CN104297249A - 基于心肌细胞传感器的药物心脏毒性检测分析方法 - Google Patents

基于心肌细胞传感器的药物心脏毒性检测分析方法 Download PDF

Info

Publication number
CN104297249A
CN104297249A CN201410469093.2A CN201410469093A CN104297249A CN 104297249 A CN104297249 A CN 104297249A CN 201410469093 A CN201410469093 A CN 201410469093A CN 104297249 A CN104297249 A CN 104297249A
Authority
CN
China
Prior art keywords
cardiac muscle
muscle cell
image
curve
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410469093.2A
Other languages
English (en)
Inventor
王平
苏凯麒
胡宁
王琴
邹玲
黎洪波
邹瞿超
曹端喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410469093.2A priority Critical patent/CN104297249A/zh
Publication of CN104297249A publication Critical patent/CN104297249A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种基于心肌细胞传感器的药物心脏毒性检测分析方法,该方法采用离体的心肌细胞培养,构建高性能且成本低廉的心肌细胞传感器,采用图像采集、RGB图像转灰度图像、图像二值化、图像矩阵化和峰值检测算法计算检测出心肌细胞机械搏动时搏动图像的变化,并使用搏动图像差异值来量化心肌细胞机械搏动,实现心肌细胞机械搏动的速率、幅度和搏动间隙的检测;通过分析药物作用下的心肌细胞机械搏动状态随时间的变化,评价药物的心脏毒性;较现有的药物心脏毒性检测分析方法,本发明具有无标记,无损,成本低廉,操作步骤简单,并能够直观,长时间且单一性地观察评价药物的心脏毒性等优点。

