WO2018068209A1 - 一种数据传输的方法及其装置 - Google Patents

一种数据传输的方法及其装置 Download PDF

Info

Publication number
WO2018068209A1
WO2018068209A1 PCT/CN2016/101815 CN2016101815W WO2018068209A1 WO 2018068209 A1 WO2018068209 A1 WO 2018068209A1 CN 2016101815 W CN2016101815 W CN 2016101815W WO 2018068209 A1 WO2018068209 A1 WO 2018068209A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
rqi
message
service
rule
Prior art date
Application number
PCT/CN2016/101815
Other languages
English (en)
French (fr)
Inventor
韦安妮
熊春山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110186374.7A priority Critical patent/CN113038526B/zh
Priority to CN201680089932.5A priority patent/CN109804663B/zh
Priority to EP21194833.6A priority patent/EP3982667A1/en
Priority to EP16918881.0A priority patent/EP3518580B1/en
Priority to PCT/CN2016/101815 priority patent/WO2018068209A1/zh
Publication of WO2018068209A1 publication Critical patent/WO2018068209A1/zh
Priority to US16/381,215 priority patent/US10893435B2/en
Priority to US17/127,257 priority patent/US11553372B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus therefor.
  • wireless networks are increasingly being carried over wireless networks.
  • the behavior of the network is defined and implemented by the quality of service (QoS) rules in advance. Scheduling, for example, when you are making a call, someone starts downloading a file. Due to the scarcity of wireless resources, downloading a file will preempt the communication resources of your communication and cause the phone you are communicating to hang up. It is necessary to ensure that the wireless resource of the voice call has a higher priority of resource usage than downloading a file, so as to ensure that the voice call is normal when the wireless resource is insufficient.
  • QoS quality of service
  • Reflective QoS is defined in 3GPP TS 24.139.
  • the QoS mechanism refers to the QoS mechanism of the uplink data of the fixed network user UE using the same QoS mechanism as its downlink data.
  • the QoS management method in the EPS wireless system defined in 3GPP is: QoS guarantee of various IP services provided by the EPS system can transmit one or more service data flows (SDF) of its data through one IP service.
  • SDF service data flows
  • To identify that an SDF corresponds to an EPS bearer that is, an SDF is transmitted through an EPS bearer to implement QoS guarantee for IP services.
  • the QoS guarantee of the IP service is converted into the QoS guarantee of the EPS bearer, or the SDF of a specific QoS is mapped to the EPS bearer of a specific QoS.
  • the bearer is a logical transmission channel.
  • the EPS bearer is a user equipment (UE) to PGW (PDN GateWay). kind of logical transmission channel.
  • the service data stream and the bearer are associated and mapped by a Traffic Flow Template (TFT), and are associated with the RB-ID in the wireless network, and the Tunnel End Point Identity (TEID) in the core network. Make an association.
  • TFT Traffic Flow Template
  • TEID Tunnel End Point Identity
  • the association of the upstream data stream and the TFT is performed by the UE, and the TFT of the downstream data stream is executed by the PGW.
  • Each SDF includes at least one IP Flower Filter. Different services are filtered by TFTs to different bearers according to different QoS requirements, and QoS guarantee is realized.
  • the 5G network introduces the fixed QoS mechanism of the fixed network, which is referred to as the RQ mechanism, that is, the reflected service quality rule of the uplink service generated by the UE according to the downlink data flow. QoS rule), and perform uplink data transmission based on the reflected service quality rule.
  • the RQ mechanism the fixed QoS mechanism of the fixed network
  • the reflected service quality rule the uplink service generated by the UE according to the downlink data flow.
  • QoS rule the reflected service quality rule of the uplink service generated by the UE according to the downlink data flow.
  • the delivery mode of the Reflective Quality of Service (Reflective Qos) parameter is still a problem that needs to be solved currently.
  • the embodiment of the invention provides a data transmission method and a device thereof, and the user equipment receives the Reflective Qos parameter sent by the control plane network element and the user plane network element, so as to implement uplink data transmission of the user equipment based on the Reflective QoS mechanism.
  • an embodiment of the present invention provides a data transmission method, where the method may include:
  • the user equipment acquires a second message sent by the user plane network element
  • the user equipment If the second message does not carry the second reflected quality of service identifier RQI, the user equipment generates a first quality of service rule according to the correspondence between the first NQI and the first RQI, and the second service quality rule, which may be referred to as a naming For implied QoS rules, it may be specifically referred to as C-Plane implicit QoS rules;
  • the first second RQI is used to indicate that the user equipment activates the reflective quality of service RQ mechanism.
  • the method for data transmission activates the RQ mechanism of the user equipment by controlling the correspondence between the NQI and the RQI sent by the surface network element, and the received message of the user plane network element not carrying the RQI, and according to The RQ mechanism generates a quality of service rule for determining the uplink data to be transmitted, and implements a transmission of uplink data by the user equipment based on the Reflective QoS mechanism.
  • the UE Compared with the control plane network element, the UE is configured with a large number of uplink TFTs.
  • the RQ mechanism When receiving the downlink data sent by the user plane network element, the RQ mechanism is activated, and the service quality rule for transmitting the uplink data is determined in a large number of uplink TFTs to save control.
  • the RQ control of large granularity (such as NQI) is controlled by the signaling plane network element by using the signaling plane network element, and the RQ control of the small granularity (for example, flow) is controlled by the user plane control.
  • the first message may further include a first reflection quality rule priority RQP, where the first RQP is used to indicate the correspondence between the first NQI and the first RQI, and the first service generated by the second message.
  • the priority order of the quality rules is to indicate the priority order in which the first quality of service rules transmit uplink data in the user equipment to ensure the QoS quality of the communication service.
  • the method may further include:
  • the second quality of service rule may also be referred to as an implicit quality of service rule, and may be specifically referred to as a U-Plane implicit QoS rules.
  • the first message may further include a second reflection quality rule priority RQP, where the second RQP is used to indicate a priority order of the second quality of service rule generated by the user equipment according to the second message.
  • the user equipment may receive the priority order indication information carried by the control plane network element and carry the user plane implicit QoS rule to indicate the user interface implicit service.
  • the priority order of the quality rules is matched to ensure the QoS guarantee of the communication service.
  • the matching priority order of the user-faced implicit service rule is usually the highest matching priority in the uplink data of all services transmitted by the user equipment.
  • the value of the priority order can be the default value.
  • At least one of the first message or the second message may include an aging time, and the aging time is a time threshold of the first quality of service rule or the second quality of service rule from the last use to the current time. It can also include:
  • the user equipment When the time when the first QoS rule or the second QoS rule is not used reaches the aging time, the user equipment deletes the first QoS rule or the second QoS rule that reaches the aging time to implement the user equipment to the QoS rule. Management also deletes some temporary quality of service rules, saving storage space for user devices and improving system performance.
  • At least one of the first message or the second message may further include at least one of RQI usage time, RQI usage granularity, RQI usage mode, or usage granularity of aging time;
  • the RQI usage time is the usage time of the first quality of service rule or the second quality rule; the RQI uses the usage unit whose granularity is the first quality of service rule or the second quality rule; and the RQI usage mode is the first quality of service rule or the second
  • the quality rule includes the mode of the parameters of the temporary upstream filter.
  • an embodiment of the present invention provides a data transmission method, where the method may include:
  • the user plane network element receives the first message sent by the control plane network element, where the first message includes a correspondence between the downlink filter and the quality of service identifier NQI, the reflected quality of service identifier RQI, and the flag indication information of the RQI;
  • the user plane network element determines, according to the downlink filter, the quality of service identifier NQI corresponding to the quality of service rule used by the downlink data, and marks the downlink data according to the label indication information of the RQI.
  • the user plane network element sends a second message to the user equipment, where the second message is used to indicate whether the user equipment adopts a reflective quality of service RQ mechanism.
  • the data transmission method provided by the embodiment of the present invention receives the RQI through the user plane, or the signaling plane and the user plane, activates the RQ mechanism, implements the Reflective QoS mechanism, and the user equipment transmits the uplink data, and implements the fine-grained service quality control.
  • the RQI flag is configured in the downlink data packet corresponding to each of the reflected service granularities, and the present embodiment is instructed by the control plane network element according to the received RQI flag.
  • the information is marked with the RQI in the downlink data packet, which avoids configuring the RQI flag in the downlink data packet corresponding to each of the reflection service granularities, and saves the transmission resources of the NG3 and the air interface.
  • the first message may further include a reflection quality rule priority RQP, where the RQP is used to indicate a priority order in which the user plane network element sends the second message to the user equipment.
  • RQP reflection quality rule priority
  • the first message further includes at least one of a usage time of the RQI, a usage granularity of the RQI, a usage mode of the RQI, an aging time, or a usage granularity of the aging time;
  • the aging time is a time threshold of the temporary uplink filter included in the QoS rule generated by the user equipment according to the RQI second message from the last use to the current time;
  • the RQI usage time is the usage time of the QoS rule generated by the user equipment;
  • the RQI usage mode is the mode of the parameters of the temporary upstream filter.
  • an embodiment of the present invention provides a data transmission apparatus, where the apparatus may be a user equipment, where the user equipment includes a receiving unit, an acquiring unit, and a generating unit.
  • the apparatus may be a user equipment, where the user equipment includes a receiving unit, an acquiring unit, and a generating unit.
  • the embodiment of the present invention further provides a device for data transmission, where the device may be a user plane network element, where the user plane network element includes a receiving unit, a determining unit, and a sending unit, because the device
  • the device may be a user plane network element, where the user plane network element includes a receiving unit, a determining unit, and a sending unit, because the device
  • an embodiment of the present invention provides a user equipment, where the user equipment includes a transmitter, a receiver, a processor, and a memory, where the transmitter and the receiver are configured to complete signaling or/and data transmission to an external device. And receiving, the memory is for storing computer executable program code, the program code comprising instructions, when the processor executes the instruction, implementing the solution in the method design of the first aspect and the device design of the third aspect.
  • the implementation of the user equipment may refer to the implementation of the method in the first aspect. For the sake of brevity, it will not be repeated here.
  • an embodiment of the present invention provides a user plane network element, where the user plane network element includes a transmitter, a receiver, a processor, and a memory, where the transmitter and the receiver are configured to complete signaling to an external device or And transmitting and receiving data, the memory is for storing computer executable program code, the program code comprising instructions, when the processor executes the instructions, implementing the design of the method of the second aspect and the fourth aspect
  • the user plane network element includes a transmitter, a receiver, a processor, and a memory, where the transmitter and the receiver are configured to complete signaling to an external device or And transmitting and receiving data
  • the memory is for storing computer executable program code, the program code comprising instructions, when the processor executes the instructions, implementing the design of the method of the second aspect and the fourth aspect
  • the implementation of the user equipment may refer to the method of the first aspect. Implementation, for the sake of brevity, will not be repeated here.
  • the user equipment receives the message including the correspondence between the service quality identifier NQI and the reflected service quality identifier RQI, and the user plane network by receiving the control plane network element
  • the message sent by the element generates a first quality of service rule according to the received message, so that when the user equipment receives the uplink data that meets the first quality of service rule, the uplink data is sent by using the first quality of service rule.
  • Uplink data transmission of user equipment based on the Reflective QoS mechanism.
  • FIG. 1 is a schematic diagram of uplink data transmission based on Reflective QoS according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a communication network system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for data transmission according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for data transmission according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of still another data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of still another data transmission method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a user plane network element according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another user plane network element according to an embodiment of the present invention.
  • the invention provides a data transmission method and a device thereof, and a Reflective QoS mechanism of a fixed network can be introduced in a future 5G communication network, and the QoS adopted by the user equipment for transmitting uplink data can be consistent with the QoS used for transmitting downlink data.
  • the core network (CN) device sends the reflected service quality parameter to the user equipment UE through the signaling plane and the user, so that the user equipment is configured according to the reflection service.
  • the quality parameters generate quality of service rules and use the same quality of service guarantees as when transmitting downlink data.
  • the reflected quality of service parameters may include a Quality of Service Identity RQI granularity, a Reflective QoS Rule Priority (RQP), and a Reflective QoS Indication (RQI).
  • RQI Quality of Service Identity
  • RQP Reflective QoS Rule Priority
  • RQI Reflective QoS Indication
  • the user equipment UE may receive a message including a correspondence between a Next Next QoS index (NQI) and an RQI, and a User Plane (UP) network element, which is sent by a Control Plane (CP) network element.
  • the message is sent so that the user equipment generates a quality of service rule based on the message received from the control plane network element and the user plane network element.
  • the uplink data received by the user equipment UE meets the quality of service rule, the uplink data is transmitted through the quality of service rule.
  • the RQI may not be carried in the message sent by the user plane network element.
  • the NQI of the user plane network element sends the message, activates the RQ mechanism according to the correspondence between the NQI and the RQI received from the control plane network element, and generates a service quality rule. .
  • the message sent by the user plane network element can carry the RQI.
  • the RQ mechanism is activated, and a quality of service rule for transmitting the uplink data is generated.
  • the generated QoS rule includes an uplink filter and a Data Radio Bearer (DRB) corresponding to the transmission downlink data, as shown in FIG. 1 .
  • DRB Data Radio Bearer
  • FIG. 1 is a schematic diagram of uplink data transmission based on Reflective QoS according to an embodiment of the present invention.
  • the control plane network element CP sends a QS rule to the user plane network element UP, where the service quality rule includes a Downlink Packet filters and a NextGen QoS Index (NQI).
  • the service quality rule includes a Downlink Packet filters and a NextGen QoS Index (NQI).
  • NQI NextGen QoS Index
  • the user plane network element sends a message to the user equipment UE according to the received quality of service rule, and the message is filtered by the downlink filter to determine the corresponding service quality, such as the next generation.
  • the QoS identifies the NQI and sends the message to the UE through the corresponding DRB in the access network. As shown in FIG. 1, the message is sent to the UE through DRB1 and DRB2.
  • the message may include a reflected quality of service identifier RQI for instructing the
  • the message may be a signaling plane message or a user plane message.
  • the signaling plane message is an instruction sent by the core network to the user equipment;
  • the user plane message is data sent by the core network to the user equipment, and the RQI may be configured in the packet header of the data packet.
  • the UE After receiving the message sent by the UP, the UE activates the RQ mechanism according to the RQI in the message, and determines a quality of service rule for transmitting the uplink data according to the message inversion, where the quality of service rule includes information such as an uplink filter.
  • the UE When the UE needs to transmit uplink data, the UE filters the uplink data to be transmitted through the uplink filter. If there is uplink data that matches the uplink filter, the UE uses the DRB corresponding to the uplink filter to perform uplink data transmission. The UE shown in 1 performs uplink data transmission through DRB2.
  • uplink and downlink data may be transmitted through an access network (AN).
  • AN access network
  • the interface between the UE and the AN is called a radio interface.
  • the interface between the AN and the UP can be called the AN-UP interface.
  • the interface between the AN and the S-GW is the S1 interface
  • the interface between the S-GW and the P-GW is the S5/. S8 interface.
  • the UP sends a message carrying the RQI to the UE, which may be transmitted through the NG3 interface between the UP and the AN, and transmitted by the Uu interface between the AN and the UE, or transmitted through the NG3 bearer transmission and the Uu bearer. .
  • the system includes a user equipment UE, a control plane network element CP, a user plane network element UP, an access network AN, and a policy function (Policy Function) device.
  • Policy Function Policy Function
  • the control plane network element is responsible for the mobility management and the delivery of the control policy in the mobile network, such as the service quality rule for sending the packet processing to the user plane, and instructing the user plane to filter the downlink data to be sent according to the quality of service rule. Perform RQI marking.
  • the control plane network element CP may be a Mobile Management Entity (MME), a gateway control plane or all or part of the control functions formed by the above fusion.
  • MME Mobile Management Entity
  • gateway control plane or all or part of the control functions formed by the above fusion.
  • the user plane network element UP is responsible for processing and forwarding data.
  • the user plane network element may be a forwarding plane function of the PDN GW, a forwarding plane function of the S-GW, a physical or virtual device such as a router or a switch.
  • the access network AN provides wireless access services for the user equipment, including but not limited to the base station eNodeB, an access point (AP), and the like.
