WO2018068600A1 - 图像处理方法及系统 - Google Patents

图像处理方法及系统 Download PDF

Info

Publication number
WO2018068600A1
WO2018068600A1 PCT/CN2017/101056 CN2017101056W WO2018068600A1 WO 2018068600 A1 WO2018068600 A1 WO 2018068600A1 CN 2017101056 W CN2017101056 W CN 2017101056W WO 2018068600 A1 WO2018068600 A1 WO 2018068600A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
bright spot
processed
processing
module
Prior art date
Application number
PCT/CN2017/101056
Other languages
English (en)
French (fr)
Inventor
徐伟彬
金欢
颜钦
姜泽飞
周志良
Original Assignee
深圳市瀚海基因生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瀚海基因生物科技有限公司 filed Critical 深圳市瀚海基因生物科技有限公司
Publication of WO2018068600A1 publication Critical patent/WO2018068600A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to an image processing method and system, and a computer readable storage medium.
  • image brightness localization has important applications in gene sequencers and LED light points.
  • Image analysis is an important part of systems that use optical imaging principles for sequence determination.
  • the accuracy of image brightness positioning directly determines the accuracy of gene sequencing.
  • embodiments of the present invention aim to at least solve one of the technical problems existing in the prior art. To this end, embodiments of the present invention need to provide an image processing method and system and a computer readable storage medium.
  • An image preprocessing step the image preprocessing step analyzing the input image to be processed to obtain a first image, the image to be processed comprising at least one bright point, the bright point having at least one pixel point; a bright spot detecting step, the bright spot detecting The step includes the steps of: analyzing the first image to calculate a bright spot determination threshold, analyzing the first image to obtain a candidate bright spot, and determining, according to the bright spot determination threshold, whether the candidate bright spot is the bright spot.
  • An image processing system includes: an image preprocessing module, configured to analyze an input image to be processed to obtain a first image, the image to be processed includes at least one bright point, The bright spot has at least one pixel point; the bright spot detecting module is configured to: analyze the first image to calculate a bright spot determination threshold, analyze the first image to obtain a candidate bright spot, and determine the threshold according to the bright spot determination threshold Whether the candidate highlight is the bright spot.
  • An image processing system includes: a data input unit for inputting data; a data output unit for outputting data; a storage unit for storing data, the data including a computer executable program; and a processor For executing the computer executable program, executing the computer executable program includes performing the method of any of the above embodiments.
  • a computer readable storage medium for storing a program for execution by a computer, the executing the program comprising the method of any of the above embodiments.
  • the image processing method, device and/or system described above can process the image to be processed by the image pre-processing step, thereby reducing the calculation amount of the bright spot detection step, and determining whether the candidate bright spot is a bright spot by the bright spot determination threshold, thereby improving the judgment image bright spot.
  • the accuracy can be improved.
  • the image processing method, apparatus and/or system of the present invention has no particular limitation on the original input data to be processed, and is applicable to processing analysis of images generated by any platform for performing nucleic acid sequence determination using optical detection principles, including but not Limited to the second and third generation sequencing, with high accuracy, high versatility and high precision, can get more effective information from the image.
  • known sequencing image processing methods and/or systems are basically developed for image processing of a second-generation sequencing platform, since the sequencing chips used in the second-generation sequencing are generally array-type, that is, the probes on the sequencing chip are Regularly arranged, the image obtained by photographing is a pattern image, which is easy to process and analyze; in addition, since the second-generation sequencing generally includes nucleic acid template amplification and amplification, high-intensity bright spots can be obtained during image acquisition, and it is easy to identify and locate.
  • the general second-generation sequencing image processing method does not require high positioning accuracy, and only needs to select and locate some brightly-bright spots (bright spots) to achieve sequence determination.
  • the sequencing chip used is random, that is, the probes on the sequencing chip are randomly arranged, and the images obtained by photographing are random ( Random) image, which is difficult to process analysis;
  • image processing analysis of single-molecule sequencing is one of the most important factors determining the efficiency of the final sequence. It requires high image processing and bright spot positioning, and requires all images. Bright spots can be accurately located so that bases can be directly identified and data information is generated.
  • the image processing method, apparatus and/or system of the present invention can be adapted to use for second-generation sequencing and three-generation sequencing, particularly for random images in three-generation sequencing and image processing with high precision requirements, and is particularly advantageous.
  • FIG. 1 is a schematic flow chart of an image processing method according to an embodiment of the present invention.
  • FIG. 2 is another schematic flowchart of an image processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of still another embodiment of an image processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of still another embodiment of an image processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another embodiment of an image processing method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of still another embodiment of an image processing method according to an embodiment of the present invention.
  • FIG. 7 is still another schematic flowchart of an image processing method according to an embodiment of the present invention.
  • FIG. 8 is still another schematic flowchart of an image processing method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a Mexican hat filter of an image processing method according to an embodiment of the present invention.
  • FIG. 10 is still another schematic flowchart of an image processing method according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of 8 connected pixels in an image processing method according to an embodiment of the present invention.
  • FIG. 12 is still another schematic flowchart of an image processing method according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an image to be processed of an image processing method according to an embodiment of the present invention.
  • Figure 14 is a partial enlarged view of the image to be processed in Figure 13;
  • 15 is a schematic diagram showing an image of a bright spot in an image processing method according to an embodiment of the present invention.
  • Figure 16 is a partial enlarged view of the image identifying the bright spot in Figure 15;
  • FIG. 17 is a block diagram of an image processing system according to an embodiment of the present invention.
  • FIG. 18 is another block diagram of an image processing system according to an embodiment of the present invention.
  • FIG. 19 is another block diagram of an image processing system according to an embodiment of the present invention.
  • FIG. 20 is another block diagram of an image processing system according to an embodiment of the present invention.
  • 21 is another block diagram of an image processing system according to an embodiment of the present invention.
  • FIG. 22 is still another block diagram of an image processing system according to an embodiment of the present invention.
  • FIG. 23 is another schematic block diagram of an image processing system according to an embodiment of the present invention.
  • 24 is a block diagram showing still another module of an image processing system according to an embodiment of the present invention.
  • FIG. 25 is still another block diagram of the image processing system of the embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the "gene sequencing" and nucleic acid sequence determinations referred to in the embodiments of the present invention include DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • the so-called “bright spot” refers to the light-emitting point on the image, and one light-emitting point occupies at least one pixel.
  • the so-called “pixel” is the same as “pixel.”
  • the image is from a sequencing platform that uses optical imaging principles for sequencing
  • the so-called sequencing platforms include, but are not limited to, sequencing platforms such as CG (Complete Genomics), Illumina/Solexa, Life Technologies ABI SOLiD, and Roche 454.