Description

基于心肌细胞传感器的药物心脏毒性检测分析方法
技术领域
本发明涉及药物心脏毒性检测分析技术,尤其涉及一种基于心肌细胞传感器的药物心脏毒性检测分析方法。
背景技术
心脏安全是新药开发、批准和使用中最为关注的问题,但是目前许多药物由于在心脏安全上存在问题而受到限制或从市场上撤回,从而造成药物损耗。引起尖端扭转(TdP)是大多药物对心脏的副作用。TdP是一种室性心动过速,在心电图上表现为基线处附近的振荡形态。TdP的成因是心肌细胞膜上的快速延迟整流K+离子通道IKr受到抑制,而IKr由人类相关基因(human ether-a-go-go-related gene,hERG)编码。IKr是人类心室肌细胞主要的复极化电流,当受到抑制时,会引起去极化与复极化的时间延长,最终导致TdP。因此,为了评估药物是否会产生TdP,研发中的候选药物需要进行hERG抑制的筛选。鉴于药物心脏安全性评价的重要性,目前国内外,大量的离体组织、在体动物、生物方法和模型等用于进行药物分析。离体组织和在体动物实验方法可以直接测试药物心脏毒性,但同时具有通量较低、操作复杂且成本较高等缺点。hERG抑制剂与受体蛋白的生物方法无法体现心脏在药物作用后的连续和长时间地变化过程。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于心肌细胞传感器的药物心脏毒性检测分析方法。
本发明的目的是通过以下技术方案来实现的:一种基于心肌细胞传感器的药物心脏毒性检测分析方法,该方法在药物心脏毒性检测分析系统上实现,所述药物心脏毒性检测分析系统包括:心肌细胞传感器培养板、正立显微镜、CCD摄像头和计算机;其中,心肌细胞传感器培养板固定在正立显微镜的载物台上;CCD摄像头固定在正立显微镜上方;CCD摄像头通过USB连接线与计算机连接;该方法包括以下步骤:
(1)心肌细胞培养:获取待测心肌细胞,在高糖培养基中培养,制成心肌细胞的细胞悬液;经过活细胞计数后,将原细胞悬液配制成170,000个/ml的细胞悬液;最后在心肌细胞传感器培养板中任意选择一个孔中加入100μl细胞悬液,使孔中细胞数量为17000个/孔,将心肌细胞传感器培养板置于培养箱培养96小时,使得心肌细胞良好贴附于心肌细胞传感器培养板的表面,构建出心肌细胞传感器;
(2)配制待测药物标准样品溶液:用二甲基亚砜(DMSO)配制成1.6mM的标准样品溶液储存液;用高糖培养基依次稀释储存液,得到不同浓度梯度的工作液;
(3)对照组心肌细胞传感器机械搏动状态检测:首先将心肌细胞传感器培养板放置在正立显微镜的在载物台上,使用40倍物镜和10倍目镜,调整正立显微镜载物台的位置和调焦旋钮,在视野中能清晰看到心肌细胞;其次通过计算机控制CCD摄像头进行心肌细胞搏动图像采集,然后计算心肌细胞的机械搏动曲线;最后通过心肌细胞的机械搏动曲线计算对照组搏动速率、搏动幅度和搏动间隙状态参数,处理过程包括以下子步骤:
(3.1)将采集的心肌细胞搏动图像的第一帧作为对照帧图像;
(3.2)将对照帧图像进行灰度化,采用的灰度化公式为:
Gray=R×0.299+G×0.587+B×0.114
其中,Gray指图像像素二值化后的灰度值,R、G和B分别指原始图像像素红、绿和蓝通道的值;
(3.3)采用大律法对步骤3.2灰度化后的图像进行二值化,将T记为图像前景和背景的分割阈值,w0记为前景像素点数与图像总像素点数的比例,图像前景平均灰度为u0;w1为背景像素点数与图像总像素点数的比例,图像背景平均灰度为u1;将u记为图像的总平均灰度,计算公式为u=w0×u0+w1×u1;G记为最大类间方差,从最小灰度到最大灰度值遍历T,依据计算公式G=w0×(u0-u)2+w1×(u1-u)2,当T使得G最大时,取此时的T为最佳的分割阈值;然后依据T,将图像像素灰度值小于T的取为0,图像像素灰度值大于T的取为1,实现灰度图像的二值化;