  • the user equipment UE is a network terminal device, including but not limited to a mobile phone, a network access device, an Internet of Things terminal device, and the like.
  • FIG. 3 is a flowchart of a method for data transmission according to an embodiment of the present invention. As shown in FIG. 3, the method 100 includes the following steps:
  • the user equipment receives the first message sent by the control plane network element.
  • the first message may include a correspondence between the first quality of service identifier NQI and the first reflected quality of service identifier RQI.
  • control plane network element may send the reflected service quality parameter including the NQI and RQI correspondences to the user equipment by means of signaling messages.
  • the first message may be specifically, for example:
  • the first message may be referred to as a quality of service rule, and the included information parameters, such as NQI and RQI, may be referred to as reflected quality of service parameters, and the messages are respectively used to indicate:
  • the data transmitted by the quality of service rules corresponding to each NQI1 has no RQI flag.
  • the RQ mechanism is activated by the quality of service rules corresponding to NQI1.
  • the downlink data matched by DL Packet filters 1 is transmitted through the quality of service rule NQI1, and the Reflective Qos mechanism needs to be activated, but no RQI marking is required in the data packet.
  • the first message may also be specifically, for example:
  • the message may be referred to as an explicit QoS rules, and the included parameters may be referred to as explicit QoS parameters. This message is used to indicate:
  • the uplink data matching the UL Packet filters 3 is transmitted through the quality of service rules corresponding to the NQI3, and the Reflective Qos mechanism does not need to be activated.
  • the first message may further carry a reflected QoS rule priority RQP to indicate that the user equipment transmits the priority order of the uplink data by using the corresponding QoS rule.
  • the user equipment receives the second message sent by the user plane network element.
  • the second message may include a data packet sent by the user plane network element to the user equipment, and a quality of service identifier NQI corresponding to the quality of service used to send the data packet.
  • the data packet may carry a reflected quality of service identifier RQI for instructing the user equipment to activate the reflected quality of service RQ mechanism.
  • the data packet may also not carry the reflected quality of service identifier RQI. among them.
  • the RQI is used to instruct the user equipment to activate the reflected quality of service RQ mechanism.
  • the user plane network element may include a service quality rule sent by the control plane network element, including a Downlink Packet filters and a NextGen QoS Index (NQI), and a reflection service.
  • NQI NextGen QoS Index
  • Downlink Packet Filters include source IP address, destination IP address, source IP port number, destination IP port number, and protocol type.
  • the user plane network element filters the downlink data to be sent through the Downlink Packet Filters, selects a specific quality of service for the downlink data to be sent, and determines whether to add or configure the RQI in the header of the downlink data packet to be sent according to the indication information of the RQI. .
  • the downlink data packet filter may be simply referred to as a DL Packet filters, and the next-generation service quality identifier may be simply referred to as a service quality identifier.
  • the user equipment If the second message does not carry the second reflected quality of service identifier RQI, the user equipment generates a first quality of service rule according to the correspondence between the first NQI and the first RQI, and the second message.
  • the user equipment determines the activation of the RQ mechanism and generates a quality of service rule for transmitting uplink data according to the RQ mechanism. If the generated QoS rule is not included in the existing QoS rule of the user equipment, the user equipment needs to generate a new QoS rule, which may be referred to as implilit QoS rules.
  • the implicit quality of service rules generated by this method may be referred to as C-Plane implicit QoS rules.
  • the IP quintuple of the downlink data is the source IP address Y, the destination IP address X, the source IP port number B, the destination IP port number A, and the protocol type C.
  • the inverted packet filter (Uplink Packet filters)
  • the IP quintuple is the source IP address X, the destination IP address Y, the source IP port number A, the destination IP port number B, and the protocol type C.
  • the user equipment generates an implicit service quality rule according to the RQ mechanism according to the IP quintuple of the downlink data and the quality of service identifier NQI or the QoS Classification Identifier (QCI) corresponding to the quality of service for transmitting the second message.
  • the QoS rule includes the correspondence between the uplink packet filter and the QoS identifier NQI.
  • the Uplink Packet filters include the parameter information of the IP quintuple that filters the uplink data, including the source IP address, the destination IP address, the source IP port number, the destination IP port number, and the protocol type.
  • the QoS indicator NQI is represented as a QoS QoS indicator in a 5G network, and may be one or more parameters, such as a combination of forwarding priority, delay, and packet loss rate, similar to EPS. QoS classification identifier.
  • the uplink packet filter may be simply referred to as an UL packet filter.
  • the newly generated upstream filter may be referred to as a temporary upstream filter.
  • the generated implicit service quality rule may also be A reflection quality of service priority RQP is included to indicate the matching priority order of the C-Plane implicit QoS rules.
  • the user equipment When the user equipment receives the uplink data that matches the newly generated or existing uplink filter, the user equipment uses the QoS rule corresponding to the uplink filter to transmit the uplink data, so as to implement the uplink data transmission of the user equipment based on the RQ mechanism.
  • the data transmission method provided by the embodiment of the present invention activates the RQ mechanism of the user equipment by controlling the correspondence between the NQI and the RQI sent by the surface network element, and the received message that does not carry the RQI sent by the user plane network element, and according to
  • the RQ mechanism generates a quality of service rule for determining the uplink data to be transmitted, and implements a transmission of uplink data by the user equipment based on the Reflective QoS mechanism.
  • the UE Compared with the control plane network element, the UE is configured with a large number of uplink TFTs.
  • the RQ mechanism When receiving the downlink data sent by the user plane network element, the RQ mechanism is activated, and the service quality rule for transmitting the uplink data is determined in a large number of uplink TFTs to save control.
  • the signaling resource between the surface network element and the user equipment and the storage space of the user equipment.
  • the embodiment of the present invention also implements RQ control that controls large granularity (eg, NQI) through a signaling plane, and user plane control controls RQ control of a small granularity (eg, flow).
  • RQ control that controls large granularity (eg, NQI) through a signaling plane
  • user plane control controls RQ control of a small granularity (eg, flow).
  • the C-Plane implicit QoS rules can be dynamically sent to the user equipment and the user plane network element by the control plane network element, and the control plane network element is sent to the user equipment and/or the user plane network.
  • the process of transmitting the matching priority order RQP is similar to the process of sending information to the user equipment and/or the user plane network element in the 4G. For the sake of brevity, no further details are provided herein.
  • S110 and S120 have no chronological relationship, and the user equipment may perform S120 and then perform S110, or may perform S110 and S120 at the same time, which is not limited in the embodiment of the present invention.
  • the first message may further include a first Reflective QoS Rule Priority (RQP).
  • the first RQP is used to indicate a matching priority order of the user equipment according to the first NQI and the first RQI, and the first QoS rule generated by the second RQI.
  • the RQP is used to indicate the matching priority order of the implicit service QoS rules generated by the user equipment according to the RQ mechanism, so that the user equipment determines the priority order of the QoS rules used to match the uplink data according to the RQP.
  • the UE maintains the Quality of Service Rule A, the Quality of Service Rule B, and the Quality of Service Rule C.
  • the matching priority from high to low is respectively the quality of service rule A, the quality of service rule B, and the quality of service rule C. That is, the QoS rule A has a high priority, the QoS rule B has a priority, and the QoS rule C has a low priority.
  • the UE receives the uplink data and matches the priority according to the QoS rule. First, it determines whether the QoS rule A matches. If the QoS does not match, it determines whether the QoS rule B matches. If there is no match, it determines whether the QoS C matches. Therefore, even if the quality of service rule A, the quality of service rule B, if it contains the same packet filter, it is determined according to the matching priority which service quality rule is used to transmit the packet matching the packet filter.
  • the implicit service quality rules generated by the user equipment according to the RQ mechanism include C-Plane implicit QoS rules and U-Plane implicit QoS rules.
  • the user plane implicit service quality rule is an implicit service quality rule generated by the user equipment according to the RQI carried in the second message sent by the user plane network element and determined according to the RQ mechanism.
  • the first message may be specifically, for example:
  • RQI granularity NQI1, RQI (no marking)
  • RQPx RQI granularity (NQI1, RQI (no marking)), RQPx; or,
  • the first message is used to indicate:
  • the uplink data matching the UL Packet filters 3 is transmitted through the QoS rule corresponding to the NQI3, and the Respective Qos mechanism does not need to be activated.
  • the matching priority of the QoS rule "UL Packet filters 3--> (NQI3, no RQI)" The order is RQPm.
  • the first message may further include a priority indication information of the U-Plane implicit QoS rules, which may be, for example:
  • the matching priority order used to indicate U-plane implicit QoS rules is RQPy.
  • the RQPy is a default value, and has the highest matching priority order in the uplink data transmitted by the user equipment.
  • the numbers 1, 2, and 3 are distinguished into different NQIs, and the letters x and m are used to distinguish into different RQPs, and the numbers and letters do not constitute any limitation on the scheme of the present invention.
  • the embodiment of the present invention can also be distinguished by other means, which is not limited by the embodiment of the present invention.
  • the method 100 may further include:
  • the user equipment If the second message carries the second RQI, the user equipment generates a second quality of service rule according to the second message.
  • the user equipment determines to activate the RQ mechanism according to the RQI, and generates a service quality rule according to the RQ mechanism, where the quality of service rule may be referred to as user-side implicit service quality.
  • U-Plane implicit QoS rules the user equipment may obtain the quality of service identifier NQI or QoS classification identifier corresponding to the service quality of the second message according to the IP quintuple of the downlink data in the second message. (QoS Classification Identifier, QCI), according to the RQ mechanism, generates a quality of service rule, that is, U-Plane implicit QoS rules.
  • the service quality rule includes a correspondence between an uplink packet filter and a quality of service identifier NQI.
  • the upstream filter may be referred to as a temporary upstream filter.
  • the specific process is similar to the process in which the user equipment generates the C-Plane implicit QoS rules according to the second message. For details, refer to S130 in FIG. 3, which is not described here.
  • the generated QoS rule may further include a reflected QoS priority RQP to indicate a matching priority order of the U-Plane implicit QoS rules.
  • the data transmission method provided in this embodiment by using the RQI flag indication message sent by the control plane, may indicate that the UE adopts an RQ mechanism for a type of aggregated data flow, such as mapping all services on the same NQI to implement coarse-grained service. QC.
  • the RQI flag indication message sent by the control plane may indicate that the UE adopts an RQ mechanism for a type of aggregated data flow, such as mapping all services on the same NQI to implement coarse-grained service. QC.
  • the scheme can be implemented separately to complete uplink data transmission based on the RQ mechanism.
  • the schemes of S110, S120, and S130 in FIG. 3 indicate the reflected quality of service parameters through the signaling plane and the user plane. Compared with the separately implemented scheme of FIG. 4, only the user plane indicates the reflected quality of service parameter, which is reduced in each data stream.
  • Each data packet is tagged with an RQI.
  • the RQI parameter of the signaling plane is used. Transmission saves a large amount of transmission resources on the user side.
  • the first message further includes a second reflection quality rule priority RQP, where the second RQP is used to indicate a matching priority order of the second quality of service rule generated by the user equipment according to the second message.
  • the user equipment may obtain the indication information of the matching priority order of the U-Plane implicit QoS rules, that is, the RQP, from the control plane network element, so that when the user equipment receives the uplink data that matches the U-Plane implicit QoS rules, the service is determined according to the RQP.
  • the priority order of the quality rules is the priority order of the quality rules.
  • the priority order of the user-faced implicit service rule is usually that the user equipment transmits all the services.
  • the highest priority in the row data, and the value of the priority order can be the default value.
  • At least one of the first message or the second message includes an aging time, where the aging time is the first QoS rule or the second QoS rule from the last use to the current time. Time threshold.
  • the first message received by the user equipment from the control plane network element may include an aging time, which is a preset time threshold for measuring the last time the C-Plane implicit QoS rules are used to transmit the uplink data to the current time.
  • the second message received by the user equipment from the user plane network element may also include an aging time, which is a preset time threshold for measuring the last time the U-Plane implicit QoS rules are used to transmit the uplink data to the current time.
  • the aging time can be customized according to requirements.
  • the value of the aging time is not limited.
  • the method 100 may further include:
  • the user equipment When the user equipment determines the implicit QoS rule that meets the aging time according to the aging time, including the C-Plane implicit QoS rules and the U-Plane implicit QoS rules, the user equipment deletes the implicit QoS rule to implement the RQ pair of the user equipment.
  • the management of service quality rules, while deleting some of the service quality rules that are temporarily unused, can save some resources and improve system performance.
  • the user equipment in addition to deleting the uplink filter according to the aging time, may also delete the session-related uplink filter according to the session connection interruption.
  • At least one of the first message or the second message further includes an RQI usage time, an RQI usage granularity, an RQI usage mode, or an aging time. Use at least one of the granularities.
  • the RQI usage time is the usable time of the first quality of service rule or the second quality rule.
  • the RQI uses a usage unit whose granularity is the first quality of service rule or the second quality rule.
  • the RQI usage mode is a mode of parameters of the upstream filter included in the first quality of service rule or the second quality rule.
  • the RQI usage time is used to indicate the time when the RQ parameter corresponding to the RQI is valid.
  • the RQI uses granularity to indicate the range of RQI usage, including NQI, flow priority indication (FPI), QCI, Protocol Data Unit (PDU) session, user equipment, or data flow ( Flow) and so on for data transmission.
  • NQI flow priority indication
  • QCI QCI
  • PDU Protocol Data Unit
  • Flow data flow
  • the RQI uses the granularity of NQI, FPI, or QCI: it means that the NQI, FPI, or QCI can use Reflective Qos for the uplink data of all PDU Sessions of the DRB.
  • the granularity of the RQI is PDU Session, it indicates that the PDU Session uplink data uses Reflective Qos.
  • the RQI usage granularity is UE, it means that all uplink data of this UE uses Reflective Qos.
  • the signaling message sent by the user plane network element may include multiple types of granularity at the same time.
  • the signaling message may include the flow1 and the PDU session 2, and the PDU session3 uses the Reflective Qos mechanism.
  • the mixed use of the particle size is not limited in the examples of the present invention.
  • the RQI usage mode that is, the RQ mode (mode) indicates the mode of the Packet filter generated according to the RQ mechanism, that is, the parameters required in the Packet Filter.
  • the parameter can be any combination of various parameters in the IP quintuple, and various binary mode, triple mode, quaternary mode, quintuple mode, etc. can be realized, and the RQ mode ID can be used to identify Different RQM.
  • the IP quintuple mode can be:
  • Protocol type Protocol type
  • the quad pattern can be:
  • the triple mode can be:
  • the RQ mode can correspond to the PDU session, flow or NQI, and needs to indicate the corresponding PDU session, flow or NQI information when sending the RQ mode.
  • the PDU session is identified by a PDU session ID or one or more quintuples, and the flow is identified by a flow ID or a quintuple.
  • the RQ mode can be the RQI sent by the control plane.
  • the RQ mode may be a combination of other parameters, which is not limited in the embodiment of the present invention.
  • RQI can correspond to multiple RQ modes.
  • the RQ mode currently used by RQI can be modified according to specific scenarios or needs.
  • the usage granularity of the aging time is used to indicate the unit of use of the upstream filter in the quality of service rule.
  • the delivered QoS rules include aging time and NQI, FPI, or QCI.
  • the NQI, FPI, and QCI correspond to the DRB, and the UL aging on the same DRB based on the RQ mechanism uses the same aging time.
  • the QoS rules delivered include the aging time and the PDU Session.
  • the UL Filters generated by the UE based on the RQ mechanism use different aging times between different PDU sessions, that is, different PDU sessions on the same DRB, and the UL Filter has different aging times.
  • the granularity of the aging time is the UE, and the delivered QoS rules include the aging time. All UL Filters generated by the UE based on the RQ mechanism uniformly use the same aging time.
  • the delivered QoS rules include the aging time and the flow identifier. All UL Filters generated based on the RQ mechanism on this flow use the same aging time uniformly.
  • the information included in the first message and/or the second message is used The user equipment manages and processes according to the newly established quality of service rules according to the second message, thereby improving system performance.
  • the method 200 may further include:
  • the user plane network element receives the first message sent by the control plane network element.