  • the detection of the so-called "bright spot” is the detection of an optical signal of an extended base or a base cluster.
  • the image is from a single molecule sequencing platform, such as Helicos
  • the input raw data is a parameter of a pixel point of the image
  • the detection of the so-called "bright spot” is the detection of a single molecule optical signal.
  • an image processing method includes: an image preprocessing step S11, image preprocessing Step S11 analyzes the input image to be processed to obtain a first image, the image to be processed includes at least one bright point, and the bright spot has at least one pixel; the bright spot detecting step S12, the bright spot detecting step S12 includes the step of: S21, analyzing the first image to calculate a bright spot Determining the threshold, S22, analyzing the first image to obtain the candidate bright spot, and S23, determining whether the candidate bright spot is a bright spot according to the bright spot determination threshold.
  • the image to be processed is processed by the image preprocessing step, and the calculation amount of the bright spot detection step can be reduced.
  • whether the candidate bright spot is a bright spot is determined by the bright spot determination threshold, and the accuracy of determining the bright spot of the image can be improved.
  • the input image to be processed may be a 16-bit tiff format image of 512*512 or 2048*2048, and the image of the tiff format may be a grayscale image. In this way, the processing of the image processing method can be simplified.
  • the bright spot detecting step includes the steps of: if the determination result is yes, S24, calculating the intensity value of the sub-pixel center coordinate and/or the sub-pixel center coordinate of the bright spot, if judging The result is no, S25, discarding candidate highlights. In this way, the accuracy of the image processing method can be further improved by sub-pixels to characterize the intensity values of the center coordinates and/or the center coordinates of the bright spots.
  • the image pre-processing step S11 includes: performing background subtraction processing on the image to be processed to obtain a first image. In this way, the noise of the image to be processed can be further reduced, and the accuracy of the image processing method is higher.
  • the image pre-processing step S11 includes: performing a simplified process on the image to be processed after performing the subtractive background processing to obtain a first image. In this way, the amount of calculation of the subsequent image processing method can be reduced.
  • the image pre-processing step S11 includes: performing filtering processing on the image to be processed to obtain a first image. In this way, filtering the image to be processed can acquire the first image under the condition that the image detail features are retained as much as possible, thereby improving the accuracy of the image processing method.
  • the image pre-processing step S11 includes: performing background subtraction processing on the image to be processed, and then performing filtering processing to obtain a first image. In this way, after the image to be processed is subjected to subtraction of the background and then filtered, the noise of the image to be processed can be further reduced, and the accuracy of the image processing method is higher.
  • the image pre-processing step S11 includes: performing a simplified process on the image to be processed after performing the subtractive background processing to obtain the first image. In this way, the amount of calculation of the subsequent image processing method can be reduced.
  • the image pre-processing step S11 includes performing a simplification process on the image to be processed to obtain a first image. In this way, the amount of calculation of the subsequent image processing method can be reduced.
  • performing background subtraction processing on the image to be processed includes: determining an background of the image to be processed by using an open operation, and performing background subtraction processing on the image to be processed according to the background.
  • the open operation is used to eliminate small objects, separate objects at slender points, and smooth the boundaries of large objects without significantly changing the image area, so that the background-subtracted image can be acquired more accurately.
  • the image to be processed f(x, y) (such as a grayscale image) is moved by an a*a window (for example, a 15*15 window), and an open operation (corrosion re-expansion) is used to estimate
  • a*a window for example, a 15*15 window
  • an open operation corrosion re-expansion
  • g(x, y) is the grayscale image after etching
  • f(x, y) is the original grayscale image
  • B is the structural element
  • g(x, y) is the expanded grayscale image
  • f(x, y) is the original grayscale image
  • B is the structural element
  • the filtering process is a mexican hat filtering process.
  • Mexican hat filtering is easy to implement, reducing the cost of image processing methods.
  • Mexican hat filtering can improve the contrast between foreground and background, making the foreground brighter and making the background darker.
  • the m*m window is used to perform Gaussian filtering on the image to be processed before the filtering process, and the Gaussian filtered image to be processed is subjected to two-dimensional Laplacian sharpening, where m is a natural number and is greater than 1. odd number.
  • m is a natural number and is greater than 1. odd number.
  • the Mexican hat core can be expressed as:
  • Equation 6 Gaussian filtering is performed on the image to be processed using the m*m window, as shown in Equation 6 below:
  • t1 and t2 represent the positions of the filtering window
  • w t1, t2 represent the weights of the Gaussian filtering
  • Equation 7 The image to be processed is then subjected to two-dimensional Laplacian sharpening, as shown in Equation 7 below:
  • K and k both represent Laplacian operators, which are related to sharpening targets. If it is necessary to strengthen sharpening and weaken sharpening, modify K and k.
  • Equation 6 when performing Gaussian filtering, Equation 6 becomes:
  • the simplified image is a binarized image.
  • binarized images are easy to handle and have a wide range of applications.
  • the signal-to-noise ratio matrix is obtained according to the image to be processed before the simplification processing, and the image to be processed before the simplification is simplified according to the SNR matrix to obtain the first image.
  • the image to be processed may be subjected to subtractive background processing, and then the signal to noise ratio matrix is obtained according to the image to be processed after subtracting the background processing.
  • the signal to noise ratio matrix is obtained according to the image to be processed after subtracting the background processing.
  • the signal to noise ratio matrix can be expressed as: Where x and y represent the coordinates of the pixel, h represents the height of the image, and w represents the width of the image, i ⁇ w, j ⁇ h.
  • the simplified image is a binarized image
  • the binarized image can be obtained from the signal to noise ratio matrix.
  • the binarized image is as shown in Equation 9:
  • the background image to be processed may be subjected to subtractive background processing and/or filtering processing.
  • the background subtraction background processing step and the filtering processing step of the above embodiment may be followed by subtracting the background processing to obtain the formula 4, and then subtracting the background.
  • the step of analyzing the first image to calculate a bright spot determination threshold includes processing the first image by the Otsu method to calculate a bright spot determination threshold.
  • the search for the bright spot determination threshold is realized by a more mature and simple method, thereby improving the accuracy of the image processing method and reducing the cost of the image processing method.
  • using the first image to perform the search of the bright spot determination threshold can improve the efficiency and accuracy of the image processing method.
  • the Otsu method can also be called the maximum inter-class variance method.
  • the Otsu method uses the largest variance between classes to segment the image, which means that the probability of misclassification is the smallest and the accuracy is high.
  • the segmentation threshold of the foreground and background of the image to be processed is T
  • the ratio of the number of pixels belonging to the foreground to the entire image is ⁇ 0
  • the average gradation is ⁇ 0
  • the ratio of the number of pixels belonging to the background to the entire image is ⁇ 1
  • the average gray level is ⁇ 1 .
  • the total average gray level of the image to be processed is recorded as ⁇
  • the variance between classes is recorded as var, which is:
  • the traversal method is used to obtain a segmentation threshold T that maximizes the variance between classes, that is, the desired spot determination threshold T.