(3.4)采集随后的心肌细胞搏动图像的序列帧图像作为实时帧图像,按照步骤(3.2)和(3.3)对实时帧图像进行灰度化和二值化处理;
(3.5)将灰度化后的实时帧图像与灰度化后的对照帧图像做图像减法,获得减法图像;然后将减法图像进行图像像素点的矩阵化,获得图像矩阵,此时矩阵元素值为-1、0和1三者其中之一;
(3.6)对图像矩阵元素进行绝对值化,然后对绝对值化后的图像矩阵进行元素求和,其和即为搏动图像差异值;
(3.7)以时间为横坐标,步骤3.6计算出的实时帧图像的搏动图像差异值为纵坐标绘制曲线,该曲线即为心肌细胞机械搏动曲线;
(3.8)对心肌细胞机械搏动曲线进行小波变换,采用7层多尺度分析方法;
(3.9)将7层多尺度分析结果中的近似分量A7、细节分量D1、D2和D3进行置零,然后采用小波逆变换重构心肌细胞机械搏动曲线,即得到去基线降噪后的心肌细胞机械搏动曲线;
(3.10)计算去基线降噪后的心肌细胞机械搏动曲线的均方差,并将其定为阈值:将去基线降噪后的心肌细胞机械搏动曲线中大于阈值的位点记为1,小于阈值的位点记为0,然后再进行差分,曲线结果数值为1、0和-1三者之一;其中曲线值为1的位点为波峰位点的左边缘,曲线值为-1的位点为波峰位点的右边缘;
(3.11)依据步骤(3.10)中得出的左边缘和右边缘位点,求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最大值,最大值位点即为波峰位点;求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最小值,最小值位点即为波谷位点;最大值与最小值的差即为心肌细胞机械搏动幅度;连续的波峰位点之间的时间间隔比值,即为心肌细胞机械搏动间隙;
(3.12)每隔30秒统计波峰位点个数、搏动幅度和搏动间隙,将统计波峰位点个数记为30秒内心肌细胞搏动的平均速率;以时间为x轴,心肌细胞搏动的平均速率为y轴,构建心肌细胞搏动平均速率曲线;以时间为x轴,搏动幅度为y轴,构建心肌细胞搏动幅度曲线;以时间为x轴,心肌细胞搏动间隙为y轴,构建心肌细胞搏动间隙曲线;
(4)分析药物溶液样品的心脏毒性:将步骤(2)稀释后的体积为20μl的不同浓度梯度的工作液分别加入心肌细胞传感器培养板中,重复步骤(3),检测心肌细胞在不同浓度梯度的工作液作用下的搏动曲线、搏动速率、搏动幅度和搏动间隙状态参数;将所得的搏动速率、搏动幅度和搏动间隙与步骤(3)对照组所得的相同参数,采用归一化处理,即以对照组的每个时间点的状态参数作为基准,药物作用下的状态参数与同一时刻对照组的基准相比,进行归一化计算,通过计算结果,便可分析药物心脏毒性对心肌细胞搏动速率,搏动幅度和搏动间隙的影响。
本发明的有益效果是:本发明方法具有成本低廉且能够长时间、直观化地观察药物对心肌细胞的作用变化从而评估药物心脏毒性等优点。本发明较现有的药物心脏安全性分析方法上,具有操作步骤简单,成本低和长时直观化地观察药物心脏毒性作用变化等优点,除了配制标准品溶液和接种细胞等简单步骤外无需其他步骤。根据以上优点,本发明方法可成为药物筛选领域的新工具,并广泛应用于该领域。
附图说明
图1是本发明方法所使用的检测系统整体结构图;
图2是本发明方法流程图;
图3是本发明心肌细胞传感器检测阿霉素心脏毒性的搏动曲线结果图;
图4是本发明阿霉素心脏毒性分析的搏动速率结果图;
图5是本发明阿霉素心脏毒性分析的搏动幅度结果图;
