような場合には、電子部品本体1を治具20に装着した後に、電子部品本体1の芯出し(例えば図11(B)のX軸又はY軸方向の位置決め)が必要となる。 Here, for example, one of the lengths L11 and L21 of the rectangular hole 22 in FIG. 11B, for example, the length L21 is made longer than the corresponding one of the electronic component main body 1, and is shown in FIG. The electronic component body 1 may be easily inserted into the rectangular hole 22. In such a case, after the electronic component main body 1 is mounted on the jig 20, the electronic component main body 1 needs to be centered (for example, positioning in the X-axis or Y-axis direction in FIG. 11B).
 図23(A)(B)は、電子部品本体1の芯出し治具及び芯出し方法を示している。この芯出し冶具は、電子部品本体1を挟んで配置される2本の線材5B,5Cを有する。超音波振動子6は、図23(A)に示すように半波長だけ位相が互いにずれた音波を、2本の線材5B,5Cに伝搬させる。反射部材7を設ける場合には、伝搬された音波を位相ずれを生じることなく反射させれば、その反射エネルギーも利用できる。半波長だけ位相が互いにずれた2種の音波の波形中の山同士の位相が一致するので、その音波が伝搬されて図24(B)のように振動する本の線材5B,5Cとの接触によって、電子部品本体1の位置が矯正される。それにより、芯ずれしている電子部品本体1を芯出しすることができる。 FIGS. 23A and 23B show a centering jig and a centering method of the electronic component body 1. This centering jig has two wires 5B and 5C arranged with the electronic component main body 1 interposed therebetween. As shown in FIG. 23A, the ultrasonic transducer 6 propagates sound waves whose phases are shifted from each other by a half wavelength to the two wires 5B and 5C. When the reflecting member 7 is provided, the reflected energy can be used if the propagated sound wave is reflected without causing a phase shift. Since the phases of the peaks in the waveforms of two types of sound waves that are out of phase with each other by a half wavelength match, the sound waves are propagated and contacted with the book wires 5B and 5C that vibrate as shown in FIG. Thus, the position of the electronic component main body 1 is corrected. Thereby, the electronic component main body 1 that is misaligned can be centered.
 図23(A)に示すように、複数の一対の線材5B,5Cを有する場合、各一対の線材5B,5Cに位相ずれした音波が供給される。この場合、一対の線材5B,5Cに供給される位相ずれした2種の音波を、他の全ての一対の線材5B,5Cに並列的に供給すれば、2つの超音波振動子のみを設けるだけで良い。また、図23(A)に示す芯出し治具に代えて、図6(A)(B)または図7に示す網状部材5を芯出し治具として兼用しても良い。網状部材5に含まれる環状線材5Aの内寸は電子部品本体1の対向する側面間の距離よりも大きいので、導電性ペースト層4が形成される前の電子部品本体1の芯出し治具として兼用できる。また、図7の横方向に延びる2本の線材に位相ずれした2種の音波を伝搬させると、図7の縦方向に延びる線材では2種の音波が相殺される。図7の縦方向に延びる線材は振動しないので、図23(B)に示す芯出し動作に悪影響は生じない。 As shown in FIG. 23 (A), when a plurality of pairs of wires 5B and 5C are provided, a sound wave shifted in phase is supplied to each pair of wires 5B and 5C. In this case, if two types of sound waves supplied to the pair of wires 5B and 5C are supplied in parallel to all the other pairs of wires 5B and 5C, only two ultrasonic transducers are provided. Good. Further, instead of the centering jig shown in FIG. 23A, the mesh member 5 shown in FIGS. 6A, 6B or 7 may be used as the centering jig. Since the inner dimension of the annular wire 5A included in the net-like member 5 is larger than the distance between the opposing side surfaces of the electronic component main body 1, it serves as a centering jig for the electronic component main body 1 before the conductive paste layer 4 is formed. Can be combined. Further, when two types of sound waves that are out of phase are propagated to the two wires extending in the horizontal direction in FIG. 7, the two types of sound waves are canceled out in the wire material extending in the vertical direction in FIG. 7. Since the wire extending in the vertical direction in FIG. 7 does not vibrate, there is no adverse effect on the centering operation shown in FIG.