  • the step of determining whether the candidate bright spot is a bright spot according to the bright spot determination threshold includes: step S31, searching for a greater than (p*p-1) connectivity in the first image. Pixel points and the found pixel points as the center of the candidate bright points, p*p and the bright points are in one-to-one correspondence, each value in p*p corresponds to one pixel point, p is a natural number and is an odd number greater than 1; S32.
  • I max can be understood as the center strongest intensity of the candidate bright spot.
  • p 3 looking for pixels that are greater than 8 connected, as shown in Figure 11. The found pixel point is used as the pixel point of the candidate bright spot.
  • I max is the strongest intensity in the center of the 3*3 window
  • a BI is the ratio of the set value in the first image in the 3*3 window
  • ceof guass is the correlation between the pixel of the 3*3 window and the two-dimensional Gaussian distribution. coefficient.
  • the first image is a simplified image, for example, the first image may be a binarized image, that is, the set value in the binarized image may be a value corresponding to when the pixel meets the set condition.
  • the binarized image may contain two values of 0 and 1 characterizing different attributes of the pixel, the set value is 1, and A BI is the ratio of 1 in the binarized image in the p*p window. .
  • the step of calculating the intensity values of the sub-pixel center coordinates and/or the sub-pixel center coordinates of the bright points includes the steps of: calculating the sub-pixel center coordinates of the bright points using quadratic function interpolation, and/or The intensity values of the sub-pixel center coordinates are calculated using quadratic spline interpolation.
  • the method of quadratic function and/or quadratic spline can further improve the accuracy of judging the bright spot of the image.
  • the image processing method further includes the step of: S13, using the identifier to indicate the position of the image of the sub-pixel center coordinate of the bright spot. In this way, it is convenient for the user to observe whether the indication of the bright spot is correct, to determine whether the positioning of the bright spot needs to be performed again.
  • FIG. 13 is an image to be positioned
  • FIG. 14 is an enlarged schematic view showing a range of 293*173 in the upper left corner of the image shown in FIG.
  • Fig. 15 is an image showing a bright spot (after highlight positioning) with a cross
  • Fig. 16 is an enlarged schematic view showing a range of 293*173 in the upper left corner of the image shown in Fig. 15.
  • an image processing system 100 includes an image preprocessing module 102 for analyzing an input image to be processed to obtain a first image, and the image to be processed includes at least one image. a bright spot, the bright spot has at least one pixel; the bright spot detecting module 104 is configured to: analyze the first image to calculate a bright spot determination threshold, analyze the first image to obtain a candidate bright spot, and determine whether the candidate bright spot is a bright spot according to the bright spot determination threshold .
  • the image processing system 100 can perform the denoising process on the image to be processed by the image preprocessing module 102, thereby reducing the calculation amount of the bright spot detection module 104, and determining whether the candidate bright spot is a bright spot through the bright spot determination threshold, thereby improving the judgment image bright spot.
  • the accuracy is a measure of the accuracy of the image processing system 100.
  • the image pre-processing module 102 includes a subtraction background module 110 for performing background subtraction processing on the image to be processed to obtain a first image.
  • the image pre-processing module 102 includes a simplification module 106 for performing simplification processing on the image to be processed after performing background subtraction processing to obtain the first image.
  • the image pre-processing module 102 includes a filtering module 108 for filtering processing the image to be processed to obtain a first image.
  • the image preprocessing module 102 includes a subtraction background module 110 and a filtering module 108.
  • the subtraction background module 110 is configured to perform background subtraction processing on the image to be processed, and the filtering module 108 uses The image to be processed after performing the subtractive background processing is further subjected to filtering processing to obtain a first image.
  • the image pre-processing module 102 includes a simplification module 106 for simplifying processing of a to-be-processed image after performing background subtraction processing. Get the first image.
  • the image pre-processing module 102 includes a simplification module 106, Simplification module 106 is for performing a simplified process on the image to be processed to obtain a first image.
  • the bright spot detection module 104 is configured to: if the determination result is yes, calculate the intensity value of the sub-pixel center coordinate and/or the sub-pixel center coordinate of the bright spot, and if the determination result is no, discard Candidate highlights.
  • the subtraction background module 110 is configured to: determine an background of the image to be processed by using an open operation, and perform background subtraction processing according to the background to be processed image.
  • the filtering process is a mexican hat filtering process.
  • the filtering module 108 is configured to perform Gaussian filtering on the image to be processed before the filtering process and the image to be processed after the Gaussian filtering in the m*m window when performing Mexican hat filtering. Perform two-dimensional Laplacian sharpening, where m is a natural number and is an odd number greater than one.
  • the simplification process is a binarization process.
  • the simplification module 106 is configured to acquire a signal to noise ratio matrix according to the image to be processed before the simplified processing when performing the simplification processing, and simplify the pending processing before the processing according to the SNR matrix. Image to get the first image.
  • the bright spot detection module 104 is configured to process the first image by the Otsu method to calculate a bright spot determination threshold.
  • the bright spot detection module 104 is configured to: find a pixel point larger than (p*p-1) connected in the first image and use the found pixel point as a center of the candidate bright spot, p is a natural number and is an odd number greater than 1; determining whether the center of the candidate bright spot satisfies the condition: I max *A BI *ceof guass >T, where I max is the center strongest intensity of the p*p window, and A BI is p* The ratio of the set value in the first image in the p window, ceof guass is the correlation coefficient between the pixel of the p*p window and the two-dimensional Gaussian distribution, and T is the bright point determination threshold. If the above conditions are met, the center of the candidate bright spot is determined. The corresponding bright spot is a bright spot. If the above conditions are not met, the corresponding bright spot of the center of the candidate bright spot is discarded.
  • the bright spot detection module 104 is configured to: calculate the sub-pixel center coordinates of the bright points using quadratic function interpolation, and/or calculate the intensity values of the sub-pixel center coordinates using the quadratic spline interpolation.
  • the image processing system 100 includes an identification module 112 for using the identifier to indicate the location of the image of the sub-pixel center coordinates of the bright spot.
  • an image processing system 300 includes: a data input unit 302 for inputting data; a data output unit 304 for outputting data; and a storage unit 306 for storing data, where the data includes A computer executable program; a processor 308 for executing a computer executable program, the computer executable program comprising the method of any of the above embodiments. Therefore, the image processing system 300 described above can improve the accuracy of determining the bright spot of the image.
  • a computer readable storage medium for storing a program for execution by a computer, the program comprising the method of any of the above embodiments.
  • Computer readable storage media include, but are not limited to, read only memory, magnetic or optical disks and the like. Therefore, the above computer readable storage medium can improve the accuracy of judging image highlights.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Image Processing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种图像处理方法及系统及计算机可读存储介质,图像处理方法包括:图像预处理步骤,图像预处理步骤分析输入的待处理图像以获得第一图像;亮点检测步骤,亮点检测步骤包括步骤:分析第一图像以计算亮点判定阈值;分析第一图像以获取候选像素点,并根据亮点判定阈值判断候选像素点是否为亮点,若是,计算亮点的亚像素中心坐标及亚像素中心坐标的强度值,若否,丢弃候选像素点。因此,上述图像处理方法,通过图像预处理步骤对待处理图像进行去噪处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。