图6是本发明阿霉素心脏毒性分析的搏动间隙结果图;
图中:心肌细胞传感器培养板1、USB连接线2、正立显微镜3、CCD摄像头4、计算机5。
具体实施方式
以下结合附图及具体实施例对本发明作进一步详细描述,但并不是限制本发明。
本发明基于心肌细胞传感器的药物心脏毒性检测分析方法,该方法在药物心脏毒性检测分析系统上实现,如图1所示,所述药物心脏毒性检测分析系统包括:心肌细胞传感器培养板1、正立显微镜3、CCD摄像头4和计算机5;其中,心肌细胞贴附在心肌细胞传感器培养板1的表面;心肌细胞传感器培养板1固定在正立显微镜3的载物台上;CCD摄像头4固定在正立显微镜3上方;CCD摄像头4通过USB连接线2与计算机5连接,从而将采集信号传输给计算机5进行后处理;该方法包括以下步骤:
(1)心肌细胞培养:将大鼠心脏心尖部置于预冷的高糖培养基(DMEM)中;然后将漂洗后的心尖组织在预冷的DMEM中去除心房和血管组织;之后在5ml玻璃瓶中加入2ml预冷的平衡盐溶液(HBSS),将心尖转移到HBSS中,剪成1mm3的小块,加入胶原酶溶液,该胶原酶溶液由质量分数为0.07%胰蛋白酶和质量分数为0.05%小鼠胶原酶II在HBSS中混合而成;在玻璃瓶中,经胶原酶溶液消化后的残余组织块中加入5ml含有体积百分比10%胎牛血清(FBS)的DMEM培养基,收集上清液置于含有体积百分比10%FBS的DMEM培养基中;将混合后的上清液800rpm离心5min,在沉淀中加入5ml高糖培养基轻轻吹打以重悬细胞;将重悬的心肌细胞过200目细胞筛,并将细胞收集到5ml高糖培养基,组成新的细胞悬液放入50ml离心管中;将细胞悬液收集到培养瓶中,进行差速贴壁2次,每次45min,以去除纤维细胞和其它细胞;之后将差速贴壁后的心肌细胞悬液转移到50ml离心管中进行细胞计数;而后吸取100μl细胞悬液,混合加入100μl台盼蓝染液并置于室温下,1min后进行活细胞计数;经过计数后,将培养瓶中的细胞悬液配制成170,000个/ml的细胞悬液;最后在心肌细胞传感器培养板1中任意选择一个孔中加入100μl细胞悬液,使孔中细胞数量为17000个/孔,将心肌细胞传感器培养板1置于培养箱培养96小时,使得心肌细胞良好贴附于心肌细胞传感器培养板1,构建出心肌细胞传感器。
(2)配制待测药物标准样品溶液:用二甲基亚砜(DMSO)配制成1.6mM的标准样品溶液储存液;用高糖培养基依次稀释储存液,得到不同浓度梯度的工作液。
(3)对照组心肌细胞传感器机械搏动状态检测:首先将心肌细胞传感器培养板1放置在正立显微镜3的在载物台上,使用40倍物镜和10倍目镜,调整正立显微镜3载物台的位置和调焦旋钮,在视野中能清晰看到心肌细胞;将CCD摄像头4的帧率设置为24fps;其次如图2所示,通过计算机5控制CCD摄像头4进行心肌细胞搏动图像采集,然后计算心肌细胞的机械搏动曲线;最后通过心肌细胞的机械搏动曲线计算对照组搏动速率、搏动幅度和搏动间隙状态参数,处理过程包括以下子步骤:
(3.1)将采集的心肌细胞搏动图像的第一帧作为对照帧图像;
(3.2)将对照帧图像进行灰度化,采用的灰度化公式为:
Gray=R×0.299+G×0.587+B×0.114
其中,Gray指图像像素二值化后的灰度值,R、G和B分别指原始图像像素红、绿和蓝通道的值;
(3.3)采用大律法对步骤3.2灰度化后的图像进行二值化,将T记为图像前景和背景的分割阈值,w0记为前景像素点数与图像总像素点数的比例,图像前景平均灰度为u0;w1为背景像素点数与图像总像素点数的比例,图像背景平均灰度为u1;将u记为图像的总平均灰度,计算公式为u=w0×u0+w1×u1;G记为最大类间方差,从最小灰度到最大灰度值遍历T,依据计算公式G=w0×(u0-u)2+w1×(u1-u)2,当T使得G最大时,取此时的T为最佳的分割阈值;然后依据T,将图像像素灰度值小于T的取为0,图像像素灰度值大于T的取为1,实现灰度图像的二值化;
