CN107945150B - 基因测序的图像处理方法及系统及计算机可读存储介质 - Google Patents

基因测序的图像处理方法及系统及计算机可读存储介质 Download PDF

Info

Publication number
CN107945150B
CN107945150B CN201710607295.2A CN201710607295A CN107945150B CN 107945150 B CN107945150 B CN 107945150B CN 201710607295 A CN201710607295 A CN 201710607295A CN 107945150 B CN107945150 B CN 107945150B
Authority
CN
China
Prior art keywords
image
processed
bright point
gene sequencing
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710607295.2A
Other languages
English (en)
Other versions
CN107945150A (zh
Inventor
徐伟彬
金欢
颜钦
姜泽飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genemind Biosciences Co Ltd
Original Assignee
Genemind Biosciences Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genemind Biosciences Co Ltd filed Critical Genemind Biosciences Co Ltd
Publication of CN107945150A publication Critical patent/CN107945150A/zh
Application granted granted Critical
Publication of CN107945150B publication Critical patent/CN107945150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Quality & Reliability (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Image Processing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基因测序的图像处理方法及系统及计算机可读存储介质,基因测序的图像处理方法包括:图像预处理步骤,该图像预处理步骤分析输入的待处理图像以去掉该待处理图像的噪声;亮点检测步骤,该亮点检测步骤包括步骤:分析该待处理图像以计算亮点判定阈值;分析去掉该噪声的该待处理图像以获取候选像素点,并根据该亮点判定阈值判断该候选像素点是否为亮点,若是,计算该亮点的亚像素中心坐标及该亚像素中心坐标的强度值,若否,丢弃该候选像素点。因此,上述基因测序的图像处理方法,通过图像预处理步骤对图像进行去噪处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。