Description

图像处理方法及系统 技术领域
本发明涉及图像处理技术领域,尤其涉及一种图像处理方法及系统及计算机可读存储介质。
背景技术
在相关技术中,图像亮度定位在基因测序仪和LED灯光点中都有重要应用。
在利用光学成像原理进行序列测定的系统中,图像分析是很重要的一块。图像亮度定位的准确性直接决定了基因测序的准确性。
在核酸序列测定的过程中,如何提高判断图像亮点的准确性,成为待解决的问题之一。
发明内容
本发明实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施方式需要提供一种图像处理方法及系统及计算机可读存储介质。
本发明实施方式的一种图像处理方法,包括:
图像预处理步骤,所述图像预处理步骤分析输入的待处理图像以获得第一图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;亮点检测步骤,所述亮点检测步骤包括步骤:分析所述第一图像以计算亮点判定阈值,分析所述第一图像以获取候选亮点,根据所述亮点判定阈值判断所述候选亮点是否为所述亮点。
本发明实施方式的一种图像处理系统,包括:图像预处理模块,所述图像预处理模块用于分析输入的待处理图像以获得第一图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;亮点检测模块,所述亮点检测模块用于:分析所述第一图像以计算亮点判定阈值,分析所述第一图像以获取候选亮点,根据所述亮点判定阈值判断所述候选亮点是否为所述亮点。
本发明实施方式的一种图像处理系统,包括:数据输入单元,用于输入数据;数据输出单元,用于输出数据;存储单元,用于存储数据,所述数据包括计算机可执行程序;处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成如上任一实施方式所述的方法。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成如上任一实施方式所述的方法。
上述的图像处理方法、装置和/或系统,通过图像预处理步骤对待处理图像进行处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
本发明的图像处理方法、装置和/或系统,对待处理图像即原始输入数据的没有特别的限制,适用于任何利用光学检测原理进行核酸序列测定的平台所产生的图像的处理分析,包括但不限于二代和三代测序,具有高准确性、高通用性和高精度的特点,能从图像中获取更多的有效信息。
特别地,目前,已知的测序图像处理方法和/系统基本是针对二代测序平台的图像处理开发的,由于二代测序使用的测序芯片一般是阵列型的,即测序芯片上的探针是规则排列的,拍照获得的图像是模式(pattern)图像,易于处理分析;另外,由于二代测序一般包含核酸模板扩增放大,图像采集时能够获得高强度的亮点,易于识别和定位。一般的二代测序的图像处理方法不要求高的定位精度,只需要挑选定位一些发光较强较好的点(亮点),就能实现序列测定。
而对于三代测序即单分子测序,受限于目前芯片表面处理相关技术的发展,其使用的测序芯片是随机型的,即测序芯片上的探针是无规则排列,拍照获得的图像是随机(random)图像,不易处理分析;而且,单分子测序的图像处理分析是决定最终序列(reads)的有效率的最重要的因素之一,对图像处理、亮点定位的要求高,要求图像上的所有亮点都能准确定位,以使能够直接识别出碱基,产生数据信息。
因此,本发明的图像处理方法、装置和/或系统可适应用于二代测序和三代测序,特别是对于三代测序中的随机图像及高精度要求的图像处理,尤其具有优势。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明 显和容易理解,其中:
图1是本发明实施方式的图像处理方法的流程示意图;
图2是本发明实施方式的图像处理方法的另一流程示意图;
图3是本发明实施方式的图像处理方法的再一流程示意图;
图4是本发明实施方式的图像处理方法的再一流程示意图;
图5是本发明实施方式的图像处理方法的再一流程示意图;
图6是本发明实施方式的图像处理方法的再一流程示意图;
图7是本发明实施方式的图像处理方法的又一流程示意图;
图8是本发明实施方式的图像处理方法的又另一流程示意图;
图9是本发明实施方式的图像处理方法的墨西哥帽滤波的曲线示意图;
图10是本发明实施方式的图像处理方法的又再一流程示意图;
图11是本发明实施方式的图像处理方法中8连通像素的示意图;
图12是本发明实施方式的图像处理方法的又另一流程示意图;
图13是本发明实施方式的图像处理方法的待处理图像的示意图;
图14是图13中的待处理图像的局部放大图;
图15是本发明实施方式的图像处理方法的标识出亮点的图像示意图;
图16是图15中的标识出亮点的图像的局部放大图;
图17是本发明实施方式的图像处理系统的模块示意图;
图18是本发明实施方式的图像处理系统的另一模块示意图;
图19是本发明实施方式的图像处理系统的又一模块示意图;
图20是本发明实施方式的图像处理系统的又一模块示意图;
图21是本发明实施方式的图像处理系统的又一模块示意图;
图22是本发明实施方式的图像处理系统的又另一模块示意图;
图23是本发明实施方式的图像处理系统的另又一模块示意图;
图24是本发明实施方式的图像处理系统的再一模块示意图;
图25是本发明实施方式的图像处理系统的又再一模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
本发明实施方式所称的“基因测序”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。
所称的“亮点”,指图像上的发光点,一个发光点占有至少一个像素点。所称“像素点”同“像素”。
在本发明的实施方式中,图像来自利用光学成像原理进行序列测定的测序平台,所称的测序平台包括但不限于CG(Complete Genomics)、Illumina/Solexa、Life Technologies ABI SOLiD和Roche 454等测序平台,对所称的“亮点”的检测为对延伸碱基或碱基簇的光学信号的检测。
在本发明的一个实施例中,图像来自单分子测序平台,例如Helicos,输入的原始数据为图像的像素点的参数,对所称的“亮点”的检测为对单分子光学信号的检测。
请参阅图1,本发明实施方式的一种图像处理方法,包括:图像预处理步骤S11,图像预处理 步骤S11分析输入的待处理图像以获得第一图像,待处理图像包含至少一个亮点,亮点具有至少一个像素点;亮点检测步骤S12,亮点检测步骤S12包括步骤:S21,分析第一图像以计算亮点判定阈值,S22,分析第一图像以获取候选亮点,S23,根据亮点判定阈值判断候选亮点是否为亮点。上述图像处理方法,通过图像预处理步骤对待处理图像进行处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
具体地,在一个例子中,输入的待处理图像可为512*512或2048*2048的16位tiff格式的图像,tiff格式的图像可为灰度图像。如此,可简化图像处理方法的处理过程。
在某些实施方式的图像处理方法中,请参图2,亮点检测步骤包括步骤:若判断结果为是,S24,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值,若判断结果为否,S25,丢弃候选亮点。如此,通过亚像素来表征亮点的中心坐标和/或中心坐标的强度值,可进一步提高图像处理方法的准确性。
在某些实施方式的图像处理方法中,请参图3,图像预处理步骤S11包括:对待处理图像进行减背景处理,以获得第一图像。如此,能够进一步减少待处理图像的噪声,使图像处理方法的准确性更高。
在某些实施方式的图像处理方法中,请参图4,图像预处理步骤S11包括:对进行减背景处理后的待处理图像进行简化处理,以获得第一图像。如此,可减少后续图像处理方法的计算量。
在某些实施方式的图像处理方法中,请参图5,图像预处理步骤S11包括:对待处理图像进行滤波处理,以获得第一图像。如此,对待处理图像进行滤波可在尽量保留图像细节特征的条件下获取第一图像,进而可提高图像处理方法的准确性。
在某些实施方式的图像处理方法中,请参图6,图像预处理步骤S11包括:对待处理图像进行减背景处理后再进行滤波处理,以获得第一图像。如此,对待处理图像进行减背景后再进行滤波,能够进一步减少待处理图像的噪声,使图像处理方法的准确性更高。
在某些实施方式的图像处理方法中,请参图7,图像预处理步骤S11包括:对进行减背景处理后再进行滤波处理后的待处理图像进行简化处理,以获得第一图像。如此,可减少后续图像处理方法的计算量。
在某些实施方式的图像处理方法中,请参图8,图像预处理步骤S11包括:对待处理图像进行简化处理以获得第一图像。如此,可减少后续图像处理方法的计算量。
在某些实施方式的图像处理方法中,对待处理图像进行减背景处理,包括:利用开运算确定待处理图像的背景,根据背景对待处理图像进行减背景处理。如此,利用开运算用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变图像面积,可更准确地获取减背景处理后的图像。
具体地,在本发明实施方式中,在待处理图像f(x,y)(如灰度图像)移动a*a窗口(例如15*15窗口),利用开运算(先腐蚀再膨胀)估计待处理图像的背景,如下公式1及公式2所示:
g(x,y)=erode[f(x,y),B]=min{f(x+x',y+y')-B(x',y')|(x',y')∈Db}   公式1,
其中,g(x,y)为腐蚀后的灰度图像,f(x,y)为原灰度图像,B为结构元素。
g(x,y)=dilate[f(x,y),B]=max{f(x-x',y-y')-B(x',y')|(x',y')∈Db}   公式2。
其中,g(x,y)为膨胀后的灰度图像,f(x,y)为原灰度图像,B为结构元素。
故可得背景噪声g=imopen(f(x,y),B)=dilate[erode(f(x,y),B)]   公式3。
对原图进行减背景:
f=f-g={f(x,y)-g(x,y)|(x,y)∈D}   公式4。
可以理解,本实施方式的对待处理图像进行减背景处理的具体方法可适用于上述任一实施方式中提到的对待处理图像进行减背景处理的步骤。
在某些实施方式的图像处理方法中,滤波处理为墨西哥帽滤波处理。墨西哥帽滤波易于实现,降低了图像处理方法的成本,同时,墨西哥帽滤波能提升前景与背景的对比度,使前景更亮,使背景更暗。
在进行墨西哥帽滤波时,使用m*m窗口对滤波处理前的待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。如此,通过两步骤实现了墨西哥帽滤波。