  • the first message may be a signaling message sent by the control plane network element to the user plane network element through the NG4 interface, where the signaling message may include a correspondence between the downlink filter and the quality of service identifier NQI, the reflected quality of service identifier RQI, and the RQI.
  • the tag indicates the information.
  • the message can be specifically:
  • the message may be referred to as a quality of service rule, and the included information parameters, such as NQI, RQI, may be referred to as reflected quality of service parameters, which are used to indicate:
  • the downlink data matching the DL Packet filters 1 is transmitted through the quality of service rules corresponding to the NQI1, and the Reflective Qos mechanism needs to be activated, but the RQI marking is not required in the data packet.
  • the downlink data matching the DL Packet filters 2 is transmitted through the QoS rule corresponding to the NQI2, and the Reflective Qos mechanism needs to be activated, and the RQI flag can be marked in all downlink packets transmitted through the service rule corresponding to the NQI2.
  • DL Packet filters 1 represents a special type of web service such as Facebook, youtube, Google Maps, and the like.
  • the user plane network element UP receives the "Packet filters 1of Facebook, youtube, google maps and etc--> RQI granularity (NQI1, RQI no) sent by the control plane network element CP.
  • RQPx Packet filters of Facebook, youtube, google maps and etc-->RQI granularity (NQI1, RQI no marking), RQPx, UP after receiving the message sent by the CP,
  • the RQI flag needs to be marked in all the downlink data packets of the web service such as Facebook, youtube, google maps, etc., which saves the transmission resource when the UP sends the downlink data to the user equipment UE, and the transmission resource may be NG3 between the UP and the AN, and The air interface between the AN and the UE.
  • first message may also be specifically:
  • the message may be referred to as an explicit QoS rules, and the included parameters may be referred to as explicit QoS parameters. This message is used to indicate:
  • the downlink data matching the DL Packet filters 3 is transmitted through the quality of service corresponding to the NQI3, and the Reflective Qos mechanism does not need to be activated.
  • the user plane network element determines, according to the downlink filter, a quality of service identifier NQI corresponding to the quality of service used by the downlink data packet, and marks the downlink data packet according to the label indication information of the RQI.
  • the user plane network element receives the message sent by the control plane network element: DL Packet filters 1-->RQI granularity (NQI1, RQI no marking), the packets of flow1, flow2, and flow3 are based on Packet.
  • the filters 1 are mapped to the NQI1 transmission, and the Reflective Qos mechanism needs to be activated (mainly in the UE to implement Reflective Qos activation), but there is no need to do RQI marking in the data packet.
  • the flow4 packet is based on the Packet. Filters 2 are mapped to NQI2 and need to activate the Reflective Qos mechanism. RQI marking is required in the packet.
  • the user plane network element receives the message sent by the control plane network element: DL Packet filters 3-->(NQI3, no RQI), the flow5 packet is mapped to NQI3 according to Packet filters 3, and does not need to activate the Reflective Qos mechanism. .
  • the UE may be instructed to adopt an RQ mechanism for a type of aggregated data flow, such as mapping all services on the same NQI, to implement coarse-grained quality of service control, such as implementing all flows on the same NQI.
  • an RQ mechanism for a type of aggregated data flow, such as mapping all services on the same NQI, to implement coarse-grained quality of service control, such as implementing all flows on the same NQI.
  • the RQI is added or configured in the downlink data packet corresponding to the RQI granularity by receiving the RQI indication message sent by the control plane, and is used to indicate fine-granularity quality of service control, for example, quality of service for each flow (flow). control.
  • the user plane network element sends a second message to the user equipment.
  • the second message is used to indicate whether the user equipment adopts a reflective quality of service RQ mechanism.
  • the user plane network element may filter the downlink data to the QoS rule corresponding to the QoS identifier NQI, such as the NG3 and the air interface, to send the second message to the user equipment.
  • the NG3 can be an interface between the UP and the AN; the air interface is an interface between the UE and the AN.
  • the user plane network element receives the message sent by the control plane network element, as in the case of DL Packet filters 2-->RQI granularity (NQI2, RQI marking), after the S220 is completed, the user plane device sends the message to the user equipment.
  • the second message does not carry the RQI in the second message. If the user equipment receives the second message, the RQ mechanism is activated, and S120 in FIG. 3 is performed.
  • the message sent by the user plane network element to the control plane network element is: DL Packet filters 1--> RQI granularity (NQI1, RQI no marking).
  • the user equipment sends the second message to the user equipment.
  • the RQI is included in the second message. If the user equipment receives the second message, the S140 in FIG. 4 needs to be executed, which is not described here.
  • the second message in this embodiment is the same message as the second message sent by the user plane network element to the user equipment in FIG. 3 and FIG. 4 .
  • the data transmission method provided by the embodiment of the present invention receives the RQI through the user plane, or the signaling plane and the user plane, activates the RQ mechanism, implements the Reftective QoS mechanism, and the user equipment transmits the uplink data, and receives the RQI sent by the control plane.
  • the marking indication message may indicate that the UE adopts an RQ mechanism for a type of aggregated data flow, such as mapping all services on the same NQI, to implement coarse-grained quality of service control, such as implementing an RQ mechanism for all flows on the same NQI.
  • control plane network element marks the RQI in the downlink data packet according to the received indication information of the RQI, thereby avoiding configuring the RQI flag in the downlink data packet corresponding to each reflection service granularity, and saving NG3 and air interface. Transmission resources.
  • the first message may further include a reflection quality rule priority RQP, where the RQP is used to indicate a matching order of determining the quality of service rule.
  • RQP reflection quality rule priority
  • the first message sent by the control plane network element received by the user plane network element may be specifically as follows:
  • This message can be used to indicate:
  • the matching priority of the QoS rule "DL Packet filters 1-->RQI granularity(NQI1,RQI no marking)" is RQPx; or,
  • the matching priority of the quality of service rule "DL Packet filters 2-->RQI granularity(NQI2,RQI marking)" is RQPy; or,
  • the matching priority of the QoS rule "DL Packet filters 3-->(NQI3, no RQI)" is RQPz.
  • the numbers 1, 2, and 3 in the embodiment of the present invention indicate that in order to distinguish into different DL Packet filters or NQIs, the letters x, y, and z are to be distinguished into different RQPs, and the numbers and letters are not
  • the present invention is not limited to the embodiment of the present invention.
  • the first message may further include at least one of a usage time of the RQI, a usage granularity of the RQI, a usage mode of the RQI, an aging time, or a usage granularity of the aging time;
  • the aging time is the time from the last use to the current time by the QoS rule generated by the user equipment according to the second message;
  • the RQI usage time is the usage time of the QoS rule generated by the user equipment;
  • the RQI usage granularity is generated by the user equipment.
  • the unit of service quality rule is used;
  • the RQI usage mode is a parameter mode of the temporary uplink filter included in the quality of service rule generated according to the second message.
  • each parameter is the same as the function or meaning of each parameter in the first message or the second message in FIG. 3 and FIG. 4, and is not described here.
  • the data transmission method provided by the embodiment of FIG. 3 to FIG. 7 can also save transmission resources, and save transmission resources when the UP sends downlink data to the user equipment UE.
  • the transmission resource includes UP and AN.
  • DL Packet filters 1 is a type of web service such as Facebook, youtube, Google Maps, and the like.
  • the user plane network element UP receives the "Packet filters of Facebook, youtube, google maps and etc--> RQI granularity (NQI1, RQI no marking), RQPx" sent by the control plane network element CP, or
  • the CP sends Packet filters of Facebook, youtube, google maps and etc-->RQI granularity (NQI1, RQI no marking) to the UP, and the RQPx, UP receives the message sent by the CP.
  • the transmission resource may be NG3 between UP and AN. And an air interface between the AN and the UE.
  • the user equipment determines the RQ mechanism according to the "RQI granularity (NQI1, RQI no marking)" sent by the received control plane network element through the NG1 interface. Activated, if the quality of service rules are not included in the UE's existing quality of service rules, a new C-Plane implicit QoS rules "Packet filters1of Facebook, youtube, google maps and etc-->NQI1" is generated. If there is uplink data matching the newly generated C-Plane implicit QoS rules "Packet filters1of Facebook, youtube, google maps and etc-->NQI1", the user equipment transmits the uplink data through the C-Plane implicit QoS rules.
  • the user equipment receives the first message sent by the control plane network element by the user equipment of the S110 in FIG. 3 according to the RQI granularity (NQI1, RQI no marking) sent by the control plane network element through the NG1 interface.
  • the data transmission method provided by the embodiments of FIG. 3 to FIG. 7 can also save transmission resources and save NG1 transmission resources.
  • the comparison control plane network element CP sends an explicit QoS rule to the user equipment through the NG1 interface, such as "UL Packet filters 3--> (NQI3, no RQI), RQPm", and the control plane network element CP passes the NG1 interface to the user equipment UE.
  • Send "RQI granularity” (NQI1, RQI (no marking), RQP x", no need for the CP to send filter information to the UE through the NG1 interface.
  • the CP needs to The UP and the UE update the explicit service rule, but the CP does not need to update the RQI granularity "(NQI1, RQI(no marking)), RQP x" to the UE through the NG1 interface, so that the NG1 signaling resource can be saved.
  • the filter included in the quality of service rule corresponding to the NQI is dynamically updated, a large amount of NGI signaling resources can be saved.
  • DL Packet filters 1 filters some special web services such as Facebook, youtube, Google Maps, and more.
  • the CP may send "Packet filters1of Facebook, youtube, google maps and etc--> RQI granularity (NQI1, RQI no marking), RQPx" to the UP, and send "RQI granularity ("NQI1,” to the UE.
  • RQI no marking), RQP x can save NG1 signaling resources.
  • the UE receives the downlink data sent by the user plane network element, and determines that the RQ mechanism is activated according to "RQI granularity (NQI1, RQI (no marking))", if the quality of service rule for transmitting downlink data is not included in the existing service quality rule of the UE.
  • the user equipment generates a new C-Plane implicit QoS rule "Packet filters of Facebook, youtube, google maps and etc.--> NQI1, if the user equipment receives the uplink data that matches the C-Plane implicit QoS rule.
  • the uplink data is transmitted based on the C-Plane implicit QoS rule "Packet filters of Facebook, youtube, google maps and etc.--> NQI1".
  • N is a positive integer.
  • the network only needs to update the quality of service rules "Packet filters of Facebook, youtube, google maps and etc.--> RQI granularity (NQI1, RQI no marking), RQP x" to "Packet filters of Facebook, youtube, google maps, New web server 1, new web server 2, new web server n and etc.--> RQI granularity (NQI1, RQI no marking), RQP x", and sent to UP, no need to update any signaling information to the UE, so It can also save NG1 signaling resources.
  • FIG. 8 is another method for data transmission according to an embodiment of the present invention.
  • the method 300 may include the following steps:
  • the UE establishes a PDU Session with the network.
  • the UE sends an application request including a QoS requirement to the control plane network element CP or the application server sends a service request including a QoS requirement to the control plane network element (service) Request).
  • the control plane network element determines a QoS rule to be used.
  • control plane network element sends an application response message to the UE or the control plane network element sends a service response message to the application server.
  • the S320/S320' is an optional step.
  • the control plane network element sends a QoS rule to the user plane network element UP.
  • the control plane network element sends a quality of service rule to the access network AN.
  • the QoS rule needs to be sent to the AN. If the current session is a Guaranteed Bit Rate (GBR) session, the QoS rule needs to be sent to the AN. If the current session is a non-GBR (non-GBR) session, the service does not need to be sent to the AN. Quality rules.
  • GBR Guaranteed Bit Rate
  • the control plane network element sends a quality of service rule to the UE.
  • the QoS rule may include an aging time, an aging time usage granularity, and an RQI and RQI usage granularity in addition to the existing QoS parameters such as the NQI/FPI/QCI and the packet filter.
  • the UE receives downlink PDU session data.
  • the RQI may be carried in the PDU session data, so that the UE determines a quality of service rule for transmitting uplink data according to the PDU session data.
  • the PDU session data includes the parameter information of the first message sent by the user plane network element to the user equipment in FIG. 3 to FIG. 7 , or the PDU session data is the same message as the first message, which is a brief description. , will not repeat them here.
  • the downlink PDU session data received by the UE may further carry the RQI usage granularity to limit the unit for transmitting uplink data, for example, may be a data stream, a UE, or an NQI. Data transfer for the unit.
  • the aging time of the PDU can also carry the aging time, which is the QoS rule.
  • the UE determines, according to the PDU session data, a quality of service rule for transmitting uplink data.
  • the UE generates a new QoS rule according to the received PDU session data, and the newly generated QoS rule includes a temporary uplink filter for filtering the uplink data, and filtering the uplink data that meets the temporary uplink filter to the corresponding QoS.
  • the corresponding bearer is transmitted.
  • the determining, by the UE, the QoS rule for transmitting the uplink data according to the PDU session data is similar to the process of determining the first QoS rule by the UE according to the first message in the S120 of FIG. A brief description will not be repeated here.
  • the UE processes the uplink data according to the quality of service rule.
  • the uplink data packet is transmitted through the corresponding quality of service rule.
  • the UE If the UE receives the uplink filter that is temporarily generated, the UE transmits the uplink data to the network by using the temporarily generated uplink filter corresponding quality of service rule.
  • the UE If the UE receives the existing uplink filter of the UE, the UE transmits the uplink data to the network by using the QoS rule corresponding to the existing uplink filter.
  • the method may further include:
  • S355 The UE deletes the service quality rule according to the aging time.
  • the newly generated QoS rule includes a temporarily generated uplink filter (UL Filter).
  • UL Filter For details, refer to S120 in Figure 3 and S140 in Figure 4, or Figure 5 S150, for the sake of brevity, will not be described here.
  • S360 The user equipment uses the default quality of service rule to wipe the uplink data.
  • the UE needs to perform S345 to S360.
  • the data transmission method provided by the embodiment of the present invention can activate the RQ mechanism by using a message sent by the user plane and the signaling plane, so as to complete the transmission of the uplink data based on the RQ mechanism; At the same time, the user equipment management of the service quality rules is completed, and the system performance is improved.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 400 may include a receiving unit 410, an obtaining unit 420, and a processing unit 430.
  • the receiving unit 410 is configured to receive a first message that is sent by the user plane network element, where the first message includes a correspondence between the first quality of service identifier NQI and the first reflected quality of service identifier RQI.
  • the obtaining unit 420 is configured to acquire a second message sent by the user plane network element.
  • a generating unit configured to generate a first quality of service rule according to the correspondence between the first NQI and the first RQI, and the second message, if the second message does not carry the second reflected quality of service identifier RQI.
  • the first second RQI is used to indicate that the user equipment activates the reflective quality of service RQ mechanism.
  • the first message may be a signaling message sent by the control plane network element, and specifically includes a reflected quality of service parameter, such as a correspondence between the NQI and the RQI, and a matching priority order indication information RQP of the transmitted QoS rule.
  • the second message may be the downlink data sent by the user plane network element, and the receiving unit 410 receives the downlink data sent by the user plane network element, and obtains, by the obtaining unit 420, whether the downlink data includes the RQI, and the service quality rule used for sending the downlink data. Corresponding NQI.
  • the generating unit 430 determines to activate the RQ according to the NQI corresponding to the QoS rule used to send the second message and the NQI and RQI received from the control plane network element.
  • the first quality of service rule may be named as implied QoS rules, which may be referred to as a control plane implicit quality of service rule (C-Plane implicit) QoS rules).
  • the user equipment may further include a sending unit 440.
  • the user equipment transmits the uplink data through the newly generated implicit QoS rule, thereby realizing the transmission of the uplink data by the user equipment based on the RQ mechanism, and saving the same.
  • the signaling resource between the control plane network element and the user equipment and the storage space of the user equipment. It also implements RQ control that controls large granularity (eg, NQI) through the signaling plane, and the user plane controls RQ control of small granularity (eg, flow).
  • the generating unit 430 is further configured to generate a second quality of service rule according to the second message.
  • the second QoS rule is a QoS rule generated by the generating unit 430 according to the second message received by the receiving unit 410, and the QoS rule may also be referred to as an implicit QoS rule, which may be referred to as a user-faced implicit QoS rule. (C-Plane implicit QoS rules).