Description

基因测序的图像处理方法及系统及计算机可读存储介质
技术领域
本发明涉及基因测序技术领域,尤其涉及一种基因测序的图像处理方法及系统及计算机可读存储介质。
背景技术
在相关技术中,图像亮度定位在基因测序仪和LED灯光点中都有重要应用。
在利用光学成像原理进行序列测定的系统中,图像分析是很重要的一块。图像亮度定位的准确性直接决定了基因测序的准确性。
在核酸序列测定的过程中,如何提高判断图像亮点的准确性,成为待解决的问题之一。
发明内容
本发明实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本发明实施方式需要提供一种基因测序的图像处理方法及系统及计算机可读存储介质。
本发明实施方式的一种基因测序的图像处理方法,包括:图像预处理步骤,该图像预处理步骤分析输入的待处理图像以去掉该待处理图像的噪声;亮点检测步骤,该亮点检测步骤包括步骤:分析该待处理图像以计算亮点判定阈值;分析去掉该噪声的该待处理图像以获取候选像素点,并根据该亮点判定阈值判断该候选像素点是否为亮点,若是,计算该亮点的亚像素中心坐标及该亚像素中心坐标的强度值,若否,丢弃该候选像素点。
因此,上述基因测序的图像处理方法,通过图像预处理步骤对图像进行去噪处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
本发明的这一图像处理方法,对待处理图像即原始输入数据的没有特别的限制,适用于任何利用光学检测原理进行核酸序列测定的平台所产生的图像的处理分析,包括但不限于二代和三代测序,具有高准确性、高通用性和高精度的特点,能从图像中获取更多的有效信息。
特别地,目前,已知的测序图像处理方法和/系统基本是针对二代测序平台的图像处理开发的,由于二代测序使用的测序芯片一般是阵列型的,即测序芯片上的探针是规则排列的,拍照获得的图像是模式(pattern)图像,易于处理分析;另外,由于二代测序一般包含核酸模板扩增放大,图像采集时能够获得高强度的亮点,易于识别和定位。一般的二代测序的图像处理方法不要求高的定位精度,只需要挑选定位一些发光较强较好的点(亮点),就能实现序列测定。
而对于三代测序即单分子测序,受限于目前芯片表面处理相关技术的发展,其使用的测序芯片是随机型的,即测序芯片上的探针是无规则排列,拍照获得的图像是随机(random)图像,不易处理分析;而且,单分子测序的图像处理分析是决定最终序列(reads)的有效率的最重要的因素之一,对图像处理、亮点定位的要求高,要求图像上的所有亮点都能准确定位,以使能够直接识别出碱基,产生数据信息。
因此,本发明的图像处理方法可适应用于二代测序和三代测序,特别是对于三代测序中的随机图像及高精度要求的图像处理,尤其具有优势。
本发明实施方式的一种基因测序的图像处理系统,包括:
图像预处理模块,所述图像预处理模块用于分析输入的待处理图像以获得去噪图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;
亮点检测模块,所述亮点检测模块用于:分析所述待处理图像以计算亮点判定阈值,分析所述去噪图像以获取候选亮点,根据所述亮点判定阈值判断所述候选亮点是否为所述亮点。
因此,上述基因测序的图像处理系统,通过图像预处理模块对图像进行去噪处理,可减少亮点检测模块的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
本发明实施方式的一种基因测序的图像处理系统,包括:
数据输入单元,用于输入数据;
数据输出单元,用于输出数据;
存储单元,用于存储数据,所述数据包括计算机可执行程序;
处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成如上任一实施方式所述的方法。
因此,上述基因测序的图像处理系统可提高判断图像亮点的准确性。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行所述程序包括完成如上任一实施方式所述的方法。因此,上述计算机可读存储介质可提高判断图像亮点的准确性。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的基因测序的图像处理方法的流程示意图;
图2是本发明实施方式的基因测序的图像处理方法的另一流程示意图;
图3是本发明实施方式的基因测序的图像处理方法的再一流程示意图;
图4是本发明实施方式的基因测序的图像处理方法的墨西哥帽滤波的曲线示意图;
图5是本发明实施方式的基因测序的图像处理方法的又一流程示意图;
图6是本发明实施方式的基因测序的图像处理方法的又另一流程示意图;
图7是本发明实施方式的基因测序的图像处理方法的又再一流程示意图;
图8是本发明实施方式的基因测序的图像处理方法中8连通像素的示意图;
图9是本发明实施方式的基因测序的图像处理方法的又另一流程示意图;
图10是本发明实施方式的基因测序的图像处理方法的待处理图像的示意图;
图11是图10中的待处理图像的局部放大图;
图12是本发明实施方式的基因测序的图像处理方法的标识出亮点的图像示意图;
图13是图12中的标识出亮点的图像的局部放大图;
图14是本发明实施方式的基因测序的图像处理系统的模块示意图;
图15是本发明实施方式的基因测序的图像处理系统的另一模块示意图;
图16是本发明实施方式的基因测序的图像处理系统的又一模块示意图;
图17是本发明实施方式的基因测序的图像处理系统的又另一模块示意图;
图18是本发明实施方式的基因测序的图像处理系统的另又一模块示意图;
图19是本发明实施方式的基因测序的图像处理系统的再一模块示意图;