具体地,请参图9,墨西哥帽核可表示为:
Figure PCTCN2017101056-appb-000001
其中,x和y表示像素点的坐标。
首先使用m*m窗口对待处理图像进行高斯滤波,如下公式6所示:
Figure PCTCN2017101056-appb-000002
其中,t1和t2表示滤波窗口的位置,wt1,t2表示高斯滤波的权重。
然后对待处理图像进行二维拉普拉斯锐化,如下公式7所示:
Figure PCTCN2017101056-appb-000003
其中,K和k均表示拉普拉斯算子,与锐化目标有关,如果需要加强锐化和减弱锐化,就修改K和k。
在一个例子中,m=3,因此m*m=3*3,进行高斯滤波时,公式6变为:
Figure PCTCN2017101056-appb-000004
可以理解,本实施方式的墨西哥帽滤波的具体方法可适用于上述任一实施方式中提到的对待处理图像进行滤波处理的步骤。
在某些实施方式的图像处理方法中,简化图像为二值化图像。如此二值化图像易于处理,且应用范围广。
在某些实施方式的图像处理方法中,在进行简化处理时,根据简化处理前的待处理图像获取信噪比矩阵,并根据信噪比矩阵简化简化处理前的待处理图像以得到第一图像。
在一个具体例子中,可先对待处理图像进行减背景处理,之后再根据减背景处理后的待处理图像获取信噪比矩阵。如此,利于后续从噪声更少的图像获得信息,能够使图像处理方法获得处理结果的准确性更高。
具体地,在一个例子中,信噪比矩阵可表示为:
Figure PCTCN2017101056-appb-000005
其中,x和y表示像素点的坐标,h表示图像的高度,w表示图像的宽度,i∈w,j∈h。
在一个例子中,简化图像为二值化图像,可根据信噪比矩阵得到二值化图像,二值化图像如公式9所示:
Figure PCTCN2017101056-appb-000006
在计算信噪比矩阵时,可先对待处理图像进行减背景处理和/或滤波处理,如上实施方式的减背景处理步骤和滤波处理步骤,根据减背景处理后得到公式4,再求得减背景处理后的待处理图像与背景的比值矩阵:
R=f/g={f(x,y)/g(x,y)|(x,y)∈D}公式10,其中,D表示图像f的维度(高*宽)。
由此可以求得SNR矩阵:
Figure PCTCN2017101056-appb-000007
在某些实施方式的图像处理方法中,分析第一图像以计算亮点判定阈值的步骤,包括:通过大津法处理第一图像以计算亮点判定阈值。如此,通过较成熟及简单的方法实现了亮点判定阈值的查找,进而提高了图像处理方法的准确性及降低了图像处理方法的成本。同时,用第一图像进行亮点判定阈值的查找,可提高了图像处理方法的效率和准确性。
具体地,大津法(OTSU算法)也可称为最大类间方差法,大津法利用类间方差最大来分割图像,意味着错分概率最小,准确性高。假设待处理图像的前景和背景的分割阈值为T,属于前景的像素点数占整幅图像的比例为ω0,其平均灰度为μ0;属于背景的像素点数占整幅图像的比例为ω1,其平均灰度为μ1。待处理图像的总平均灰度记为μ,类间方差记为var,则有:
μ=ω0011   公式11;
var=ω00-μ)211-μ)2    公式12。
将公式11代入公式12,得到等价公式13:
var=ω0ω110)2   公式13。
采用遍历的方法得到使类间方差最大的分割阈值T,即为所求的亮点判定阈值T。
在某些实施方式的图像处理方法中,请参图10,根据亮点判定阈值判断候选亮点是否为亮点的步骤,包括:步骤S31,在第一图像中查找大于(p*p-1)连通的像素点并将查找到的像素点作为候选亮点的中心,p*p与亮点是一一对应的,p*p中的每个值对应一个像素点,p为自然数且为大于1的奇数;步骤S32,判断候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中第一图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为亮点判定阈值。若满足上述条件,S33,判断候选亮点的中心对应的亮点为待处理图像所包含的亮点;若不满足上述条件,S34,弃去候选亮点的中心对应的亮点。如此,实现了亮点的检测。
具体地,Imax可理解为候选亮点的中心最强强度。在一个例子中,p=3,查找大于8连通的像素点,如图11所示。将查找到的像素点作为候选亮点的像素点。Imax为3*3窗口的中心最强强度,ABI为3*3窗口中第一图像中为设定值所占的比率,ceofguass为3*3窗口的像素和二维高斯分布的相关系数。
第一图像为简化处理后的图像,例如第一图像可为二值化图像,也就是说,二值化图像中的设定值可为像素点满足设定条件时所对应的值。在另一个例子中,二值化图像可包含表征像素点不同属性的0和1二个数值,设定值为1,ABI为p*p窗口中二值化图像中为1所占的比率。
另外,在某些实施方式中,p的数值可与在进行墨西哥帽滤波时所选取的m的数值相等,即p=m。
在某些实施方式的图像处理方法中,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值的步骤,包括步骤:采用二次函数插值计算亮点的亚像素中心坐标,和/或采用二次样条插值计算亚像素中心坐标的强度值。如此,采用二次函数和/或二次样条的方法能够进一步提高判断图像亮点的准确性。
在某些实施方式的图像处理方法中,请参图12,图像处理方法还包括步骤:S13,利用标识标示出亮点的亚像素中心坐标所在图像的位置。如此,可方便用户观察亮点的标示是否正确,以决定是否需重新进行亮点的定位。
具体地,在一个例子中,利用十字叉标示出亮点的亚像素中心坐标所在图像的位置。请参图13、图14、图15及图16,图13为待定位的图像,图14是图13所示的图像左上角293*173范围的放大示意图。图15为用十字叉标出亮点(亮点定位后)的图像,图16是图15所示的图像左上角293*173范围的放大示意图。
请参图17,本发明实施方式的一种图像处理系统100,包括:图像预处理模块102,图像预处理模块102用于分析输入的待处理图像以获得第一图像,待处理图像包含至少一个亮点,亮点具有至少一个像素点;亮点检测模块104,亮点检测模块104用于:分析第一图像以计算亮点判定阈值,分析第一图像以获取候选亮点,根据亮点判定阈值判断候选亮点是否为亮点。因此,上述图像处理系统100,通过图像预处理模块102对待处理图像进行去噪处理,可减少亮点检测模块104的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
需要说明的是,上述对图像处理方法的实施方式的解释说明也适用于本发明实施方式的图像处理系统100,为避免冗余,在此不再详细展开。
在某些实施方式的图像处理系统100中,请参图18,图像预处理模块102包括减背景模块110,减背景模块110用于对待处理图像进行减背景处理,以获得第一图像。
在某些实施方式的图像处理系统100中,请参图19,图像预处理模块102包括简化模块106,简化模块106用于对进行减背景处理后的待处理图像进行简化处理,以获得第一图像。
在某些实施方式的图像处理系统100中,请参图20,图像预处理模块102包括滤波模块108,滤波模块108用于对待处理图像进行滤波处理,以获得第一图像。
在某些实施方式的图像处理系统100中,请参图21,图像预处理模块102包括减背景模块110和滤波模块108,减背景模块110用于对待处理图像进行减背景处理,滤波模块108用于对进行减背景处理后的待处理图像再进行滤波处理,以获得第一图像。
在某些实施方式的图像处理系统100中,请参图22,图像预处理模块102包括简化模块106,简体模块用于对进行减背景处理后再进行滤波处理后的待处理图像进行简化处理,以获得第一图像。
在某些实施方式的图像处理系统100中,请参图23,图像预处理模块102包括简化模块106, 简化模块106用于对待处理图像进行简化处理以获得第一图像。
在某些实施方式的图像处理系统100中,亮点检测模块104用于:若判断结果为是,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值,若判断结果为否,丢弃候选亮点。
在某些实施方式的图像处理系统100中,减背景模块110用于:利用开运算确定待处理图像的背景,根据背景对待处理图像进行减背景处理。
在某些实施方式的图像处理系统100中,滤波处理为墨西哥帽滤波处理。
在某些实施方式的图像处理系统100中,滤波模块108用于,在进行墨西哥帽滤波时,使用m*m窗口对滤波处理前的待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
在某些实施方式的图像处理系统100中,简化处理为二值化处理。
在某些实施方式的图像处理系统100中,简化模块106用于在进行简化处理时,根据简化处理前的待处理图像获取信噪比矩阵,并根据信噪比矩阵简化简化处理前的待处理图像以得到第一图像。
在某些实施方式的图像处理系统100中,亮点检测模块104用于:通过大津法处理第一图像以计算亮点判定阈值。
在某些实施方式的图像处理系统100中,亮点检测模块104用于:在第一图像中查找大于(p*p-1)连通的像素点并将查找到的像素点作为候选亮点的中心,p为自然数且为大于1的奇数;判断候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中第一图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为亮点判定阈值,若满足上述条件,判断候选亮点的中心对应的亮点为亮点,若不满足上述条件,弃去候选亮点的中心对应的亮点。
在某些实施方式的图像处理系统100中,亮点检测模块104用于:采用二次函数插值计算亮点的亚像素中心坐标,和/或采用二次样条插值计算亚像素中心坐标的强度值。
在某些实施方式的图像处理系统100中,请参图24,图像处理系统100包括标识模块112,标识模块112用于:利用标识标示出亮点的亚像素中心坐标所在图像的位置。
请参图25,本发明实施方式的一种图像处理系统300,包括:数据输入单元302,用于输入数据;数据输出单元304,用于输出数据;存储单元306,用于存储数据,数据包括计算机可执行程序;处理器308,用于执行计算机可执行程序,执行计算机可执行程序包括完成如上任一实施方式的方法。因此,上述图像处理系统300可提高判断图像亮点的准确性。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成如上任一实施方式的方法。计算机可读存储介质包括但不限于只读存储器,磁盘或光盘等。因此,上述计算机可读存储介质可提高判断图像亮点的准确性。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (36)