  • the first message may further include a first reflection quality rule priority RQP, where the first RQP is used to indicate a correspondence between the first NQI and the first RQI, and the second The matching priority order of the first quality of service rules generated by the message to indicate the matching priority order of the control plane implicit quality of service rules.
  • RQP reflection quality rule priority
  • the first message may further include a second reflection quality rule priority RQP, where the second RQP is used to indicate a matching priority of the second quality of service rule generated by the user equipment according to the second message.
  • RQP reflection quality rule priority
  • the user-specific implicit quality of service rule occupies the highest priority brush order in all communication services in which the user equipment transmits uplink data, so as to improve the QoS guarantee of the communication service.
  • At least one of the first message or the second message includes an aging time, where the aging time is the time from the last use to the current QoS rule or the second QoS rule.
  • Threshold as shown in FIG. 9, the apparatus 500 may further include a deleting unit 550,
  • the deleting unit is configured to delete the first QoS rule or the second QoS that reaches the aging time. Quantity rules.
  • the at least one of the first message or the second message further includes at least one of RQI usage time, RQI usage granularity, RQI usage mode, or usage granularity of the aging time.
  • the RQI usage time is the usage time of the first quality of service rule or the second quality rule; the RQI uses the usage unit whose granularity is the first quality of service rule or the second quality rule; and the RQI usage mode is the first quality of service rule or the second The parameter pattern of the temporary upstream filter included in the quality rule.
  • the user equipment 400 provided in FIG. 9 corresponds to the user equipment in FIG. 3 and FIG. 5, and corresponds to the execution of the method 100 in FIG. 3, FIG. 4 and FIG. 5 according to an embodiment of the present invention.
  • the main body, and the above-mentioned and other operations and/or functions of the respective modules in the user equipment are respectively implemented in order to implement the respective processes of the respective methods in FIGS. 3 to 5, and are not described herein again for the sake of brevity.
  • FIG. 10 is a schematic structural diagram of a user plane network element according to an embodiment of the present invention.
  • the user plane network element 500 includes a receiving unit 510, a determining unit 520, and a transmitting unit 530.
  • the receiving unit 510 is configured to receive a first message sent by the control plane network element, where the first message includes a correspondence between a downlink filter and a quality of service identifier NQI, a reflected quality of service identifier RQI, and flag indication information of the RQI;
  • a determining unit 520 configured to determine, according to the downlink filter, a quality of service identifier NQI corresponding to the quality of service rule used by the downlink data, and mark the downlink data according to the marking indication information of the RQI;
  • the sending unit 530 is configured to send a second message to the user equipment, where the second message is used to indicate whether the user equipment adopts a reflective quality of service RQ mechanism.
  • the first message may be a signaling message, and may include a transmit quality of service rule, where the transmit quality of service rule includes a reflected service quality parameter, for example, a downlink filter and an NQI, an RQI The correspondence, as well as the indication of the RQI tag.
  • a transmit quality of service rule includes a reflected service quality parameter, for example, a downlink filter and an NQI, an RQI The correspondence, as well as the indication of the RQI tag.
  • the first message may further include other parameters, such as a reflection quality rule priority RQP, for indicating that the user plane network element sends the matching priority order of the second message to the user equipment.
  • RQP reflection quality rule priority
  • the first message may further include at least one of a usage time of the RQI, a usage granularity of the RQI, a usage mode of the RQI, an aging time, or a usage granularity of the aging time;
  • the aging time is a time threshold from the last use to the current time according to the quality of service rule generated by the user equipment according to the RQI second message; the RQI usage time is the usage time of the quality of service rule generated by the user equipment; and the RQI usage granularity is generated by the user equipment.
  • the unit of service quality rule is used; the RQI usage mode is the parameter mode of the temporary upstream filter included in the quality of service rule.
  • the determining unit 520 determines, according to the downlink filter, the quality of service identifier NQI corresponding to the quality of service rule used by the downlink data, and according to the RQI
  • the flag indication information configures the RQI in the header of the downlink data packet to be sent, and sends the downlink data to the user equipment through the corresponding quality of service rule.
  • the downlink data is sent to the user equipment through the signaling plane and the control, so that the user equipment determines the activation RQ mechanism according to the downlink data, and completes the transmission of the uplink data, and the signaling plane and the control send the downlink data to the user equipment to save the transmission resource. .
  • the user plane network element 500 provided in FIG. 10 corresponds to the user plane network element in FIG. 6, corresponding to the execution body of the method 100 of FIG. 6 according to the embodiment of the present invention, and the user plane
  • the above and other operations and/or functions of the respective units in the network element are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 6, and are not described herein again for the sake of brevity.
  • FIG. 11 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the user equipment 600 includes a receiver 610, a processor 620, a memory 630, a transmitter 640, and a communication bus 650, wherein the receiver 610, the processor 620, the memory 630, and the transmitter 640 are connected by a communication bus 650.
  • the receiver 610 is configured to receive a first message that is sent by the user plane network element, where the first message includes a correspondence between the first quality of service identifier NQI and the first reflected quality of service identifier RQI.
  • the processor 620 is configured to acquire a second message sent by the user plane network element.
  • the processor 620 is further configured to: if the second message does not carry the second reflected quality of service identifier RQI, generate a first quality of service rule according to the correspondence between the first NQI and the first RQI, and the second message.
  • the first second RQI is used to indicate that the user equipment activates the reflective quality of service RQ mechanism.
  • the transmitter 640 sends the uplink data, and completes the uplink data transmission based on the RQ mechanism.
  • the user equipment provided by the embodiment of the present invention can implement the uplink data transmission based on the RQ mechanism, and realize the signaling plane, that is, the large granularity of the first message sent by the control plane network element to the user equipment, such as the RQ control of the NQI, the user The small granularity of the second message sent by the user plane network element to the user equipment, such as RQ control of the flow.
  • the receiver 610, the processor 620, the memory 630, and the transmitter 640 in the user equipment 600 provided by the embodiment of the present invention may complete the methods/steps S110, S120, S130, and S140 in FIG. 3 to FIG. S150, and the operations performed by the respective units included in the user equipment 400 provided in FIG. 9 are for brevity of description, and are not described herein again.
  • FIG. 12 is a schematic structural diagram of another user plane network element according to an embodiment of the present invention.
  • the user plane network element 700 can include a receiver 710, a processor 720, a transmitter 740, and a communication bus 740.
  • the receiver 710 is configured to receive a first message sent by the control plane network element, where the first message includes a correspondence between the downlink filter and the quality of service identifier NQI, the reflected quality of service identifier RQI, and the flag indication information of the RQI.
  • the processor 720 is configured to determine, according to the downlink filter, a quality of service identifier NQI corresponding to the quality of service rule used by the downlink data, and mark the downlink data according to the flag indication information of the RQI.
  • the transmitter 730 is configured to send a second message to the user equipment, where the second message is used to indicate whether the user equipment adopts a reflective quality of service RQ mechanism.
  • the user equipment When the user equipment receives the second message sent by the user plane network element 700, it determines to activate the RQ mechanism according to the second message, and generates a service quality rule.