图20是本发明实施方式的基因测序的图像处理系统的又再一模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本发明实施方式所称的“基因测序”同核酸序列测定,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。
所称的“亮点”,指图像上的发光点,一个发光点占有至少一个像素点。所称“像素点”同“像素”。
在本发明的实施方式中,图像来自利用光学成像原理进行序列测定的测序平台,所称的测序平台包括但不限于CG(Complete Genomics)、Illumina/Solexa、LifeTechnologies ABI SOLiD和Roche 454等测序平台,对所称的“亮点”的检测为对延伸碱基或碱基簇的光学信号的检测。
在本发明的一个实施例中,图像来自单分子测序平台,例如Helicos,输入的原始数据为图像的像素点的参数,对所称的“亮点”的检测为对单分子光学信号的检测。
请参阅图1,本发明实施方式的一种基因测序的图像处理方法,包括:
图像预处理步骤S11,图像预处理步骤S11分析输入的待处理图像以获得去噪图像,待处理图像包含至少一个亮点,亮点具有至少一个像素点;
亮点检测步骤S12,亮点检测步骤S12包括步骤:
S21,分析待处理图像以计算亮点判定阈值,
S22,分析去噪图像以获取候选亮点,
S23,根据亮点判定阈值判断候选亮点是否为亮点。
上述基因测序的图像处理方法,通过图像预处理步骤对图像进行去噪处理,可减少亮点检测步骤的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
具体地,在一个例子中,输入的待处理图像可为512*512或2048*2048的16位tiff格式的图像,tiff格式的图像可为灰度图像。如此,可简化基因测序的图像处理方法的处理过程。
在某些实施方式的基因测序的图像处理方法中,请参图2,亮点检测步骤还包括步骤:
若判断结果为是,S24,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值,
若判断结果为否,S25,丢弃候选亮点。如此,通过亚像素来表征亮点的中心坐标和/或中心坐标的强度值,可进一步提高图像处理方法的准确性。
在某些实施方式的基因测序的图像处理方法中,请参图3,图像预处理步骤S11包括图像滤波步骤S02,图像滤波步骤S02对待处理图像进行滤波以获取去噪图像。该图像滤波步骤S02可在尽量保留图像细节特征的条件下获取去噪图像,进而可提高图像处理方法的准确性。
在某些实施方式的基因测序的图像处理方法中,图像滤波步骤S02对待处理图像进行墨西哥帽滤波。墨西哥帽滤波易于实现,降低了基因测序的图像处理方法的成本,同时,墨西哥帽滤波能提升前景与背景的对比度,使前景更亮,使背景更暗。
在某些实施方式的基因测序的图像处理方法中,在进行墨西哥帽滤波时,使用m*m窗口对待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。如此,通过两步骤实现了墨西哥帽滤波。
具体地,请参图4,墨西哥帽核可表示为:
Figure GDA0003162111150000041
其中,x和y表示像素点的坐标。
首先使用m*m窗口对待处理图像进行高斯滤波,如下公式2所示:
Figure GDA0003162111150000042
其中,t1和t2表示滤波窗口的位置,wt1,t2表示高斯滤波的权重。
然后对待处理图像进行二维拉普拉斯锐化,如下公式3所示:
Figure GDA0003162111150000043
其中,K和k均表示拉普拉斯算子,与锐化目标有关,如果需要加强锐化和减弱锐化,就修改K和k。
在一个例子中,m=3,因此m*m=3*3,进行高斯滤波时,公式2变为:
Figure GDA0003162111150000044
在某些实施方式的基因测序的图像处理方法中,请参图5,在图像滤波步骤S02之前,图像预处理步骤S11还包括减背景步骤S00,减背景步骤S00对待处理图像进行减背景处理,获得减背景图像,以减背景图像代替待处理图像。
如此,能够进一步减少待处理图像的噪声,使基因测序的图像处理方法的准确性更高。
在某些实施方式的基因测序的图像处理方法中,对待处理图像进行减背景处理,包括:
利用开运算确定待处理图像的背景,
根据背景对待处理图像进行减背景处理。
利用开运算用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变图像面积,可更准确地获取减背景图像。
具体地,在本发明实施方式中,在待处理图像f(x,y)(如灰度图像)移动a*a窗口(例如15*15窗口),利用开运算(先腐蚀再膨胀)估计待处理图像的背景,如下公式6及公式7所示:
g(x,y)=erode[f(x,y),B]=min{f(x+x',y+y')-B(x',y')|(x',y')∈Db} 公式6,
其中,g(x,y)为腐蚀后的灰度图像,f(x,y)为原灰度图像,B为结构元素。
g(x,y)=dilate[f(x,y),B]=max{f(x-x',y-y')-B(x',y')|(x',y')∈Db} 公式7。
其中,g(x,y)为膨胀后的灰度图像,f(x,y)为原灰度图像,B为结构元素。
故可得背景噪声g=imopen(f(x,y),B)=dilate[erode(f(x,y),B)] 公式8。
对原图进行减背景:
f=f-g={f(x,y)-g(x,y)|(x,y)∈D} 公式9。
在某些实施方式的基因测序的图像处理方法中,请参图6,图像处理方法包括简化步骤S01,所述简化步骤S01将所述去噪图像简化为简化图像,以所述简化图像替换所述去噪图像。如此,可减少后续图像处理的计算量。
在某些实施方式的基因测序的图像处理方法中,简化图像为二值化图像。二值化图像易于处理,且应用范围广。