 この芯出し工程は、第1,第2実施形態では少なくとも第3工程の前に、第3実施形態では少なくとも第2,第3工程の前に、第4実施形態では第1~第3工程の前に、それぞれ実施されると、環状線材5Aまたは凹部12内に、芯出しされた電子部品本体1を精度高く配置できる。よって、この芯出し工程は、第1工程、前記第2工程及び第3工程の少なくとも一つの工程の前に実施されればよい。それにより、この芯出し工程後の第1工程、第2工程及び/または第3工程を、より精度高く実現することができる。 This centering process is performed at least before the third process in the first and second embodiments, at least before the second and third processes in the third embodiment, and in the first to third processes in the fourth embodiment. If implemented before, the centered electronic component main body 1 can be placed with high accuracy in the annular wire 5A or the recess 12. Therefore, the centering step may be performed before at least one of the first step, the second step, and the third step. Thereby, the first step, the second step and / or the third step after the centering step can be realized with higher accuracy.
 なお、この芯出し治具及び芯出し方法は、塗布工程(第1工程)、端面の膜厚調整工程(第2工程)または側面の膜厚調整工程(第3工程)のいずれか一つの前に実施されればよく、膜厚調整工程を必ずしも伴わなくても芯出し効果を奏する。よつて、治具に装着された電子部品本体の芯出し治具及び芯出し方法として広く定義することができる。 The centering jig and the centering method are performed before any one of the coating step (first step), the end face film thickness adjusting step (second step), or the side surface film thickness adjusting step (third step). The centering effect can be obtained without necessarily being accompanied by a film thickness adjusting step. Therefore, the electronic component main body mounted on the jig can be broadly defined as a centering jig and a centering method.
 また、図15(A)~図15(C)にて説明された改良されたブロット工程(ウェット方式)は、図14(A)~図14(C)に示す従来のブロット工程よりも上述の通り優れた効果を発揮できる。よって、本発明の側面の膜厚調整工程を必ずしも実施しなくても、端面の膜厚調整工程として改良されたブロット工程(ウェット方式)を実施することができる。この改良されたブロット工程(ウェット方式)を含む電子部品の製造方法は、電子部品本体1の端部2を、導電性ペーストのディップ層3に浸漬して、前記電子部品本体1の端部2に塗布された導電性ペースト層4を形成する第1工程と、前記電子部品本体1の前記導電性ペースト層4を、定盤100に前記導電性ペーストを塗布して形成されるウェット層140に接触させる第2工程と、前記導電性ペースト層4を前記定盤100上の前記ウェット層140と接触させながら、前記電子部品本体1を前記定盤100に対して相対的に移動させて、前記電子部品本体1を前記定盤100の表面と平行に移動させる第3工程と、その後、前記電子部品本体1の前記導電性ペースト層4を前記定盤100側より引き離す第4工程と、を有する電子部品の製造方法と定義される。この発明によれば、第1工程のディップ塗布工程に続く第2,第3工程の実施により、第4工程での糸引きを防止又は抑制しながら、電子部品本体1の端面2Aに形成される導電性ペースト層4の厚さを均一化できる。 Further, the improved blotting process (wet method) described in FIGS. 15A to 15C is more effective than the conventional blotting process shown in FIGS. 14A to 14C. Excellent effect can be achieved. Therefore, an improved blotting process (wet method) can be performed as the film thickness adjusting process on the end face without necessarily performing the film thickness adjusting process on the side surface of the present invention. In the method of manufacturing an electronic component including the improved blotting process (wet method), the end 2 of the electronic component main body 1 is immersed in the dip layer 3 of the conductive paste so that the end 2 of the electronic component main body 1 is immersed. The first step of forming the conductive paste layer 4 applied to the surface and the conductive paste layer 4 of the electronic component body 1 to the wet layer 140 formed by applying the conductive paste to the surface plate 100 A second step of contacting, and moving the electronic component body 1 relative to the surface plate 100 while bringing the conductive paste layer 4 into contact with the wet layer 140 on the surface plate 100; A third step of moving the electronic component main body 1 in parallel with the surface of the surface plate 100, and then a fourth step of separating the conductive paste layer 4 of the electronic component main body 1 from the surface plate 100 side. Electronic It is defined as the production method of goods. According to the present invention, the second and third steps subsequent to the dip coating step of the first step are formed on the end surface 2A of the electronic component body 1 while preventing or suppressing stringing in the fourth step. The thickness of the conductive paste layer 4 can be made uniform.