(3.4)采集随后的心肌细胞搏动图像的序列帧图像作为实时帧图像,按照步骤(3.2)和(3.3)对实时帧图像进行灰度化和二值化处理;
(3.5)将灰度化后的实时帧图像与灰度化后的对照帧图像做图像减法,获得减法图像;然后将减法图像进行图像像素点的矩阵化,获得图像矩阵,此时矩阵元素值为-1、0和1三者其中之一;
(3.6)对图像矩阵元素进行绝对值化,然后对绝对值化后的图像矩阵进行元素求和,其和即为搏动图像差异值;
(3.7)以时间为横坐标,步骤3.6计算出的实时帧图像的搏动图像差异值为纵坐标绘制曲线,该曲线即为心肌细胞机械搏动曲线;
(3.8)对心肌细胞机械搏动曲线进行小波变换,采用7层多尺度分析方法;
(3.9)将7层多尺度分析结果中的近似分量A7、细节分量D1、D2和D3进行置零,然后采用小波逆变换重构心肌细胞机械搏动曲线,即得到去基线降噪后的心肌细胞机械搏动曲线;
(3.10)计算去基线降噪后的心肌细胞机械搏动曲线的均方差,并将其定为阈值:将去基线降噪后的心肌细胞机械搏动曲线中大于阈值的位点记为1,小于阈值的位点记为0,然后再进行差分,曲线结果数值为1、0和-1三者之一;其中曲线值为1的位点为波峰位点的左边缘,曲线值为-1的位点为波峰位点的右边缘;
(3.11)依据步骤(3.10)中得到的左边缘和右边缘位点,求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最大值,最大值位点即为波峰位点;求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最小值,最小值位点即为波谷位点;最大值与最小值的差即为心肌细胞机械搏动幅度;连续的波峰位点之间的时间间隔比值,即为心肌细胞机械搏动间隙;
(3.12)每隔30秒统计波峰位点个数、搏动幅度和搏动间隙,将统计波峰位点个数记为30秒内心肌细胞搏动的平均速率;以时间为x轴,心肌细胞搏动的平均速率为y轴,构建心肌细胞搏动平均速率曲线;以时间为x轴,搏动幅度为y轴,构建心肌细胞搏动幅度曲线;以时间为x轴,心肌细胞搏动间隙为y轴,构建心肌细胞搏动间隙曲线;
(4)分析药物溶液样品的心脏毒性:将步骤(2)稀释后的体积为20μl的不同浓度梯度的工作液分别加入心肌细胞传感器培养板1中,重复步骤(3),检测心肌细胞在不同浓度梯度的工作液作用下的搏动曲线、搏动速率、搏动幅度和搏动间隙状态参数;将所得的搏动速率、搏动幅度和搏动间隙与步骤(3)对照组所得的相同参数,采用归一化处理,即以对照组的每个时间点的状态参数作为基准,药物作用下的状态参数与同一时刻对照组的基准相比,进行归一化计算,通过计算结果,便可分析药物心脏毒性对心肌细胞搏动速率,搏动幅度和搏动间隙的影响。
根据上述的基于心肌细胞传感器的药物心脏毒性检测分析方法,评价1μM、4μM和16μM三种不同浓度的阿霉素药物样品溶液心脏毒性。如图3所示,为10分钟时,对照组、1μM、4μM和16μM阿霉素溶液心肌细胞的机械搏动曲线图。如图4、5和6所示,分别为搏动速率、搏动幅度和搏动间隙归一化计算结果。不同浓度的药物阿霉素在作用10分钟后,使心肌细胞搏动速率分别降为对照组的57.35%、51.15%和35.29%,使搏动幅度分别降为对照组的75.38%、64.42%和58.98%,使搏动间隙分别降为对照组的342.50%、297.78%和240.00%。实验结果证明本发明方法能够进行药物心脏毒性检测分析。