在某些实施方式的基因测序的图像处理方法中,简化步骤根据所述去噪图像获取信噪比矩阵,并根据所述信噪比矩阵简化所述去噪图像以得到所述简化图像。在一个具体例子中,可先对待处理图像进行减背景,之后再根据减背景图像获取信噪比矩阵。如此,利于后续从噪声更少的图像获得信息,能够使该图像处理方法获得处理结果的准确性更高。
具体地,在一个例子中,信噪比矩阵可表示为:
Figure GDA0003162111150000051
其中,x和y表示像素点的坐标,h表示图像的高度,w表示图像的宽度,i∈w,j∈h。
在一个例子中,简化图像为二值化图像,可根据信噪比矩阵得到二值化图像,二值化图像如公式5所示:
Figure GDA0003162111150000052
在计算信噪比矩阵时,可先对待处理图像进行滤波和/或减背景处理,如上实施方式所述的滤波步骤和减背景处理过程,根据减背景处理后得到公式9,再求得减背景图像与背景的比值矩阵:
R=f/g={f(x,y)/g(x,y)|(x,y)∈D}公式10,其中,D表示图像f的维度(高*宽)。
由此可以求得SNR矩阵:
Figure GDA0003162111150000053
在某些实施方式的基因测序的图像处理方法中,分析待处理图像以计算亮点判定阈值的步骤,包括:
通过大津法处理待处理图像以计算亮点判定阈值。
如此,通过较成熟及简单的方法实现了亮点判定阈值的查找,进而提高了该图像处理方法的准确性及降低了图像处理方法的成本。
具体地,大津法(OTSU算法)也可称为最大类间方差法,大津法利用类间方差最大来分割图像,意味着错分概率最小,准确性高。假设待处理图像的前景和背景的分割阈值为T,属于前景的像素点数占整幅图像的比例为ω0,其平均灰度为μ0;属于背景的像素点数占整幅图像的比例为ω1,其平均灰度为μ1。待处理图像的总平均灰度记为μ,类间方差记为var,则有:
μ=ω0011 公式12;
var=ω00-μ)211-μ)2 公式13。
将公式12代入公式13,得到等价公式14:
var=ω0ω110)2 公式14。
采用遍历的方法得到使类间方差最大的分割阈值T,即为所求的亮点判定阈值T。
在某些实施方式的基因测序的图像处理方法中,图像处理方法,包括:
通过大津法处理所述去噪图像以计算所述亮点判定阈值。用去噪图像进行亮点判定阈值的查找,可提高了基因测序的图像处理方法的效率和准确性。具体地,大津法处理的过程可参以上实施方式的大津法处理的过程。
在某些实施方式的基因测序的图像处理方法中,请参图7,图像处理方法包括简化步骤S01,简化步骤S01包括对去噪图像进行简化处理以得到简化图像,以简化图像代替去噪图像。
根据亮点判定阈值判断候选亮点是否为亮点的步骤,包括:
步骤S31,在简化图像中查找大于(p*p-1)连通的像素点并将查找到的像素点作为候选亮点的中心,p*p与亮点是一一对应的,p*p中的每个值对应一个像素点,p为自然数且为大于1的奇数;
步骤S32,判断候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中简化图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为亮点判定阈值。
若满足上述条件,S33,判断候选亮点的中心对应的亮点为待处理图像所包含的亮点;
若不满足上述条件,S34,弃去候选亮点的中心对应的亮点。
如此,实现了亮点的检测。
具体地,Imax可理解为候选亮点的中心最强强度。在一个例子中,p=3,查找大于8连通的像素点,如图8所示。将查找到的像素点作为候选亮点的像素点。Imax为3*3窗口的中心最强强度,ABI为3*3窗口中简化图像中为设定值所占的比率,ceofguass为3*3窗口的像素和二维高斯分布的相关系数。
简化处理可为二值化处理,也就是说,可对滤波后的待处理图像进行二值化处理以得到二值化图像,二值化图像中的设定值可为像素点满足设定条件时所对应的值。在另一个例子中,二值化图像可包含表征像素点不同属性的0和1二个数值,设定值为1,ABI为p*p窗口中二值化图像中为1所占的比率。
另外,在某些实施方式中,p的数值可与在进行墨西哥帽滤波时所选取的m的数值相等,即p=m。
在某些实施方式的基因测序的图像处理方法中,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值的步骤,包括步骤:
采用二次函数插值计算亮点的亚像素中心坐标,和/或采用二次样条插值计算亚像素中心坐标的强度值。
如此,采用二次函数和/或二次样条的方法能够进一步提高判断图像亮点的准确性。
在某些实施方式的基因测序的图像处理方法中,请参图9,基因测序的图像处理方法还包括步骤:
S13,利用标识标示出亮点的亚像素中心坐标所在图像的位置。
如此,可方便用户观察亮点的标示是否正确,以决定是否需重新进行亮点的定位。
具体地,在一个例子中,利用十字叉标示出亮点的亚像素中心坐标所在图像的位置。请参图10、图11、图12及图13,图10为待定位的图像,图11是图10所示的图像左上角293*173范围的放大示意图。图12为用十字叉标出亮点(亮点定位后)的图像,图13是图12所示的图像左上角293*173范围的放大示意图。
请参图14,本发明实施方式的一种基因测序的图像处理系统100,包括:
图像预处理模块102,图像预处理模102块用于分析输入的待处理图像以获得去噪图像,待处理图像包含至少一个亮点,亮点具有至少一个像素点;
亮点检测模块104,该亮点检测模块104用于:
分析待处理图像以计算亮点判定阈值,
分析去噪图像以获取候选亮点,
根据亮点判定阈值判断候选亮点是否为亮点。
因此,上述基因测序的图像处理系统100,通过图像预处理模块102对图像进行去噪处理,可减少亮点检测模块104的计算量,同时,通过亮点判断阈值判断候选亮点是否为亮点,可提高判断图像亮点的准确性。
需要说明的是,上述对基因测序的图像处理方法的实施方式的解释说明也适用于本发明实施方式的基因测序的图像处理系统100,为避免冗余,在此不再详细展开。