  1. 一种图像处理方法,其特征在于,包括:
    图像预处理步骤,所述图像预处理步骤分析输入的待处理图像以获得第一图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;
    亮点检测步骤,所述亮点检测步骤包括步骤:
    分析所述第一图像以计算亮点判定阈值,
    分析所述第一图像以获取候选亮点,
    根据所述亮点判定阈值判断所述候选亮点是否为所述亮点。
  2. 根据权利要求1所述的方法,其特征在于,所述图像预处理步骤包括:对所述待处理图像进行减背景处理,以获得所述第一图像。
  3. 根据权利要求2所述的方法,其特征在于,所述图像预处理步骤包括:对进行减背景处理后的待处理图像进行简化处理,以获得所述第一图像。
  4. 根据权利要求1所述的方法,其特征在于,所述图像预处理步骤包括:对所述待处理图像进行滤波处理,以获得所述第一图像。
  5. 根据权利要求1所述的方法,其特征在于,所述图像预处理步骤包括:对所述待处理图像进行减背景处理后再进行滤波处理,以获得所述第一图像。
  6. 根据权利要求5所述的方法,其特征在于,所述图像预处理步骤包括:对进行减背景处理后再进行滤波处理后的待处理图像进行简化处理,以获得所述第一图像。
  7. 根据权利要求1所述的方法,其特征在于,所述图像预处理步骤包括:对所述待处理图像进行简化处理以获得所述第一图像。
  8. 根据权利要求1所述的方法,其特征在于,所述亮点检测步骤包括步骤:
    若判断结果为是,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值,
    若判断结果为否,丢弃所述候选亮点。
  9. 根据权利要求2、3、5或6所述的方法,其特征在于,对所述待处理图像进行减背景处理,包括:
    利用开运算确定所述待处理图像的背景,
    根据所述背景对所述待处理图像进行减背景处理。
  10. 根据权利要求4、5或6所述的方法,其特征在于,所述滤波处理为墨西哥帽滤波处理。
  11. 根据权利要求10所述的方法,其特征在于,在进行所述墨西哥帽滤波时,使用m*m窗口对滤波处理前的待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
  12. 根据权利要求3或6或7所述的方法,其特征在于,所述简化处理为二值化处理。
  13. 根据权利要求3或6或7所述的方法,其特征在于,在进行所述简化处理时,根据简化处理前的待处理图像获取信噪比矩阵,并根据所述信噪比矩阵简化所述简化处理前的待处理图像以得到所述第一图像。
  14. 根据权利要求1所述的方法,其特征在于,所述分析所述第一图像以计算亮点判定阈值的步骤,包括:
    通过大津法处理所述第一图像以计算所述亮点判定阈值。
  15. 根据权利要求3或6或7所述的方法,其特征在于,所述根据所述亮点判定阈值判断所述候选亮点是否为所述亮点,包括:在所述第一图像中查找大于(p*p-1)连通的像素点并将查找到的所述像素点作为所述候选亮点的中心,p为自然数且为大于1的奇数;
    判断所述候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中所述第一图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为所述亮点判定阈值,
    若满足上述条件,判断所述候选亮点的中心对应的亮点为所述亮点,
    若不满足上述条件,弃去所述候选亮点的中心对应的亮点。
  16. 根据权利要求8所述的方法,其特征在于,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值的步骤,包括:
    采用二次函数插值计算所述亮点的亚像素中心坐标,和/或采用二次样条插值计算所述亚像素中心坐标的强度值。
  17. 根据权利要求8所述的方法,其特征在于,所述方法还包括步骤:
    利用标识标示出所述亮点的亚像素中心坐标所在图像的位置。
  18. 一种图像处理系统,其特征在于,包括:
    图像预处理模块,所述图像预处理模块用于分析输入的待处理图像以获得第一图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;
    亮点检测模块,所述亮点检测模块用于:
    分析所述第一图像以计算亮点判定阈值,
    分析所述第一图像以获取候选亮点,
    根据所述亮点判定阈值判断所述候选亮点是否为所述亮点。
  19. 根据权利要求18所述的系统,其特征在于,所述图像预处理模块包括减背景模块,所述减背景模块用于对所述待处理图像进行减背景处理,以获得所述第一图像。
  20. 根据权利要求19所述的系统,其特征在于,所述图像预处理模块包括简化模块,所述简化模块用于对进行减背景处理后的待处理图像进行简化处理,以获得所述第一图像。
  21. 根据权利要求18所述的系统,其特征在于,所述图像预处理模块包括滤波模块,所述滤波模块用于对所述待处理图像进行滤波处理,以获得所述第一图像。
  22. 根据权利要求18所述的系统,其特征在于,所述图像预处理模块包括减背景模块和滤波模块,所述减背景模块用于对所述待处理图像进行减背景处理,所述滤波模块用于对进行减背景处理后的待处理图像再进行滤波处理,以获得所述第一图像。
  23. 根据权利要求22所述的系统,其特征在于,所述图像预处理模块包括简化模块,所述简体模块用于对进行减背景处理后再进行滤波处理后的待处理图像进行简化处理,以获得所述第一图像。
  24. 根据权利要求18所述的系统,其特征在于,所述图像预处理模块包括简化模块,所述简化模块用于对所述待处理图像进行简化处理以获得所述第一图像。
  25. 根据权利要求18所述的系统,其特征在于,所述亮点检测模块用于:
    若判断结果为是,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值,
    若判断结果为否,丢弃所述候选亮点。
  26. 根据权利要求19、20、22或23所述的系统,其特征在于,所述减背景模块用于:
    利用开运算确定所述待处理图像的背景,
    根据所述背景对所述待处理图像进行减背景处理。
  27. 根据权利要求21、22或23所述的系统,其特征在于,所述滤波处理为墨西哥帽滤波处理。
  28. 根据权利要求27所述的系统,其特征在于,所述滤波模块用于,在进行所述墨西哥帽滤波时,使用m*m窗口对滤波处理前的待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
  29. 根据权利要求20或23或24所述的系统,其特征在于,所述简化处理为二值化处理。
  30. 根据权利要求20或23或24所述的系统,其特征在于,所述简化模块用于在进行所述简化处理时,根据简化处理前的待处理图像获取信噪比矩阵,并根据所述信噪比矩阵简化所述简化处理前的待处理图像以得到所述第一图像。
  31. 根据权利要求18所述的系统,其特征在于,所述亮点检测模块用于:
    通过大津法处理所述第一图像以计算所述亮点判定阈值。
  32. 根据权利要求20或23或24所述的系统,其特征在于,所述亮点检测模块用于:在所述第一图像中查找大于(p*p-1)连通的像素点并将查找到的所述像素点作为所述候选亮点的中心,p为自然数且为大于1的奇数;
    判断所述候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中所述第一图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为所述亮点判定阈值,
    若满足上述条件,判断所述候选亮点的中心对应的亮点为所述亮点,
    若不满足上述条件,弃去所述候选亮点的中心对应的亮点。
  33. 根据权利要求25所述的系统,其特征在于,所述亮点检测模块用于:
    采用二次函数插值计算所述亮点的亚像素中心坐标,和/或采用二次样条插值计算所述亚像素中心坐标的强度值。
  34. 根据权利要求25所述的系统,其特征在于,所述图像处理系统包括标识模块,所述标识模块用于:
    利用标识标示出所述亮点的亚像素中心坐标所在图像的位置。
  35. 一种图像处理系统,其特征在于,包括:
    数据输入单元,用于输入数据;
    数据输出单元,用于输出数据;
    存储单元,用于存储数据,所述数据包括计算机可执行程序;
    处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成根据权利要求1-17任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,用于存储供计算机执行的程序,执行所述程序包括完成根据权利要求1-17任一项所述的方法。
PCT/CN2017/101056 2016-10-10 2017-09-08 图像处理方法及系统 WO2018068600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610882547 2016-10-10
CN201610882547.8 2016-10-10