  • a service quality rule For the specific process, please refer to parameters S110, S120, and S130 in FIG. I won't go into details here.
  • the user plane network element receives the RQI through the user plane, or the signaling plane and the user plane, activates the RQ mechanism, implements the RQ mechanism, and the user equipment transmits the uplink data, and implements the fine-grained service quality control.
  • the control plane network element marks the RQI in the downlink data packet according to the received indication information of the RQI, and avoids configuring the RQI in the downlink data packet corresponding to each of the reflection service granularities to save the transmission resource. .
  • the user plane network element 700 may further include a memory 750.
  • the receiver 710, the processor 720, and the transmitter 730 in the user plane network element 700 may complete the methods/steps S210, S220, and S230 in FIG. 6, and the user provided in FIG.
  • the operations performed by the various units included in the surface network element 500 are described briefly, and are not described herein again.
  • the processors 620/720 in FIG. 11 and FIG. 12 may be a central processing unit (CPU), and the processors 620/720 may also be other general-purpose processors, numbers.
  • Signal processor DSP
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 640/750 which may include read only memory and random access memory, and provides instructions and generated quality of service rules to processor 620/720. Part of the memory A non-volatile random access memory may be included. For example, the memory can also store information of the device type.
  • the bus system 650/740 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 650/740 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 620/720 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种数据传输方法及其装置,该方法包括:用户设备接收控制用户面网元发送的第一消息,第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系;用户设备获取用户面网元发送的第二消息;若第二消息不携带第二反射服务质量标识RQI,则用户设备根据第一NQI与所述第一RQI的对应关系,以及第二消息生成第一服务质量规则;其中,第二RQI用于指示用户设备激活反射服务质量RQ机制。通过该方法实现了基于Reflective QoS机制下,用户设备的上行数据传输,同时节省了传输资源。

Description

一种数据传输的方法及其装置 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输的方法及其装置。
背景技术
无线网络作为基础的网络架构,越来越到的业务在无线网络上承载。根据业务的特性、要求,以及无线资源的稀缺性,决定了网络的行为,而网络的行为事先由服务质量(Quality of Service,QoS)规则(rules)来定义和实现接入控制,资源保证和调度,例如,当你正在打一个电话时,某人开始下载一个文件,由于无线资源的稀缺性,下载一个文件会抢占你通信的通信资源而导致你正在通信的电话被挂断,此时,就需要保证语音通话的无线资源比下载一个文件具有更高的资源使用优先级,这样才能保证无线资源不足时,语音通话正常。当然,在无线网络中,会有不同的业务接入,需要设置不同的QoS rule以保证关键的业务得到保证。
在3GPP TS24.139中规定了反射服务质量(Reflective QoS),Reflective QoS是指固网用户UE的上行数据的Qos机制采用与其下行数据一样的QoS机制。
在3GPP中所定义的EPS无线系统中QoS的管理方式为:EPS系统提供的各种IP业务的QoS保障可以通过一个IP业务传输其数据的一个或多个服务数据流(service data flow,SDF)来标识,一个SDF对应一个EPS承载,即一个SDF通过一个EPS承载来传输,以实现IP业务的QoS保障。这样,IP业务的QoS保障就转化为EPS承载的QoS保障,或者说一个特定QoS的SDF映射到一个特定QoS的EPS承载上。其中,承载为逻辑传输通道。EPS承载是用户设备(User Equipment,UE)到PGW(PDN GateWay)之间的一 种逻辑传输通道。
服务数据流和承载通过业务流模板(Traffic Flow Template,TFT)进行关联和映射,而在无线网络中与RB-ID进行关联,在核心网中与隧道端点标识符(Tunnel End Point Identity,TEID)进行关联。上行数据流和TFT的关联由UE执行,下行数据流的TFT由PGW执行。其中,每个SDF包括至少一个IP业务流过滤器(IP Flower Filter)。将不同的业务根据不同的QoS需求由TFT过滤到不同的承载上传输,实现了QoS保障。
为简化5G网络的QoS设计,节省网络下发Qos rule时信令开销,5G网络引入了固网的Reflective QoS机制,简称RQ机制,即UE根据下行数据流生成上行业务的反射服务质量规则(reflective QoS rule),并基于该反射服务质量规则执行上行数据的传输。但在现有技术中,基于Reflective Qos场景,反射服务质量(Reflective Qos)参数的下发方式还是目前需要解决的问题。
发明内容
本发明实施例提供了一种数据传输的方法及其装置,通过用户设备接收控制面网元和用户面网元发送的Reflective Qos参数,以实现基于Reflective QoS机制,用户设备的上行数据传输。
第一方面,本发明实施例提供了一种数据传输方法,该方法可以包括:
用户设备接收控制用户面网元发送的第一消息,第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系;
用户设备获取用户面网元发送的第二消息;
若第二消息不携带第二反射服务质量标识RQI,则用户设备根据第一NQI与第一RQI的对应关系,以及第二消息生成第一服务质量规则,该第一服务质量规则可以称为命名为隐式服务质量规则(impliclit QoS rules),可以具体称为控制面隐式服务质量规则(C-Plane implicit QoS rules);
其中,第一第二RQI用于指示用户设备激活反射服务质量RQ机制。
基于本发明实施例提供的数据传输的方法,通过控制面网元发送的NQI与RQI的对应关系,以及接收到的用户面网元发送的不携带RQI的消息激活用户设备的RQ机制,并根据RQ机制生成确定传输上行数据的服务质量规则,实现了基于Reflective QoS机制,用户设备对上行数据的传输。
相比通过控制面网元先给UE配置大量的上行TFT,当接收到用户面网元发送的下行数据时,激活RQ机制,并在大量上行TFT中确定传输上行数据的服务质量规则节省了控制面与用户设备之间的信令资源以及用户设备的存储空间。
同时,采用本发明实施例还实现了通过信令面网元控制大粒度(如:NQI)的RQ控制,用户面控制控制小粒度(如:flow)的RQ控制。
在一个设计方案中,第一消息还可以包括第一反射质量规则优先级RQP,第一RQP用于指示用户设备根据第一NQI与第一RQI的对应关系,以及第二消息生成的第一服务质量规则的优先级顺序,以指示第一服务质量规则在用户设备中传输上行数据的优先级顺序,以保证通信业务的QoS质量。
在另一个设计方案中,该方法还可以包括:
若第二消息携带第二RQI,则用户设备根据第二消息生成第二服务质量规则。该第二服务质量规则也可以称为隐式服务质量规则,具体可以称为用户面隐式服务质量规则(U-Plane implicit QoS rules)。
通过该设计方案可以实现小粒度,如数据流的RQ控制。
在又一个设计方案中,第一消息还可以包括第二反射质量规则优先级RQP,第二RQP用于指示用户设备根据第二消息生成的第二服务质量规则的优先级顺序。
在本发明实施例中,用户设备可以通过接收控制面网元下发的携带有用户面隐式服务质量规则的优先级顺序指示信息,以指示用户面隐式服务 质量规则的匹配优先级顺序,以保证通信业务的QoS保障,在本发明实施例中,该用户面隐式服务规则的匹配优先级顺序通常为用户设备传输所有业务上行数据中的最高匹配优先级,且该优先级顺序的值可以为默认值。
在再一个设计方案中,第一消息或者第二消息中至少一个消息可以包括老化时间,老化时间为第一服务质量规则或者第二服务质量规则从最后一次使用到当前时刻的时间阈值,该方法还可以包括:
当第一服务质量规则或者第二服务质量规则未被使用的时间达到老化时间时,用户设备删除达到老化时间的第一服务质量规则或者第二服务质量规则,以实现用户设备对服务质量规则的管理,同时也删除一些暂时不用的服务质量规则,节省用户设备的存储空间,提高了系统性能。
在其他的设计方案中、第一消息或者第二消息中至少一个消息还可以包括RQI使用时间、RQI使用粒度、RQI使用模式、或老化时间的使用粒度中的至少一个;
其中,RQI使用时间为第一服务质量规则或第二质量规则的使用时间;RQI使用粒度为第一服务质量规则或第二质量规则的使用单位;RQI使用模式为第一服务质量规则或第二质量规则包括的临时上行过滤器的参数的模式。
第二方面,本发明实施例提供了一种数据传输方法,该方法可以包括:
用户面网元接收控制面网元发送的第一消息,第一消息包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及RQI的标记指示信息;
用户面网元根据下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据RQI的标记指示信息为下行数据进行标记;
用户面网元向用户设备发送第二消息,第二消息用于指示用户设备是否采用反射服务质量RQ机制。
本发明实施例提供的数据传输方法,通过用户面,或信令面和用户面接收RQI,激活RQ机制,实现了基于Reflective QoS机制,用户设备对上行数据的传输,实现了细粒度服务质量控制,同时,相比通过用户面网元接收到的服务质量规则,在每个反射服务粒度对应的下行数据包中配置RQI标记,本发送实施例通过控制面网元根据接收到的RQI的标记指示信息,在下行数据包中标记RQI,避免了在每个反射服务粒度对应的下行数据包中配置RQI标记,且节省了NG3和air interface的传输资源。
在一个设计方案中,第一消息还可以包括反射质量规则优先级RQP,RQP用于指示用户面网元向用户设备发送第二消息的优先级顺序。
在另一个设计方案中,第一消息还包括RQI的使用时间、RQI的使用粒度、RQI的使用模式、老化时间或老化时间的使用粒度中的至少一个;
其中,老化时间为用户设备根据RQI第二消息生成的服务质量规则包括的临时上行过滤器从上一次使用到当前时刻的时间阈值;RQI使用时间为用户设备生成的服务质量规则的使用时间;RQI使用粒度为用户设备生成的服务质量规则的使用单位;RQI使用模式为临时上行过滤器的参数的模式。
第三方面,本发明实施例提供一种数据传输装置,该装置可以为用户设备,该用户设备包括接收单元、获取单元以及生成单元。基于同一发明构思,由于该装置解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的设计方案以及所带来的有益效果,因此该装置的实施可以参见方法的实施,为简洁描述。在这里不再赘述。
第四方面,本发明实施例还提供了、一种数据传输的装置,其特征在于,该装置可以为用户面网元,该用户面网元包括接收单元,确定单元和发送单元,由于该装置解决问题的原理以及有益效果可以参见上述第一方 面和第一方面的各可能的设计方案以及所带来的有益效果,因此该装置的实施可以参见方法的实施,为简洁描述。在这里不再赘述。
第五方面,本发明实施例提供了一种用户设备,该用户设备包括发送器、接收器、处理器和存储器;其中,发送器和接收器用于向外部设备完成信令或/和数据的发送和接收,存储器用于存储计算机可执行程序代码,所述程序代码包括指令,当所述处理器执行所述指令时,实现上述第一方面的方法设计中的方案以及第三方面的装置设计中的方案,由于该用户设备解决问题的实施方式以及有益效果可以参见上述第一方面和第一方面的各可能的设计方案以及有益效果,因此该用户设备的实施可以参见第一方面方法的实施,为简洁描述,在这里不再赘述。
第六方面,本发明实施例提供了一种用户面网元,该用户面网元包括发送器、接收器、处理器和存储器;其中,发送器和接收器用于向外部设备完成信令或/和数据的发送和接收,存储器用于存储计算机可执行程序代码,所述程序代码包括指令,当所述处理器执行所述指令时,实现上述第二方面的方法的设计方案以及第四方面的装置的设计方案,由于该用户设备解决问题的实施方式以及有益效果可以参见上述第一方面和第一方面的各可能的设计方案以及有益效果,因此该用户设备的实施可以参见第一方面方法的实施,为简洁描述,在这里不再赘述。
基于上述技术方案,本发明实施例提供的数据传输的方法及其装置,用户设备通过接收控制面网元发送的包括服务质量标识NQI与反射服务质量标识RQI的对应关系的消息,以及用户面网元发送的消息,根据接收到的消息生成消息第一服务质量规则,以便于当用户设备接收到符合该第一服务质量规则的上行数据时,通过该第一服务质量规则发送上行数据,实现了基于Reflective QoS机制下,用户设备的上行数据传输。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例提供的一种基于Reflective QoS上行数据传输示意图;
图2是根据本发明实施例提供的一种通信网络系统架构图;
图3是根据本发明实施例提供的一种数据传输的方法流程图;
图4是根据本发明实施例提供的另一种数据传输的方法流程图;
图5是根据本发明实施例提供的另一种数据传输方法的流程图;
图6是根据本发明实施例提供的又一种数据传输方法的流程图;
图7是根据本发明实施例提供的一种数据传输方法的示意图;
图8是根据本发明实施例提供的再一种数据传输方法的流程图;
图9是根据本发明实施例提供的一种用户设备的结构示意图;
图10是根据本发明实施例提供的一种用户面网元的结构示意图;
图11为本发明实施例提供的另一种用户设备的结构示意图;
图12为本发明实施例提供的另一种用户面网元的结构示意图。
具体实施方式
本发明提供了一种数据传输方法及其装置,在未来的5G通信网络中可以引入了固网的Reflective QoS机制,用户设备传输上行数据所采用的QoS可以与传输下行数据采用的QoS一致。
在本发明实施例中,核心网(Core Network,CN)设备通过信令面和用户面向用户设备UE发送反射服务质量参数,以便于用户设备根据反射服务 质量参数生成服务质量规则,并在传输上行数据时采用与传输下行数据时使用相同的服务质量保障。
反射服务质量参数可以包括服务质量标识RQI粒度、反射服务质量规则优先级(Reflective QoS rules Priority,RQP)和反射服务质量标识(Reflective QoS Indication,RQI)。
用户设备UE可以通过接收控制面(Control Plane,CP)网元发送的包括下一代服务质量标识(NextGen QoS index,NQI)与RQI的对应关系的消息,以及用户面(User Plane,UP)网元发送的消息,以便于用户设备根据从控制面网元和用户面网元接收到的消息生成服务质量规则。当用户设备UE接收到的上行数据符合服务质量规则时,通过该服务质量规则传输上行数据。
其中,用户面网元发送的消息中可以不携带RQI。当用户设备接收到用户面网元发送的消息时,获取用户面网元发送该消息的NQI,根据从控制面网元接收到的NQI与RQI的对应关系,激活RQ机制,并生成服务质量规则。
用户面网元发送的消息可以携带RQI。当用户设备接收到用户面网元发送的消息时,激活RQ机制,并生成传输上行数据的服务质量规则。
生成的服务质量规则包括上行过滤器,以及与对应到与传输下行数据一致的数据无线承载(Data Radio Bearer,DRB),具体如图1所示。
图1为本发明实施例提供的一种基于Reflective QoS上行数据传输示意图。控制面网元CP向用户面网元UP发送服务质量规则(Qos rule),该服务质量规则中包括下行数据包过滤器(Downlink Packet filters)与下一代服务质量标识(NextGen QoS index,NQI)、反射服务质量标识RQI的对应关系,以及RQI的标记指示信息;用户面网元根据接收到的服务质量规则向用户设备UE发送消息,该消息通过下行滤波器过滤,确定对应服务质量,如下一代服务质量标识NQI,并在接入网通过对应的DRB向UE发送该消息,如图1中通过DRB1和DRB2向UE发送消息。其中,该消息可以包括反射服务质量标识RQI,用于指示UE激活RQ机制。
另外,该消息可以为信令面消息,也可以为用户面消息。信令面消息为核心网向用户设备发送的指令;用户面消息为核心网向用户设备发送的数据,RQI可以配置在数据包的包头中。
UE接收到UP发送的消息后,根据消息中的RQI激活RQ机制,并根据消息反转确定传输上行数据的服务质量规则,该服务质量规则包括上行过滤器等信息。
当UE需要传输上行数据时,UE通过上行过滤器对所要传输的上行数据进行过滤,若存在与上行过滤器匹配的上行数据,则UE采用该上行过滤器对应的DRB进行上行数据传输,如图1所示的UE通过DRB2进行上行数据传输。
需要说明的是,图1中可以通过接入网(Accessing Network,AN)传输上、下行数据。UE与AN之间的接口称为无线接口(radio interface)。AN与UP之间的接口可以称为AN-UP接口(AN-UP interface),现有LTE网络中,AN与S-GW的接口为S1接口,S-GW与P-GW的接口为S5/S8接口。
在本发明实施例中,UP向UE发送携带RQI的消息,可以通过UP与AN之间的NG3接口传输,AN与UE之间的Uu接口来传输,或者说通过NG3承载传输和Uu承载来传输。
图2为本发明实施例提供的一种通信网络的系统架构图。如图2所示,该系统包括用户设备UE、控制面网元CP、用户面网元UP、接入网AN和策略功能(Policy Function)设备。
其中,控制面网元负责移动网络中的移动管理、控制策略的下发,如向用户面下发报文处理的服务质量规则,指示用户面根据服务质量规则对所要发送的下行数据进行过滤和进行RQI标记。控制面网元CP可以是移动管理实体(Mobile Management Entity,MME),网关控制面或以上融合后形成的控制功能的全部或部分。
用户面网元UP用于负责数据的处理和转发。用户面网元可以是PDN GW的转发面功能、S-GW的转发面功能、路由器、交换机等物理或虚拟的设备。
接入网AN为用户设备提供无线接入服务,包括但不限于基站eNodeB,接入点(Access Point,AP)等。
用户设备UE为网络终端设备,包括但不限于手机、网络接入设备、物联网终端设备等。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图3是根据本发明实施例提供的一种数据传输的方法流程图。如图3所示,该方法100包括以下步骤:
S110,用户设备接收控制面网元发送的第一消息。
第一消息可以包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系。
换句话讲,控制面网元可以通过信令消息的方式向用户设备发送包括NQI和RQI对应关系的反射服务质量参数。
该第一消息可以具体为,例如:
RQI granularity(NQI1,RQI(no marking))。
该第一消息可以称为服务质量规则,其中包括的信息参数,例如NQI、RQI可以称为反射服务质量参数,该消息分别用于指示:
每个NQI1对应的服务质量规则传输的数据没有RQI标记。换句话讲,通过NQI1对应的服务质量规则均激活RQ机制。被匹配DL Packet filters 1的下行数据通过服务质量规则NQI1进行传输,需要激活Reflective Qos机制,但是不需要在数据包做RQI标记(marking)。