在某些实施方式的基因测序的图像处理系统100中,亮点检测模块104还用于:
若判断结果为是,计算亮点的亚像素中心坐标和/或亚像素中心坐标的强度值,
若判断结果为否,丢弃候选亮点。
如此,通过亚像素来表征亮点的中心坐标和/或中心坐标的强度值,可进一步提高图像处理系统100的准确性。
在某些实施方式的基因测序的图像处理系统100中,请参图15,图像预处理模块102包括图像滤波模块108。
图像滤波模块108用于对待处理图像进行滤波以获取去噪图像。
如此,图像滤波模块108可在尽量保留图像细节特征的条件下获取去噪图像,进而可提高图像处理系统100的准确性。
在某些实施方式的基因测序的图像处理系统100中,图像滤波模块108对待处理图像进行墨西哥帽滤波。
如此,墨西哥帽滤波易于实现,降低了基因测序的图像处理系统100的成本,同时,墨西哥帽滤波能提升前景与背景的对比度,使前景更亮,使背景更暗。
在某些实施方式的基因测序的图像处理系统100中,图像滤波模块108用于,在进行墨西哥帽滤波时,使用m*m窗口对待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
如此,通过两步骤实现了墨西哥帽滤波。
在某些实施方式的基因测序的图像处理系统100中,请参图16,图像预处理模块102还包括减背景模块110,减背景模块110用于,在滤波之前,对待处理图像进行减背景处理,获得减背景图像,以减背景图像代替待处理图像。
如此,能够进一步减少待处理图像的噪声,使基因测序的图像处理系统100的准确性更高。
在某些实施方式的基因测序的图像处理系统100中,减背景模块110用于:
利用开运算确定待处理图像的背景,
根据背景对待处理图像进行减背景处理。
如此,开运算用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变图像面积,可更准确地获取减背景图像。
在某些实施方式的基因测序的图像处理系统100中,请参图17,图像处理系统100包括简化模块106,简化模块106用于将去噪图像简化为简化图像,以简化图像替换去噪图像。如此,简化模块106可减少基因测序的图像处理系统100后续的计算量,
在某些实施方式的基因测序的图像处理系统100中,简化图像为二值化图像。如此,二值化图像更易于处理,且应用范围广。
在某些实施方式的基因测序的图像处理系统100中,简化模块106用于根据去噪图像获取信噪比矩阵,并根据信噪比矩阵简化去噪图像以得到简化图像。
如此,实现了噪声较少的简化图像,使基因测序的图像处理系统100的准确性更高。
在某些实施方式的基因测序的图像处理系统100中,亮点检测模块104用于通过大津法处理待处理图像以计算亮点判定阈值。
如此,通过较成熟及简单的方法实现了亮点判定阈值的查找,进而提高了基因测序的图像处理系统100的准确性及降低了基因测序的图像处理系统100的成本。
在某些实施方式的基因测序的图像处理系统中,亮点检测模块104用于通过大津法处理去噪图像以计算亮点判定阈值。
如此,通过较成熟及简单的方法实现了亮点判定阈值的查找,进而提高了基因测序的图像处理系统100的准确性及降低了基因测序的图像处理系统100的成本。
在某些实施方式的基因测序的图像处理系统100中,请参图18,图像处理系统100包括简化模块106,简化模块106对去噪图像进行简化处理以得到简化图像,以简化图像代替去噪图像。
亮点检测模块104用于:
在简化图像中查找大于(p*p-1)连通的像素点并将查找到的像素点作为候选亮点的中心,p为自然数且为大于1的奇数;
判断候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中简化图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为亮点判定阈值,
若满足上述条件,判断候选亮点的中心对应的亮点为亮点,
若不满足上述条件,弃去候选亮点的中心对应的亮点。
如此,实现了亮点的检测。
在某些实施方式的基因测序的图像处理系统100中,亮点检测模块104用于:
采用二次函数插值计算亮点的亚像素中心坐标,和/或采用二次样条插值计算亚像素中心坐标的强度值。
如此,采用二次函数和/或二次样条的方法能够进一步提高判断图像亮点的准确性。
在某些实施方式的基因测序的图像处理系统100中,请参图19,基因测序的图像处理系统100包括标识模块112,标识模块112用于:
利用标识标示出亮点的亚像素中心坐标所在图像的位置。
如此,可方便用户观察亮点的标示是否正确,以决定是否需重新进行亮点的定位。
请参图20,本发明实施方式的一种基因测序的图像处理系统300,包括:
数据输入单元302,用于输入数据;
数据输出单元304,用于输出数据;
存储单元306,用于存储数据,数据包括计算机可执行程序;
处理器308,用于执行计算机可执行程序,执行计算机可执行程序包括完成如上任一实施方式的方法。
因此,上述基因测序的图像处理系统300可提高判断图像亮点的准确性。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成如上任一实施方式的方法。因此,上述计算机可读存储介质可提高判断图像亮点的准确性。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施方式所属技术领域的技术人员所理解。
本技术领域的普通技术人员可以理解实现上述实施方式方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施方式的步骤之一或其组合。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (24)