 次に、図15(A)~図15(C)の変形例として説明されたブロット工程(ドライ方式)も、図14(A)~図14(C)に示す従来のブロット工程よりも上述の通り優れた効果を発揮できる。この改良されたブロット工程(ドライ方式)を含む電子部品の製造方法は、電子部品本体1の端部2を導電性ペーストのディップ層3に浸漬して、前記電子部品本体1の端部2に導電性ペースト層4を形成する第1工程と、前記電子部品本体1の前記導電性ペースト層4を定盤100の表面101に接触させる第2工程と、前記導電性ペースト層4を前記定盤100の前記表面101と接触させながら、前記電子部品本体1を前記定盤100に対して相対的に移動させて、前記電子部品本体1を前記定盤100の前記表面101と平行に移動させる第3工程と、その後、前記電子部品本体1の前記導電性ペースト層4を前記定盤100側より引き離す第4工程と、を有し、前記第3工程は、前記電子部品本体1を第1方向(例えばX方向)に移動させる工程と、前記電子部品本体1を前記第1方向とは異なる第2方向(例えばY方向)に移動させる工程と、を含む電子部品の製造方法と定義される。第3工程は、導電性ペースト層4を定盤100と接触させながら、互いに異なる第1及び第2方向に平行移動させることにより、端面2Aの導電性ペースト層4が平坦化される。加えて、第4工程での糸引きの原因となる余分な導電性ペーストを定盤100の表面101側に転写させて擦り取ることができる。 Next, the blotting process (dry method) described as a modified example of FIGS. 15A to 15C is also higher than the conventional blotting process shown in FIGS. 14A to 14C. Excellent effect can be achieved. In the method of manufacturing an electronic component including this improved blotting process (dry method), the end 2 of the electronic component main body 1 is immersed in the dip layer 3 of the conductive paste, and the end 2 of the electronic component main body 1 is immersed. A first step of forming the conductive paste layer 4, a second step of bringing the conductive paste layer 4 of the electronic component body 1 into contact with the surface 101 of the surface plate 100, and the conductive paste layer 4 being the surface plate. The electronic component body 1 is moved relative to the surface plate 100 while being in contact with the surface 101 of the surface 100, and the electronic component body 1 is moved in parallel with the surface 101 of the surface plate 100. 3 steps, and thereafter, a fourth step of separating the conductive paste layer 4 of the electronic component body 1 from the surface plate 100 side, and the third step moves the electronic component body 1 in the first direction. (Eg in the X direction) A step of moving the defined comprising the steps of moving in the second direction (e.g., Y direction) which is different from the electronic component body 1 to the first direction, and a method of manufacturing an electronic component including. In the third step, the conductive paste layer 4 on the end surface 2A is flattened by causing the conductive paste layer 4 to move in parallel in different first and second directions while being in contact with the surface plate 100. In addition, the excess conductive paste that causes stringing in the fourth step can be transferred to the surface 101 side of the surface plate 100 and scraped off.