Claims (1)

1.一种基于心肌细胞传感器的药物心脏毒性检测分析方法,该方法在药物心脏毒性检测分析系统上实现,所述药物心脏毒性检测分析系统包括:心肌细胞传感器培养板(1)、正立显微镜(3)、CCD摄像头(4)和计算机(5);其中,心肌细胞传感器培养板(1)固定在正立显微镜(3)的载物台上;CCD摄像头(4)固定在正立显微镜(3)上方;CCD摄像头(4)通过USB连接线(2)与计算机(5)连接;其特征在于,该方法包括以下步骤:
(1)心肌细胞培养:获取待测心肌细胞,在高糖培养基中培养,制成心肌细胞的细胞悬液;经过活细胞计数后,将原细胞悬液配制成170,000个/ml的细胞悬液;最后在心肌细胞传感器培养板(1)中任意选择一个孔中加入100μl细胞悬液,使孔中细胞数量为17000个/孔,将心肌细胞传感器培养板(1)置于培养箱培养96小时,使得心肌细胞良好贴附于心肌细胞传感器培养板(1)的表面,构建出心肌细胞传感器;
(2)配制待测药物标准样品溶液:用二甲基亚砜配制成1.6mM的标准样品溶液储存液;用高糖培养基依次稀释储存液,得到不同浓度梯度的工作液;
(3)对照组心肌细胞传感器机械搏动状态检测:首先将心肌细胞传感器培养板(1)放置在正立显微镜(3)的在载物台上,使用40倍物镜和10倍目镜,调整正立显微镜(3)载物台的位置和调焦旋钮,在视野中能清晰看到心肌细胞;其次通过计算机(5)控制CCD摄像头(4)进行心肌细胞搏动图像采集,然后计算心肌细胞的机械搏动曲线;最后通过心肌细胞的机械搏动曲线计算对照组搏动速率、搏动幅度和搏动间隙状态参数,处理过程包括以下子步骤:
(3.1)将采集的心肌细胞搏动图像的第一帧作为对照帧图像;
(3.2)将对照帧图像进行灰度化,采用的灰度化公式为:
Gray=R×0.299+G×0.587+B×0.114
其中,Gray指图像像素二值化后的灰度值,R、G和B分别指原始图像像素红、绿和蓝通道的值;
(3.3)采用大律法对步骤3.2灰度化后的图像进行二值化,将T记为图像前景和背景的分割阈值,w0记为前景像素点数与图像总像素点数的比例,图像前景平均灰度为u0;w1为背景像素点数与图像总像素点数的比例,图像背景平均灰度为u1;将u记为图像的总平均灰度,计算公式为u=w0×u0+w1×u1;G记为最大类间方差,从最小灰度到最大灰度值遍历T,依据计算公式G=w0×(u0-u)2+w1×(u1-u)2,当T使得G最大时,取此时的T为最佳的分割阈值;然后依据T,将图像像素灰度值小于T的取为0,图像像素灰度值大于T的取为1,实现灰度图像的二值化;
(3.4)采集随后的心肌细胞搏动图像的序列帧图像作为实时帧图像,按照步骤(3.2)和(3.3)对实时帧图像进行灰度化和二值化处理;
(3.5)将灰度化后的实时帧图像与灰度化后的对照帧图像做图像减法,获得减法图像;然后将减法图像进行图像像素点的矩阵化,获得图像矩阵,此时矩阵元素值为-1、0和1三者其中之一;
(3.6)对图像矩阵元素进行绝对值化,然后对绝对值化后的图像矩阵进行元素求和,其和即为搏动图像差异值;
(3.7)以时间为横坐标,步骤3.6计算出的实时帧图像的搏动图像差异值为纵坐标绘制曲线,该曲线即为心肌细胞机械搏动曲线;
(3.8)对心肌细胞机械搏动曲线进行小波变换,采用7层多尺度分析方法;
(3.9)将7层多尺度分析结果中的近似分量A7、细节分量D1、D2和D3进行置零,然后采用小波逆变换重构心肌细胞机械搏动曲线,即得到去基线降噪后的心肌细胞机械搏动曲线;
(3.10)计算去基线降噪后的心肌细胞机械搏动曲线的均方差,并将其定为阈值:将去基线降噪后的心肌细胞机械搏动曲线中大于阈值的位点记为1,小于阈值的位点记为0,然后再进行差分,曲线结果数值为1、0和-1三者之一;其中曲线值为1的位点为波峰位点的左边缘,曲线值为-1的位点为波峰位点的右边缘;
(3.11)依据步骤(3.10)中得出的左边缘和右边缘位点,求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最大值,最大值位点即为波峰位点;求出其区间中去基线降噪后的心肌细胞机械搏动曲线的最小值,最小值位点即为波谷位点;最大值与最小值的差即为心肌细胞机械搏动幅度;连续的波峰位点之间的时间间隔比值,即为心肌细胞机械搏动间隙;
(3.12)每隔30秒统计波峰位点个数、搏动幅度和搏动间隙,将统计波峰位点个数记为30秒内心肌细胞搏动的平均速率;以时间为x轴,心肌细胞搏动的平均速率为y轴,构建心肌细胞搏动平均速率曲线;以时间为x轴,搏动幅度为y轴,构建心肌细胞搏动幅度曲线;以时间为x轴,心肌细胞搏动间隙为y轴,构建心肌细胞搏动间隙曲线;
(4)分析药物溶液样品的心脏毒性:将步骤(2)稀释后的体积为20μl的不同浓度梯度的工作液分别加入心肌细胞传感器培养板(1)中,重复步骤(3),检测心肌细胞在不同浓度梯度的工作液作用下的搏动曲线、搏动速率、搏动幅度和搏动间隙状态参数;将所得的搏动速率、搏动幅度和搏动间隙与步骤(3)对照组所得的相同参数,采用归一化处理,即以对照组的每个时间点的状态参数作为基准,药物作用下的状态参数与同一时刻对照组的基准相比,进行归一化计算,通过计算结果,便可分析药物心脏毒性对心肌细胞搏动速率,搏动幅度和搏动间隙的影响。
CN201410469093.2A 2014-09-15 2014-09-15 基于心肌细胞传感器的药物心脏毒性检测分析方法 Pending CN104297249A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410469093.2A CN104297249A (zh) 2014-09-15 2014-09-15 基于心肌细胞传感器的药物心脏毒性检测分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410469093.2A CN104297249A (zh) 2014-09-15 2014-09-15 基于心肌细胞传感器的药物心脏毒性检测分析方法