1.一种基因测序的图像处理方法,其特征在于,包括:
图像预处理步骤,所述图像预处理步骤分析输入的待处理图像以获得去噪图像,所述图像处理方法包括简化步骤,所述简化步骤将所述去噪图像简化为二值化图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;
亮点检测步骤,所述亮点检测步骤包括步骤:
分析所述待处理图像以计算亮点判定阈值,
分析所述去噪图像以获取候选亮点,
根据所述亮点判定阈值判断所述候选亮点是否为所述亮点,包括:在所述二值化图像中查找大于(p*p-1)连通的像素区域并将查找到的所述像素区域的中心像素点作为所述候选亮点的中心,p为自然数且为大于1的奇数;
判断所述候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中所述二值化图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为所述亮点判定阈值,所述设定值选自所述二值化图像的值,
若满足上述条件,判断所述候选亮点的中心对应的亮点为所述亮点,
若不满足上述条件,弃去所述候选亮点的中心对应的亮点。
2.根据权利要求1所述的基因测序的图像处理方法,其特征在于,所述亮点检测步骤还包括步骤:
若判断结果为是,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值,
若判断结果为否,丢弃所述候选亮点。
3.根据权利要求1或2所述的基因测序的图像处理方法,其特征在于,所述图像预处理步骤包括图像滤波步骤,所述图像滤波步骤对所述待处理图像进行滤波以获取所述去噪图像。
4.根据权利要求3所述的基因测序的图像处理方法,其特征在于,所述图像滤波步骤对所述待处理图像进行墨西哥帽滤波。
5.根据权利要求4所述的基因测序的图像处理方法,其特征在于,在进行墨西哥帽滤波时,使用m*m窗口对所述待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
6.根据权利要求3所述的基因测序的图像处理方法,其特征在于,在所述图像滤波步骤之前,所述图像预处理步骤还包括减背景步骤,所述减背景步骤对所述待处理图像进行减背景处理,获得减背景图像。
7.根据权利要求6所述的基因测序的图像处理方法,其特征在于,对所述待处理图像进行减背景处理,包括:
利用开运算确定所述待处理图像的背景,
根据所述背景对所述待处理图像进行减背景处理。
8.根据权利要求1所述的基因测序的图像处理方法,其特征在于,所述简化步骤根据所述去噪图像获取信噪比矩阵,并根据所述信噪比矩阵简化所述去噪图像以得到所述二值化图像。
9.根据权利要求1、2、8任一项所述的基因测序的图像处理方法,其特征在于,所述分析所述待处理图像以计算亮点判定阈值的步骤,包括:
通过大津法处理所述待处理图像以计算所述亮点判定阈值。
10.根据权利要求2所述的基因测序的图像处理方法,其特征在于,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值的步骤,包括:
采用二次函数插值计算所述亮点的亚像素中心坐标,和/或采用二次样条插值计算所述亚像素中心坐标的强度值。
11.根据权利要求2或10所述的基因测序的图像处理方法,其特征在于,所述基因测序的图像处理方法还包括步骤:
利用标识标示出所述亮点的亚像素中心坐标所在图像的位置。
12.一种基因测序的图像处理系统,其特征在于,包括:
图像预处理模块,所述图像预处理模块用于分析输入的待处理图像以获得去噪图像,
所述图像处理系统包括简化模块,所述简化模块用于将所述去噪图像简化为二值化图像,所述待处理图像包含至少一个亮点,所述亮点具有至少一个像素点;
亮点检测模块,所述亮点检测模块用于:
分析所述待处理图像以计算亮点判定阈值,
分析所述去噪图像以获取候选亮点,
根据所述亮点判定阈值判断所述候选亮点是否为所述亮点,
所述亮点检测模块用于:在所述二值化图像中查找大于(p*p-1)连通的像素区域并将查找到的所述像素区域的中心像素点作为所述候选亮点的中心,p为自然数且为大于1的奇数;
判断所述候选亮点的中心是否满足条件:Imax*ABI*ceofguass>T,其中,Imax为p*p窗口的中心最强强度,ABI为p*p窗口中所述二值化图像中为设定值所占的比率,ceofguass为p*p窗口的像素和二维高斯分布的相关系数,T为所述亮点判定阈值,所述设定值选自所述二值化图像的值,
若满足上述条件,判断所述候选亮点的中心对应的亮点为所述亮点,
若不满足上述条件,弃去所述候选亮点的中心对应的亮点。
13.根据权利要求12所述的基因测序的图像处理系统,其特征在于,所述亮点检测模块还用于:
若判断结果为是,计算所述亮点的亚像素中心坐标和/或所述亚像素中心坐标的强度值,
若判断结果为否,丢弃所述候选亮点。
14.根据权利要求12或13所述的基因测序的图像处理系统,其特征在于,所述图像预处理模块包括图像滤波模块,
所述图像滤波模块用于对所述待处理图像进行滤波以获取所述去噪图像。
15.根据权利要求14所述的基因测序的图像处理系统,其特征在于,所述图像滤波模块对所述待处理图像进行墨西哥帽滤波。
16.根据权利要求15所述的基因测序的图像处理系统,其特征在于,所述图像滤波模块用于,在进行墨西哥帽滤波时,使用m*m窗口对所述待处理图像进行高斯滤波,对高斯滤波后的待处理图像进行二维拉普拉斯锐化,m为自然数且为大于1的奇数。
17.根据权利要求16所述的基因测序的图像处理系统,其特征在于,所述图像预处理模块还包括减背景模块,所述减背景模块用于,在滤波之前,对所述待处理图像进行减背景处理,获得减背景图像。
18.根据权利要求17所述的基因测序的图像处理系统,其特征在于,所述减背景模块用于:
利用开运算确定所述待处理图像的背景,
根据所述背景对所述待处理图像进行减背景处理。
19.根据权利要求12所述的基因测序的图像处理系统,其特征在于,所述简化模块用于根据所述去噪图像获取信噪比矩阵,并根据所述信噪比矩阵简化所述去噪图像以得到所述二值化图像。
20.根据权利要求12、13、19任一项所述的基因测序的图像处理系统,其特征在于,所述亮点检测模块用于:
通过大津法处理所述待处理图像以计算所述亮点判定阈值。
21.根据权利要求13所述的基因测序的图像处理系统,其特征在于,所述亮点检测模块用于:
采用二次函数插值计算所述亮点的亚像素中心坐标,和/或采用二次样条插值计算所述亚像素中心坐标的强度值。
22.根据权利要求13或21所述的基因测序的图像处理系统,其特征在于,所述基因测序的图像处理系统包括标识模块,所述标识模块用于:
利用标识标示出所述亮点的亚像素中心坐标所在图像的位置。
23.一种基因测序的图像处理系统,其特征在于,包括:
数据输入单元,用于输入数据;
数据输出单元,用于输出数据;
存储单元,用于存储数据,所述数据包括计算机可执行程序;
处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成根据权利要求1-11任一项所述的方法。
24.一种计算机可读存储介质,其特征在于,用于存储供计算机执行的程序,执行所述程序包括完成根据权利要求1-11任一项所述的方法。
CN201710607295.2A 2016-10-10 2017-07-24 基因测序的图像处理方法及系统及计算机可读存储介质 Active CN107945150B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016108825478 2016-10-10
CN201610882547 2016-10-10