 1 電子部品本体、1A 電子部品、2 端部、2A 端面、2B 側面、3 ディップ層、4 導電性ペースト層、4A 電極(導電性ペースト層)、5 網状部材(第2膜厚調整部材)、5A 環状線材(第2膜厚調整部材)、5B,5C 線材、6 音波発生源(超音波振動子)、7 反射部材、10 型盤(定盤)、10C 温調部、12 凹部(塗布部、第1,第2膜厚調整部材)、 20 治具、22 矩形孔、24 十文字孔、26 円形孔、 30 治具固定盤、40 固定盤、 50 移動機構、60 X軸駆動部、70 Y軸駆動部、80 Z軸駆動部、 100 定盤(第1膜厚調整部材)、101 表面(定盤面)、110 スキージユニット、112,114 ブレード、130 ペースト膜層(ディップ層)、140 ペースト膜層(ウェット層)、150 挿入ガイド、152 円形テーパー孔、154 矩形孔 1 electronic component body, 1A electronic component, 2 end, 2A end surface, 2B side surface, 3 dip layer, 4 conductive paste layer, 4A electrode (conductive paste layer), 5 mesh member (second film thickness adjusting member), 5A annular wire (second film thickness adjusting member), 5B, 5C wire, 6 sound wave source (ultrasonic vibrator), 7 reflecting member, 10 platen (surface plate), 10C temperature control unit, 12 recess (application unit) , 1st, 2nd film thickness adjusting member), 20 jig, 22 rectangular hole, 24 cross hole, 26 circular hole, 30 jig fixing plate, 40 fixing plate, 50 moving mechanism, 60 X-axis drive unit, 70 Y Axis drive unit, 80 Z-axis drive unit, 100 surface plate (first film thickness adjusting member), 101 surface (surface plate surface), 110 squeegee unit, 112, 114 blade, 130 paste film layer (dip layer) 140 paste film layer (wet layer), 150 insertion guide, 152 circular tapered hole, 154 rectangular hole

Claims (18)

  1.  少なくとも一つの電子部品本体の端部が端面と前記端面に続く側面とを含み、前記端部に電極を形成して電子部品を製造する方法において、
     前記端部に、前記電極となる導電性ペースト層を形成する第1工程と、
     前記導電性ペースト層が硬化する前に、前記端面に形成された前記導電性ペースト層の膜厚を調整する第2工程と、
     前記導電性ペースト層が硬化する前に、前記側面に形成された前記導電性ペースト層の膜厚を調整する第3工程と、
    を有することを特徴とする電子部品の製造方法。
    In the method of manufacturing an electronic component by forming an electrode on the end portion, the end portion of at least one electronic component main body includes an end surface and a side surface continuing to the end surface,
    A first step of forming a conductive paste layer to be the electrode at the end;
    A second step of adjusting the film thickness of the conductive paste layer formed on the end face before the conductive paste layer is cured;
    A third step of adjusting the thickness of the conductive paste layer formed on the side surface before the conductive paste layer is cured;
    A method for manufacturing an electronic component, comprising:
  2.  請求項1において、
     前記第3工程は、前記端面に形成された前記導電性ペースト層を膜厚調整部材と接触させる工程を含む電子部品の製造方法。
    In claim 1,
    Said 3rd process is a manufacturing method of the electronic component including the process which contacts the said electroconductive paste layer formed in the said end surface with a film thickness adjusting member.
  3.  請求項2において、
     前記第3工程は、前記膜厚調整部材として環状線材を用い、前記環状線材の中に前記少なくとも一つの電子部品本体の前記端部を配置させる工程を含む電子部品の製造方法。
    In claim 2,
    The third step is an electronic component manufacturing method including a step of using an annular wire as the film thickness adjusting member and disposing the end portion of the at least one electronic component body in the annular wire.
  4.  請求項2において、
     前記少なくとも一つの電子部品本体は複数の電子部品本体を含み、
     前記第3工程は、前記膜厚調整部材として線材同士が交点で接触する網状部材を用い、前記網状部材には複数の環状線材が形成され、前記複数の環状線材の各々の中に前記複数の電子部品本体の各々の前記端部を配置させる工程を含む電子部品の製造方法。
    In claim 2,
    The at least one electronic component body includes a plurality of electronic component bodies;
    The third step uses a mesh member in which wires are in contact with each other at the intersection as the film thickness adjusting member, a plurality of annular wires are formed on the mesh member, and the plurality of annular wires are in each of the plurality of annular wires. The manufacturing method of an electronic component including the process of arrange | positioning each said edge part of an electronic component main body.