Publications (1)

Publication Number Publication Date
WO2018068600A1 true WO2018068600A1 (zh) 2018-04-19

Family

ID=61898788

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2017/085439 WO2018068511A1 (zh) 2016-10-10 2017-05-23 基因测序的图像处理方法及系统
PCT/CN2017/101054 WO2018068599A1 (zh) 2016-10-10 2017-09-08 基因测序的图像处理方法及系统
PCT/CN2017/101056 WO2018068600A1 (zh) 2016-10-10 2017-09-08 图像处理方法及系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/085439 WO2018068511A1 (zh) 2016-10-10 2017-05-23 基因测序的图像处理方法及系统
PCT/CN2017/101054 WO2018068599A1 (zh) 2016-10-10 2017-09-08 基因测序的图像处理方法及系统

Country Status (3)

Country Link
CN (2) CN107945150B (zh)
HK (2) HK1247722A1 (zh)
WO (3) WO2018068511A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111951324A (zh) * 2020-07-30 2020-11-17 佛山科学技术学院 一种铝型材包装长度检测方法及系统
CN112288781A (zh) * 2018-08-22 2021-01-29 深圳市真迈生物科技有限公司 图像配准方法、装置和计算机程序产品
CN114311572A (zh) * 2021-12-31 2022-04-12 深圳市新科聚合网络技术有限公司 Smd led注塑支架在线检测装置及其检测方法
CN117721191A (zh) * 2024-02-07 2024-03-19 深圳赛陆医疗科技有限公司 基因测序方法、测序装置、可读存储介质和基因测序系统
US12008775B2 (en) 2018-08-22 2024-06-11 Genemind Biosciences Company Limited Method and device for image registration, and computer program product