Publications (2)

Publication Number Publication Date
CN107945150A CN107945150A (zh) 2018-04-20
CN107945150B true CN107945150B (zh) 2021-11-09

Family

ID=61898788

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710607306.7A Active CN107918931B (zh) 2016-10-10 2017-07-24 图像处理方法及系统及计算机可读存储介质
CN201710607295.2A Active CN107945150B (zh) 2016-10-10 2017-07-24 基因测序的图像处理方法及系统及计算机可读存储介质

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710607306.7A Active CN107918931B (zh) 2016-10-10 2017-07-24 图像处理方法及系统及计算机可读存储介质

Country Status (3)

Country Link
CN (2) CN107918931B (zh)
HK (2) HK1247722A1 (zh)
WO (3) WO2018068511A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020037574A1 (zh) * 2018-08-22 2020-02-27 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、碱基识别方法和装置
CN112285070B (zh) * 2018-08-22 2022-11-11 深圳市真迈生物科技有限公司 检测图像上的亮斑的方法和装置、图像配准方法和装置
CN112288781B (zh) * 2018-08-22 2024-07-05 深圳市真迈生物科技有限公司 图像配准方法、装置和计算机程序产品
CN112289377B (zh) * 2018-08-22 2022-11-15 深圳市真迈生物科技有限公司 检测图像上的亮斑的方法、装置和计算机程序产品
CN112289381B (zh) * 2018-08-22 2021-12-14 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、装置和计算机产品
US11847766B2 (en) 2018-08-22 2023-12-19 Genemind Biosciences Company Limited Method and device for detecting bright spots on image, and computer program product
WO2020037570A1 (zh) * 2018-08-22 2020-02-27 深圳市真迈生物科技有限公司 图像配准方法、装置和计算机程序产品
CN112288783B (zh) * 2018-08-22 2021-06-29 深圳市真迈生物科技有限公司 基于图像构建测序模板的方法、碱基识别方法和装置
EP4015645A4 (en) 2019-08-16 2023-05-10 GeneMind Biosciences Company Limited METHODS AND SYSTEM FOR BASE RECOGNITION, COMPUTER PROGRAM PRODUCT AND SYSTEM FOR SEQUENCING
CN113012757B (zh) 2019-12-21 2023-10-20 深圳市真迈生物科技有限公司 识别核酸中的碱基的方法和系统
CN111951324B (zh) * 2020-07-30 2024-03-29 佛山科学技术学院 一种铝型材包装长度检测方法及系统
CN113034481A (zh) * 2021-04-02 2021-06-25 广州绿怡信息科技有限公司 设备图像模糊检测方法及装置
CN113781351B (zh) * 2021-09-16 2023-12-08 广州安方生物科技有限公司 图像处理方法、设备及计算机可读存储介质
CN114166805B (zh) * 2021-11-03 2024-01-30 格力电器(合肥)有限公司 Ntc温度传感器检测方法、装置、ntc温度传感器及制造方法
CN114311572B (zh) * 2021-12-31 2024-09-24 深圳市新科聚合网络技术有限公司 Smd led注塑支架在线检测装置及其检测方法
CN115294035B (zh) * 2022-07-22 2023-11-10 深圳赛陆医疗科技有限公司 亮点定位方法、亮点定位装置、电子设备及存储介质
CN117721191B (zh) * 2024-02-07 2024-05-10 深圳赛陆医疗科技有限公司 基因测序方法、测序装置、可读存储介质和基因测序系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930116A (zh) * 2009-06-23 2010-12-29 索尼公司 生物样本图像获取装置、获取方法以及获取程序
CN102354398A (zh) * 2011-09-22 2012-02-15 苏州大学 基于密度中心与自适应的基因芯片处理方法
CN105389581A (zh) * 2015-10-15 2016-03-09 哈尔滨工程大学 一种胚芽米胚芽完整度智能识别系统及其识别方法
CN105741266A (zh) * 2016-01-22 2016-07-06 北京航空航天大学 一种病理图像细胞核快速定位方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315772A (ja) * 2006-05-23 2007-12-06 Canon Inc 蛍光検出装置および生化学反応分析装置
CN102174384B (zh) * 2011-01-05 2014-04-02 深圳华因康基因科技有限公司 对基因测序仪的测序及信号处理进行控制的方法及系统
JP5413408B2 (ja) * 2011-06-09 2014-02-12 富士ゼロックス株式会社 画像処理装置、プログラム及び画像処理システム
KR101348680B1 (ko) * 2013-01-09 2014-01-09 국방과학연구소 영상추적기를 위한 표적포착방법 및 이를 이용한 표적포착장치
US20140349281A1 (en) * 2013-05-22 2014-11-27 Sunpower Technologies Llc System and Method for Dispensing Barcoded Solutions
CN104297249A (zh) * 2014-09-15 2015-01-21 浙江大学 基于心肌细胞传感器的药物心脏毒性检测分析方法
CN107111874B (zh) * 2014-12-30 2022-04-08 文塔纳医疗系统公司 用于共表达分析的系统和方法
CN105039147B (zh) * 2015-06-03 2016-05-04 西安交通大学 一种高通量基因测序碱基荧光图像捕获系统装置及方法
CN105205788B (zh) * 2015-07-22 2018-06-01 哈尔滨工业大学深圳研究生院 一种针对高通量基因测序图像的去噪方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930116A (zh) * 2009-06-23 2010-12-29 索尼公司 生物样本图像获取装置、获取方法以及获取程序
CN102354398A (zh) * 2011-09-22 2012-02-15 苏州大学 基于密度中心与自适应的基因芯片处理方法
CN105389581A (zh) * 2015-10-15 2016-03-09 哈尔滨工程大学 一种胚芽米胚芽完整度智能识别系统及其识别方法
CN105741266A (zh) * 2016-01-22 2016-07-06 北京航空航天大学 一种病理图像细胞核快速定位方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ihor Smal.Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy.《IEEE TRANSACTIONS ON MEDICAL IMAGING》.2010, *
Image Thresholding Techniques for Localization of Sub-Resolution Fluorescent Biomarkers;Julien Ghaye;《Cytometry》;20130916;第1005-1006页 *
Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy;Ihor Smal;《IEEE TRANSACTIONS ON MEDICAL IMAGING》;20100201;第282-299页 *
高通量基因测序图像处理与数据分析;叶丙刚;《中国博士学位论文全文数据库》;20101115;全文 *