在本发明实施例中,该第一消息还可以具体为,例如:
UL Packet filters 3-->(NQI3,no RQI)。
可以称为该消息可以称为显式服务质量规则(explicit QoS rules),其中包括的参数可以称为显式服务质量参数(explicit QoS Parameters)。该消息用于指示:
匹配UL Packet filters 3的上行数据通过NQI3对应的服务质量规则进行传输,不需要激活Reflective Qos机制。
另外,在本发明实施例中,第一消息中还可以携带反射服务质量规则优先级RQP,以指示用户设备通过相应的服务质量规则传输上行数据的优先级顺序。
S120,用户设备接收用户面网元发送的第二消息。
第二消息可以包括用户面网元向用户设备发送的数据包,发送该数据包所采用的服务质量对应的服务质量标识NQI。该数据包中可以携带反射服务质量标识RQI,用于指示用户设备激活反射服务质量RQ机制。该数据包中也可以不携带反射服务质量标识RQI。其中。RQI用于指示用户设备激活反射服务质量RQ机制。在本发明实施例中,用户面网元可以根据控制面网元发送的服务质量规则,包括下行数据包过滤器(Downlink Packet filters)与下一代服务质量标识(NextGen QoS index,NQI)、反射服务质量标识RQI的对应关系,以及RQI标记的指示消息。Downlink Packet Filters包括源IP地址、目的IP地址,源IP端口号、目的IP端口号和协议类型等内容。
用户面网元通过Downlink Packet Filters对所要发送的下行数据进行过滤,为发送的下行数据选择特定服务质量,并根据RQI的标记指示信息确定是否需要在所要发送的下行数据包的报头添加或者配置RQI。
还需要说明的是,在本发明实施例中,下行数据包过滤器可以简称为下行过滤器(DL Packet filters),下一代服务质量标识可以简称为服务质量标识。
S130,若第二消息不携带第二反射服务质量标识RQI,则用户设备根据第一NQI与第一RQI的对应关系,以及第二消息生成第一服务质量规则。
若用户设备接收到的第二消息中不携带RQI标识,则用户设备根据S110中,从控制面网元接收到的NQI与RQI的对应关系,以及用户设备接收第二消息所采用的承载对应的NQI,确定激活RQ机制,并按照RQ机制生成传输上行数据的服务质量规则。若生成的服务质量规则不包括在用户设备现有的服务质量规则中,则用户设备需要生成新的服务质量规则,该服务质量规则可以称为隐式服务质量规则(impliclit QoS rules)。通过该方法生成的隐式服务质量规则可以称为控制面隐式服务质量规则(C-Plane implicit QoS rules)。例如:下行数据的IP五元组为源IP地址Y、目的IP地址X,源IP端口号B、目的IP端口号A和协议类型C,进行反转后的上行数据包过滤器(Uplink Packet filters)的IP五元组为源IP地址X、目的IP地址Y,源IP端口号A、目的IP端口号B和协议类型C。
用户设备根据下行数据的IP五元组、以及获取传输第二消息的服务质量对应的服务质量标识NQI或QoS分类标识(QoS Classification Identifier,QCI),根据RQ机制,生成隐式服务质量规则,该服务质量规则中包括上行数据包过滤器与服务质量标识NQI的对应关系。其中,Uplink Packet filters中包括过滤上行数据的IP五元组的参数信息,包括源IP地址、目的IP地址,源IP端口号、目的IP端口号和协议类型等内容。
需要说明的是,本发明实施例中,服务质量标识NQI表示为5G网络中的QoS服务质量标识,可以一个或多个参数,如转发优先级、时延、丢包率的组合,类似EPS中的QoS分类标识。
需要说明的是,在本发明实施例中,上行数据包过滤器可以简称为上行过滤器(UL Packet filters)。另外,新生成的上行过滤器可以称为临时上行过滤器。
还需要说明的是,在本发明实施例中,生成的隐式服务质量规则还可以 包括反射服务质量优先级RQP,以指示该C-Plane implicit QoS rules的匹配优先级顺序。
应理解,如果用户设备按照RQ机制生成的服务质量规则包括在用户设备现有的服务质量规则之中,不需要重新生成新的服务质量规则。
当用户设备接收到匹配新生成或者现有的上行过滤器的上行数据时,用户设备采用上行过滤器对应的服务质量规则传输上行数据,以实现基于RQ机制,用户设备上行数据的传输。
通过本发明实施例提供的数据传输的方法,通过控制面网元发送的NQI与RQI的对应关系,以及接收到的用户面网元发送的不携带RQI的消息激活用户设备的RQ机制,并根据RQ机制生成确定传输上行数据的服务质量规则,实现了基于Reflective QoS机制,用户设备对上行数据的传输。
相比通过控制面网元先给UE配置大量的上行TFT,当接收到用户面网元发送的下行数据时,激活RQ机制,并在大量上行TFT中确定传输上行数据的服务质量规则节省了控制面网元与用户设备之间的信令资源以及用户设备的存储空间。
同时,采用本发明实施例还实现了通过信令面控制大粒度(如:NQI)的RQ控制,用户面控制控制小粒度(如:flow)的RQ控制。
需要说明的是,在本发明实施例中,C-Plane implicit QoS rules可以动态的被控制面网元发送给用户设备和用户面网元,且控制面网元向用户设备和/或用户面网元发送匹配优先级顺序的指示信息RQP类似于4G中控制面网元向用户设备和/用户面网元发送信息的过程类似,为简洁描述,在这里不再赘述。
应理解,在本发明实施例中,S110与S120没有时间顺序关系,用户设备可以先执行S120再执行S110,也可以同时执行S110和S120,在本发明实施例中对此不作任何限制。
可选地,作为本发明另一实施例,第一消息还可以包括第一反射质量规则优先级(Reflective QoS rules Priority,RQP)。第一RQP用于指示用户设备根据第一NQI与第一RQI的对应关系,以及第二RQI生成的第一服务质量规则的匹配优先级顺序。
即RQP用于指示用户设备按照RQ机制生成的隐式服务质量规则(impliclit QoS rules)的匹配优先级顺序,以便于用户设备根据RQP确定用来匹配上行数据的服务质量规则的优先顺序。
如UE中维护有服务质量规则A、服务质量规则B和服务质量规则C。匹配优先级从高到低分别为服务质量规则A,服务质量规则B,服务质量规则C。即服务质量规则A优先级为高,服务质量规则B优先级为中,服务质量规则C优先级为低。UE收到上行数据,根据服务质量规则匹配优先级,先去判断服务质量规则A是否匹配,如不匹配,则判断服务质量规则B是否匹配,如不匹配,再判断服务质量规则C是否匹配。所以即便服务质量规则A,服务质量规则B如果含有相同的数据包过滤器,还是按照匹配优先级进行确定这个匹配了数据包过滤器的数据包需要使用哪个服务质量规则进行发送。
其中,用户设备按照RQ机制生成的隐式服务质量规则包括控制面隐式服务质量规则(C-Plane implicit QoS rules)和用户面隐式服务质量规则(U-Plane implicit QoS rules)。该用户面隐式服务质量规则为用户设备根据用户面网元发送的第二消息中携带的RQI确定激活的RQ机制,并按照RQ机制生成的隐式服务质量规则。
该第一消息可以具体为,例如:
RQI granularity(NQI1,RQI(no marking)),RQPx;或者,
UL Packet filters 3-->(NQI3,no RQI),RQPm。
该第一消息分别用于指示:
C-Plane implicit QoS rules在用户设备中的服务质量规则匹配优先级顺序为RQPx;或者,
匹配UL Packet filters 3的上行数据通过NQI3对应的服务质量规则进行传输,不需要激活Reflective Qos机制,其这条服务质量规则“UL Packet filters 3-->(NQI3,no RQI)”的匹配优先级顺序为RQPm。
另外,该第一消息中还可以包括U-Plane implicit QoS rules的优先级指示信息,具体可以为,例如:
RQPy for U-plane implicit QoS rules。
用于指示U-plane implicit QoS rules的匹配优先级顺序为RQPy。在本发明实施例中,该RQPy为默认值,在用户设备传输上行数据中具有最高的匹配优先级顺序。
需要说明的是,在本发明实施例中的数字1、2、3为了区分为不同的NQI,字母x、m是为了区分为不同的RQP,其数字和字母并不对本发明的方案构成任何限定,本发明实施例还可以通过其他方式进行区分,本发明实施例对此不作限定。
可选地,作为本发明另一实施例,如图4所示,该方法100还可以包括:
S140,若第二消息携带第二RQI,则用户设备根据第二消息生成第二服务质量规则。
若用户设备接收到的用户面网元发送的第二消息中携带RQI,用户设备根据RQI确定激活RQ机制,并按照RQ机制生成服务质量规则,该服务质量规则可以称为用户面隐式服务质量规则(U-Plane implicit QoS rules)。在本发明实施例中,用户设备可以根据第二消息中的下行数据的IP五元组、以及获取传输第二消息的服务质量对应的服务质量标识NQI或QoS分类标识 (QoS Classification Identifier,QCI),根据RQ机制,生成服务质量规则,即U-Plane implicit QoS rules。该服务质量规则中包括上行数据包过滤器与服务质量标识NQI的对应关系。其中,上行过滤器可以称为临时上行过滤器。具体过程与用户设备根据第二消息生成C-Plane implicit QoS rules的过程类似,具体描述可参见图3中S130,为简洁描述,在这里不再赘述。
需要说明的是,在本发明实施例中,生成的服务质量规则还可以包括反射服务质量优先级RQP,以指示该U-Plane implicit QoS rules的匹配优先级顺序。
通过该实施例提供的数据传输方法,通过在控制面发送的RQI标记指示消息,可以指示UE对一类聚合的数据流采用RQ机制,如映射到同一NQI上的所有业务,实现粗粒度的服务质量控制。通过在用户面网元发送的消息中携带RQI,实现了细粒度数据流的控制,同时基于RQ机制,实现了上行数据的传输。
该方案可以单独实施,以完成基于RQ机制的上行数据传输。图3中S110、S120和S130的方案通过信令面和用户面指示反射服务质量参数,相对于图4的单独实施的方案仅通过用户面指示反射服务质量参数,减少了在每个数据流的每个数据包标记RQI,尤其在下行数据包过滤器携带通配符(wildcard)时,会导致大量匹配这个下行数据包过滤器的数据包需要标记RQI,本发明实施例通过信令面的RQI参数的传输节省了用户面大量传输资源。
可选地,作为本发明另一实施例,第一消息还包括第二反射质量规则优先级RQP,第二RQP用于指示用户设备根据第二消息生成的第二服务质量规则的匹配优先级顺序。
用户设备可以从控制面网元获取U-Plane implicit QoS rules的匹配优先级顺序的指示信息,即RQP,以便于用户设备接收到与U-Plane implicit QoS rules匹配的上行数据时,根据RQP确定服务质量规则的匹配优先级顺序。
该用户面隐式服务规则的优先级顺序通常为用户设备传输所有业务上 行数据中的最高优先级,且该优先级顺序的值可以为默认值。
可选地,作为本发明另一实施例,第一消息或者第二消息中至少一个消息包括老化时间,该老化时间为第一服务质量规则或者第二服务质量规则从上一次使用到当前时刻的时间阈值。
换句话讲,用户设备从控制面网元接收的第一消息中可以包括老化时间,该老化时间为衡量最后一次使用C-Plane implicit QoS rules传输上行数据到当前时刻的预设时间阈值。
用户设备从用户面网元接收的第二消息中也可以包括老化时间,该老化时间为衡量上一次使用U-Plane implicit QoS rules传输上行数据到当前时刻的预设时间阈值。
在本发明实施例中,该老化时间可以根据需求自定义设定,在本发明实施例中,对此老化时间的值不作限制。
如图5所示,该方法100还可以包括:
S150,当第一服务质量规则或者第二服务质量规则未被使用的时间达到老化时间时,用户设备删除达到老化时间的第一服务质量规则或者第二服务质量规则。
当用户设备根据老化时间确定出达到老化时间的隐式服务质量规则,包括C-Plane implicit QoS rules和U-Plane implicit QoS rules,用户设备将隐式服务质量规则删除,以实现用户设备基于RQ对服务质量规则的管理,同时删除一些暂时不用的服务质量规则,可以节省部分资源,提高系统性能。
需要说明的是,在本发明实施例中,用户设备除了可以根据老化时间删除上行过滤器之外,还可以根据会话连接中断而删除会话相关的上行过滤器。
可选在,作为本发明另一实施例,第一消息或者第二消息中至少一个消息还包括RQI使用时间、RQI使用粒度、RQI使用模式、或老化时间的 使用粒度中的至少一个。
其中,RQI使用时间为第一服务质量规则或第二质量规则的可以使用时间。RQI使用粒度为第一服务质量规则或第二质量规则的使用单位。RQI使用模式为所述第一服务质量规则或第二质量规则包括的上行过滤器的参数的模式。
换句话讲,RQI使用时间用于表示该RQI对应的RQ参数生效的时间。
RQI使用粒度用于表明RQI使用的范围,包括依NQI、流优先级指示(flow priority indication,FPI)、QCI,协议数据单元(Protocol Data Unit,PDU)会话(Session)、用户设备或者数据流(flow)等为单位进行数据传输。
例如:若RQI使用粒度为NQI、FPI或QCI:则表示NQI、FPI或QCI对应DRB所有的PDU Session的上行数据都可以使用Reflective Qos。
若RQI使用粒度为PDU Session,则表示此PDU Session上行数据使用Reflective Qos。
若RQI使用粒度为UE,则表示此UE所有上行数据使用Reflective Qos。
若RQI使用粒度为flow,则表示此flow上行数据使用Reflective Qos。
需要说明的是,用户面网元下发的信令消息中可以同时包括多个粒度的混合使用,如信令消息可以包括指示flow1和PDU session 2,PDU session3使用Reflective Qos机制。在本发明中实施例中对所粒度的混合使用不作限制。
RQI使用模式即RQ模式(mode)表示根据RQ机制生成的Packet filter的模式,即Packet Filter中需要的参数。其参数可以为IP五元组中各个参数的任意组合为例,即可实现各种二元组模式,三元组模式,四元组模式,五元组模式等,可以使用RQ mode ID来标识不同的RQM。
例如,IP五元组模式可以为:
-源IP地址(Source IP address);
-目的IP地址(Destination IP address);
-源端口号(Source port number);
-目的端口号(Destination port number);
-协议类型(Protocol type);
四元组模式可以为:
-Source IP address;
-Destination IP address;
-Source port number;
-Destination port number;
或者,
-Source IP address;
-Destination IP address;
-Source port number;
-Protocol type;
三元组模式可以为:
-Source IP address;
-Destination IP address;
-Protocol type;
或者,
-Destination IP address;
-Source port number;
-Destination port number;
或者,
-Destination IP address;
-Destination port number;
-Protocol type;
等。
需要说明的是,RQ模式可以与PDU session,flow或NQI对应,需要在发送RQ模式时指明是对应的PDU session,flow或NQI信息。PDU session用PDU session ID或者一个或多个五元组标识,flow用flow ID或五元组标识。
建议在PDU Session建立时,由网络控制面网元由网络控制面网元需要说明的是,RQ模式可以为通过控制面发送的RQI炘烘熌熬熮
需要说明的是,RQ模式可以为为其他参数的组合,在本发明实施例中对此不作限定。
还需要说明的是,一个RQI可以对应多个RQ mode。RQI当前使用的RQ mode可以根据特定场景或需要,进行修改。
老化时间的使用粒度用于表明服务质量规则中上行过滤器的使用单位。
例如:依NQI、FPI、QCI,PDU Session、UE或flow等。
若老化时间的使用的粒为NQI、FPI或QCI,则下发的QoS rules包括老化时间和NQI、FPI或QCI。NQI、FPI、QCI对应DRB,基于RQ机制映射到同一DRB上的UL Filters使用同一老化时间。
若老化时间的使用的粒度为PDU Session,则下发的QoS rules包括老化时间和PDU Session。UE基于RQ机制生成的UL Filters在不同的PDU Session间使用不同的老化时间,即同一DRB上不同的PDU Session,其UL Filter有不同的老化时间。
老化时间的使用的粒度为UE,则下发的QoS rules包括老化时间。UE基于RQ机制生成的所有UL Filters统一使用相同的老化时间。
若老化时间的使用的粒度为flow,则下发的QoS rules包括老化时间和flow标识。在此flow上基于RQ机制生成的所有UL Filters统一使用相同的老化时间。在本发明实施例中,第一消息和/或第二消息包括的信息以用 于用户设备根据第二消息新建立的服务质量规则进行管理和处理,提高系统的性能。
需要说明的是,本发明实施中的“第一”,“第二”只是为了区分信息,并不对信息本身进行限制。
可选地,作为本发明另一实施例,如图6所示,该方法200还可以包括:
S210,用户面网元接收控制面网元发送的第一消息。
该第一消息可以为控制面网元通过NG4接口向用户面网元发送的信令消息,该信令消息可以包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及RQI的标记指示信息。
例如:该消息可以具体为:
DL Packet filters 1-->RQI granularity(NQI1,RQI nomarking);或者,
DL Packet filters 2-->RQI granularity(NQI2,RQI marking)。
该消息可以称为服务质量规则,其中包括的信息参数,例如NQI、RQI可以称为反射服务质量参数,该消息分别用于指示:
匹配DL Packet filters 1的下行数据通过NQI1对应的服务质量规则进行传输,需要激活Reflective Qos机制,但是不需要在数据包做RQI标记(marking)。
匹配DL Packet filters 2的下行数据通过NQI2对应的服务质量规则进行传输,需要激活Reflective Qos机制,可以在所有通过NQI2对应的服务规则传输的下行数据包中作RQI标记。
例如,DL Packet filters 1是表示一类特殊的网页服务,如:面书(Facebook)、youtube、谷歌地图(google maps)等等。在本发明实施例中,用户面网元UP接收控制面网元CP发送的“Packet filters 1of Facebook,youtube,google maps and etc-->RQI granularity(NQI1,RQI no  marking),RQPx”,或者说,CP向UP发送Packet filters of Facebook,youtube,google maps and etc-->RQI granularity(NQI1,RQI no marking),RQPx,UP接收到CP发送的该消息后,不需要在Facebook、youtube、google maps等网页服务的所有下行数据包中作RQI标记,节省了UP向用户设备UE发送下行数据时的传输资源,该传输资源可以为UP和AN之间的NG3,以及AN和UE之间的空口(air interface)。
需要说明的是,第一消息还可以具体为:
DL Packet filters 3-->(NQI3,no RQI)。
该消息可以称为显式服务质量规则(explicit QoS rules),其中包括的参数可以称为显式服务质量参数(explicit QoS Parameters)。该消息用于指示:
匹配DL Packet filters 3的下行数据通过NQI3对应的服务质量进行传输,不需要激活Reflective Qos机制。
S220,用户面网元根据下行过滤器确定下行数据包使用的服务质量所对应的服务质量标识NQI,并根据RQI的标记指示信息为下行数据包进行标记。
如图7所示,若用户面网元接收到控制面网元发送的消息为:DL Packet filters 1-->RQI granularity(NQI1,RQI no marking),则flow1,flow2,flow3的数据包根据Packet filters 1映射到NQI1发送,需要激活Reflective Qos机制(主要是在UE实现Reflective Qos激活),但是不需要在数据包做RQI标记。
例如,若Facebook、youtube、google maps等网页服务的下行数据包与Packet filters 1匹配,则通过NQI1,并不在这些网页服务的下行数据包中作标记。
若用户面网元接收到控制面网元发送的消息为:如DL Packet filters 2-->RQI granularity(NQI2,RQI marking),则flow4的数据包根据Packet  filters 2映射到NQI2发送,需要激活Reflective Qos机制,需要在数据包做RQI标记。
若用户面网元接收到控制面网元发送的消息为:DL Packet filters 3-->(NQI3,no RQI),则flow5的数据包根据Packet filters 3映射到NQI3发送,不需要激活Reflective Qos机制。