  5.  請求項2~4のいずれか一項において、
     前記第3工程は、前記膜厚調整部材に音波を伝搬させる工程を含む電子部品の製造方法。
    In any one of claims 2 to 4,
    The third step is a method of manufacturing an electronic component, including a step of propagating sound waves to the film thickness adjusting member.
  6.  請求項4に従属する請求項5において、
     前記第3工程は、前記網状部材の輪郭の一部から前記音波を伝搬させ、前記網状部材の前記輪郭の他の一部にて前記音波を反射させる工程を含む電子部品の製造方法。
    In claim 5 dependent on claim 4,
    The method of manufacturing an electronic component, wherein the third step includes a step of propagating the sound wave from a part of the contour of the mesh member and reflecting the sound wave at another part of the contour of the mesh member.
  7.  請求項5または6において、
     前記音波は超音波である電子部品の製造方法。
    In claim 5 or 6,
    The method of manufacturing an electronic component, wherein the sound wave is an ultrasonic wave.
  8.  請求項1において、
     前記第2工程及び前記第3工程は、
     定盤に形成された凹部に、前記端部に形成された前記導電性ペースト層を収容する工程と、
     前記凹部内の前記導電性ペーストを硬化させる工程と、
    を含み、前記第2工程及び前記第3工程を同時に実施する電子部品の製造方法。
    In claim 1,
    The second step and the third step are:
    A step of accommodating the conductive paste layer formed at the end in the recess formed on the surface plate;
    Curing the conductive paste in the recess;
    A method of manufacturing an electronic component, wherein the second step and the third step are simultaneously performed.
  9.  請求項1において、
     前記第1工程、前記第2工程及び前記第3工程は、
     型盤に形成された凹部に充填された導電性ペーストに、前記端部を浸漬する工程と、
     前記凹部内の前記導電性ペーストを硬化させる工程と、
    を含み、前記第1工程、前記第2工程及び前記第3工程を同時に実施する電子部品の製造方法。
    In claim 1,
    The first step, the second step, and the third step are:
    A step of immersing the end in a conductive paste filled in a recess formed in the mold plate;
    Curing the conductive paste in the recess;
    A method of manufacturing an electronic component, wherein the first step, the second step, and the third step are simultaneously performed.
  10.  請求項1~9のいずれか一項において、
     前記第1工程、前記第2工程及び第3工程の少なくとも一つの工程の前に、前記少なくとも一つの電子部品本体の前記端部を挟んで配置される2本の線材に、半波長だけ位相がずれた音波を伝搬させて、前記少なくとも一つの電子部品本体を芯出しする工程をさらに有する電子部品の製造方法。
    In any one of claims 1 to 9,
    Prior to at least one of the first step, the second step, and the third step, the two wires arranged across the end of the at least one electronic component body have a phase of a half wavelength. An electronic component manufacturing method further comprising a step of centering the at least one electronic component body by propagating a shifted sound wave.
  11.  少なくとも一つの電子部品本体の端部に電極を形成して電子部品を製造する電子部品の製造装置において、
     前記少なくとも一つの電子部品本体の前記端部に位置する端面と前記端面に続く側面とに、導電性ペーストを塗布して導電性ペースト層を形成する塗布部と、
     前記端面に形成された前記導電性ペースト層と接触されて、前記導電性ペースト層の膜厚を調整する第1膜厚調整部材と、
     前記側面に形成された前記導電性ペースト層と接触されて、前記導電性ペースト層の膜厚を調整する第2膜厚調整部材と、
    を有することを特徴とする電子部品の製造装置。
    In an electronic component manufacturing apparatus for manufacturing an electronic component by forming an electrode at an end of at least one electronic component main body,
    An application portion that applies an electrically conductive paste to form an electrically conductive paste layer on an end surface located at the end of the at least one electronic component body and a side surface following the end surface;
    A first film thickness adjusting member that is in contact with the conductive paste layer formed on the end face and adjusts the film thickness of the conductive paste layer;
    A second film thickness adjusting member that is in contact with the conductive paste layer formed on the side surface and adjusts the film thickness of the conductive paste layer;
    An electronic component manufacturing apparatus comprising:
  12.  請求項11において、
     前記少なくとも一つの電子部品本体は複数の電子部品本体を含み、
     前記第2膜厚調整部材は、線材同士が交点で接触する網状部材を含み、前記網状部材には複数の環状線材が形成され、前記複数の環状線材の各々の中に前記複数の電子部品本体の各々の前記端部を配置させる電子部品の製造装置。
    In claim 11,
    The at least one electronic component body includes a plurality of electronic component bodies;
    The second film thickness adjusting member includes a mesh member in which wires are in contact with each other at an intersection, and the mesh member is formed with a plurality of annular wires, and the plurality of electronic component main bodies in each of the plurality of annular wires. An electronic component manufacturing apparatus in which each of the end portions is arranged.