Publications (1)

Publication Number Publication Date
CN104297249A true CN104297249A (zh) 2015-01-21

Family

ID=52317072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410469093.2A Pending CN104297249A (zh) 2014-09-15 2014-09-15 基于心肌细胞传感器的药物心脏毒性检测分析方法

Country Status (1)

Country Link
CN (1) CN104297249A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823817A (zh) * 2016-01-04 2016-08-03 浙江农林大学 抗癌药物长春瑞滨药效检测装置及检测方法
CN105823808A (zh) * 2016-01-04 2016-08-03 浙江农林大学 抗癌药物拓扑替康药效检测装置及检测方法
CN105954505A (zh) * 2016-05-04 2016-09-21 浙江大学 基于细胞活性传感器的贝类腹泻性毒素的检测装置及方法
WO2018068600A1 (zh) * 2016-10-10 2018-04-19 深圳市瀚海基因生物科技有限公司 图像处理方法及系统
US10467749B2 (en) 2016-10-10 2019-11-05 Genemind Biosciences Company Limited Method and system for processing an image comprising spots in nucleic acid sequencing
CN110441273A (zh) * 2019-08-01 2019-11-12 西安交通大学 一种评价肌浆网钙泄漏的方法
CN111466902A (zh) * 2020-01-06 2020-07-31 南开大学 利用荧光信号差值测量斑马鱼心率的方法
CN112322690A (zh) * 2020-10-26 2021-02-05 浙江大学 一种基于心肌细胞兴奋收缩偶联信号检测苦味物质的方法
US11170506B2 (en) 2018-08-22 2021-11-09 Genemind Biosciences Company Limited Method for constructing sequencing template based on image, and base recognition method and device
US11847766B2 (en) 2018-08-22 2023-12-19 Genemind Biosciences Company Limited Method and device for detecting bright spots on image, and computer program product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124573A (ja) * 2003-10-03 2005-05-19 Mochida Pharmaceut Co Ltd 有機アニオン性薬物の毒性評価方法
CN102145182A (zh) * 2010-02-09 2011-08-10 南京大学 一种药物心脏毒性的检测方法
CN103049674A (zh) * 2013-01-26 2013-04-17 北京东方灵盾科技有限公司 一种化学药物hERG钾离子通道阻断作用的定性预测方法及其系统
CN103049673A (zh) * 2013-01-26 2013-04-17 北京东方灵盾科技有限公司 一种中药毒性定性评价方法及其系统
CN103969233A (zh) * 2014-04-03 2014-08-06 浙江大学 一种双色荧光标记筛选抗阿霉素心肌毒性活性物质的方法
EP2772531A1 (en) * 2011-10-28 2014-09-03 National University Corporation Tokyo Medical and Dental University Method and device for examining myocardial toxicity and evaluating cardiomyocyte