通过接收控制面发送的RQI标记指示消息,可以指示UE对一类聚合的数据流采用RQ机制,如映射到同一NQI上的所有业务,实现粗粒度的服务质量控制,如实现同一NQI上所有流使用RQ机制。通过接收控制面发送的RQI指示消息,在RQI粒度对应的下行数据包中添加或配置RQI,用于指示细粒度(finer-granularity)的服务质量控制,例如对每个流(flow)进行服务质量控制。
S230,用户面网元向用户设备发送第二消息。
该第二消息用于指示所述用户设备是否采用反射服务质量RQ机制。用户面网元可以通过下行过滤器将下行数据过滤到服务质量标识NQI对应的服务质量规则,如NG3和空口(air interface)向用户设备发送第二消息。其中,NG3可以为UP和AN之间的接口;air interface为UE和AN之间的接口。
例如,对于用户面网元接收到控制面网元发送的消息为:如DL Packet filters 2-->RQI granularity(NQI2,RQI marking)这种情况,在S220完成之后,用户面设备向用户设备发送第二消息,该第二消息中不携带了RQI。若用户设备接收到第二消息后激活RQ机制,并执行图3中S120。
对于用户面网元接收到控制面网元发送的消息为:DL Packet filters 1-->RQI granularity(NQI1,RQI no marking)这种情况,在S220完成后,用户设备向用户设备发送的第二消息时,该第二消息中包括RQI,若用户设备接收到第二消息后,还需要执行图4中的S140,为简洁描述,在这里不再赘述。
需要说明的是,该实施例中的第二消息与图3中和图4中用户面网元向用户设备发送的第二消息为同一个消息。
本发明实施例提供的数据传输方法,通过用户面,或信令面和用户面接收RQI,激活RQ机制,实现了基于Reflective QoS机制,用户设备对上行数据的传输,通过接收控制面发送的RQI标记指示消息,可以指示UE对一类聚合的数据流采用RQ机制,如映射到同一NQI上的所有业务,实现粗粒度的服务质量控制,如实现同一NQI上所有流使用RQ机制。同时,通过控制面网元根据接收到的RQI的标记指示信息,在下行数据包中标记RQI,避免了在每个反射服务粒度对应的下行数据包中配置RQI标记,且节省了NG3和air interface的传输资源。
可选地,作为本发明另一实施例,第一消息还可以包括反射质量规则优先级RQP,RQP用于指示确定服务质量规则的匹配顺序。
如:用户面网元接收到的控制面网元发送的第一消息,可以具体为:
DL Packet filters 1-->RQI granularity(NQI1,RQI no marking),RQPx;或者,
DL Packet filters 2-->RQI granularity(NQI2,RQI marking),RQPy;或者,
DL Packet filters 3-->(NQI3,no RQI),RQPz。
该消息可以分别用于指示:
服务质量规则“DL Packet filters 1-->RQI granularity(NQI1,RQI no marking)”的匹配优先级为RQPx;或者,
服务质量规则“DL Packet filters 2-->RQI granularity(NQI2,RQI marking)”的匹配优先级为RQPy;或者,
服务质量规则“DL Packet filters 3-->(NQI3,no RQI)”的匹配优先级为 RQPz。
需要说明的是,在本发明实施例中的数字1、2、3指示为了区分为不同的DL Packet filters或NQI,字母x、y、z是为了区分为不同的RQP,其数字和字母并不对本发明的方案构成任何限定,本发明实施例还可以通过其他方式进行区分,本发明实施例对此不作限定。
可选地,作为本发明另一实施例,第一消息中还可以包括RQI的使用时间、所述RQI的使用粒度、RQI的使用模式、老化时间或老化时间的使用粒度中的至少一个;
其中,老化时间为用户设备根据第二消息生成的服务质量规则从最后一次使用到当前时刻的时间;RQI使用时间为用户设备生成的服务质量规则的使用时间;RQI使用粒度为所述用户设备生成的服务质量规则的使用单位;RQI使用模式为根据第二消息生成的服务质量规则包括的临时上行过滤器的参数模式。
在本发明实施例中,各个参数的功能或意义与图3和图4中第一消息或第二消息中的各个参数的功能或意义相同,为简洁描述,在这里不再赘述。
除此外,图3至图7的实施例提供的数据传输方法还可以节省传输资源,节省了UP向用户设备UE发送下行数据时的传输资源,如图6所示,该传输资源包括UP和AN之间的NG3传输资源,以及AN和UE之间的空口(air interface)传输资源。
例如,DL Packet filters 1是指示一类网页服务,如:面书(Facebook)、youtube、谷歌地图(google maps)等等。在本发明实施例中,用户面网元UP接收控制面网元CP发送的“Packet filters of Facebook,youtube,google maps and etc-->RQI granularity(NQI1,RQI no marking),RQPx”,或者说,CP向UP发送Packet filters of Facebook,youtube,google maps and etc-->RQI granularity(NQI1,RQI no marking),RQPx,UP接收到CP发送的该消息后, 不需要在Facebook、youtube、google maps等网页服务的所有下行数据包中作RQI标记,节省了UP向用户设备UE发送下行数据时的传输资源,该传输资源可以为UP和AN之间的NG3,以及AN和UE之间的空口(air interface)。
若用户设备接收到Facebook、youtube、google maps等网页服务的下行数据包,则用户设备根据接收到的控制面网元通过NG1接口发送的“RQI granularity(NQI1,RQI no marking)”,确定RQ机制被激活,如果服务质量规则不包括在UE现有的服务质量规则中,则生成新的C-Plane implicit QoS rules“Packet filters1of Facebook,youtube,google maps and etc-->NQI1”。若有与该新生成的C-Plane implicit QoS rules“Packet filters1of Facebook,youtube,google maps and etc-->NQI1”相匹配的上行数据,则用户设备通过该C-Plane implicit QoS rules发送上行数据。
其中,用户设备根据接收到的控制面网元通过NG1接口发送的“RQI granularity(NQI1,RQI no marking),对应图3中S110用户设备接收控制面网元发送的第一消息。
另外,图3至图7的实施例提供的数据传输方法还可以节省传输资源,还可以节省NG1传输资源。
对比控制面网元CP通过NG1接口向用户设备发送显式服务质量规则,如“UL Packet filters 3-->(NQI3,no RQI),RQPm”,控制面网元CP通过NG1接口向用户设备UE发送“RQI granularity“(NQI1,RQI(no marking)),RQP x”,不需要CP通过NG1接口向UE发送过滤器信息。在图6所示,如果显式服务规则作了修改,CP需要向UP和UE更新该显式服务规则,但CP不需要更新通过NG1接口向UE更新RQI granularity“(NQI1,RQI(no marking)),RQP x”,这样能节省NG1信令资源(signalling resource),尤其是NQI对应的服务质量规则包括的过滤器是动态更新时,可以节省大量的NGI信令资源。
例如:DL Packet filters 1是过滤一些特殊的网页服务,如:面书(Facebook)、youtube、谷歌地图(google maps)等等。在本发明实施例中,CP可以向UP发送“Packet filters1of Facebook,youtube,google maps and etc-->RQI granularity(NQI1,RQI no marking),RQPx”,并向UE发送“RQI granularity(“NQI1,RQI no marking),RQP x”,可以节省NG1信令资源。
UE接收到用户面网元发送的下行数据,根据"RQI granularity(NQI1,RQI(no marking))"确定RQ机制已激活,如果传输下行数据的服务质量规则不包括在UE现有的服务质量规则中,用户设备就生成新的C-Plane implicit QoS rule“Packet filters of Facebook,youtube,google maps and etc.-->NQI1,若用户设备接收到与该C-Plane implicit QoS rule匹配的上行数据时,按照匹配优先级顺序RQP x基于C-Plane implicit QoS rule“Packet filters of Facebook,youtube,google maps and etc.-->NQI1”发送上行数据。
如果需要增加几个网页服务在特殊的网页服务清单中,例如新的网页服务1、新的网页服务2、……新的网页服务N,N为正整数。网络只需要将服务质量规则“Packet filters of Facebook,youtube,google maps and etc.-->RQI granularity(NQI1,RQI no marking),RQP x”,更新为“Packet filters of Facebook,youtube,google maps,new web server 1,new web server 2,new web server n and etc.-->RQI granularity(NQI1,RQI no marking),RQP x”,并发送给UP,不需要向UE更新任何信令信息,这样也可以节省NG1信令资源。
图8为本发明实施例提供的另一种数据传输的方法,该方法300可以包括以下步骤:
S305,UE与网络建立PDU Session。
S310/S310’,UE向控制面网元CP发送包括服务质量要求(QoS requirement)的应用请求(application request)或应用服务器向控制面网元发送包括服务质量要求(QoS requirement)的服务请求(service request)。
S315,控制面网元确定使用的服务质量规则(QoS rule)。
S320/S320’,控制面网元向UE发送应用响应消息或者控制面网元向应用服务器发送服务响应消息。
需要说明的是,在本发明实施例中,该S320/S320’是可选步骤。
S325,控制面网元向用户面网元UP发送QoS rule。
S330,控制面网元向接入网AN发送服务质量规则。
需要说明的是,如果当前会话是保证比特速率(Guaranteed Bit Rate,GBR)会话,则需要向AN发送服务质量规则,如果当前会话是是非GBR(non-GBR)会话,则不需要向AN发送服务质量规则。
S335,控制面网元向UE发送服务质量规则。
在本发明实施例中,该QoS rule除了现有的NQI/FPI/QCI,packet filter等其他Qos参数外,还可以包括老化时间,以及老化时间使用粒度,以及RQI以及RQI使用粒度。
该各项参数的实现的功能和意义可以与图3至图7中的“第一消息”或“第二消息”中相对应的参数的意义相同,为简洁描述,在这里不再赘述。
S340,UE接收下行发送的PDU会话数据。
该PDU会话数据中可以携带RQI,以便于UE根据PDU会话数据确定传输上行数据的服务质量规则。
需要说明的是,该PDU会话数据包括图3至图7中用户面网元向用户设备发送的第一消息的参数信息,或者说该PDU会话数据与第一消息为相同的消息,为简洁描述,在这里不再赘述。
还需要说明的是,在本发明实施例中,UE接收的下行发送的PDU会话数据中还可以携带RQI的使用粒度,以限定传输上行数据的单位,例如,可以以数据流、UE或NQI等为单位进行数据传输。
PDU会话数据中还可以携带老化时间,该老化时间为服务质量规则从 上一次使用到当前时刻的时间。
S345,UE根据PDU会话数据确定传输上行数据的服务质量规则。
UE根据接收到的PDU会话数据生成新的服务质量规则,新生成的服务质量规则包括临时上行过滤器,以用于过滤上行数据,将符合该临时上行过滤器的上行数据过滤到对应的服务质量对应的承载上传输。
在本发明实施例中,UE根据PDU会话数据确定传输上行数据的服务质量规则与图3的S120中UE根据第一消息确定第一服务质量规则的过程类似,具体过程参见图3的S120,为简洁描述,在这里不再赘述。
S350,UE根据服务质量规则处理上行数据。
若UE接收到满足服务质量规则的上行数据包时,通过对应的服务质量规则传输上行数据包。
若UE接收到满足临时生成的上行过滤器,则UE采用临时生成的上行过滤器对应服务质量规则向网络传输上行数据。
若UE接收到满足UE现有的上行过滤器,则UE采用现有的上行过滤器对应的服务质量规则向网络传输上行数据。
另外,在本发明实施例中还可以包括:
S355,UE根据老化时间删除服务质量规则。
若用户设备激活RQ机制,并生成新的服务质量规则,其中新生成的服务质量规则包括临时生成的上行过滤器(UL Filter),具体描述参见图3中S120和图4中S140,或图5中S150,为简洁描述,在这里不再赘述。
若UE还需要上传数据,执行S360。
S360,用户设备采用默认的服务质量规则擦传输上行数据。
需要说明的是,如果用户面网元向UE发送了携带RQI的数据时,UE需要执行S345至S360。
通过本发明实施例提供的数据传输方法,可以通过用户面和信令面发送的消息激活RQ机制,以实现基于RQ机制上,完成上行数据的传输; 同时完成了用户设备对服务质量规则的管理,提高了系统性能。
上文中结合图3至图8,详细描述了根据本发明实施例的数据传输的方法,下面将结合图9至图12,详细描述根据本发明实施例的用户设备和用户面网元。
图9是根据本发明实施例提供的一种用户设备的结构示意图。如图9所示,该用户设备400可以包括接收单元410、获取单元420和处理单元430。
接收单元410用于接收控制用户面网元发送的第一消息,第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系。
获取单元420,用于获取用户面网元发送的第二消息。
生成单元,用于若第二消息不携带第二反射服务质量标识RQI,则根据第一NQI与第一RQI的对应关系,以及第二消息生成第一服务质量规则。其中,第一第二RQI用于指示用户设备激活反射服务质量RQ机制。
具体的,第一消息可以为控制面网元发送的信令消息,具体可以包括反射服务质量参数,例如NQI与RQI的对应关系,以及发射服务质量规则的匹配优先级顺序指示信息RQP等。第二消息可以为用户面网元发送的下行数据,该接收单元410接收用户面网元发送的下行数据,并通过获取单元420获取下行数据中是否包括RQI,以及发送下行数据采用的服务质量规则对应的NQI。若用户设备接收到的第二消息中不携带RQI,则生成单元430根据发送第二消息所采用的服务质量规则对应的NQI与从控制面网元接收到的NQI与RQI的对应关系确定激活RQ机制,并根据第二消息生成第一服务质量规则,该第一服务质量规则可以命名为隐式服务质量规则(impliclit QoS rules),具体可以称为控制面隐式服务质量规则(C-Plane implicit QoS rules)。
可选地,如图9所示,在本发明实施例中,用户设备还可以包括发送单元440。
若有与新生成的隐式服务质量规则相匹配的上行数据,则用户设备通过新生成的隐式服务质量规则传输上行数据,实现了基于RQ机制,用户设备对上行数据的传输,同时节省了控制面网元与用户设备之间的信令资源以及用户设备的存储空间。还实现了通过信令面控制大粒度(如:NQI)的RQ控制,用户面控制小粒度(如flow)的RQ控制。
可选地,作为本发明另一实施例,若第二消息携带第二RQI,则生成单元430还用于根据第二消息生成第二服务质量规则。
第二服务质量规则为生成单元430根据接收单元410收到的第二消息生成的服务质量规则,该服务质量规则也可以称为隐式服务质量规则,具体可以称为用户面隐式服务质量规则(C-Plane implicit QoS rules)。
可选地,作为本发明另一实施例,第一消息还可以包括第一反射质量规则优先级RQP,第一RQP用于指示用户设备根据第一NQI与第一RQI的对应关系,以及第二消息生成的第一服务质量规则的匹配优先级顺序,以指示控制面隐式服务质量规则的匹配优先级顺序。
可选地,作为本发明另一实施例,第一消息还可以包括第二反射质量规则优先级RQP,第二RQP用于指示用户设备根据第二消息生成的第二服务质量规则的匹配优先级顺序,以指示用户面隐式服务质量规则在用户设备的匹配优先级顺序。需要说明的是,通常用户面隐式服务质量规则在用户设备传输上行数据的所有通信业务中占有最高的优先级刷顺序,以提高通信业务的QoS保障。
可选地,作为本发明另一实施例,第一消息或者第二消息中至少一个消息包括老化时间,老化时间为第一服务质量规则或者第二服务质量规则从最后一次使用到当前时刻的时间阈值,如图9所示,装置500还可以包括删除单元550,
当第一服务质量规则或者第二服务质量规则未被使用的时间达到老化时间时,删除单元用于删除达到老化时间的第一服务质量规则或者第二服务质 量规则。
可选地,作为本发明另一实施例,第一消息或者第二消息中至少一个消息还包括RQI使用时间、RQI使用粒度、RQI使用模式、或老化时间的使用粒度中的至少一个。
其中,RQI使用时间为第一服务质量规则或第二质量规则的使用时间;RQI使用粒度为第一服务质量规则或第二质量规则的使用单位;RQI使用模式为第一服务质量规则或第二质量规则包括的临时上行过滤器的参数模式。
需要说明的是,在本发明实施例中,图9提供的用户设备400对应于图3和图5中的用户设备,对应根据本发明实施例图3、图4和图5的方法100的执行主体,并且用户设备中的各个模块的上述和其他操作和/或功能分别为了实现图3至图5中的各个方法的相应流程,为了简洁,在这里不再赘述。
图10是根据本发明实施例提供的一种用户面网元的结构示意图。如图10所示,该用户面网元500包括接收单元510,确定单元520和发送单元530。
接收单元510,用于接收控制面网元发送的第一消息,第一消息包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及RQI的标记指示信息;
确定单元520,用于根据下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据RQI的标记指示信息为下行数据进行标记;
发送单元530,用于向用户设备发送第二消息,第二消息用于指示用户设备是否采用反射服务质量RQ机制。
具体的,第一消息可以为信令消息,可以包括发射服务质量规则,该发射服务质量规则包括反射服务质量参数,例如:下行过滤器与NQI、RQI 的对应关系,以及RQI标记的指示信息。
可选地,在本发明实施例中,该第一消息中还可以包括其他参数,例如反射质量规则优先级RQP,用于指示用户面网元向用户设备发送第二消息的匹配优先级顺序。
可选地,在本发明实施例中,第一消息还可以包括RQI的使用时间、RQI的使用粒度、RQI的使用模式、老化时间或老化时间的使用粒度中的至少一个;
其中,老化时间为用户设备根据RQI第二消息生成的服务质量规则从最后一次使用到当前时刻的时间阈值;RQI使用时间为用户设备生成的服务质量规则的使用时间;RQI使用粒度为用户设备生成的服务质量规则的使用单位;RQI使用模式为服务质量规则包括的临时上行过滤器的参数模式。
当接收单元510接收控制面网元发送的第一消息时,当有下行数据发送时,确定单元520根据下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据RQI的标记指示信息在所要发送的下行数据包的包头中配置RQI,并通过对应的服务质量规则向用户设备发送下行数据。
通过信令面和控制面向用户设备发送下行数据,以便于用户设备根据下行数据确定激活RQ机制,并完成上行数据的传输,同时,且信令面和控制面向用户设备发送下行数据节省了传输资源。
需要说明的是,在本发明实施例中,图10提供的用户面网元500对应于图6中的用户面网元,对应根据本发明实施例图6的方法100的执行主体,并且用户面网元中的各个单元的上述和其他操作和/或功能分别为了实现图6中的各个方法的相应流程,为了简洁,在这里不再赘述。
图11为本发明实施例提供的另一种用户设备的结构示意图。如图11所 示,该用户设备600包括:接收器610、处理器620、存储器630,发送器640和通信总线650,其中,接收器610、处理器620、存储器630和发送器640通过通信总线650相连接。
接收器610,用于接收控制用户面网元发送的第一消息,第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系。
处理器620,用于获取用户面网元发送的第二消息。
处理器620,还用于若第二消息不携带第二反射服务质量标识RQI,则根据第一NQI与第一RQI的对应关系,以及第二消息生成第一服务质量规则。其中,第一第二RQI用于指示用户设备激活反射服务质量RQ机制。
若用户设备接收到与第一服务质量规则相匹配的上行数据,发送器640发送上行数据,基于RQ机制,完成上行数据的传输。
通过本发明实施例提供的用户设备可以实现基于RQ机制的上行数据的传输,同时实现了信令面,即控制面网元向用户设备发送第一消息的大粒度,如NQI的RQ控制,用户面,即用户面网元向用户设备发送的第二消息的小粒度,如流(flow)的RQ控制。
需要说明的是,本发明实施例提供的用户设备600中的接收器610、处理器620、存储器630和发送器640可以完成图3至图5中的方法/步骤S110、S120、S130,S140和S150,以及图9提供的用户设备400包括的各个单元执行的操作,为描述简洁,在这里不再赘述。
图12为本发明实施例提供的另一种用户面网元的结构示意图。如图12所示,该用户面网元700可以包括接收器710、处理器720、发送器740和通信总线740。
接收器710,用于接收控制面网元发送的第一消息,第一消息包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及RQI的标记指示信息;