  13.  請求項11または12において、
     前記第2膜厚調整部材に音波を伝搬させる音波発生源をさらに有する電子部品の製造装置。
    In claim 11 or 12,
    An electronic component manufacturing apparatus further comprising a sound wave generation source for propagating sound waves to the second film thickness adjusting member.
  14.  請求項11において、
     型盤に形成された凹部を含み、前記凹部の底壁が前記第1膜厚調整部材とされ、前記凹部の側壁が前記第2膜厚調整部材とされる電子部品の製造装置。
    In claim 11,
    The manufacturing apparatus of the electronic component which contains the recessed part formed in the template, the bottom wall of the said recessed part is said 1st film thickness adjusting member, and the side wall of the said recessed part is said 2nd film thickness adjusting member.
  15.  請求項11において、
     型盤に形成された凹部を含み、前記塗布部は前記導電性ペーストが収容される前記凹部とされ、前記凹部の底壁が前記第1膜厚調整部材とされ、前記凹部の側壁が前記第2膜厚調整部材とされる電子部品の製造装置。
    In claim 11,
    Including a recess formed in the mold platen, wherein the application portion is the recess for accommodating the conductive paste, the bottom wall of the recess is the first film thickness adjusting member, and the sidewall of the recess is the first 2. Electronic device manufacturing apparatus to be used as a film thickness adjusting member.
  16.  電子部品本体と、
     前記電子部品本体の端部を覆う電極と、
    を有し、
     前記端部は、端面と、前記端面に続く側面とを含み、
     前記電極は、前記端面と前記側面とで実質的に等しい厚さを有することを特徴とする電子部品。
    An electronic component body;
    An electrode covering an end of the electronic component body;
    Have
    The end includes an end surface and a side surface following the end surface;
    The electronic component is characterized in that the end surface and the side surface have substantially the same thickness.
  17.  請求項16において、
     前記端部は、前記端面と前記側面とが交わる角部を含み、
     前記角部を覆う前記電極の厚さは、前記端面を覆う前記電極の厚さ以上である電子部品。
    In claim 16,
    The end portion includes a corner portion where the end surface and the side surface intersect,
    The thickness of the said electrode which covers the said corner | angular part is an electronic component which is more than the thickness of the said electrode which covers the said end surface.
  18.  請求項16または17において、
     前記電極の表面の凹凸の最大深さは20μm以下である電子部品。
    In claim 16 or 17,
    An electronic component having a maximum depth of irregularities on the surface of the electrode of 20 μm or less.
PCT/JP2017/028038 2016-10-14 2017-08-02 Method and apparatus for manufacturing electronic component, and electronic component WO2018070093A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197010023A KR20190064586A (en) 2016-10-14 2017-08-02 METHOD AND DEVICE FOR MANUFACTURING ELECTRONIC COMPONENTS
MX2019003797A MX2019003797A (en) 2016-10-14 2017-08-02 Method and apparatus for manufacturing electronic component, and electronic component.