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289381B (zh) * 2018-08-22 2021-12-14 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、装置和计算机产品
US11847766B2 (en) 2018-08-22 2023-12-19 Genemind Biosciences Company Limited Method and device for detecting bright spots on image, and computer program product
WO2020037574A1 (zh) * 2018-08-22 2020-02-27 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、碱基识别方法和装置
CN112285070B (zh) * 2018-08-22 2022-11-11 深圳市真迈生物科技有限公司 检测图像上的亮斑的方法和装置、图像配准方法和装置
CN112288783B (zh) * 2018-08-22 2021-06-29 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、碱基识别方法和装置
CN112289377B (zh) * 2018-08-22 2022-11-15 深圳市真迈生物科技有限公司 检测图像上的亮斑的方法、装置和计算机程序产品
EP4015645A4 (en) 2019-08-16 2023-05-10 GeneMind Biosciences Company Limited METHODS AND SYSTEM FOR BASE RECOGNITION, COMPUTER PROGRAM PRODUCT AND SYSTEM FOR SEQUENCING
CN113012757B (zh) 2019-12-21 2023-10-20 深圳市真迈生物科技有限公司 识别核酸中的碱基的方法和系统
CN113034481A (zh) * 2021-04-02 2021-06-25 广州绿怡信息科技有限公司 设备图像模糊检测方法及装置
CN113781351B (zh) * 2021-09-16 2023-12-08 广州安方生物科技有限公司 图像处理方法、设备及计算机可读存储介质
CN114166805B (zh) * 2021-11-03 2024-01-30 格力电器(合肥)有限公司 Ntc温度传感器检测方法、装置、ntc温度传感器及制造方法
CN115294035B (zh) * 2022-07-22 2023-11-10 深圳赛陆医疗科技有限公司 亮点定位方法、亮点定位装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354398A (zh) * 2011-09-22 2012-02-15 苏州大学 基于密度中心与自适应的基因芯片处理方法
KR101348680B1 (ko) * 2013-01-09 2014-01-09 국방과학연구소 영상추적기를 위한 표적포착방법 및 이를 이용한 표적포착장치
CN103582697A (zh) * 2011-06-09 2014-02-12 富士施乐株式会社 图像处理装置、图像处理方法和图像处理系统
CN104297249A (zh) * 2014-09-15 2015-01-21 浙江大学 基于心肌细胞传感器的药物心脏毒性检测分析方法
CN105389581A (zh) * 2015-10-15 2016-03-09 哈尔滨工程大学 一种胚芽米胚芽完整度智能识别系统及其识别方法
CN105741266A (zh) * 2016-01-22 2016-07-06 北京航空航天大学 一种病理图像细胞核快速定位方法
WO2016107896A1 (en) * 2014-12-30 2016-07-07 Ventana Medical Systems, Inc. Systems and methods for co-expression analysis in immunoscore computation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315772A (ja) * 2006-05-23 2007-12-06 Canon Inc 蛍光検出装置および生化学反応分析装置
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
CN102174384B (zh) * 2011-01-05 2014-04-02 深圳华因康基因科技有限公司 对基因测序仪的测序及信号处理进行控制的方法及系统
US20140349281A1 (en) * 2013-05-22 2014-11-27 Sunpower Technologies Llc System and Method for Dispensing Barcoded Solutions
CN105039147B (zh) * 2015-06-03 2016-05-04 西安交通大学 一种高通量基因测序碱基荧光图像捕获系统装置及方法
CN105205788B (zh) * 2015-07-22 2018-06-01 哈尔滨工业大学深圳研究生院 一种针对高通量基因测序图像的去噪方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582697A (zh) * 2011-06-09 2014-02-12 富士施乐株式会社 图像处理装置、图像处理方法和图像处理系统
CN102354398A (zh) * 2011-09-22 2012-02-15 苏州大学 基于密度中心与自适应的基因芯片处理方法
KR101348680B1 (ko) * 2013-01-09 2014-01-09 국방과학연구소 영상추적기를 위한 표적포착방법 및 이를 이용한 표적포착장치
CN104297249A (zh) * 2014-09-15 2015-01-21 浙江大学 基于心肌细胞传感器的药物心脏毒性检测分析方法
WO2016107896A1 (en) * 2014-12-30 2016-07-07 Ventana Medical Systems, Inc. Systems and methods for co-expression analysis in immunoscore computation
CN105389581A (zh) * 2015-10-15 2016-03-09 哈尔滨工程大学 一种胚芽米胚芽完整度智能识别系统及其识别方法
CN105741266A (zh) * 2016-01-22 2016-07-06 北京航空航天大学 一种病理图像细胞核快速定位方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112288781A (zh) * 2018-08-22 2021-01-29 深圳市真迈生物科技有限公司 图像配准方法、装置和计算机程序产品
US12008775B2 (en) 2018-08-22 2024-06-11 Genemind Biosciences Company Limited Method and device for image registration, and computer program product
CN111951324A (zh) * 2020-07-30 2020-11-17 佛山科学技术学院 一种铝型材包装长度检测方法及系统
CN111951324B (zh) * 2020-07-30 2024-03-29 佛山科学技术学院 一种铝型材包装长度检测方法及系统
CN114311572A (zh) * 2021-12-31 2022-04-12 深圳市新科聚合网络技术有限公司 Smd led注塑支架在线检测装置及其检测方法
CN117721191A (zh) * 2024-02-07 2024-03-19 深圳赛陆医疗科技有限公司 基因测序方法、测序装置、可读存储介质和基因测序系统
CN117721191B (zh) * 2024-02-07 2024-05-10 深圳赛陆医疗科技有限公司 基因测序方法、测序装置、可读存储介质和基因测序系统

Also Published As

Publication number Publication date
CN107918931A (zh) 2018-04-17
CN107918931B (zh) 2021-11-09
WO2018068511A1 (zh) 2018-04-19
WO2018068599A1 (zh) 2018-04-19
CN107945150A (zh) 2018-04-20
HK1247724A1 (zh) 2018-09-28
HK1247722A1 (zh) 2018-09-28
CN107945150B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2018068600A1 (zh) 图像处理方法及系统
EP3306566B1 (en) Method and system for processing image
CN113109368B (zh) 玻璃裂纹检测方法、装置、设备及介质
Lin et al. Hierarchical, model‐based merging of multiple fragments for improved three‐dimensional segmentation of nuclei
JP6517788B2 (ja) 適応的病理組織画像分解のためのシステム及び方法
WO2021030952A1 (zh) 碱基识别方法、系统、计算机程序产品和测序系统
WO2020037573A1 (zh) 检测图像上的亮斑的方法、装置和计算机程序产品
US8983199B2 (en) Apparatus and method for generating image feature data
JP5852919B2 (ja) ひび割れ検出方法
JP2014228357A (ja) ひび割れ検出方法
WO2018103373A1 (zh) 单分子的识别、计数方法及装置
CN112289377B (zh) 检测图像上的亮斑的方法、装置和计算机程序产品
JP5088329B2 (ja) 細胞特徴量算出装置および細胞特徴量算出方法
WO2020037570A1 (zh) 图像配准方法、装置和计算机程序产品
JP2016183916A (ja) Dnaチップ画像のスポット有効性判定装置、dnaチップ画像のスポット有効性判定方法、及びdnaチップ画像のスポット有効性判定プログラム
Mace et al. Quantification of transcription factor expression from Arabidopsis images
WO2018103345A1 (zh) 单分子的识别、计数方法及装置
CN114693539A (zh) 一种基于荧光图片的pcr数据处理与曲线拟合方法及pcr仪器
Bergemann et al. A statistically driven approach for image segmentation and signal extraction in cDNA microarrays
US11181463B2 (en) Image processing device, cell recognition apparatus, cell recognition method, and cell recognition program
DK2901415T3 (en) PROCEDURE FOR IDENTIFICATION OF CELLS IN A BIOLOGICAL Tissue
WO2008016912A2 (en) Systems and methods of analyzing two dimensional gels
CN114300047A (zh) 一种基因测序信号强度获取的方法
Raman et al. Capturing variations in nuclear phenotypes
CN115601570A (zh) 一种模板图像的匹配方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17859779

Country of ref document: EP

Kind code of ref document: A1