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124573A (ja) * 2003-10-03 2005-05-19 Mochida Pharmaceut Co Ltd 有機アニオン性薬物の毒性評価方法
CN102145182A (zh) * 2010-02-09 2011-08-10 南京大学 一种药物心脏毒性的检测方法
EP2772531A1 (en) * 2011-10-28 2014-09-03 National University Corporation Tokyo Medical and Dental University Method and device for examining myocardial toxicity and evaluating cardiomyocyte
CN103049674A (zh) * 2013-01-26 2013-04-17 北京东方灵盾科技有限公司 一种化学药物hERG钾离子通道阻断作用的定性预测方法及其系统
CN103049673A (zh) * 2013-01-26 2013-04-17 北京东方灵盾科技有限公司 一种中药毒性定性评价方法及其系统
CN103969233A (zh) * 2014-04-03 2014-08-06 浙江大学 一种双色荧光标记筛选抗阿霉素心肌毒性活性物质的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏凯麒: "基于ECIS细胞传感器和图像检测海洋毒素分析系统设计", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823808A (zh) * 2016-01-04 2016-08-03 浙江农林大学 抗癌药物拓扑替康药效检测装置及检测方法
CN105823817A (zh) * 2016-01-04 2016-08-03 浙江农林大学 抗癌药物长春瑞滨药效检测装置及检测方法
CN105823817B (zh) * 2016-01-04 2018-04-20 浙江农林大学 抗癌药物长春瑞滨药效检测装置及检测方法
CN105823808B (zh) * 2016-01-04 2018-05-01 浙江农林大学 抗癌药物拓扑替康药效检测装置及检测方法
CN105954505B (zh) * 2016-05-04 2018-06-15 浙江大学 基于细胞活性传感器的贝类腹泻性毒素的检测装置及方法
CN105954505A (zh) * 2016-05-04 2016-09-21 浙江大学 基于细胞活性传感器的贝类腹泻性毒素的检测装置及方法
WO2018068600A1 (zh) * 2016-10-10 2018-04-19 深圳市瀚海基因生物科技有限公司 图像处理方法及系统
US10467749B2 (en) 2016-10-10 2019-11-05 Genemind Biosciences Company Limited Method and system for processing an image comprising spots in nucleic acid sequencing
US11170506B2 (en) 2018-08-22 2021-11-09 Genemind Biosciences Company Limited Method for constructing sequencing template based on image, and base recognition method and device
US11847766B2 (en) 2018-08-22 2023-12-19 Genemind Biosciences Company Limited Method and device for detecting bright spots on image, and computer program product
CN110441273A (zh) * 2019-08-01 2019-11-12 西安交通大学 一种评价肌浆网钙泄漏的方法
CN110441273B (zh) * 2019-08-01 2020-07-10 西安交通大学 一种评价肌浆网钙泄漏的方法
CN111466902A (zh) * 2020-01-06 2020-07-31 南开大学 利用荧光信号差值测量斑马鱼心率的方法
CN111466902B (zh) * 2020-01-06 2022-07-29 南开大学 利用荧光信号差值测量斑马鱼心率的方法
CN112322690A (zh) * 2020-10-26 2021-02-05 浙江大学 一种基于心肌细胞兴奋收缩偶联信号检测苦味物质的方法

Similar Documents

Publication Publication Date Title
CN104297249A (zh) 基于心肌细胞传感器的药物心脏毒性检测分析方法
CN104794708B (zh) 一种基于多特征学习的动脉粥样硬化斑块成分分割方法
JP2012071159A5 (zh)
EP2989976A3 (en) Method for tracking a blood vessel in an image
Chen et al. Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging
CN101028187A (zh) 用于基于图像的心血管功能生理监视的系统和方法
CN104266954B (zh) 基于细胞图像传感器的贝类腹泻性毒素检测分析方法
Payasi et al. Diagnosis and counting of tuberculosis bacilli using digital image processing
CN104263804B (zh) 一种基于光学图像分析的心肌细胞机械搏动检测方法
Saleah et al. Optical signal intensity incorporated rice seed cultivar classification using optical coherence tomography
CN107622238A (zh) 一种免疫细胞状态图像采集监控装置、方法
CN112881303A (zh) 一种基于高光谱成像技术的血糖浓度检测方法
CN103876731A (zh) 一种胎儿心电信号提取装置及方法
Mirea et al. Statistical analysis of transmural laminar microarchitecture of the human left ventricle
CN109118526A (zh) 一种基于虚拟现实的老年痴呆图像分析系统及分析方法
CN111062979B (zh) 基于医学影像获取血栓物理特性参数的可视化方法和可视化系统
Sopo et al. DeFungi: Direct mycological examination of microscopic fungi images
CN103838943A (zh) 一种功能磁共振数据处理的脑区间协方差分析方法
CN104574385A (zh) 一种基于动态pet影像的心肌脂肪酸代谢量化检测方法
CN109568047A (zh) 一种心内科智能专用床、控制系统及控制方法
CN109394234A (zh) 一种基于光学检测的血糖浓度多元逐步回归算法
CN114646913B (zh) 生物组织微观结构的无创测量方法
CN109187485A (zh) 一种基于人眼泪液的角膜炎致病菌人工智能检测方法
EP3183563B1 (de) Monitoring der wirkung von substanzen auf in vitro gewebe
Nasr et al. K-nearest neighbor classification for the differentiation between freshly excised and decellularized rat kidneys using envelope statistics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150121

WD01 Invention patent application deemed withdrawn after publication