CN201780057640.8A CN109844879A (en) 2016-10-14 2017-08-02 The manufacturing method and apparatus and electronic component of electronic component
IL265925A IL265925A (en) 2016-10-14 2019-04-08 Manufacturing method and apparatus for electronic component and such electronic component
PH12019500813A PH12019500813A1 (en) 2016-10-14 2019-04-12 Manufacturing method and apparatus for electronic component and such electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105133284A TW201813724A (en) 2016-10-14 2016-10-14 Manufacturing method and device of electric components and electric components capable of making coating thickness of conductive paste layer uniform
TW105133284 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070093A1 true WO2018070093A1 (en) 2018-04-19

Family

ID=61905357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028038 WO2018070093A1 (en) 2016-10-14 2017-08-02 Method and apparatus for manufacturing electronic component, and electronic component

Country Status (7)

Country Link
KR (1) KR20190064586A (en)
CN (1) CN109844879A (en)
IL (1) IL265925A (en)
MX (1) MX2019003797A (en)
PH (1) PH12019500813A1 (en)
TW (1) TW201813724A (en)
WO (1) WO2018070093A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013237A1 (en) * 2018-07-10 2020-01-16 株式会社クリエイティブコーティングス Electronic component manufacturing device
WO2021181548A1 (en) * 2020-03-11 2021-09-16 株式会社クリエイティブコーティングス Electronic component manufacturing method and device
JP7382627B2 (en) 2019-09-30 2023-11-17 株式会社クリエイティブコーティングス Electronic component manufacturing equipment and manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272330B (en) * 2020-02-19 2021-09-21 黑龙江大学 Optical fiber gas pressure sensor and preparation method thereof
JP7079511B2 (en) * 2020-04-02 2022-06-02 株式会社クリエイティブコーティングス Manufacturing method of electronic parts
JP7398122B2 (en) * 2021-06-03 2023-12-14 株式会社クリエイティブコーティングス Electronic component manufacturing method and paste coating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869950A (en) * 1994-08-30 1996-03-12 Murata Mfg Co Ltd Formation of outer electrode of ceramic electronic part
JPH1022170A (en) * 1996-07-04 1998-01-23 Murata Mfg Co Ltd Chip-like electronic part and its manufacturing method
JP2007266485A (en) * 2006-03-29 2007-10-11 Tdk Corp Method for manufacturing chip-type electronic component
JP2011166030A (en) * 2010-02-12 2011-08-25 Murata Mfg Co Ltd Method of forming electrode and method of manufacturing electronic component containing the electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345813A (en) 1986-08-13 1988-02-26 株式会社村田製作所 Method of forming electrode of electronic parts
JP2002237403A (en) 2001-02-07 2002-08-23 Atc Protech Kk Method and device for attaching electrode to electronic component body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869950A (en) * 1994-08-30 1996-03-12 Murata Mfg Co Ltd Formation of outer electrode of ceramic electronic part
JPH1022170A (en) * 1996-07-04 1998-01-23 Murata Mfg Co Ltd Chip-like electronic part and its manufacturing method
JP2007266485A (en) * 2006-03-29 2007-10-11 Tdk Corp Method for manufacturing chip-type electronic component
JP2011166030A (en) * 2010-02-12 2011-08-25 Murata Mfg Co Ltd Method of forming electrode and method of manufacturing electronic component containing the electrode

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052422B2 (en) 2018-07-10 2021-07-06 Creative Coatings Co., Ltd. Electronic component manufacturing method and apparatus
US11338317B2 (en) 2018-07-10 2022-05-24 Creative Coatings Co., Ltd. Electronic component manufacturing apparatus
WO2020013237A1 (en) * 2018-07-10 2020-01-16 株式会社クリエイティブコーティングス Electronic component manufacturing device
EP3598467A1 (en) * 2018-07-10 2020-01-22 Creative Coatings Co., Ltd. Electronic component manufacturing method and apparatus
JP2020043330A (en) * 2018-07-10 2020-03-19 株式会社クリエイティブコーティングス Manufacturing method and apparatus for electronic component
CN111512402A (en) * 2018-07-10 2020-08-07 新烯科技有限公司 Electronic component manufacturing apparatus