处理器720,用于根据下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据RQI的标记指示信息为下行数据进行标记;
发送器730,用于向用户设备发送第二消息,第二消息用于指示用户设备是否采用反射服务质量RQ机制。
当用户设备接收到用户面网元700发送的第二消息时,根据第二消息确定激活RQ机制,并生成服务质量规则,具体过程请参数图3中S110、S120和S130,为简洁描述,在这里不再赘述。
本发明实施例提供的用户面网元,通过用户面,或信令面和用户面接收RQI,激活RQ机制,实现了基于RQ机制,用户设备对上行数据的传输,实现了细粒度服务质量控制,同时,本发明实施例通过控制面网元根据接收到的RQI的标记指示信息,在下行数据包中标记RQI,避免了在每个反射服务粒度对应的下行数据包中配置RQI节省了传输资源。
另外,在本发明实施例中,用户面网元700还可以包括存储器750。
需要说明的是,本发明实施例提供的用户面网元700中的接收器710、处理器720、发送器730可以完成图6中的方法/步骤S210、S220和S230,以及图10提供的用户面网元500包括的各个单元执行的操作,为描述简洁,在这里不再赘述。
应理解,在本发明实施例中,图11和图12中的处理器620/720可以是中央处理单元(Central Processing Unit,CPU),该处理器620/720还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器640/750,该存储器640/750可以包括只读存储器和随机存取存储器,并向处理器620/720提供指令和生成的服务质量规则。存储器的一部分还 可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
总线系统650/740除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统650/740。
在实现过程中,上述方法的各步骤可以通过处理器620/720中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些 特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    用户设备接收控制用户面网元发送的第一消息,所述第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系;
    所述用户设备获取用户面网元发送的第二消息;
    若所述第二消息不携带第二反射服务质量标识RQI,则所述用户设备根据所述第一NQI与所述第一RQI的对应关系,以及第二消息生成第一服务质量规则;
    其中,所述第二RQI用于指示所述用户设备激活反射服务质量RQ机制。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息还包括第一反射质量规则优先级RQP,所述第一RQP用于指示所述用户设备根据所述第一NQI与所述第一RQI的对应关系,以及第二消息生成的第一服务质量规则的匹配优先级顺序。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    若所述第二消息携带所述第二RQI,则所述用户设备根据所述第二消息生成第二服务质量规则。
  4. 根据权利要求3所述的方法,其特征在于,所述第一消息还包括第二反射质量规则优先级RQP,所述第二RQP用于指示所述用户设备根据所述第二消息生成的所述第二服务质量规则的匹配优先级顺序。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一消息或者所述第二消息中至少一个消息包括老化时间,所述老化时间为所述第一服务质量规则或者第二服务质量规则从最后一次使用到当前时刻的时间阈值,所述方法还包括:
    当所述第一服务质量规则或者所述第二服务质量规则未被使用的时间达到所述老化时间时,所述用户设备删除达到所述老化时间的所述第一服务质 量规则或者所述第二服务质量规则。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一消息或者第二消息中至少一个消息还包括RQI使用时间、RQI使用粒度、RQI使用模式、或所述老化时间的使用粒度中的至少一个;
    其中,所述RQI使用时间为所述第一服务质量规则或所述第二质量规则的使用时间;所述RQI使用粒度为所述第一服务质量规则或所述第二质量规则的使用单位;所述RQI使用模式为所述第一服务质量规则或所述第二质量规则包括的临时上行过滤器的参数模式。
  7. 一种数据传输方法,其特征在于,所述方法包括:
    用户面网元接收控制面网元发送的第一消息,所述第一消息包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及所述RQI的标记指示信息;
    所述用户面网元根据所述下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据所述RQI的标记指示信息为所述下行数据进行标记;
    所述用户面网元向用户设备发送第二消息,所述第二消息用于指示所述用户设备是否采用反射服务质量RQ机制。
  8. 根据权利要求7所述的方法,其特征在于,所述第一消息还包括反射质量规则优先级RQP,所述RQP用于指示所述用户面网元向所述用户设备发送所述第二消息的匹配优先级顺序。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一消息还包括所述RQI的使用时间、所述RQI的使用粒度、所述RQI的使用模式、老化时间或老化时间的使用粒度中的至少一个;
    其中,所述老化时间为所述用户设备根据所述第二消息生成的服务质量规则从最后一次使用到当前时刻的时间阈值;所述RQI使用时间为所述用户设备生成的服务质量规则的使用时间;所述RQI使用粒度为所述用户 设备生成的服务质量规则的使用单位;所述RQI使用模式为根据第二消息生成的服务质量规则包括的上行过滤器的参数模式。
  10. 一种数据传输装置,其特征在于,所述装置为用户设备,所述用户设备包括:
    接收单元,用于接收控制用户面网元发送的第一消息,所述第一消息包括第一服务质量标识NQI与第一反射服务质量标识RQI的对应关系;
    获取单元还用于,获取用户面网元发送的第二消息;
    生成单元,用于若所述第二消息不携带第二反射服务质量标识RQI,则根据所述第一NQI与所述第一RQI的对应关系,以及第二消息生成第一服务质量规则;
    其中,所述第一第二RQI用于指示所述用户设备激活反射服务质量RQ机制。
  11. 根据权利要求10所述的装置,其特征在于,所述第一消息还包括第一反射质量规则优先级RQP,所述第一RQP用于指示所述用户设备根据所述第一NQI与所述第一RQI的对应关系,以及第二消息生成的第一服务质量规则的匹配优先级顺序。
  12. 根据权利要求10或11所述的装置,其特征在于,若所述第二消息携带所述第二RQI,则所述生成单元还用于根据所述第二消息生成第二服务质量规则。
  13. 根据权利要求12所述的装置,其特征在于,所述第一消息还包括第二反射质量规则优先级RQP,所述第二RQP用于指示所述用户设备根据所述第二消息生成的所述第二服务质量规则的匹配优先级顺序。
  14. 根据权利要求10至13任一项所述的装置,其特征在于,所述第一消息或者所述第二消息中至少一个消息包括老化时间,所述老化时间为所述第一服务质量规则或者第二服务质量规则从最后一次使用到当前时刻的时间阈值,所述装置还包括删除单元,
    当所述第一服务质量规则或者所述第二服务质量规则未被使用的时间达到所述老化时间时,所述删除单元用于删除达到所述老化时间的所述第一服务质量规则或者所述第二服务质量规则。
  15. 根据权利要求10至14任一项所述的装置,其特征在于,所述第一消息或者第二消息中至少一个消息还包括RQI使用时间、RQI使用粒度、RQI使用模式、或所述老化时间的使用粒度中的至少一个;
    其中,所述RQI使用时间为所述第一服务质量规则或所述第二质量规则的使用时间;所述RQI使用粒度为所述第一服务质量规则或所述第二质量规则的使用单位;所述RQI使用模式为所述第一服务质量规则或所述第二质量规则包括的临时上行过滤器的参数的模式。
  16. 一种数据传输的装置,其特征在于,所述装置为用户面网元,所述用户面网元包括:
    接收单元,用于接收控制面网元发送的第一消息,所述第一消息包括下行过滤器与服务质量标识NQI、反射服务质量标识RQI的对应关系,以及所述RQI的标记指示信息;
    确定单元,用于根据所述下行过滤器确定下行数据使用的服务质量规则所对应的服务质量标识NQI,并根据所述RQI的标记指示信息为所述下行数据进行标记;
    发送单元,用于向用户设备发送第二消息,所述第二消息用于指示所述用户设备是否采用反射服务质量RQ机制。
  17. 根据权利要求16所述的装置,其特征在于,所述第一消息还包括反射质量规则优先级RQP,所述RQP用于指示所述用户面网元向所述用户设备发送所述第二消息的匹配优先级顺序。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一消息还包括所述RQI的使用时间、所述RQI的使用粒度、所述RQI的使用模式、老化时间或老化时间的使用粒度中的至少一个;
    其中,所述老化时间为所述用户设备根据所述RQI第二消息生成的服务质量规则从最后一次使用到当前时刻的时间阈值;所述RQI使用时间为所述用户设备生成的服务质量规则的使用时间;所述RQI使用粒度为所述用户设备生成的服务质量规则的使用单位;所述RQI使用模式为所述服务质量规则包括的临时上行过滤器的参数模式。
PCT/CN2016/101815 2016-10-11 2016-10-11 一种数据传输的方法及其装置 WO2018068209A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110186374.7A CN113038526B (zh) 2016-10-11 2016-10-11 一种数据传输的方法及其装置
CN201680089932.5A CN109804663B (zh) 2016-10-11 2016-10-11 一种数据传输的方法及其装置
EP21194833.6A EP3982667A1 (en) 2016-10-11 2016-10-11 Data transmission method and apparatus thereof
EP16918881.0A EP3518580B1 (en) 2016-10-11 2016-10-11 Data transmission method and apparatus therefor
PCT/CN2016/101815 WO2018068209A1 (zh) 2016-10-11 2016-10-11 一种数据传输的方法及其装置
US16/381,215 US10893435B2 (en) 2016-10-11 2019-04-11 Data transmission method and apparatus thereof
US17/127,257 US11553372B2 (en) 2016-10-11 2020-12-18 Data transmission method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101815 WO2018068209A1 (zh) 2016-10-11 2016-10-11 一种数据传输的方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/381,215 Continuation US10893435B2 (en) 2016-10-11 2019-04-11 Data transmission method and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2018068209A1 true WO2018068209A1 (zh) 2018-04-19

Family

ID=61904992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101815 WO2018068209A1 (zh) 2016-10-11 2016-10-11 一种数据传输的方法及其装置

Country Status (4)

Country Link
US (2) US10893435B2 (zh)
EP (2) EP3518580B1 (zh)
CN (2) CN113038526B (zh)
WO (1) WO2018068209A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567699A (zh) * 2018-08-13 2021-03-26 苹果公司 用于反射服务质量的分组过滤器的灵活范围

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102047058B1 (ko) * 2016-10-11 2019-11-20 엘지전자 주식회사 무선 통신 시스템에서의 반영형 서비스 퀼리티 적용 방법 및 이를 위한 장치
CN110089150B (zh) * 2017-11-21 2023-04-18 联发科技股份有限公司 反射服务质量控制方法及实施于用户设备的装置
US11394658B2 (en) * 2020-04-08 2022-07-19 Apple Inc. Coordinated internet protocol packet filtering
CN115278775A (zh) * 2022-07-27 2022-11-01 中国电信股份有限公司 反射QoS控制方法、UPF实体、通信系统和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062363A1 (ko) * 2011-10-27 2013-05-02 엘지전자 주식회사 무선 통신 시스템에서 상향링크 서비스 품질 관리 방법 및 장치
CN103096314A (zh) * 2011-11-01 2013-05-08 中兴通讯股份有限公司 一种实现反射QoS机制的方法、系统和PCRF
CN103209410A (zh) * 2012-01-11 2013-07-17 中兴通讯股份有限公司 一种实现反射QoS机制的方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295174B2 (en) 2008-03-28 2012-10-23 Research In Motion Limited Proactive uplink aggregate maximum bit rate enforcement
CN102469087A (zh) * 2010-11-17 2012-05-23 中兴通讯股份有限公司 一种实现服务质量控制的方法和系统
US9332133B2 (en) * 2010-12-09 2016-05-03 Allot Communications Ltd. System, device, and method of traffic detection
US9578647B2 (en) 2013-08-29 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) 3GPP bearer-based QoS model support on WiFi
WO2018038664A1 (en) * 2016-08-24 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device and methods therein for mapping data packets to radio bearers in a wireless communications network
KR102047058B1 (ko) * 2016-10-11 2019-11-20 엘지전자 주식회사 무선 통신 시스템에서의 반영형 서비스 퀼리티 적용 방법 및 이를 위한 장치
KR102121733B1 (ko) * 2016-10-26 2020-06-11 에스케이텔레콤 주식회사 단말장치 및 기지국장치와, QoS 제어방법
CN108024294B (zh) * 2016-11-02 2020-08-07 中兴通讯股份有限公司 切换方法及装置
EP3497971B1 (en) * 2016-11-04 2022-03-16 Samsung Electronics Co., Ltd. Method and apparatus for provisioning the same quality of service in the uplink as in the downlink
CN108024284B (zh) * 2016-11-04 2020-09-08 华为技术有限公司 无线通信方法、用户设备接入网设备、和核心网设备
WO2018120183A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 数据传输的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062363A1 (ko) * 2011-10-27 2013-05-02 엘지전자 주식회사 무선 통신 시스템에서 상향링크 서비스 품질 관리 방법 및 장치
CN103096314A (zh) * 2011-11-01 2013-05-08 中兴通讯股份有限公司 一种实现反射QoS机制的方法、系统和PCRF
CN103209410A (zh) * 2012-01-11 2013-07-17 中兴通讯股份有限公司 一种实现反射QoS机制的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Study on Architecture for Next Generation System (Release 14", 3GPP TR 23.799, 17 September 2016 (2016-09-17) *
See also references of EP3518580A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567699A (zh) * 2018-08-13 2021-03-26 苹果公司 用于反射服务质量的分组过滤器的灵活范围

Also Published As

Publication number Publication date
CN113038526A (zh) 2021-06-25
CN109804663B (zh) 2021-02-12
EP3518580A1 (en) 2019-07-31
EP3982667A1 (en) 2022-04-13
CN113038526B (zh) 2023-06-02
US20190239113A1 (en) 2019-08-01
US11553372B2 (en) 2023-01-10
EP3518580B1 (en) 2021-10-06
US10893435B2 (en) 2021-01-12
CN109804663A (zh) 2019-05-24
EP3518580A4 (en) 2019-07-31
US20210176660A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN110249597B (zh) 一种通信处理方法及装置
KR102423098B1 (ko) 무선 통신 네트워크에서 데이터 통신을 관리하는 방법 및 장치
WO2020103842A1 (zh) 一种通信方法及装置
US10893435B2 (en) Data transmission method and apparatus thereof
CN110099370B (zh) 服务层南向接口和服务质量
WO2019214729A1 (zh) 数据处理的方法和设备
JP7177259B2 (ja) データ伝送方法及び装置
US11122458B2 (en) Data transmission method and apparatus in a radio system
JP7477661B2 (ja) データ伝送方法および装置
WO2017198132A1 (zh) 数据发送方法及装置
WO2017148256A1 (zh) 一种流量控制方法、装置和系统
WO2017177753A1 (zh) 一种基于流的承载管理方法、数据传输方法及装置
WO2019101054A1 (zh) 聚合速率控制方法、设备以及系统
WO2017067007A1 (zh) 服务质量的控制方法、设备及系统
WO2018019186A1 (zh) 资源分配方法、设备和系统
WO2018058391A1 (zh) 建立承载的方法、无线接入网设备和客户终端设备
WO2016000481A1 (zh) 路径切换的方法和网络设备
WO2018171639A1 (zh) 无线通信方法、终端、接入网设备和网络系统
WO2018068211A1 (zh) 一种通信方法和装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2024067452A1 (zh) 信息处理方法及通信设备
WO2023185362A1 (zh) 一种媒体单元传输方法及装置
CN117750398A (zh) 一种建立QoS规则的方法及装置
WO2014131198A1 (zh) 拥塞上行控制方法和设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016918881

Country of ref document: EP

Effective date: 20190424