Also Published As

Publication number Publication date
HK1247722A1 (zh) 2018-09-28
CN107918931B (zh) 2021-11-09
WO2018068511A1 (zh) 2018-04-19
HK1247724A1 (zh) 2018-09-28
CN107945150A (zh) 2018-04-20
WO2018068600A1 (zh) 2018-04-19
CN107918931A (zh) 2018-04-17
WO2018068599A1 (zh) 2018-04-19

Similar Documents

Publication Publication Date Title
CN107945150B (zh) 基因测序的图像处理方法及系统及计算机可读存储介质
EP3306566B1 (en) Method and system for processing image
CN113109368B (zh) 玻璃裂纹检测方法、装置、设备及介质
CN114418957A (zh) 基于机器人视觉的全局和局部二值模式图像裂缝分割方法
WO2021030952A1 (zh) 碱基识别方法、系统、计算机程序产品和测序系统
US11847766B2 (en) Method and device for detecting bright spots on image, and computer program product
US11538261B2 (en) Systems and methods for automated cell segmentation and labeling in immunofluorescence microscopy
CN112289377B (zh) 检测图像上的亮斑的方法、装置和计算机程序产品
CN117351011B (zh) 屏幕缺陷检测方法、设备和可读存储介质
CN110544262A (zh) 一种基于机器视觉的子宫颈细胞图像分割方法
CN117853722A (zh) 一种融合超像素信息的钢材金相组织分割方法
US12008775B2 (en) Method and device for image registration, and computer program product
WO2022229638A1 (en) Method & apparatus for processing microscope images of cells and tissue structures
CN112289381B (zh) 基于图像构建测序模板的方法、装置和计算机产品
CN112288781B (zh) 图像配准方法、装置和计算机程序产品
WO2020037571A1 (zh) 基于图像构建测序模板的方法、装置和计算机程序产品
CN116452826A (zh) 基于机器视觉的遮挡情况下煤矸石轮廓估计方法
Khan et al. Segmentation of single and overlapping leaves by extracting appropriate contours
CN114862870A (zh) 散斑图分区方法、装置、设备及介质
CN113470028A (zh) 染色体核型图像质量评估方法、染色体分析仪和存储介质
CN112285070B (zh) 检测图像上的亮斑的方法和装置、图像配准方法和装置
WO2020037574A1 (zh) 基于图像构建测序模板的方法、碱基识别方法和装置
CN114240988B (zh) 一种基于非线性尺度空间的图像分割方法
Arz et al. 3D cell nuclei segmentation with balanced graph partitioning
Tsai et al. Watershed-based protein spot detection in 2DGE images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1247720

Country of ref document: HK

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 Shenye Jinyuan Building, No. 116 Qingshuihe Road, Qingshuihe Street, Luohu District, Shenzhen City, Guangdong Province, 2 5th and 6th floors

Applicant after: Shenzhen Zhenmai Biotechnology Co.,Ltd.

Address before: 518000 National Supercomputing Shenzhen Center Research Building, No. 9 Tuxue Road, Xili University Town, Nanshan District, Shenzhen City, Guangdong Province, 10th Floor

Applicant before: DIRECT GENOMICS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 518000 podium 502A and 502B, podium 602, Luohu investment holding building, No. 112, Qingshuihe 1st Road, Qingshuihe community, Qingshuihe street, Luohu District, Shenzhen, Guangdong

Patentee after: Shenzhen Zhenmai Biotechnology Co.,Ltd.

Country or region after: China

Address before: 518000 5th and 6th floors, block 2, Shenye Jinyuan Building, No.116, Qingshuihe 1st Road, Qingshuihe street, Luohu District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Zhenmai Biotechnology Co.,Ltd.

Country or region before: China

TG01 Patent term adjustment