JPWO2020013237A1 (en) * 2018-07-10 2020-08-20 株式会社クリエイティブコーティングス Electronic component manufacturing equipment
TWI720537B (en) * 2018-07-10 2021-03-01 日商新烯科技有限公司 Method and device for manufacturing electronic parts
KR20200006505A (en) * 2018-07-10 2020-01-20 가부시키가이샤 크리에이티브 코팅즈 Electronic component manufacturing method and apparatus
KR102587410B1 (en) * 2018-07-10 2023-10-11 가부시키가이샤 크리에이티브 코팅즈 Electronic component manufacturing method and apparatus
TWI749337B (en) * 2018-07-10 2021-12-11 日商新烯科技有限公司 Electronic component manufacturing method and apparatus
US11602766B2 (en) 2018-07-10 2023-03-14 Creative Coatings Co., Ltd. Electronic component manufacturing method and apparatus
CN110706924B (en) * 2018-07-10 2022-04-01 新烯科技有限公司 Method and apparatus for manufacturing electronic component
CN110706924A (en) * 2018-07-10 2020-01-17 新烯科技有限公司 Method and apparatus for manufacturing electronic component
CN111512402B (en) * 2018-07-10 2023-02-21 新烯科技有限公司 Electronic component manufacturing apparatus
JP7382627B2 (en) 2019-09-30 2023-11-17 株式会社クリエイティブコーティングス Electronic component manufacturing equipment and manufacturing method
JP7161814B2 (en) 2020-03-11 2022-10-27 株式会社クリエイティブコーティングス Method and apparatus for manufacturing electronic components
JPWO2021181548A1 (en) * 2020-03-11 2021-09-16
WO2021181548A1 (en) * 2020-03-11 2021-09-16 株式会社クリエイティブコーティングス Electronic component manufacturing method and device

Also Published As

Publication number Publication date
CN109844879A (en) 2019-06-04
PH12019500813A1 (en) 2020-01-20
IL265925A (en) 2019-05-30
MX2019003797A (en) 2019-07-04
TW201813724A (en) 2018-04-16
KR20190064586A (en) 2019-06-10

Similar Documents

Publication Publication Date Title
WO2018070093A1 (en) Method and apparatus for manufacturing electronic component, and electronic component
KR101479488B1 (en) Screen-printing stencil having amorphous carbon films and manufacturing method therefor
US6138562A (en) Vibrational energy waves for assist in the print release process for screen printing
JP2013070023A (en) Imprint device, and article manufacturing method using the same
US20130008473A1 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
TW201639654A (en) Angled LIFT jetting
JP2020043330A (en) Manufacturing method and apparatus for electronic component
KR100676024B1 (en) Ultrasonic transducer and method for manufacturing the same
JP2016226175A (en) Piezoelectric body, vibrator and vibration wave motor
TWI711058B (en) Manufacturing method and device of electronic component and electronic component
US20140133111A1 (en) Combined wiring board and method for manufacturing combined wiring board
TWI690950B (en) Manufacturing method and device of electronic parts
CN103287105B (en) Process for producing liquid ejection head
CN110819938B (en) Vapor deposition mask, vapor deposition mask device, method for manufacturing vapor deposition mask device, and vapor deposition method
TWI660376B (en) Manufacturing method and device of electronic component and electronic component
KR101076685B1 (en) Method for fabricating conductive micro-pattern
CN105310716A (en) Method for manufacturing acoustic coupling member, acoustic coupling member, probe and electronic apparatus
TW202114495A (en) Method and system for forming COF fine circuit, COF and processing method thereof
JP7170310B2 (en) Annular screen plate, method for manufacturing annular screen plate, and rotary screen offset printing apparatus
CN114100959B (en) Method and jig for hardening treatment, electronic equipment shell and electronic equipment
US8629601B2 (en) Piezoelectric oscillator
JP7429173B2 (en) Manufacturing method of adhesive retaining jig
JP6686549B2 (en) Method for manufacturing vapor deposition mask device and vapor deposition mask device
JPH07240398A (en) Etching method of silicon substrate and etching equipment
KR102648789B1 (en) Manufacturing method and device for electronic components

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197010023

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP