WO2018070003A1 - 非接触電力伝送装置、及び非接触電力伝送システム - Google Patents

非接触電力伝送装置、及び非接触電力伝送システム Download PDF

Info

Publication number
WO2018070003A1
WO2018070003A1 PCT/JP2016/080295 JP2016080295W WO2018070003A1 WO 2018070003 A1 WO2018070003 A1 WO 2018070003A1 JP 2016080295 W JP2016080295 W JP 2016080295W WO 2018070003 A1 WO2018070003 A1 WO 2018070003A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
induction heating
communication device
coil
contact power
Prior art date
Application number
PCT/JP2016/080295
Other languages
English (en)
French (fr)
Inventor
郁朗 菅
文屋 潤
良太 朝倉
Original Assignee
三菱電機株式会社
三菱電機ホーム機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ホーム機器株式会社 filed Critical 三菱電機株式会社
Priority to US16/330,539 priority Critical patent/US10797529B2/en
Priority to CN201680089356.4A priority patent/CN109792161B/zh
Priority to EP16918585.7A priority patent/EP3528363B1/en
Priority to JP2018544630A priority patent/JP6636168B2/ja
Priority to PCT/JP2016/080295 priority patent/WO2018070003A1/ja
Publication of WO2018070003A1 publication Critical patent/WO2018070003A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • H01F27/2885Shielding with shields or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/06Cook-top or cookware capable of communicating with each other

Definitions

  • the present invention relates to a contactless power transmission device and a contactless power transmission system for transmitting power to a power receiving device.
  • a device that includes a heating-side transmission / reception unit (power transmission-side transmission / reception unit) that transmits and receives a predetermined signal and performs wireless communication with the power reception-side transmission / reception unit of the non-contact power reception device (For example, refer to Patent Document 1).
  • a power transmission / reception unit and a power reception / transmission unit are arranged to face each other with a top plate interposed therebetween.
  • the power transmission side transmission / reception part is arrange
  • the present invention has been made to solve the above-described problems, and a non-contact power transmission device capable of suppressing a failure in wireless communication between the power receiving device and the non-contact power transmission device, and a non-contact A power transmission system is obtained.
  • a non-contact power transmission device is a non-contact power transmission device for transmitting power to a power receiving device, and is disposed below the support body on which the power receiving device is placed, A coil that generates a high-frequency magnetic field when supplied with a high-frequency current, a communication device that is disposed below the support and performs wireless communication with the power receiving device, a conductor, and the communication device and the coil And a second magnetic shielding member formed of a conductor or a magnetic material and disposed on at least one of the lower surface and the side surface of the communication device.
  • the non-contact power transmission apparatus includes a first magnetic shielding member disposed between the communication device and the coil, and a second magnetic shielding member disposed on at least one of the lower surface and the side surface of the communication device. For this reason, a failure in wireless communication between the power receiving apparatus and the communication apparatus can be suppressed.
  • FIG. (Constitution) 1 is an exploded perspective view showing an induction heating cooker according to Embodiment 1 of the present invention.
  • an induction heating cooker 100 has a top plate 4 on which an object to be heated 5 such as a pan is placed.
  • power receiving device 200 is also placed on top plate 4 as will be described later with reference to FIG.
  • Induction heating cooker 100 according to the first embodiment functions as a non-contact power device that transmits power to power receiving device 200.
  • the top plate 4 includes a first induction heating port 1 and a second induction heating port 2 as heating ports for induction heating of the article 5 to be heated.
  • the first induction heating port 1 and the second induction heating port 2 are juxtaposed in the lateral direction on the front side of the top plate 4. Moreover, the induction heating cooking appliance 100 which concerns on this Embodiment 1 is also provided with the 3rd induction heating port 3 as a 3rd heating port.
  • the third induction heating port 3 is provided on the back side of the first induction heating port 1 and the second induction heating port 2 and at a substantially central position in the lateral direction of the top plate 4. Below each of the first induction heating port 1, the second induction heating port 2, and the third induction heating port 3, a first induction heating coil 11 that heats an object to be heated placed on the heating port.
  • a second induction heating coil 12 and a third induction heating coil 13 are provided below each of the first induction heating port 1, the second induction heating port 2, and the third induction heating port 3.
  • the first induction heating coil 11, the second induction heating coil 12, and the third induction heating coil 13 are supplied with high frequency power by the drive circuit 50.
  • a high frequency magnetic field is generated from the first induction heating coil 11, the second induction heating coil 12, and the third induction heating coil 13.
  • the first induction heating coil 11, the second induction heating coil 12, and the third induction heating coil 13 are also referred to as “induction heating coils” without distinction.
  • the wiring 71 of the first induction heating coil 11 is connected to the wiring of the drive circuit 50 through the terminal block 70.
  • a terminal block that connects the wiring of the second induction heating coil 12 and the wiring of the drive circuit 50 is connected to the wiring of the third induction heating coil 13 and the wiring of the drive circuit 50.
  • a terminal block is provided. The detailed configuration of the drive circuit 50 will be described later.
  • a magnetic shield ring 75 formed in an annular shape is provided on the outer periphery of the first induction heating coil 11. Further, a magnetic shield ring 76 formed in an annular shape is provided on the outer periphery of the second induction heating coil 12. Although not shown, an annular magnetic shield ring is provided on the outer periphery of the third induction heating coil 13.
  • the entire top plate 4 is made of a material that transmits infrared rays, such as heat-resistant tempered glass or crystallized glass.
  • a circular pan position display indicating the position is formed by applying paint or printing.
  • An operation unit 40 is provided as an input device for setting a cooking menu (water heating mode, fried food mode, etc.) and the like.
  • the operation unit 40 is divided for each induction heating coil to form the operation unit 40a, the operation unit 40b, and the operation unit 40c.
  • a display unit 41 is provided as an informing means for displaying the operation state of each induction heating coil, the input from the operation unit 40, the operation content, and the like.
  • the display unit 41 is divided for each induction heating coil to form a display unit 41a, a display unit 41b, and a display unit 41c.
  • the operation part 40 and the display part 41 are not specifically limited when providing for every induction heating coil as mentioned above, when providing as a thing common to each induction heating coil, etc.
  • the operation unit 40 includes, for example, a mechanical switch such as a push switch and a tact switch, a touch switch that detects an input operation based on a change in the capacitance of the electrode, and the like.
  • the display unit 41 includes, for example, an LCD (Liquid Crystal Device), an LED, and the like.
  • the operation unit 40 and the display unit 41 may be an operation display unit 43 configured integrally with them.
  • the operation display unit 43 is configured by, for example, a touch panel in which touch switches are arranged on the upper surface of the LCD.
  • the first induction heating coil 11, the second induction heating coil 12, and the third induction heating coil 13 are configured as follows, for example.
  • the 1st induction heating coil 11, the 2nd induction heating coil 12, and the 3rd induction heating coil 13 have the same structure. For this reason, the structure of the 1st induction heating coil 11 is demonstrated below representatively.
  • FIG. 2 is a plan view showing the induction heating coil of the induction heating cooker according to Embodiment 1 of the present invention.
  • the first induction heating coil 11 is composed of a plurality of coils arranged substantially concentrically.
  • the first induction heating coil 11 is composed of quadruple coils 11-1 to 11-4 arranged substantially concentrically. These coils 11-1 to 11-4 are connected together.
  • the coils 11-1 to 11-4 are configured by winding a conductive wire made of an arbitrary metal (for example, copper, aluminum, etc.) with an insulating film.
  • the first induction heating coil 11 is composed of quadruple coils 11-1 to 11-4, but the first induction heating coil 11 is wound substantially concentrically. There may be at least some divided coils.
  • the magnetic shield ring 75 is formed in an annular shape so as to surround the outer periphery of the first induction heating coil 11 at a distance from the first induction heating coil 11.
  • the magnetic shield 75 is made of a conductor.
  • the magnetic-shielding ring 75 surrounds the outer periphery of the first induction heating coil 11, so that when a high-frequency current flows through the first induction heating coil 11, a high-frequency magnetic field that does not reach the upper object to be heated 5 This is to make it difficult to leak outside the induction heating coil 11.
  • the magnetic-shielding ring 75 is formed by bending a metal member that is long in one direction into a circular shape and providing a joined portion that is crimped or welded, such as crimping an end portion, and is electrically conductive. Therefore, when a high frequency magnetic field is generated by the first induction heating coil 11, an eddy current also flows through the magnetic shield ring 75 and is converted into heat by the internal resistance of the magnetic shield ring 75, thereby suppressing leakage magnetic flux.
  • Examples of the material of the magnetic shield ring 75 include aluminum and copper.
  • the vertical width of the magnetic shield ring 75 is formed to be substantially the same as the width of the first induction heating coil 11, for example. Needless to say, it may be wider than the coil width.
  • a control unit 45 for controlling the entire operation of the induction heating cooker 100 including the drive circuit 50 is accommodated in the induction heating cooker 100.
  • the control unit 45 is a dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 48 (see FIG. 3), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a processor. Consists of).
  • the control unit 45 may be, for example, a single circuit, a composite circuit, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of these. Applicable.
  • Each functional unit realized by the control unit 45 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • each function executed by the control unit 45 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 48.
  • the CPU implements each function of the control unit 45 by reading and executing the program stored in the memory 48.
  • the memory 48 is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • a part of the function of the control unit 45 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • a primary side communication device 47 that performs wireless communication with the power receiving device 200 placed on the top plate 4 is provided below the top plate 4.
  • the primary side communication device 47 is configured by a wireless communication interface conforming to an arbitrary communication standard such as NFC (Near Field Communication), Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like.
  • NFC Near Field Communication
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the primary side communication device 47 is configured by an NFC tag in the NFC standard.
  • FIG. 3 is a block diagram showing a configuration of the induction heating cooker (non-contact power feeding device) according to Embodiment 1 of the present invention and the power receiving device placed on the top plate of the induction heating cooker. .
  • FIG. 3 shows a state where the power receiving device 200 is placed in the first induction heating port 1 on the top plate 4 of the induction heating cooker 100.
  • the induction heating cooker 100 that functions as a non-contact power transmission device and the power receiving device 200 constitute a non-contact power transmission system.
  • the primary side communication device 47 of the induction heating cooker 100 is disposed outside the outer periphery of the first induction heating coil 11 and the magnetic shield ring 75 below the top plate 4. That is, the magnetic shield ring 75 is disposed between the primary side communication device 47 and the first induction heating coil 11.
  • the primary side communication apparatus 47 is arrange
  • the primary side communication device 47 By arranging the primary side communication device 47 at a position that does not overlap with the terminal block 70 in the vertical direction, the high frequency magnetic field generated from the terminal block 70 becomes difficult to reach the primary side communication device 47, and the influence of noise can be reduced.
  • a magnetic shield plate 32a formed of a conductor or a magnetic material is provided on the lower surface of the primary side communication device 47.
  • the magnetic shielding plate 32 a is provided on the surface of the primary side communication device 47 that does not face the power receiving device 200.
  • the magnetic shield 32 a is formed in a plate shape, for example, and is disposed so as to be in contact with the lower surface of the primary side communication device 47.
  • the magnetic shield plate 32a preferably has a larger area than the primary communication device 47 in a plan view as viewed from the power receiving device 200 side.
  • size of the magnetic-shield board 32a should just be provided in at least one part of the lower surface of the primary side communication apparatus 47 not only in this.
  • Examples of the material of the magnetic shield 32a include ferrite that is a magnetic material.
  • the high frequency magnetic field generated from the first induction heating coil 11 is easily linked to the magnetic shield plate 32a, and the high frequency magnetic field reaching the primary communication device 47 is reduced. Will be.
  • a material of the magnetic-shield board 32a aluminum or copper etc. which are conductors are mentioned, for example.
  • the magnetic shield plate 32a formed of a conductor when the high frequency magnetic field generated from the first induction heating coil 11 reaches the magnetic shield plate 32a, an eddy current flows through the magnetic shield plate 32a, and the internal resistance of the magnetic shield plate 32a. As a result, the high-frequency magnetic field reaching the primary communication device 47 is reduced.
  • the power receiving device 200 is, for example, a cooking device (such as a fryer, a steamer, a roaster, or a toaster) that cooks food. Further, for example, the power receiving device 200 is a cooking device (a blender, a mixer, a mill, a frothing device, a food processor, or the like) that prepares and prepares dishes.
  • a cooking device such as a fryer, a steamer, a roaster, or a toaster
  • the power receiving device 200 is a cooking device (a blender, a mixer, a mill, a frothing device, a food processor, or the like) that prepares and prepares dishes.
  • the power receiving device 200 includes a power receiving coil 65 that receives power by electromagnetic induction, a power receiving circuit 81 that rectifies and smoothes the power received by the power receiving coil 65, and a load circuit 82 that is connected to the output side of the power receiving circuit 81. And a secondary control unit 83 that controls the power receiving circuit 81 and the load circuit 82.
  • the power receiving device 200 is placed on the top plate 4 of the induction heating cooker 100 and receives electric power from the induction heating cooker 100 in a non-contact manner. That is, a high frequency magnetic field is generated from the first induction heating coil 11 by supplying high frequency power to the first induction heating coil 11 under the top plate 4 of the induction heating cooker 100 by the drive circuit 50. .
  • the high-frequency magnetic field is received by a power receiving coil 65 provided in the power receiving device 200, and power is supplied to the power receiving device 200 in a non-contact manner.
  • the secondary control unit 83 of the power reception device 200 controls the power reception circuit 81 so that the power received by the power reception coil 65 is supplied to the load circuit 82 with an alternating current.
  • the secondary control unit 83 rectifies and smoothes the electric power received by the power receiving coil 65, converts the electric power to an arbitrary alternating current by an inverter circuit or the like, and supplies the alternating current to the load circuit 82.
  • the power receiving circuit 81 is controlled.
  • the load circuit 82 when the load circuit 82 is a motor load, the load circuit 82 is driven at a variable speed. Note that direct current may be applied to the heater load by rectification and smoothing. Needless to say, the motor load may be driven at a constant speed.
  • the power receiving device 200 is preferably provided with an operation unit and a display unit.
  • the operation unit for example, start and stop of power supply to the power receiving apparatus 200 are operated.
  • the display unit for example, the power receiving state of the power receiving device 200 is displayed.
  • the operation unit and the display unit are integrally configured as a secondary display operation unit 84.
  • the power receiving device 200 includes a secondary communication device 85.
  • the secondary side communication device 85 performs primary side communication with the top plate 4 interposed therebetween. It is arranged at a position facing the device 47.
  • the secondary communication device 85 is configured by a wireless communication interface that conforms to the communication standard of the primary communication device 47.
  • the secondary side communication device 85 performs wireless communication with the primary side communication device 47 of the induction heating cooker 100.
  • the secondary side communication device 85 is configured by an NFC reader in the NFC standard.
  • a magnetic shielding plate 32b formed of a conductor or a magnetic material is provided on the upper surface of the secondary side communication device 85.
  • the magnetic shield 32b is provided on a surface of the secondary side communication device 85 that does not face the induction heating cooker 100.
  • the magnetic shield 32b is formed in a plate shape, for example, and is disposed so as to contact the upper surface of the secondary side communication device 85. It is desirable that the magnetic shield plate 32b has a larger area than the secondary side communication device 85 in a plan view viewed from the induction heating cooker 100 side.
  • size of the magnetic-shield board 32b should just be provided in at least one part of the upper surface of the secondary side communication apparatus 85 not only in this.
  • Examples of the material of the magnetic shield plate 32b include ferrite which is a magnetic material.
  • the high frequency magnetic field generated from the first induction heating coil 11 is easily linked to the magnetic shield plate 32b, and the high frequency magnetic field reaching the secondary communication device 85 is reduced. Will decrease.
  • a material of the magnetic-shield board 32b aluminum or copper which is a conductor is mentioned, for example.
  • the magnetic shield plate 32b formed of a conductor when the high frequency magnetic field generated from the first induction heating coil 11 reaches the magnetic shield plate 32b, an eddy current flows through the magnetic shield plate 32b, and the internal resistance of the magnetic shield plate 32b. As a result, the high-frequency magnetic field reaching the secondary communication device 85 is reduced.
  • the strength of the high-frequency magnetic field generated from the first induction heating coil 11 is greater than the radio wave intensity in wireless communication with the primary side communication device 47 and the secondary side communication device 85. Is also arranged at a position where it becomes smaller. That is, the communication noise caused by the high frequency magnetic field generated from the first induction heating coil 11 is a communication noise less than the output level of the communication frequency of the wireless communication between the primary side communication device 47 and the secondary side communication device 85.
  • the primary-side communication device 47 and the secondary-side communication device 85 are arranged at the positions.
  • the strength of the high-frequency magnetic field generated from the first induction heating coil 11 is such that the primary side communication device 47 and the secondary side communication device 85.
  • the primary-side communication device 47 and the secondary-side communication device 85 are arranged at a position where the radio wave intensity at the communication frequency becomes smaller.
  • the power reception coil 65 has the same configuration as that of the first induction heating coil 11, for example.
  • ferrite as a magnetic material is disposed below the first induction heating coil 11.
  • the shape of the ferrite is, for example, a flat plate shape.
  • a protrusion inserted between the coils constituting the first induction heating coil 11 may be provided on the upper surface of the flat ferrite, and the vertical cross-sectional shape of the ferrite may be a convex type, an F type, an E type, or the like.
  • ferrite as a magnetic material is arranged on the upper portion of the power receiving coil 65.
  • the shape of the ferrite is, for example, a flat plate shape.
  • a protrusion inserted between the coils constituting the power receiving coil 65 may be provided on the lower surface of the flat ferrite plate, and the vertical cross-sectional shape of the ferrite may be a convex shape, an F shape, an E shape, or the like.
  • FIG. 4 is a diagram showing a circuit configuration of the drive circuit of the induction heating cooker and the power receiving device according to Embodiment 1 of the present invention.
  • FIG. 4 shows the circuit configuration of the drive circuit 50 of the first induction heating coil 11, the control unit 45, the load determination means in the control unit 45, and the power receiving device 200.
  • the drive circuit, the control unit, and the load determination unit connected to the second induction heating coil 12 and the third induction heating coil 13 have the same configuration as the drive circuit 50 and the control unit 45 shown in FIG.
  • the drive circuit 50 is a half-bridge drive circuit, and includes a DC power supply circuit 22, an inverter circuit 123, and a power transmission side resonance capacitor 24.
  • the input current detection means 23 is composed of, for example, a current sensor, detects a current input from the AC power supply (commercial power supply) 21 to the DC power supply circuit 22, and outputs a voltage signal corresponding to the input current value to the control unit 45. .
  • the DC power supply circuit 22 includes a diode bridge 22a, a reactor 22b, and a smoothing capacitor 22c, converts an AC voltage input from the AC power supply 21 into a DC voltage, and outputs the DC voltage to the inverter circuit 123.
  • the inverter circuit 123 is a half-bridge type inverter in which IGBTs 123 a and 123 b as switching elements are connected in series to the output of the DC power supply circuit 22.
  • diodes 123c and 123d are connected in parallel with the IGBTs 123a and 123b as flywheel diodes, respectively.
  • the IGBT 123 a and the IGBT 123 b are driven on and off by a drive signal output from the control unit 45.
  • the control unit 45 turns off the IGBT 123b while turning on the IGBT 123a, turns on the IGBT 123b while turning off the IGBT 123a, and outputs a drive signal that turns on and off alternately.
  • the inverter circuit 123 converts the DC power output from the DC power supply circuit 22 into AC power having a specified frequency, and supplies power to the resonance circuit including the first induction heating coil 11 and the power transmission side resonance capacitor 24.
  • the specified frequency AC power is, for example, high frequency AC power of about 20 kHz to 100 kHz.
  • the power transmission side resonance capacitor 24 is connected in series to the first induction heating coil 11, and this resonance circuit has a resonance frequency according to the inductance of the first induction heating coil 11, the capacity of the power transmission side resonance capacitor 24, and the like. .
  • a high-frequency current flows through the first induction heating coil 11, and on the top plate 4 immediately above the first induction heating coil 11 by the high-frequency magnetic flux generated by the flowing high-frequency current. Electric power can be transmitted in a non-contact manner to the power receiving coil 65 of the power receiving device 200 placed thereon.
  • the IGBTs 123a and 123b which are switching elements, are composed of, for example, a silicon-based semiconductor, but the switching elements may be formed of a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
  • a wide band gap semiconductor such as silicon carbide or a gallium nitride-based material.
  • the coil current detection means 25 is connected to a resonance circuit composed of the first induction heating coil 11 and the power transmission side resonance capacitor 24.
  • the coil current detection means 25 is composed of, for example, a current sensor, detects a current flowing through the first induction heating coil 11, and outputs a voltage signal corresponding to the coil current value to the control unit 45.
  • FIG. 4 shows a half-bridge drive circuit
  • a full-bridge drive circuit composed of four IGBTs and four diodes may be used.
  • the power receiving device 200 is provided with a power receiving side resonance capacitor 62 that forms a resonance circuit together with the power receiving coil 65.
  • control unit 45 includes a load determination unit 46.
  • the load determination unit 46 determines whether the load placed on the top 4 receives power depending on whether the impedance characteristic on the output side of the inverter circuit 123 has resonance characteristics when the drive frequency of the inverter circuit 123 is changed. It is determined whether or not the device 200 is used.
  • the 1st induction heating coil 11, the 2nd induction heating coil 12, and the 3rd induction heating coil 13 are equivalent to the "coil” of this invention.
  • the top plate 4 corresponds to the “support” of the present invention.
  • the control unit 45 corresponds to a “control device” of the present invention.
  • the “magnetic shield ring 75” corresponds to the “first magnetic shield member” in the present invention.
  • the “magnetic shield plate 32a” corresponds to the “second magnetic shield member” in the present invention.
  • the “magnetic shield plate 32b” corresponds to the “third magnetic shield member” in the present invention.
  • the “primary communication device 47” corresponds to the “communication device” in the present invention.
  • the “secondary communication device 85” corresponds to the “second communication device” in the present invention.
  • Heating operation The user places an object to be heated 5 on the heating port of the induction heating cooker 100 and performs an input operation for starting a heating operation using the operation unit 40.
  • the control unit 45 performs a heating operation for inductively heating the object to be heated 5. That is, the control unit 45 controls the drive circuit 50 according to the heating power to be induction-heated, and performs a heating operation for supplying high-frequency power to the first induction heating coil 11. Thereby, the to-be-heated object 5 arrange
  • the user places the power receiving apparatus 200 on the heating port of the induction heating cooker 100 and performs an input operation for starting the power transmission operation by the operation unit 40.
  • the load determination unit 46 determines whether or not the load placed on the top 4 is the power receiving device 200.
  • the control unit 45 performs a power transmission operation for transmitting power to the power receiving device 200. That is, the control unit 45 controls the drive circuit 50 according to the power transmitted to the power receiving coil 65 and supplies high frequency power to the first induction heating coil 11. As a result, the high frequency power supplied from the first induction heating coil 11 is received by the power receiving coil 65 arranged in the power receiving device 200.
  • the received power is supplied from the power receiving circuit 81 to the load circuit 82, and the load circuit 82 is driven.
  • the secondary side communication device 85 of the power receiving device 200 performs wireless communication with the primary side communication device 47 of the induction heating cooker 100. For example, information indicating the type of device of the power receiving device 200 and information regarding the specification of the device such as rated power are transmitted to the induction heating cooker 100.
  • the control unit 45 of the induction heating cooker 100 controls the drive circuit 50 in accordance with the information acquired from the power receiving device 200 and performs power transmission suitable for the power receiving device 200 placed on the top plate 4.
  • the secondary control unit 83 of the power receiving device 200 causes the secondary side communication device 85 to transmit information requesting to stop power reception when the current of the power receiving coil 65 exceeds the upper limit value. And the control part 45 of the induction heating cooking appliance 100 will stop electric power transmission operation
  • the induction heating cooker 100 non-contact power feeding device
  • the power receiving device 200 perform two-way communication, thereby improving the controllability of the induction heating cooker 100 and the power receiving device 200 and improving the protection function. can do.
  • the primary side communication device 47 arranged below the top plate 4 and the primary side communication device 47 and the induction heating coil are arranged.
  • positioned at the lower surface of the primary side communication apparatus 47 are provided. For this reason, the high frequency magnetic field which reaches
  • the magnetic shield ring 75 is formed in an annular shape and surrounds the outer periphery of the induction heating coil. For this reason, the high frequency magnetic field which reaches
  • the primary side communication device 47 is arranged at a position that does not overlap the terminal block 70 in the vertical direction. For this reason, it becomes difficult for the high frequency magnetic field generated from the terminal block 70 to reach the primary side communication device 47, and the influence of noise can be reduced.
  • the primary-side communication device 47 and the secondary-side communication device 85 have the high-frequency magnetic field intensity generated from the induction heating coil between the primary-side communication device 47 and the secondary-side communication device 85. It is arrange
  • FIG. 5 is a schematic diagram showing a modified example of the magnetic shielding plate of the induction heating cooker according to Embodiment 1 of the present invention.
  • a magnetic shielding plate 33 a formed of a conductor or a magnetic material may be provided on the side surface of the primary side communication device 47.
  • the magnetic shield plate 33 a is disposed on the side surface of the primary side communication device 47 that faces the first induction heating coil 11.
  • the magnetic shield plate 33 a is formed in a plate shape, for example, and is disposed so as to contact the side surface of the primary side communication device 47.
  • the magnetic shield 33a has a larger area than the primary communication device 47 in a plan view as viewed from the first induction heating coil 11 side.
  • size of the magnetic-shield board 33a should just be provided in at least one part of the side surface of the primary side communication apparatus 47 not only in this. Even in such a configuration, the high frequency magnetic field reaching the primary side communication device 47 from the induction heating coil can be reduced.
  • the upper end of the magnetic shield plate 33 a is disposed above the upper end of the first induction heating coil 11.
  • the upper end of the magnetic shield plate 33 a is arranged at a distance L ⁇ b> 1 above the upper end of the first induction heating coil 11.
  • FIG. With such an arrangement, the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side and the upper side of the primary side communication device 47.
  • the lower end of the magnetic shield plate 33 a is disposed below the lower end of the first induction heating coil 11.
  • the lower end of the magnetic shield plate 33 a is disposed below the lower end of the first induction heating coil 11 by a distance L ⁇ b> 2.
  • FIG. 6 is a schematic diagram illustrating a modification of the magnetic shielding plate of the power receiving device according to the first embodiment of the present invention.
  • a magnetic shielding plate 33 b formed of a conductor or a magnetic material may be provided on the side surface of the secondary side communication device 85.
  • the magnetic shield 33 b is disposed on the side surface of the secondary side communication device 85 that faces the power receiving coil 65.
  • the magnetic shield plate 33 b is formed in a plate shape, for example, and is disposed so as to contact the side surface of the secondary side communication device 85. It is desirable that the magnetic shield plate 33b has a larger area than the secondary side communication device 85 in a plan view viewed from the power receiving coil 65 side.
  • size of the magnetic-shield board 33b should just be provided in at least one part of the side surface of the secondary side communication apparatus 85 not only in this. Even in such a configuration, the high-frequency magnetic field reaching the secondary side communication device 85 from the induction heating coil can be reduced.
  • the upper end of the magnetic shield plate 33 b is disposed above the upper end of the power receiving coil 65.
  • the upper end of the magnetic shielding plate 33 b is disposed above the upper end of the power receiving coil 65 by a distance M2.
  • the lower end of the magnetic shield plate 33 b is disposed below the lower end of the power receiving coil 65.
  • the lower end of the magnetic shield plate 33 b is disposed below the lower end of the power receiving coil 65 by a distance M1.
  • the lower end of the magnetic shielding plate 33b may be disposed so as to be in contact with the bottom surface of the casing of the power receiving device 200. With such an arrangement, the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side of the primary side communication device 47.
  • FIG. 7 is a schematic diagram showing a modification of the magnetic shielding plate of the induction heating cooker and the power receiving device according to Embodiment 1 of the present invention.
  • a magnetic shielding plate 32 a may be provided on the lower surface of the primary side communication device 47, and a magnetic shielding plate 33 a may be provided on the side surface of the primary side communication device 47 that faces the first induction heating coil 11.
  • the magnetic shield plate 32 a may be formed in the same area as the lower surface of the primary side communication device 47. Further, the magnetic shield plate 33 a may be formed to have substantially the same area as the side surface of the primary side communication device 47.
  • the magnetic shield 32b may be provided on the upper surface of the secondary communication device 85, and the magnetic shield 33b may be provided on the side surface of the secondary communication device 85 that faces the power receiving coil 65.
  • you may form the magnetic-shield board 32b in the substantially the same area as the upper surface of the secondary side communication apparatus 85.
  • the magnetic shield plate 33 b may be formed in substantially the same area as the side surface of the secondary side communication device 85.
  • the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side and the lower side of the primary side communication device 47. Further, the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side and the upper side of the secondary side communication device 85.
  • FIG. 8 is a schematic diagram showing a modification of the magnetic shielding plate of the induction heating cooker and the power receiving device according to Embodiment 1 of the present invention.
  • a magnetic shielding plate 32 a may be provided on the lower surface of the primary side communication device 47, and a magnetic shielding plate 33 a may be provided so as to surround the side surface of the primary side communication device 47.
  • the magnetic shield plate 32 a may be formed in the same area as the lower surface of the primary side communication device 47.
  • the magnetic shield plate 33 a may be formed in substantially the same area as each side surface of the primary side communication device 47.
  • the magnetic-shield board 33a may be formed in a cylindrical shape, for example, and may combine a flat member.
  • the magnetic shield 32b may be provided on the upper surface of the secondary communication device 85, and the magnetic shield 33b may be provided so as to surround the side surface of the secondary communication device 85.
  • you may form the magnetic-shield board 32b in the substantially the same area as the upper surface of the secondary side communication apparatus 85.
  • the magnetic shield plate 33b may be formed in substantially the same area as each side surface of the secondary side communication device 85.
  • the magnetic-shield board 33b may be formed, for example in a cylinder shape, and may combine a flat member.
  • the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side and the lower side of the primary side communication device 47. Further, the high-frequency magnetic field generated from the induction heating coil can be made difficult to reach from the side and the upper side of the secondary side communication device 85.
  • the magnetic-shield board 33a only in the one part side surface among the side surfaces of the primary side communication apparatus 47.
  • the magnetic shielding plate 33a is provided only on the side surface of the primary side communication device 47 facing the first induction heating coil 11 and the side surface opposite to the side surface facing the first induction heating coil 11. Also good.
  • the magnetic shielding plate 33b may be provided only on the side surface of the secondary side communication device 85 that faces the power receiving coil 65 and the side surface opposite to the side surface facing the power receiving coil 65.
  • magnetic shield plate 33a in the first to third modifications corresponds to the “second magnetic shield member” in the present invention.
  • the “magnetic shield plate 33b” corresponds to the “third magnetic shield member” in the present invention.
  • FIG. 9 is a perspective view schematically showing a modification of the magnetic shielding plate of the induction heating cooker according to Embodiment 1 of the present invention.
  • FIG. 10 is a top view schematically showing a modification of the magnetic shielding plate of the induction heating cooker according to Embodiment 1 of the present invention.
  • FIG. 11 is a longitudinal cross-sectional view which shows typically the modification of the magnetic-shield board of the induction heating cooking appliance concerning Embodiment 1 of this invention.
  • the magnetic shield ring 75 is integrally formed with an extending portion 75 a extending laterally outward from the lower end.
  • the extension part 75 a has substantially the same area as the primary communication apparatus 47 or a larger area than the primary communication apparatus 47 in a plan view viewed from the power receiving apparatus 200 side.
  • the primary side communication device 47 is disposed on the upper surface of the extending portion 75 a of the magnetic shield ring 75.
  • the extending portion 75 a integrally formed with the magnetic shield ring 75 functions as a magnetic shield member, and the high frequency magnetic field generated from the induction heating coil is difficult to reach from the lower side of the primary side communication device 47. Can do.
  • the extending portion 75a that functions as a magnetic shielding member is integrally formed with the magnetic shielding ring 75, the number of components can be reduced.
  • extension part 75a” in the modification 4 corresponds to the “second magnetic shield member” in the present invention.
  • FIG. 12 is a perspective view schematically showing a modification of the magnetic shielding plate of the induction heating cooker according to Embodiment 1 of the present invention.
  • FIG. 13 is a top view which shows typically the modification of the magnetic-shield board of the induction heating cooking appliance concerning Embodiment 1 of this invention.
  • FIG. 14 is a longitudinal sectional view schematically showing a modification of the magnetic shield plate of the induction heating cooker according to Embodiment 1 of the present invention.
  • the magnetic shield ring 75 is integrally formed with a flange portion 75b extending from the lower end to the outer side in the circumferential direction.
  • the flange portion 75 b is formed such that the distance between the outer periphery and the inner periphery is substantially the same as the width of the primary communication device 47 or longer than the width of the primary communication device 47 in a plan view as viewed from the power receiving device 200 side.
  • the primary side communication device 47 is disposed on the upper surface of the flange portion 75 b of the magnetic shield ring 75.
  • the flange portion 75b formed integrally with the magnetic shield ring 75 functions as a magnetic shield member, and the high frequency magnetic field generated from the induction heating coil is difficult to reach from the lower side of the primary side communication device 47. it can. Moreover, since the flange part 75b which functions as a magnetic-shielding member is integrally formed with the magnetic-shielding ring 75, the number of parts can be reduced.
  • the “flange portion 75b” in the fifth modification corresponds to the “second magnetic shield member” in the present invention.
  • Embodiment 2 a configuration in which the primary side communication device 47 and the secondary side communication device 85 are arranged in consideration of the influence of the high frequency magnetic field from the plurality of induction heating coils will be described.
  • symbol is attached
  • FIG. 15 is a top view schematically showing the position of the primary communication device of the induction heating cooker according to Embodiment 2 of the present invention.
  • the top plate 4 of the induction heating cooker 100 includes a first induction heating port 1, a second induction heating port 2, and a third induction heating port 3.
  • the first induction heating port 1 and the second induction heating port 2 are juxtaposed in the lateral direction on the front side of the top plate 4.
  • the third induction heating port 3 is provided on the back side of the first induction heating port 1 and the second induction heating port 2 and at a substantially central position in the lateral direction of the top plate 4.
  • the induction heating coil 13 is provided below each of the first induction heating port 1, the second induction heating port 2 and the third induction heating port 3.
  • the primary side communication device 47 and the secondary side communication device 85 are configured such that the sum of the strengths of the high frequency magnetic fields generated from the plurality of induction heating coils is the primary side communication device 47 and the secondary side communication device 85. Is arranged at a position smaller than the radio wave intensity in wireless communication.
  • the device 47 and the secondary side communication device 85 are not arranged. In other words, communication noise caused by the high-frequency magnetic field generated from the first induction heating coil 11 and the second induction heating coil 12 causes communication of wireless communication between the primary side communication device 47 and the secondary side communication device 85.
  • the primary side communication device 47 and the secondary side communication device 85 are arranged at a position where communication noise is less than the frequency output level.
  • the high-frequency magnetic field generated from the first induction heating coil 11 and the third induction heating coil 13 when the high-frequency current supplied to the first induction heating coil 11 and the third induction heating coil 13 is the maximum value.
  • the primary-side communication device 47 and the secondary-side communication device 85 are arranged at a position where the sum of the intensity becomes smaller than the radio wave intensity at the communication frequency with the primary-side communication device 47 and the secondary-side communication device 85.
  • primary side communication is performed.
  • the device 47 and the secondary side communication device 85 are not arranged.
  • communication noise caused by the high-frequency magnetic field generated from the second induction heating coil 12 and the third induction heating coil 13 causes communication of wireless communication between the primary side communication device 47 and the secondary side communication device 85.
  • the primary side communication device 47 and the secondary side communication device 85 are arranged at a position where communication noise is less than the frequency output level.
  • the high-frequency magnetic field generated from the second induction heating coil 12 and the third induction heating coil 13 when the high-frequency current supplied to the second induction heating coil 12 and the third induction heating coil 13 is the maximum value.
  • the primary-side communication device 47 and the secondary-side communication device 85 are arranged at a position where the sum of the intensity becomes smaller than the radio wave intensity at the communication frequency with the primary-side communication device 47 and the secondary-side communication device 85.
  • the primary side communication device 47 and the secondary side communication device 85 are configured such that the strength of the high frequency magnetic field generated from the plurality of induction heating coils is the same as that of the primary side communication device 47 and the secondary side communication. It is arranged at a position that is smaller than the radio field intensity in the wireless communication with the device 85. For this reason, the influence of the communication noise resulting from the high frequency magnetic field which generate
  • FIG. 16 is a top view which shows typically the modification of the arrangement position of the induction heating coil of the induction heating cooking appliance which concerns on Embodiment 2 of this invention.
  • the first induction heating port 1 first induction heating coil 11
  • the second induction heating port 2 second induction heating coil 12
  • the third induction heating port 3 A third induction heating coil 13
  • FIG. 16 shows typically the modification of the arrangement position of the induction heating coil of the induction heating cooking appliance which concerns on Embodiment 2 of this invention.
  • the first induction heating port 1 first induction heating coil 11
  • the second induction heating port 2 second induction heating coil 12
  • the third induction heating port 3 A third induction heating coil 13
  • FIG. 16 the example which provided the primary side communication apparatus 47 in each near side of each induction heating port is shown.
  • Embodiment 3 FIG.
  • a configuration including a plurality of primary side communication devices 47 will be described.
  • the configuration and operation of the induction heating cooker 100 according to the third embodiment will be described focusing on differences from the first and second embodiments.
  • FIG. 17 is a top view which shows typically the position of the primary side communication apparatus of the induction heating cooking appliance concerning Embodiment 3 of this invention.
  • the induction heating cooker 100 according to the third embodiment includes a plurality of primary side communication devices 47 for one heating port.
  • the plurality of primary side communication devices 47 are arranged at positions that do not overlap with the terminal block 70 in the vertical direction, as in the first embodiment.
  • the plurality of primary communication devices 47 are arranged at positions other than the region 77. For example, as shown in FIG. 17, it arrange
  • Each of the plurality of primary side communication devices 47 performs wireless communication when the secondary side communication device 85 of the power receiving device 200 is disposed at a communicable distance.
  • the power receiving apparatus 200 may be provided with a plurality of secondary side communication apparatuses 85.
  • a plurality of primary communication devices 47 are connected to the control unit 45, and communication information is transmitted and received using the plurality of primary communication devices 47.
  • Other configurations such as the magnetic shield ring 75 and the magnetic shield plate 32a are the same as those in the first embodiment.
  • the control unit 45 acquires information on the radio wave intensity from each of the plurality of primary side communication devices 47 and selectively performs communication according to the radio wave intensity. For example, the control unit 45 performs wireless communication using the primary side communication device 47 whose radio wave intensity is equal to or higher than a preset level among the plurality of primary side communication devices 47. Further, for example, the control unit 45 selects a primary side communication device 47 having the maximum radio wave intensity from among a plurality of primary side communication devices 47 and performs wireless communication using the primary side communication device 47. Further, for example, the control unit 45 selects a part of the primary side communication devices 47 excluding the primary side communication device 47 having the smallest radio field intensity among the plurality of primary side communication devices 47, and this primary side communication device 47.
  • Wireless communication is performed using Further, for example, the control unit 45 selects a part of the primary side communication devices 47 excluding the primary side communication device 47 whose radio field intensity is lower than a preset level from among the plurality of primary side communication devices 47, and selects the primary side communication devices 47. Wireless communication is performed using the side communication device 47.
  • the subsequent operation controls the operation of the induction heating cooker 100 including the drive circuit 50 according to the information acquired from the power receiving device 200 by wireless communication, as in the first embodiment.
  • the control unit 45 controls the operation of the induction heating cooker 100 based on the communication information of at least one primary communication device 47 among the plurality of primary communication devices 47. .
  • the primary side communication apparatus 47 arrange
  • Embodiment 4 FIG.
  • the power receiving device 200 includes a housing that houses the power receiving coil 65 and a housing that houses the secondary communication device 85
  • the configuration of induction heating cooker 100 according to the fourth embodiment will be described focusing on differences from the first to third embodiments.
  • FIG. 18 is a cross-sectional view showing a configuration of an induction heating cooker (non-contact power feeding device) according to Embodiment 4 of the present invention and a power receiving device placed on the top plate of the induction heating cooker.
  • the first induction heating coil 11 is constituted by an inner peripheral coil 11a and a plurality of outer peripheral coils 11d.
  • the inner peripheral coil 11a and the outer peripheral coil 11d are driven by separate drive circuits 50, respectively.
  • a magnetic shield ring 75 is disposed on the outer periphery of the first induction heating coil 11.
  • the primary side communication device 47 is arranged on the outer peripheral side of the magnetic shield ring 75 and at a position that does not overlap the terminal block 70.
  • a magnetic shielding plate 32 a is provided on the lower surface of the primary side communication device 47.
  • the power receiving device 200 is a device that cooks an object 95 such as a fish.
  • a first housing 90 and a second housing 91 are provided adjacent to each other. Inside the first housing 90, a heating chamber in which the cooking object 95 is stored is formed.
  • a magnetic body 60a, a cooking table 60b, an upper surface heater 61, a temperature sensor 63, and a power receiving coil 65 are arranged.
  • the magnetic body 60a is made of, for example, a magnetic material such as iron and is induction-heated by a high frequency magnetic field from the inner peripheral coil 11a.
  • the cooking table 60b is disposed in contact with the upper surface of the magnetic body 60a, and heats the cooking object 95 by heat transfer from the magnetic body 60a.
  • the power receiving coil 65 receives power from the outer peripheral coil 11d.
  • the upper surface heater 61 is connected to the power receiving coil 65 and generates heat by the power received by the power receiving coil 65.
  • the temperature sensor 63 is disposed in the heating chamber of the first housing 90 and detects the temperature in the heating chamber. Information on the temperature detected by the temperature sensor 63 is transmitted by the secondary communication device 85. Note that in Embodiment 4, a device that performs induction heating and heater heating will be described as the power receiving device 200, but the present invention is not limited to this.
  • a secondary communication device 85 is provided inside the second housing 91.
  • a magnetic shield 32 b is provided on the upper surface of the secondary side communication device 85.
  • the second casing 91 is formed at a position including the primary communication device 47 in the vertical direction when the power receiving device 200 is placed on the heating port of the top plate 4.
  • the primary side communication device 47 is disposed on the near side with respect to the heating port of the top plate 4, and the second casing 91 is adjacent to the first casing 90 on the near side of the first casing 90.
  • the second housing 91 is configured such that the secondary side communication device 85 and the primary side communication device 47 housed in the second housing 91 are opposed or close to each other with the top plate 4 interposed therebetween.
  • the second casing 91 is not provided in the regions 77 and 78 between the adjacent induction heating coils.
  • the second casing 91 is formed to be lower than the first casing 90. That is, when the power receiving device 200 is viewed from the side, the second casing 91 has a shape protruding to the outside of the first casing 90.
  • the material of the portion where the first housing 90 and the second housing 91 are adjacent may be formed of, for example, a conductor to improve the magnetic shielding effect.
  • a secondary display operation unit 84 is disposed on the upper surface of the second housing 91.
  • the secondary display operation unit 84 serves as both an operation unit that performs an input operation on the power receiving device 200 and a display unit that performs display related to the operation of the power receiving device. Note that the input operation and the display unit may be provided separately.
  • the secondary display operation unit 84 includes, for example, a mechanical switch such as a push switch and a tact switch, a touch switch that detects an input operation based on a change in electrode capacitance, and the like.
  • the secondary display operation unit 84 includes, for example, an LCD (Liquid Crystal Device) and an LED as a display unit.
  • the arrangement of the secondary display operation unit 84 is not limited to this, and may be arranged at an arbitrary position of the second casing 91.
  • the secondary display operation unit 84 may be divided into an operation unit and a display unit, the operation unit may be disposed on the side surface of the second housing 91, and the operation unit may be disposed on the upper surface of the second housing 91. good.
  • the secondary display operation unit 84 is arranged in the second casing 91. For this reason, the 2nd housing

Abstract

この発明に係る非接触電力伝送装置は、受電装置に電力を伝送するための非接触電力伝送装置であって、受電装置が載置される支持体と、支持体の下方に配置され、高周波電流が供給されることによって高周波磁場を発生するコイルと、支持体の下方に配置され、受電装置と無線通信を行う通信装置と、導電体により形成され、通信装置とコイルとの間に配置された第1防磁部材と、導電体又は磁性体により形成され、通信装置の下面及び側面の少なくとも一方に配置された第2防磁部材と、を備えたものである。

Description

非接触電力伝送装置、及び非接触電力伝送システム
 本発明は、受電装置に電力を伝送するための非接触電力伝送装置、及び非接触電力伝送システムに関するものである。
 従来の非接触電力伝送装置においては、所定の信号の送受信を行う加熱側送受信部(送電側送受信部)を備え、非接触受電装置の受電側送受信部との間で無線通信を行うものが提案されている(例えば、特許文献1参照)。
国際公開第2013/094174号
 特許文献1に記載の非接触電力伝送装置は、送電側送受信部と受電側送受信部とが天板を挟んで対向して配置されている。また、送電側送受信部は、受電コイルへ電力を給電する加熱コイル(一次コイル)の外側に配置されている。
 しかしながら、非接触電力伝送装置の一次コイルからは高周波磁場が発生するため、この高周波磁場の影響によって、送電側送受信部と受電側送受信部との間の無線通信に障害が生じ易いという問題点があった。
 本発明は、上記のような課題を解決するためになされたもので、受電装置と非接触電力伝送装置との間の無線通信の障害を抑制することができる非接触電力伝送装置、及び非接触電力伝送システムを得るものである。
 本発明に係る非接触電力伝送装置は、受電装置に電力を伝送するための非接触電力伝送装置であって、前記受電装置が載置される支持体と、前記支持体の下方に配置され、高周波電流が供給されることによって高周波磁場を発生するコイルと、前記支持体の下方に配置され、前記受電装置と無線通信を行う通信装置と、導電体により形成され、前記通信装置と前記コイルとの間に配置された第1防磁部材と、導電体又は磁性体により形成され、前記通信装置の下面及び側面の少なくとも一方に配置された第2防磁部材と、を備えたものである。
 本発明に係る非接触電力伝送装置は、通信装置とコイルとの間に配置された第1防磁部材と、通信装置の下面及び側面の少なくとも一方に配置された第2防磁部材とを備える。このため、受電装置と通信装置との間の無線通信の障害を抑制することができる。
本発明の実施の形態1に係る誘導加熱調理器を示す分解斜視図である。 本発明の実施の形態1に係る誘導加熱調理器の誘導加熱コイルを示す平面図である。 本発明の実施の形態1に係る誘導加熱調理器(非接触給電装置)、及び、該誘導加熱調理器の天板上に載置された受電装置の構成を示すブロック図である。 本発明の実施の形態1に係る誘導加熱調理器の駆動回路と受電装置の回路構成を示す図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を示す模式図である。 本発明の実施の形態1に係る受電装置の防磁板の変形例を示す模式図である。 本発明の実施の形態1に係る誘導加熱調理器及び受電装置の防磁板の変形例を示す模式図である。 本発明の実施の形態1に係る誘導加熱調理器及び受電装置の防磁板の変形例を示す模式図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す斜視図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す上面図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す縦断面図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す斜視図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す上面図である。 本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す縦断面図である。 本発明の実施の形態2に係る誘導加熱調理器の一次側通信装置の位置を模式的に示す上面図である。 本発明の実施の形態2に係る誘導加熱調理器の誘導加熱コイルの配置位置の変形例を模式的に示す上面図である。 本発明の実施の形態3に係る誘導加熱調理器の一次側通信装置の位置を模式的に示す上面図である。 本発明の実施の形態4に係る誘導加熱調理器(非接触給電装置)、及び、該誘導加熱調理器の天板上に載置された受電装置の構成を示す断面図である。
実施の形態1.
(構成)
 図1は、本発明の実施の形態1に係る誘導加熱調理器を示す分解斜視図である。
 図1に示すように、誘導加熱調理器100の上部には、鍋等の被加熱物5が載置される天板4を有している。本実施の形態1に係る誘導加熱調理器100においては、図3等で後述するように、天板4上に受電装置200も載置される。本実施の形態1に係る誘導加熱調理器100は、受電装置200に電力を伝送する非接触電力装置として機能する。
 天板4には、被加熱物5を誘導加熱するための加熱口として、第一の誘導加熱口1及び第二の誘導加熱口2を備えている。第一の誘導加熱口1及び第二の誘導加熱口2は、天板4の手前側において、横方向に並設されている。また、本実施の形態1に係る誘導加熱調理器100は、3口目の加熱口として、第三の誘導加熱口3も備えている。第三の誘導加熱口3は、第一の誘導加熱口1及び第二の誘導加熱口2の奥側であって、天板4の横方向のほぼ中央位置に設けられている。
 第一の誘導加熱口1、第二の誘導加熱口2及び第三の誘導加熱口3のそれぞれの下方には、加熱口に載置された被加熱物を加熱する第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13が設けられている。
 第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13は、駆動回路50により高周波電力が供給される。駆動回路50により高周波電力が供給されることで、第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13からは高周波磁界が発生する。なお、以下の説明において、第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13を区別せずに「誘導加熱コイル」とも称する。
 また、第一の誘導加熱コイル11の配線71は、端子台70を介して、駆動回路50の配線と接続される。なお、図示はしていないが、第二の誘導加熱コイル12の配線と駆動回路50の配線とを接続する端子台と、第三の誘導加熱コイル13の配線と駆動回路50の配線とを接続する端子台が設けられている。なお、駆動回路50の詳細構成については、後述する。
 第一の誘導加熱コイル11の外周には、環状に形成された防磁リング75が設けられている。また、第二の誘導加熱コイル12の外周には、環状に形成された防磁リング76が設けられている。図示はしていないが、第三の誘導加熱コイル13の外周には、環状に形成された防磁リングが設けられている。
 天板4は、全体が耐熱強化ガラス又は結晶化ガラス等の赤外線を透過する材料で構成されている。また、天板4には、第一の誘導加熱コイル11、第二の誘導加熱コイル12、及び第三の誘導加熱コイル13の加熱範囲(加熱口)に対応して、鍋の大まかな載置位置を示す円形の鍋位置表示が、塗料の塗布や印刷等により形成されている。
 天板4の手前側には、第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13で被加熱物5等を加熱する際の投入火力(投入電力)及び調理メニュー(湯沸しモード、揚げ物モード等)等を設定するための入力装置として、操作部40が設けられている。なお、本実施の形態1では、誘導加熱コイル毎に操作部40を分けて、操作部40a、操作部40b及び操作部40cとしている。
 また、操作部40の近傍には、報知手段として、各誘導加熱コイルの動作状態、操作部40からの入力及び操作内容等を表示する表示部41が設けられている。なお、本実施の形態1では、誘導加熱コイル毎に表示部41を分けて、表示部41a、表示部41b及び表示部41cとしている。
 なお、操作部40及び表示部41は、上述のように誘導加熱コイル毎に設けられている場合、及び、各誘導加熱コイル共通のものとして設ける場合等、特に限定するものではない。ここで、操作部40は、例えばプッシュスイッチ及びタクトスイッチ等の機械的なスイッチ、電極の静電容量の変化により入力操作を検知するタッチスイッチ等により構成されている。また、表示部41は、例えばLCD(Liquid Crystal Device)及びLED等で構成されている。
 なお、操作部40と表示部41とは、これらを一体に構成した操作表示部43としても良い。操作表示部43は、例えば、LCDの上面にタッチスイッチを配置したタッチパネル等によって構成される。
 第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13は、例えば次のように構成されている。なお、第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13は、同様の構成となっている。このため、代表して第一の誘導加熱コイル11の構成を以下に説明する。
 図2は、本発明の実施の形態1に係る誘導加熱調理器の誘導加熱コイルを示す平面図である。
 第一の誘導加熱コイル11は、略同心円状に配置された複数のコイルで構成されている。例えば、第一の誘導加熱コイル11は、略同心円状に配置された4重のコイル11-1~11-4で構成されている。これらコイル11-1~11-4は、ひと繋ぎに接続されている。また、これらコイル11-1~11-4は、絶縁皮膜された任意の金属(例えば銅、アルミ等)からなる導電線を巻き付けることにより構成される。
 なお、図2に示す例では、第一の誘導加熱コイル11が4重のコイル11-1~11-4で構成されているが、第一の誘導加熱コイル11は、略同心円状に巻かれた少なくともいくつかの分割されたコイルであっても良い。
 防磁リング75は、第一の誘導加熱コイル11と間隔を置いて、第一の誘導加熱コイル11の外周を囲むように環状に形成されている。防磁リング75は、導電体により形成されている。防磁リング75は、第一の誘導加熱コイル11の外周を囲むことで、第一の誘導加熱コイル11に高周波電流が流れた際に、上方の被加熱物5に到達しない高周波磁場が、第一の誘導加熱コイル11の外部に漏れ難くするためのものである。
 例えば、防磁リング75は、一方向に長い金属部材を円状に曲げ、端部をカシメるなどの圧接または溶接した結合部を設けることで形成し、電気的に導通したものになっている。従って、第一の誘導加熱コイル11により高周波磁場が発生すると、防磁リング75にも渦電流が流れ、防磁リング75の内部抵抗により熱へと変換されることにより、漏れ磁束を抑制することとなる。防磁リング75の材質としては、例えばアルミニウム又は銅などが挙げられる。なお、防磁リング75の上下方向の幅は、例えば第一の誘導加熱コイル11の幅と略同じ幅に形成されている。コイル幅よりも幅広であっても良いことは言うまでもない。
 再び、図1に示すように、誘導加熱調理器100の内部には、駆動回路50を含め誘導加熱調理器100全体の動作を制御するための制御部45が収納されている。
 制御部45は、専用のハードウェア、又はメモリ48(図3参照)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。
 制御部45が専用のハードウェアである場合、制御部45は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、又はこれらを組み合わせたものが該当する。制御部45が実現する各機能部のそれぞれを、個別のハードウェアで実現しても良いし、各機能部を一つのハードウェアで実現しても良い。
 制御部45がCPUの場合、制御部45が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリ48に格納される。CPUは、メモリ48に格納されたプログラムを読み出して実行することにより、制御部45の各機能を実現する。ここで、メモリ48は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。
 なお、制御部45の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしても良い。
 また、天板4の下方には、天板4上に載置された受電装置200と無線通信を行う一次側通信装置47が設けられている。一次側通信装置47は、例えば、NFC(Near Field Communication:近距離無線通信)、Wi-Fi(商標登録)、Bluetooth(登録商標)、など、任意の通信規格に適合した無線通信インターフェースによって構成される。例えば、一次側通信装置47は、NFC規格におけるNFCタグにより構成される。
 図3は、本発明の実施の形態1に係る誘導加熱調理器(非接触給電装置)、及び、該誘導加熱調理器の天板上に載置された受電装置の構成を示すブロック図である。この図3は、誘導加熱調理器100の天板4の上の第一の誘導加熱口1に受電装置200が載置されている状態を示している。非接触電力伝送装置として機能する誘導加熱調理器100と、受電装置200とにより非接触電力伝送システムを構成する。
 図3に示すように、誘導加熱調理器100の一次側通信装置47は、天板4の下方において、第一の誘導加熱コイル11及び防磁リング75の外周の外側に配置されている。即ち、一次側通信装置47と第一の誘導加熱コイル11との間に防磁リング75が配置されている。
 また、一次側通信装置47は、第一の誘導加熱コイル11の配線71と駆動回路50の配線72とを接続する端子台70とは、上下方向において重ならない位置に配置されている。端子台70には、駆動回路50から第一の誘導加熱コイル11へ供給される高周波電流が流れるため、端子台70の周囲には高周波磁場が発生し、無線通信のノイズの影響となる。一次側通信装置47を端子台70とは上下方向において重ならない位置に配置することで、端子台70から発生した高周波磁場が一次側通信装置47へ到達し難くなり、ノイズの影響を低減できる。
 一次側通信装置47の下面には、導電体又は磁性体により形成された防磁板32aが設けられている。防磁板32aは、一次側通信装置47の、受電装置200とは対向しない面に設けられている。防磁板32aは、例えば板状に形成され、一次側通信装置47の下面に接するように配置されている。防磁板32aは、受電装置200側から見た平面視において、一次側通信装置47よりも広い面積を有するのが望ましい。なお、防磁板32aの大きさはこれに限らず、一次側通信装置47の下面の少なくとも一部に設けていればよい。
 防磁板32aの材質としては、例えば磁性体であるフェライトが挙げられる。磁性体により形成された防磁板32aを配置することで、第一の誘導加熱コイル11から発生した高周波磁場が防磁板32aに鎖交し易くなり、一次側通信装置47へ到達する高周波磁場が減少することとなる。
 また、防磁板32aの材質としては、例えば導電体であるアルミニウム又は銅などが挙げられる。導電体により形成された防磁板32aを配置することで、第一の誘導加熱コイル11から発生した高周波磁場が防磁板32aに到達すると、防磁板32aに渦電流が流れ、防磁板32aの内部抵抗により熱へと変換されることにより、一次側通信装置47へ到達する高周波磁場が減少することとなる。
 受電装置200は、例えば、食品の調理を行う調理機器(フライヤー、蒸し器、ロースター、トースター等)である。また例えば、受電装置200は、料理の下準備及び下拵え等を行う調理機器(ブレンダー、ミキサー、ミル、泡だて器、フードプロセッサー等)である。
 受電装置200は、電磁誘導により電力を受電する受電コイル65と、受電コイル65が受電した電力の整流及び平滑化を行う受電回路81と、受電回路81の出力側に接続された負荷回路82と、受電回路81及び負荷回路82の制御を行う二次制御部83とを備えている。
 この受電装置200は、誘導加熱調理器100の天板4の上に載置され、誘導加熱調理器100から非接触で電力を受電する。即ち、誘導加熱調理器100の天板4の下の第一の誘導加熱コイル11に、駆動回路50により高周波電力が供給されることで、第一の誘導加熱コイル11からは高周波磁界が発生する。この高周波磁界を受電装置200の中に設けられた受電コイル65で受け、非接触で受電装置200への給電を行う。
 この際、受電装置200の二次制御部83は、負荷回路82がヒータ負荷の場合、受電コイル65で受けた電力を交流のまま負荷回路82に供給するように、受電回路81を制御する。
 また例えば、二次制御部83は、負荷回路82がモータ負荷の場合、受電コイル65で受けた電力を整流及び平滑し、インバータ回路等で任意の交流に変換して負荷回路82に供給するように、受電回路81を制御する。つまり、負荷回路82がモータ負荷の場合、負荷回路82を可変速駆動する。なお、ヒータ負荷に整流及び平滑して直流を印加しても良い。また、モータ負荷を一定速で駆動しても良いことは言うまでもない。
 なお、受電装置200にも、操作部及び表示部を設けることが好ましい。操作部では、例えば、受電装置200への電力供給の開始及び停止等を操作する。表示部では、例えば、受電装置200の受電状態等を表示する。本実施の形態1では、操作部及び表示部を一体に二次表示操作部84として構成している。
 また、受電装置200は、二次側通信装置85を備えている。二次側通信装置85は、受電装置200が天板4の上に載置され、受電コイル65と第一の誘導加熱コイル11とが対向配置された際、天板4を挟んで一次側通信装置47と対向配置される位置に配置されている。
 二次側通信装置85は、一次側通信装置47の通信規格に適合した無線通信インターフェースによって構成される。二次側通信装置85は、誘導加熱調理器100の一次側通信装置47と無線通信を行う。例えば、二次側通信装置85は、NFC規格におけるNFCリーダにより構成される。一次側通信装置47をNFCタグにより構成し、二次側通信装置85をNFCリーダにより構成することにより、安価な構成により双方向通信を実現できる。
 二次側通信装置85の上面には、導電体又は磁性体により形成された防磁板32bが設けられている。防磁板32bは、二次側通信装置85の、誘導加熱調理器100とは対向しない面に設けられている。防磁板32bは、例えば板状に形成され、二次側通信装置85の上面に接するように配置されている。防磁板32bは、誘導加熱調理器100側から見た平面視において、二次側通信装置85よりも広い面積を有するのが望ましい。なお、防磁板32bの大きさはこれに限らず、二次側通信装置85の上面の少なくとも一部に設けていればよい。
 防磁板32bの材質としては、例えば磁性体であるフェライトが挙げられる。磁性体により形成された防磁板32bを配置することで、第一の誘導加熱コイル11から発生した高周波磁場が防磁板32bに鎖交し易くなり、二次側通信装置85へ到達する高周波磁場が減少することとなる。
 また、防磁板32bの材質としては、例えば導電体であるアルミニウム又は銅などが挙げられる。導電体により形成された防磁板32bを配置することで、第一の誘導加熱コイル11から発生した高周波磁場が防磁板32bに到達すると、防磁板32bに渦電流が流れ、防磁板32bの内部抵抗により熱へと変換されることにより、二次側通信装置85へ到達する高周波磁場が減少することとなる。
 一次側通信装置47及び二次側通信装置85は、第一の誘導加熱コイル11から発生した高周波磁場の強度が、一次側通信装置47及び二次側通信装置85との無線通信における電波強度よりも小さくなる位置に配置されている。即ち、第一の誘導加熱コイル11から発生した高周波磁場に起因する通信ノイズが、一次側通信装置47と二次側通信装置85との間の無線通信の通信周波数の出力レベル未満の通信ノイズになる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 例えば、第一の誘導加熱コイル11に供給する高周波電流が最大値である場合に、第一の誘導加熱コイル11から発生する高周波磁場の強度が、一次側通信装置47及び二次側通信装置85との通信周波数における電波強度よりも小さくなる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 また、図3では図示していないが、受電コイル65は、例えば、第一の誘導加熱コイル11と同様の構成となっている。
 また、図3に図示はしていないが、第一の誘導加熱コイル11の下部に磁性体としてフェライトを配置する。フェライトの形状は、例えば平板形状である。第一の誘導加熱コイル11を構成するコイル間に挿入される突起を平板状のフェライト上面に設け、フェライトの縦断面形状を凸型、F型又はE型等にしても良い。また、図3に図示はしていないが、受電コイル65の上部に磁性体としてフェライトを配置する。フェライトの形状は、例えば平板形状である。受電コイル65を構成するコイル間に挿入される突起を平板状のフェライト下面に設け、フェライトの縦断面形状を凸型、F型又はE型等にしても良い。
 図4は、本発明の実施の形態1に係る誘導加熱調理器の駆動回路と受電装置の回路構成を示す図である。この図4は、第一の誘導加熱コイル11の駆動回路50と制御部45と制御部45内の負荷判定手段と受電装置200の回路構成を示している。第二の誘導加熱コイル12及び第三の誘導加熱コイル13に接続される駆動回路と制御部及び負荷判定手段も、図4に示す駆動回路50及び制御部45と同様の構成となっている。
 駆動回路50は、ハーフブリッジ駆動回路であり、直流電源回路22と、インバータ回路123と、送電側共振コンデンサ24とを備える。
 入力電流検出手段23は、例えば電流センサで構成され、交流電源(商用電源)21から直流電源回路22へ入力される電流を検出し、入力電流値に相当する電圧信号を制御部45へ出力する。
 直流電源回路22は、ダイオードブリッジ22a、リアクタ22b及び平滑コンデンサ22cを備え、交流電源21から入力される交流電圧を直流電圧に変換して、インバータ回路123へ出力する。
 インバータ回路123は、スイッチング素子としてのIGBT123a,123bが直流電源回路22の出力に直列に接続されたハーフブリッジ型のインバータである。インバータ回路123は、フライホイールダイオードとしてダイオード123c,123dがそれぞれIGBT123a,123bと並列に接続されている。IGBT123aとIGBT123bは、制御部45から出力される駆動信号によりオンオフ駆動される。制御部45は、IGBT123aをオンさせている間はIGBT123bをオフ状態にし、IGBT123aをオフさせている間はIGBT123bをオン状態にし、交互にオンオフする駆動信号を出力する。これにより、インバータ回路123は、直流電源回路22から出力される直流電力を規定周波数の交流電力に変換して、第一の誘導加熱コイル11と送電側共振コンデンサ24からなる共振回路に電力を供給する。なお、規定周波数の交流電力とは、例えば、20kHz~100kHz程度の高周波の交流電力である。
 送電側共振コンデンサ24は、第一の誘導加熱コイル11に直列接続されており、この共振回路は第一の誘導加熱コイル11のインダクタンス及び送電側共振コンデンサ24の容量等に応じた共振周波数を有する。
 このように駆動回路50を構成することで、第一の誘導加熱コイル11には高周波電流が流れ、流れる高周波電流により発生する高周波磁束によって第一の誘導加熱コイル11の直上の天板4上に載置された受電装置200の受電コイル65に非接触で電力伝送することができる。
 なお、スイッチング素子であるIGBT123a,123bは、例えばシリコン系からなる半導体で構成されているが、炭化珪素、あるいは窒化ガリウム系材料等のワイドバンドギャップ半導体でスイッチング素子を形成しても良い。スイッチング素子にワイドバンドギャップ半導体を用いることで、スイッチング素子の損失を減らすことができ、またスイッチング周波数(駆動周波数)を高周波(高速)にしても駆動回路50の放熱が良好であるため、駆動回路50の放熱フィンを小型にすることができ、駆動回路50の小型化および低コスト化を実現することができ、更に高周波で駆動してもスイッチング損失が少なく、効率良く非接触給電をすることが可能となる。
 コイル電流検出手段25は、第一の誘導加熱コイル11と送電側共振コンデンサ24とからなる共振回路に接続されている。コイル電流検出手段25は、例えば、電流センサで構成され、第一の誘導加熱コイル11に流れる電流を検出し、コイル電流値に相当する電圧信号を制御部45に出力する。
 なお、図4では、ハーフブリッジ駆動回路を示したが、4つのIGBTと4つのダイオードから構成されるフルブリッジ駆動回路でも良いことは言うまでもない。
 受電装置200には、受電コイル65と共に共振回路を形成する受電側共振コンデンサ62が設けられている。
 また、制御部45には、負荷判定部46を備えている。負荷判定部46は、インバータ回路123の駆動周波数を変化させた際の、インバータ回路123の出力側のインピーダンス特性が共振特性を有するか否かにより、天板4上に載置された負荷が受電装置200であるか否かを判定する。
 なお、第一の誘導加熱コイル11、第二の誘導加熱コイル12、第三の誘導加熱コイル13は、本発明の「コイル」に相当する。
 また、天板4は、本発明の「支持体」に相当する。
 また、制御部45は、本発明の「制御装置」に相当する。
 また、「防磁リング75」は、本発明における「第1防磁部材」に相当する。
 また、「防磁板32a」は、本発明における「第2防磁部材」に相当する。
 また、「防磁板32b」は、本発明における「第3防磁部材」に相当する。
 また、「一次側通信装置47」は、本発明における「通信装置」に相当する。
 また、「二次側通信装置85」は、本発明における「第2通信装置」に相当する。
(動作)
 次に、本実施の形態1における誘導加熱調理器100の加熱動作と電力伝送動作とについて説明する。
(加熱動作)
 使用者は、被加熱物5を誘導加熱調理器100の加熱口に載置し、操作部40により加熱動作を開始させる入力操作を行う。
 負荷判定部46の判定結果が被加熱物5である場合、制御部45は、被加熱物5を誘導加熱する加熱動作を行う。すなわち、制御部45は、誘導加熱させる火力に応じて駆動回路50を制御して、第一の誘導加熱コイル11に高周波電力を供給する加熱動作を行う。
 これにより、天板4上に配置された被加熱物5が誘導加熱される。
(電力伝送動作)
 使用者は、受電装置200を誘導加熱調理器100の加熱口に載置し、操作部40により電力伝送動作を開始させる入力操作を行う。
 負荷判定部46は、天板4上に載置された負荷が受電装置200であるか否かを判定する。負荷判定部46の判定結果が受電装置200である場合、制御部45は、受電装置200に電力を伝送する電力伝送動作を行う。すなわち、制御部45は、受電コイル65へ送電する電力に応じて駆動回路50を制御して、第一の誘導加熱コイル11に高周波電力を供給する。
 これにより、第一の誘導加熱コイル11から供給された高周波電力は、受電装置200に配置された受電コイル65により受電される。受電された電力は、受電回路81から負荷回路82へ供給され、負荷回路82が駆動する。
 また、受電装置200の二次側通信装置85は、誘導加熱調理器100の一次側通信装置47と無線通信を行う。例えば、受電装置200の機器の種類を示す情報、及び定格電力など機器の仕様に関する情報などを誘導加熱調理器100へ送信する。誘導加熱調理器100の制御部45は、受電装置200から取得した情報に応じて、駆動回路50を制御し、天板4に載置された受電装置200に適した電力伝送を行う。
 また、例えば、受電装置200の二次制御部83は、受電コイル65に電流が上限値を超えた場合に、受電停止を要求する情報を二次側通信装置85に送信させる。そして、誘導加熱調理器100の制御部45は、受電停止を要求する情報を取得すると、電力伝送動作を停止させる。
 このように、誘導加熱調理器100(非接触給電装置)と受電装置200とが双方向通信を行うことにより、誘導加熱調理器100および受電装置200の制御性が良くなり、また保護機能も向上することができる。
 以上のように本実施の形態1の誘導加熱調理器100においては、天板4の下方に配置された一次側通信装置47と、一次側通信装置47と誘導加熱コイルとの間に配置された防磁リング75と、一次側通信装置47の下面に配置された防磁板32aとを備える。
 このため、誘導加熱コイルから一次側通信装置47へ到達する高周波磁場を減少させることができる。よって、誘導加熱コイルから発生した高周波磁場に起因する通信ノイズの影響を低減することができ通信品質を向上することができる。したがって、一次側通信装置47と受電装置200の二次側通信装置85との間の無線通信の障害を抑制することができる。
 また、本実施の形態1においては、防磁リング75は、環状に形成され、誘導加熱コイルの外周を囲む構成である。
 このため、誘導加熱コイルから一次側通信装置47へ到達する高周波磁場を減少させることができる。
 また、本実施の形態1においては、一次側通信装置47は、上下方向において端子台70とは重ならない位置に配置されている。
 このため、端子台70から発生した高周波磁場が一次側通信装置47へ到達し難くなり、ノイズの影響を低減できる。
 また、本実施の形態1においては、一次側通信装置47及び二次側通信装置85は、誘導加熱コイルから発生した高周波磁場の強度が、一次側通信装置47と二次側通信装置85との間の無線通信における電波強度よりも小さくなる位置に配置されている。
 このため、誘導加熱コイルから発生した高周波磁場に起因する通信ノイズの影響を低減することができ、一次側通信装置47と二次側通信装置85との間の無線通信の障害を抑制することができる。
(変形例1)
 誘導加熱調理器100及び受電装置200の防磁板の変形例について説明する。
 図5は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を示す模式図である。
 図5に示すように、導電体又は磁性体により形成された防磁板33aを、一次側通信装置47の側面に設けても良い。
 防磁板33aは、一次側通信装置47の、第一の誘導加熱コイル11と対向する側面に配置されている。防磁板33aは、例えば板状に形成され、一次側通信装置47の側面に接するように配置されている。防磁板33aは、第一の誘導加熱コイル11側から見た平面視において、一次側通信装置47よりも広い面積を有するのが望ましい。なお、防磁板33aの大きさはこれに限らず、一次側通信装置47の側面の少なくとも一部に設けていればよい。
 このような構成においても、誘導加熱コイルから一次側通信装置47へ到達する高周波磁場を減少させることができる。
 また、防磁板33aは、上端が第一の誘導加熱コイル11の上端よりも上に配置されている。例えば図5に示すように、防磁板33aの上端が第一の誘導加熱コイル11の上端よりも距離L1だけ上に配置されている。なお、防磁板33aの上端を天板4の底面に接するように配置しても良い。
 このような配置により、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の側方及び上方側から到達し難くすることができる。
 また、防磁板33aは、下端が第一の誘導加熱コイル11の下端よりも下に配置されている。例えば図5に示すように、防磁板33aの下端が第一の誘導加熱コイル11の下端よりも距離L2だけ下に配置されている。
 このような配置により、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の側方及び下方側から到達し難くすることができる。
 図6は、本発明の実施の形態1に係る受電装置の防磁板の変形例を示す模式図である。
 図6に示すように、導電体又は磁性体により形成された防磁板33bを、二次側通信装置85の側面に設けても良い。
 防磁板33bは、二次側通信装置85の、受電コイル65と対向する側面に配置されている。防磁板33bは、例えば板状に形成され、二次側通信装置85の側面に接するように配置されている。防磁板33bは、受電コイル65側から見た平面視において、二次側通信装置85よりも広い面積を有するのが望ましい。なお、防磁板33bの大きさはこれに限らず、二次側通信装置85の側面の少なくとも一部に設けていればよい。
 このような構成においても、誘導加熱コイルから二次側通信装置85へ到達する高周波磁場を減少させることができる。
 また、防磁板33bは、上端が受電コイル65の上端よりも上に配置されている。例えば図6に示すように、防磁板33bの上端が受電コイル65の上端よりも距離M2だけ上に配置されている。
 このような配置により、誘導加熱コイルから発生した高周波磁場が、二次側通信装置85の側方及び上方側から到達し難くすることができる。
 また、防磁板33bは、下端が受電コイル65の下端よりも下に配置されている。例えば図6に示すように、防磁板33bの下端が受電コイル65の下端よりも距離M1だけ下に配置されている。なお、防磁板33bの下端を受電装置200の筐体の底面に接するように配置しても良い。
 このような配置により、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の側方側から到達し難くすることができる。
(変形例2)
 図7は、本発明の実施の形態1に係る誘導加熱調理器及び受電装置の防磁板の変形例を示す模式図である。
 図7に示すように、一次側通信装置47の下面に防磁板32aを設け、一次側通信装置47の、第一の誘導加熱コイル11と対向する側面に防磁板33aを設けても良い。なお、防磁板32aは、一次側通信装置47の下面と略同じ面積に形成しても良い。また、防磁板33aは、一次側通信装置47の側面と略同じ面積に形成しても良い。
 また、二次側通信装置85の上面に防磁板32bを設け、二次側通信装置85の、受電コイル65と対向する側面に防磁板33bを設けても良い。なお、防磁板32bは、二次側通信装置85の上面と略同じ面積に形成しても良い。また、防磁板33bは、二次側通信装置85の側面と略同じ面積に形成しても良い。
 このような構成においても、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の側方及び下方側から到達し難くすることができる。また、誘導加熱コイルから発生した高周波磁場が、二次側通信装置85の側方及び上方側から到達し難くすることができる。
(変形例3)
 図8は、本発明の実施の形態1に係る誘導加熱調理器及び受電装置の防磁板の変形例を示す模式図である。
 図8に示すように、一次側通信装置47の下面に防磁板32aを設け、一次側通信装置47の、側面を囲むように防磁板33aを設けても良い。なお、防磁板32aは、一次側通信装置47の下面と略同じ面積に形成しても良い。また、防磁板33aは、一次側通信装置47の各側面と略同じ面積に形成しても良い。なお、防磁板33aは、例えば筒状に形成しても良いし、平板状の部材を組み合わせても良い。
 また、二次側通信装置85の上面に防磁板32bを設け、二次側通信装置85の側面を囲むように防磁板33bを設けても良い。なお、防磁板32bは、二次側通信装置85の上面と略同じ面積に形成しても良い。また、防磁板33bは、二次側通信装置85の各側面と略同じ面積に形成しても良い。なお、防磁板33bは、例えば筒状に形成しても良いし、平板状の部材を組み合わせても良い。
 このような構成においても、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の側方及び下方側から到達し難くすることができる。また、誘導加熱コイルから発生した高周波磁場が、二次側通信装置85の側方及び上方側から到達し難くすることができる。
 なお、一次側通信装置47の側面のうち、一部の側面のみに防磁板33aを設けても良い。例えば、一次側通信装置47の側面のうち、第一の誘導加熱コイル11と対向する側面、及び第一の誘導加熱コイル11と対向する側面とは反対側の側面にのみ防磁板33aを設けてもよい。
 また、二次側通信装置85の側面のうち、一部の側面のみに防磁板33bを設けても良い。例えば、二次側通信装置85の側面のうち、受電コイル65と対向する側面、及び受電コイル65と対向する側面とは反対側の側面にのみ防磁板33bを設けてもよい。
 なお、変形例1~3における「防磁板33a」は、本発明における「第2防磁部材」に相当する。また、「防磁板33b」は、本発明における「第3防磁部材」に相当する。
(変形例4)
 図9は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す斜視図である。
 図10は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す上面図である。
 図11は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す縦断面図である。
 図9~図11に示すように、防磁リング75は、下端から横方向外側に延びる延出部75aが一体形成されている。延出部75aは、受電装置200側から見た平面視において、一次側通信装置47と略同じ、又は一次側通信装置47よりも広い面積を有する。一次側通信装置47は、防磁リング75の延出部75aの上面に配置される。
 このような構成により、防磁リング75と一体形成された延出部75aが、防磁部材として機能し、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の下方側から到達し難くすることができる。また、防磁部材として機能する延出部75aが防磁リング75と一体形成されているため、部品点数を削減することができる。
 なお、変形例4における「延出部75a」は、本発明における「第2防磁部材」に相当する。
(変形例5)
 図12は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す斜視図である。
 図13は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す上面図である。
 図14は、本発明の実施の形態1に係る誘導加熱調理器の防磁板の変形例を模式的に示す縦断面図である。
 図12~図14に示すように、防磁リング75は、下端から円周方向外側に延びるフランジ部75bが一体形成されている。フランジ部75bは、受電装置200側から見た平面視において、外周と内周との距離が一次側通信装置47の幅と略同じ、又は一次側通信装置47の幅より長く形成されている。一次側通信装置47は、防磁リング75のフランジ部75bの上面に配置される。
 このような構成により、防磁リング75と一体形成されたフランジ部75bが、防磁部材として機能し、誘導加熱コイルから発生した高周波磁場が、一次側通信装置47の下方側から到達し難くすることができる。また、防磁部材として機能するフランジ部75bが防磁リング75と一体形成されているため、部品点数を削減することができる。
 なお、変形例5における「フランジ部75b」は、本発明における「第2防磁部材」に相当する。
実施の形態2.
 本実施の形態2においては、複数の誘導加熱コイルからの高周波磁場の影響を考慮して、一次側通信装置47及び二次側通信装置85を配置する構成について説明する。
 なお、上記実施の形態1と同じ構成には同じ符号を付し説明を省略する。
 図15は、本発明の実施の形態2に係る誘導加熱調理器の一次側通信装置の位置を模式的に示す上面図である。
 図15に示すように、誘導加熱調理器100の天板4には、第一の誘導加熱口1、第二の誘導加熱口2、及び第三の誘導加熱口3を備えている。第一の誘導加熱口1及び第二の誘導加熱口2は、天板4の手前側において横方向に並設されている。第三の誘導加熱口3は、第一の誘導加熱口1及び第二の誘導加熱口2の奥側であって、天板4の横方向のほぼ中央位置に設けられている。また、第一の誘導加熱口1、第二の誘導加熱口2及び第三の誘導加熱口3のそれぞれの下方には、第一の誘導加熱コイル11、第二の誘導加熱コイル12及び第三の誘導加熱コイル13が設けられている。
 このような構成において、複数の誘導加熱コイルが同時に駆動した場合、それぞれの誘導加熱コイルから高周波磁場が発生する。このため、隣接する誘導加熱コイルの間の領域においては、それぞれの誘導加熱コイルから発生した高周波磁場が重畳し、この領域における高周波磁場の強度が大きくなる。すなわち、隣接する誘導加熱コイルの間の領域においては、高周波磁場の影響によって、一次側通信装置47及び二次側通信装置85との間の無線通信に障害が生じ易くなる。
 このようなことから、一次側通信装置47及び二次側通信装置85は、複数の誘導加熱コイルのそれぞれから発生した高周波磁場の強度の合計が、一次側通信装置47及び二次側通信装置85との無線通信における電波強度よりも小さくなる位置に配置されている。
 すなわち、第一の誘導加熱口1(第一の誘導加熱コイル11)と第三の誘導加熱口3(第三の誘導加熱コイル13)との間の領域77の垂直方向には、一次側通信装置47及び二次側通信装置85を配置しない。換言すると、第一の誘導加熱コイル11及び第二の誘導加熱コイル12から発生した高周波磁場に起因する通信ノイズが、一次側通信装置47と二次側通信装置85との間の無線通信の通信周波数の出力レベル未満の通信ノイズになる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 例えば、第一の誘導加熱コイル11及び第三の誘導加熱コイル13に供給する高周波電流が最大値である場合に、第一の誘導加熱コイル11及び第三の誘導加熱コイル13から発生する高周波磁場の強度の合計が、一次側通信装置47及び二次側通信装置85との通信周波数における電波強度よりも小さくなる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 また、第二の誘導加熱口2(第二の誘導加熱コイル12)と第三の誘導加熱口3(第三の誘導加熱コイル13)との間の領域78の垂直方向には、一次側通信装置47及び二次側通信装置85を配置しない。換言すると、第二の誘導加熱コイル12及び第三の誘導加熱コイル13から発生した高周波磁場に起因する通信ノイズが、一次側通信装置47と二次側通信装置85との間の無線通信の通信周波数の出力レベル未満の通信ノイズになる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 例えば、第二の誘導加熱コイル12及び第三の誘導加熱コイル13に供給する高周波電流が最大値である場合に、第二の誘導加熱コイル12及び第三の誘導加熱コイル13から発生する高周波磁場の強度の合計が、一次側通信装置47及び二次側通信装置85との通信周波数における電波強度よりも小さくなる位置に、一次側通信装置47及び二次側通信装置85を配置する。
 以上のように本実施の形態2においては、一次側通信装置47及び二次側通信装置85は、複数の誘導加熱コイルから発生した高周波磁場の強度が、一次側通信装置47と二次側通信装置85との間の無線通信における電波強度よりも小さくなる位置に配置されている。
 このため、複数の誘導加熱コイルから発生した高周波磁場に起因する通信ノイズの影響を低減することができ、一次側通信装置47と二次側通信装置85との間の無線通信の障害を抑制することができる。
(変形例1)
 図16は、本発明の実施の形態2に係る誘導加熱調理器の誘導加熱コイルの配置位置の変形例を模式的に示す上面図である。
 図16に示すように、第一の誘導加熱口1(第一の誘導加熱コイル11)、第二の誘導加熱口2(第二の誘導加熱コイル12)、及び第三の誘導加熱口3(第三の誘導加熱コイル13)を、天板4の横方向に並設しても良い。なお、図16に示す例では、各誘導加熱口のそれぞれの手前側に一次側通信装置47を設けた例を示している。
 このような構成においても、第一の誘導加熱口1(第一の誘導加熱コイル11)と第三の誘導加熱口3(第三の誘導加熱コイル13)との間の領域77の垂直方向には、一次側通信装置47及び二次側通信装置85を配置しない。また、第二の誘導加熱口2(第二の誘導加熱コイル12)と第三の誘導加熱口3(第三の誘導加熱コイル13)との間の領域78の垂直方向には、一次側通信装置47及び二次側通信装置85を配置しない。
 このため、複数の誘導加熱コイルから発生した高周波磁場に起因する通信ノイズの影響を低減することができ、一次側通信装置47と二次側通信装置85との間の無線通信の障害を抑制することができる。
実施の形態3.
 本実施の形態3では、一次側通信装置47を複数備える構成について説明する。
 以下、本実施の形態3における誘導加熱調理器100の構成及び動作を、上記実施の形態1~2との相違点を中心に説明する。
(構成)
 図17は、本発明の実施の形態3に係る誘導加熱調理器の一次側通信装置の位置を模式的に示す上面図である。
 本実施の形態3における誘導加熱調理器100は、一つの加熱口に対して複数の一次側通信装置47を備えている。複数の一次側通信装置47は、上述した実施の形態1と同様に、端子台70とは、上下方向において重ならない位置に配置されている。また、上述した実施の形態2と同様に、複数の一次側通信装置47は、領域77以外の位置に配置されている。例えば図17に示すように、第一の誘導加熱口1(第一の誘導加熱コイル11)の手前側、右側及び左側に配置されている。
 複数の一次側通信装置47は、それぞれ、受電装置200の二次側通信装置85が通信可能な距離に配置された際に無線通信を行う。なお、受電装置200にも、複数の二次側通信装置85を設けても良い。
 制御部45には、複数の一次側通信装置47がそれぞれ接続され、複数の一次側通信装置47を用いて、通信情報の送受信を行う。
 なお、防磁リング75及び防磁板32aなど、その他の構成は上記実施の形態1と同様である。
(動作)
 本実施の形態3における通信動作について説明する。
 天板4の上に受電装置200が載置され、誘導加熱調理器100の動作を開始すると、複数の一次側通信装置47がそれぞれ無線通信の動作を開始する。
 複数の一次側通信装置47のうち、通信可能な距離に二次側通信装置85が存在する場合、その組の一次側通信装置47と二次側通信装置85との間で通信情報が送受信される。この際、一次側通信装置47は、当該一次側通信装置47の無線通信における電波強度の情報を取得し、制御部45へ出力する。
 制御部45は、複数の一次側通信装置47のそれぞれから電波強度の情報を取得し、電波強度に応じて選択的に通信を行う。
 例えば、制御部45は、複数の一次側通信装置47のうち、電波強度が予め設定したレベル以上である一次側通信装置47を用いて無線通信を行う。
 また例えば、制御部45は、複数の一次側通信装置47のうち、電波強度が最大となる一次側通信装置47を選択し、この一次側通信装置47を用いて無線通信を行う。
 また例えば、制御部45は、複数の一次側通信装置47のうち、電波強度が最小となる一次側通信装置47を除いた一部の一次側通信装置47を選択し、この一次側通信装置47を用いて無線通信を行う。
 また例えば、制御部45は、複数の一次側通信装置47のうち、電波強度が予め設定したレベル未満である一次側通信装置47を除いた一部の一次側通信装置47を選択し、この一次側通信装置47を用いて無線通信を行う。
 以降の動作は上記実施の形態1と同様に、無線通信によって受電装置200から取得した情報に応じて、駆動回路50を含む誘導加熱調理器100の動作を制御する。
 以上のように本実施の形態3においては、複数の一次側通信装置47のうち少なくとも1つ一次側通信装置47の通信情報に基づき、制御部45は、誘導加熱調理器100の動作を制御する。
 このため、複数の一次側通信装置47のうち、通信ノイズが少ない位置に配置された一次側通信装置47を選択して無線通信することができる。よって、一次側通信装置47と二次側通信装置85との間の無線通信における通信精度を上げることができる効果を奏する。
実施の形態4.
 本実施の形態4においては、受電装置200が、受電コイル65を収納する筐体と二次側通信装置85を収納する筐体とを備えた構成について説明する。
 以下、本実施の形態4における誘導加熱調理器100の構成を、上記実施の形態1~3との相違点を中心に説明する。
 図18は、本発明の実施の形態4に係る誘導加熱調理器(非接触給電装置)、及び、該誘導加熱調理器の天板上に載置された受電装置の構成を示す断面図である。
 図18において、本実施の形態4の誘導加熱調理器100においては、第一の誘導加熱コイル11を内周コイル11aと複数の外周コイル11dで構成する。内周コイル11aと外周コイル11dは、それぞれ別の駆動回路50により駆動される。
 なお、上記実施の形態1~3と同様に、第一の誘導加熱コイル11の外周には防磁リング75が配置されている。また、一次側通信装置47は、防磁リング75よりも外周側、且つ、端子台70と重ならない位置に配置されている。また、一次側通信装置47の下面には、防磁板32aが設けられている。
 本実施の形態4の受電装置200は、例えば魚などの被調理物95を調理する機器である。受電装置200は、第1筐体90と第2筐体91とが隣接して設けられている。
 第1筐体90の内部には、被調理物95が収納される加熱室が形成されている。受電装置200は、磁性体60aと、調理台60bと、上面ヒータ61と、温度センサ63と、受電コイル65とが配置される。
 磁性体60aは、例えば鉄などの磁性材料により形成され、内周コイル11aからの高周波磁場により誘導加熱される。調理台60bは、磁性体60aの上面に接触して配置され、磁性体60aからの伝熱によって被調理物95を加熱する。受電コイル65は、外周コイル11dから電力を受電する。上面ヒータ61は、受電コイル65と接続され、受電コイル65が受電した電力によって発熱する。温度センサ63は、第1筐体90の加熱室内に配置され、加熱室内の温度を検知する。温度センサ63により検知された温度の情報は、二次側通信装置85によって送信される。
 なお、本実施の形態4では、受電装置200として、誘導加熱とヒータ加熱とを行う機器を説明するが、本発明はこれに限定されない。
 第2筐体91の内部には、二次側通信装置85が設けられている。また、二次側通信装置85の上面には防磁板32bが設けられている。第2筐体91は、受電装置200が天板4の加熱口に載置された際に、上下方向において一次側通信装置47を含む位置に形成されている。例えば、一次側通信装置47は、天板4の加熱口に対して手前側に配置され、第2筐体91は、第1筐体90の手前側に、第1筐体90と隣接して配置される。
 即ち、第2筐体91は、第2筐体91に収納された二次側通信装置85と一次側通信装置47とが、天板4を介して対向又は近接するように構成されている。
 なお、上記実施の形態2と同様に、第2筐体91は、隣接する誘導加熱コイルの間の領域77、78には設けない。
 第2筐体91は、第1筐体90よりも高さが低く形成されている。即ち、受電装置200を側面から見て、第2筐体91が第1筐体90の外側に張り出した形状を有している。
 なお、第1筐体90と第2筐体91とが隣接する部分の材質を、例えば導電体により形成し、防磁効果を向上しても良い。
 第2筐体91の上面には、二次表示操作部84が配置されている。二次表示操作部84は、受電装置200に対する入力操作を行う操作部と、受電装置の動作に関する表示を行う表示部とを兼ねたものである。なお、入力操作と表示部とをそれぞれ別個に設けても良い。
 二次表示操作部84は、操作部として、例えばプッシュスイッチ及びタクトスイッチ等の機械的なスイッチ、電極の静電容量の変化により入力操作を検知するタッチスイッチ等により構成されている。また、二次表示操作部84は、表示部として、例えばLCD(Liquid Crystal Device)及びLED等により構成されている。
 なお、二次表示操作部84の配置はこれに限定されず、第2筐体91の任意の位置に配置しても良い。例えば、二次表示操作部84を操作部と表示部とに分けて構成し、操作部を第2筐体91の側面に配置し、操作部を第2筐体91の上面に配置しても良い。
 以上のように本実施の形態4においては、受電コイル65を収納する第1筐体90と、第1筐体90に隣接して設けられ、二次側通信装置85を収納する第2筐体91とを備えている。
 このため、上記実施の形態1~3の効果に加え、電力の受電に関する構成と無線通信に係る構成とを別々の筐体に配置でき、一次側通信装置47と受電装置200の二次側通信装置85との間の無線通信の障害をさらに抑制することができる。また、例えば受電装置200が加熱調理を行う機器である場合、二次側通信装置85へ伝わりにくくすることができる。
 また、本実施の形態4においては、二次表示操作部84を第2筐体91に配置している。このため、第1筐体90から横に張り出した第2筐体91を有効に活用することができる。
 1 第一の誘導加熱口、2 第二の誘導加熱口、3 第三の誘導加熱口、4 天板、5 被加熱物、11 第一の誘導加熱コイル、11-1~11-4 コイル、11a 内周コイル、11d 外周コイル、12 第二の誘導加熱コイル、13 第三の誘導加熱コイル、21 交流電源、22 直流電源回路、22a ダイオードブリッジ、22b リアクタ、22c 平滑コンデンサ、23 入力電流検出手段、24 送電側共振コンデンサ、25 コイル電流検出手段、32a 防磁板、32b 防磁板、33a 防磁板、33b 防磁板、40 操作部、40a 操作部、40b 操作部、40c 操作部、41 表示部、41a 表示部、41b 表示部、41c 表示部、43 操作表示部、45 制御部、46 負荷判定部、47 一次側通信装置、48 メモリ、50 駆動回路、60a 磁性体、60b 調理台、61 上面ヒータ、62 受電側共振コンデンサ、63 温度センサ、65 受電コイル、70 端子台、71 配線、72 配線、75 防磁リング、75a 延出部、75b フランジ部、76 防磁リング、77 領域、78 領域、81 受電回路、82 負荷回路、83 二次制御部、84 表示操作部、85 二次側通信装置、90 第1筐体、91 第2筐体、95 被調理物、100 誘導加熱調理器、123 インバータ回路、123a IGBT、123b IGBT、123c ダイオード、123d ダイオード、200 受電装置。

Claims (22)

  1.  受電装置に電力を伝送するための非接触電力伝送装置であって、
     前記受電装置が載置される支持体と、
     前記支持体の下方に配置され、高周波電流が供給されることによって高周波磁場を発生するコイルと、
     前記支持体の下方に配置され、前記受電装置と無線通信を行う通信装置と、
     導電体により形成され、前記通信装置と前記コイルとの間に配置された第1防磁部材と、
     導電体又は磁性体により形成され、前記通信装置の下面及び側面の少なくとも一方に配置された第2防磁部材と、
     を備えた非接触電力伝送装置。
  2.  前記第1防磁部材は、環状に形成され、前記コイルの外周を囲む防磁リングである
     請求項1に記載の非接触電力伝送装置。
  3.  前記第2防磁部材は、前記通信装置の、前記コイルと対向する側面に配置された
     請求項1又は2に記載の非接触電力伝送装置。
  4.  前記第2防磁部材は、前記通信装置の側面を囲むように構成された
     請求項1又は2に記載の非接触電力伝送装置。
  5.  前記第2防磁部材は、前記通信装置の側面に配置され、上端が前記コイルの上端よりも上に配置された
     請求項1~4の何れか一項に記載の非接触電力伝送装置。
  6.  前記第2防磁部材は、前記通信装置の側面に配置され、下端が前記コイルの下端よりも下に配置された
     請求項1~5の何れか一項に記載の非接触電力伝送装置。
  7.  前記第1防磁部材と前記第2防磁部材とが一体形成された
     請求項1~6の何れか一項に記載の非接触電力伝送装置。
  8.  前記通信装置は、
     前記コイルから発生した前記高周波磁場の強度が、
     前記受電装置との無線通信における電波強度よりも小さくなる位置に配置された
     請求項1~7の何れか一項に記載の非接触電力伝送装置。
  9.  前記コイルを複数備え、
     前記通信装置は、
     複数の前記コイルのそれぞれから発生した前記高周波磁場の強度の合計が、
     前記受電装置との無線通信における電波強度よりも小さくなる位置に配置された
     請求項1~8の何れか一項に記載の非接触電力伝送装置。
  10.  前記コイルに高周波電流を供給するインバータ回路と、
     前記コイルの配線と前記インバータ回路の配線とを接続する端子台と、を備え、
     前記通信装置は、
     上下方向において前記端子台とは重ならない位置に配置された
     請求項1~9の何れか一項に記載の非接触電力伝送装置。
  11.  複数の前記通信装置と、
     複数の前記通信装置のうち少なくとも1つ前記通信装置の通信情報に基づき、当該非接触電力伝送装置の動作を制御する制御装置と、
     を備えた請求項1~10の何れか一項に記載の非接触電力伝送装置。
  12.  前記制御装置は、
     複数の前記通信装置のうち、前記受電装置との無線通信における電波強度が最大となる前記通信装置を含む一部の前記通信装置の通信情報に基づき、当該非接触電力伝送装置の動作を制御する
    請求項11に記載の非接触電力伝送装置。
  13.  前記制御装置は、
     複数の前記通信装置のうち、前記受電装置との無線通信における電波強度が最小となる前記通信装置を除いた一部の前記通信装置の通信情報に基づき、当該非接触電力伝送装置の動作を制御する
    請求項11又は12に記載の非接触電力伝送装置。
  14.  請求項1~13の何れか一項に記載の非接触電力伝送装置と、
     前記非接触電力伝送装置と着脱可能に支持される受電装置と、
     を備え、
     前記受電装置は、
     前記コイルの前記高周波磁場内に配置されると、前記コイルから電力を受電する受電コイルと、
     前記非接触電力伝送装置の前記通信装置と無線通信を行う第2通信装置と、
     導電体又は磁性体により形成され、前記第2通信装置の上面及び側面の少なくとも一方に配置された第3防磁部材と、
     を備えた非接触電力伝送システム。
  15.  前記第3防磁部材は、前記第2通信装置の、前記受電コイルと対向する側面に配置された
     請求項14に記載の非接触電力伝送システム。
  16.  前記第3防磁部材は、前記第2通信装置の側面を囲むように構成された
     請求項14又は15に記載の非接触電力伝送システム。
  17.  前記第3防磁部材は、前記第2通信装置の側面に配置され、上端が前記受電コイルの上端よりも上に配置された
     請求項14~16の何れか一項に記載の非接触電力伝送システム。
  18.  前記第3防磁部材は、前記第2通信装置の側面に配置され、下端が前記受電コイルの下端よりも下に配置された
     請求項14~17の何れか一項に記載の非接触電力伝送システム。
  19.  前記受電コイルを収納する第1筐体と、
     前記第1筐体に隣接して設けられ、前記第2通信装置を収納する第2筐体と、
     を備えた
     請求項14~18の何れか一項に記載の非接触電力伝送システム。
  20.  前記第2筐体に配置され、当該受電装置に対する入力操作を行う操作部を備えた
     請求項14~19の何れか一項に記載の非接触電力伝送システム。
  21.  前記第2筐体に配置され、当該受電装置の動作に関する表示を行う表示部を備えた
     請求項14~20の何れか一項に記載の非接触電力伝送システム。
  22.  前記第2筐体は、前記第1筐体よりも高さが低い
     請求項14~21の何れか一項に記載の非接触電力伝送システム。
PCT/JP2016/080295 2016-10-13 2016-10-13 非接触電力伝送装置、及び非接触電力伝送システム WO2018070003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/330,539 US10797529B2 (en) 2016-10-13 2016-10-13 Wireless power transfer apparatus and wireless power transfer system
CN201680089356.4A CN109792161B (zh) 2016-10-13 2016-10-13 非接触电力传送装置以及非接触电力传送系统
EP16918585.7A EP3528363B1 (en) 2016-10-13 2016-10-13 Non-contact power transmission device and non-contact power transmission system
JP2018544630A JP6636168B2 (ja) 2016-10-13 2016-10-13 非接触電力伝送装置、及び非接触電力伝送システム
PCT/JP2016/080295 WO2018070003A1 (ja) 2016-10-13 2016-10-13 非接触電力伝送装置、及び非接触電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080295 WO2018070003A1 (ja) 2016-10-13 2016-10-13 非接触電力伝送装置、及び非接触電力伝送システム

Publications (1)

Publication Number Publication Date
WO2018070003A1 true WO2018070003A1 (ja) 2018-04-19

Family

ID=61905268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080295 WO2018070003A1 (ja) 2016-10-13 2016-10-13 非接触電力伝送装置、及び非接触電力伝送システム

Country Status (5)

Country Link
US (1) US10797529B2 (ja)
EP (1) EP3528363B1 (ja)
JP (1) JP6636168B2 (ja)
CN (1) CN109792161B (ja)
WO (1) WO2018070003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3606284A1 (de) * 2018-07-30 2020-02-05 E.G.O. Elektro-Gerätebau GmbH Verfahren und vorrichtung zur induktiven energieübertragung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015007026T5 (de) * 2015-10-16 2018-07-12 Mitsubishi Electric Corporation Heizkochersystem, Induktionsheizkocher und elektrisches Gerät
EP3550934A1 (en) * 2018-04-03 2019-10-09 Koninklijke Philips N.V. Device and method for wireless power transfer
CN110380517B (zh) * 2018-04-11 2022-10-21 台达电子工业股份有限公司 无线电能传输系统及传输方法
KR20210054357A (ko) * 2019-11-05 2021-05-13 엘지전자 주식회사 Wpt 쿡탑 장치 및 그 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290229A (ja) * 1992-04-06 1993-11-05 Kyodo Printing Co Ltd 非接触型icカードおよびその識別システム
JP2013132171A (ja) * 2011-12-22 2013-07-04 Toyota Motor Corp 送電装置、受電装置、および電力伝送システム
JP2016092214A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 コイルユニット
WO2016125227A1 (ja) * 2015-02-02 2016-08-11 三菱電機株式会社 非接触電力伝送装置、電気機器、及び非接触電力伝送システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193642B2 (ja) * 2003-09-01 2008-12-10 富士電機アセッツマネジメント株式会社 誘導加熱装置
DE102009029250B4 (de) * 2009-09-08 2023-11-30 BSH Hausgeräte GmbH System mit Basisstationen und mindestens einem Haushalts-Aufsatzgerät und Verfahren zum Betreiben des Systems
US9161484B2 (en) * 2010-09-26 2015-10-13 Access Business Group International Llc Selectively controllable electromagnetic shielding
WO2012061378A2 (en) * 2010-11-04 2012-05-10 Access Business Group International Llc Wireless power system and method with improved alignment
KR101874641B1 (ko) * 2011-08-08 2018-07-05 삼성전자주식회사 동일 평면에 무선충전 코일과 안테나 소자를 구비하는 휴대용 단말기
CN103262647B (zh) 2011-12-20 2016-08-10 松下电器产业株式会社 非接触供电装置及非接触电力传送系统
KR101428163B1 (ko) * 2012-05-25 2014-08-07 엘지이노텍 주식회사 단말기 상태를 시각적으로 나타내는 장치 및 방법
US10658869B2 (en) * 2012-08-03 2020-05-19 Mediatek Inc. Multi-mode, multi-standard wireless power transmitter coil assembly
JP2014146532A (ja) 2013-01-30 2014-08-14 Panasonic Corp 誘導加熱調理器
JP6123072B2 (ja) 2013-04-04 2017-05-10 パナソニックIpマネジメント株式会社 誘導加熱調理器
JP6123586B2 (ja) 2013-09-03 2017-05-10 三菱電機株式会社 加熱調理器
CN203942520U (zh) * 2014-07-01 2014-11-12 深圳市邦的科技有限公司 一种无线充电WiFi盒
EP3223386B1 (en) * 2014-11-18 2022-11-16 LG Electronics Inc. Wireless power transmission device, wireless power reception device, and wireless charging system
KR101589701B1 (ko) * 2015-08-13 2016-01-28 (주)피스월드 스마트 언더렌지용 조리용기 받침장치
JP6649925B2 (ja) * 2017-10-11 2020-02-19 矢崎総業株式会社 電力伝送ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290229A (ja) * 1992-04-06 1993-11-05 Kyodo Printing Co Ltd 非接触型icカードおよびその識別システム
JP2013132171A (ja) * 2011-12-22 2013-07-04 Toyota Motor Corp 送電装置、受電装置、および電力伝送システム
JP2016092214A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 コイルユニット
WO2016125227A1 (ja) * 2015-02-02 2016-08-11 三菱電機株式会社 非接触電力伝送装置、電気機器、及び非接触電力伝送システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3606284A1 (de) * 2018-07-30 2020-02-05 E.G.O. Elektro-Gerätebau GmbH Verfahren und vorrichtung zur induktiven energieübertragung
CN110784024A (zh) * 2018-07-30 2020-02-11 E.G.O.电气设备制造股份有限公司 用于感应地传输能量的方法和装置

Also Published As

Publication number Publication date
CN109792161B (zh) 2022-06-10
EP3528363B1 (en) 2020-09-09
EP3528363A1 (en) 2019-08-21
JPWO2018070003A1 (ja) 2019-06-24
US10797529B2 (en) 2020-10-06
CN109792161A (zh) 2019-05-21
JP6636168B2 (ja) 2020-01-29
EP3528363A4 (en) 2019-10-09
US20200021136A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6636168B2 (ja) 非接触電力伝送装置、及び非接触電力伝送システム
US10856368B2 (en) Heating cooker system, inductive heating cooker, and electric apparatus
JP6559348B2 (ja) 非接触電力伝送システム及び誘導加熱調理器
JP6173623B2 (ja) 誘導加熱調理器及びその制御方法
JP6403808B2 (ja) 非接触電力伝送装置、及び非接触電力伝送システム
JP6328572B2 (ja) 非接触給電機能付き誘導加熱調理器およびその制御方法
US11293644B2 (en) Heating cooker system, and cooking device
JP7112036B2 (ja) 冷却装置、及び調理システム
US11324081B2 (en) Inductive heating cooker
JP2017174531A (ja) 誘導加熱調理器
US11533790B2 (en) Induction cooker
JP2017183020A (ja) 加熱調理システム、受電装置、及び誘導加熱調理器
JP2018190583A (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918585

Country of ref document: EP

Effective date: 20190513