WO2018066519A1 - 電極シート - Google Patents

電極シート Download PDF

Info

Publication number
WO2018066519A1
WO2018066519A1 PCT/JP2017/035835 JP2017035835W WO2018066519A1 WO 2018066519 A1 WO2018066519 A1 WO 2018066519A1 JP 2017035835 W JP2017035835 W JP 2017035835W WO 2018066519 A1 WO2018066519 A1 WO 2018066519A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
signal acquisition
electrode sheet
acquisition unit
flexible substrate
Prior art date
Application number
PCT/JP2017/035835
Other languages
English (en)
French (fr)
Inventor
毅 関谷
隆文 植村
徹平 荒木
秀輔 吉本
野田 祐樹
森井 克行
知哉 新居
宗弘 長谷川
剛 呉屋
健二 ▲桑▼田
Original Assignee
国立大学法人大阪大学
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 株式会社日本触媒 filed Critical 国立大学法人大阪大学
Priority to JP2018543896A priority Critical patent/JP6752476B2/ja
Publication of WO2018066519A1 publication Critical patent/WO2018066519A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Definitions

  • the present invention relates to an electrode sheet.
  • a biosensor comprising electrodes and optical elements on a flexible resin sheet that can be attached to the forehead has been proposed (see, for example, Patent Document 1). According to the proposed biosensor, it is possible to acquire an electroencephalogram with an electrode and acquire another signal with an optical element.
  • the electrode and the optical element are devised so as to obtain a biological signal.
  • electrodes are brought into contact with the center position of the forehead, but other electrodes and optical elements are not provided according to individual differences. Therefore, in order to acquire a signal, it is necessary to repeat positioning with respect to the living body of the electrode and the optical element.
  • An object of the present invention is to provide an electrode sheet that can be easily aligned.
  • the electrical signal acquisition unit is arranged in one region obtained by dividing one surface of the flexible substrate into two by a straight line, and the optical signal acquisition unit is arranged in the other region.
  • the electric signal acquisition unit includes a plurality of electrodes arranged in a predetermined direction along the surface of the flexible substrate, and the optical signal acquisition unit is arranged in substantially the same direction as the arrangement direction of the plurality of electrodes. It is preferable to provide a plurality of optical elements.
  • the optical signal acquisition unit is preferably formed of a material having a higher Young's modulus than the flexible substrate, and further includes a protective layer that surrounds the optical element while being in contact with the optical element.
  • the protective layer preferably includes a hard layer that contacts the optical element, and a soft layer that is formed of a material having a Young's modulus lower than that of the hard layer and is adjacent to the hard layer.
  • the electrode sheet further includes a marking unit that can be aligned with a predetermined position of the living body in order to bring the electrical signal acquisition unit and the optical signal acquisition unit into contact with the measurement position of the living body.
  • the flexible substrate is formed of a reference layer, and the reference layer includes a first reference layer on which the electrical signal acquisition unit is disposed, and a second reference layer on which the optical signal acquisition unit is disposed. It is preferable that the first reference layer and the second reference layer are partially overlapped.
  • the plurality of electrodes and a part of the optical element wiring connected to the optical signal acquisition unit are disposed on one surface of the first reference layer, and the second reference layer is provided on the second reference layer.
  • the optical element wiring is sandwiched in the thickness direction between the first reference layer and the second reference layer.
  • an electrode sheet that can be easily aligned can be provided.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a schematic perspective view which shows the light emission part of 1st Embodiment. It is a schematic perspective view at the time of using the electrode sheet of 1st Embodiment for a biological body. It is a schematic perspective view which shows the light emission part of the electrode sheet of 2nd Embodiment. A flat surface showing the electrode sheet of the third embodiment. FIG. It is a schematic sectional drawing which shows one process of forming the optical signal acquisition part of the electrode sheet of 4th Embodiment.
  • the electrode sheet 1 according to each embodiment is attached to a forehead of a human body to acquire a biological signal.
  • the biological signal include a signal obtained by transmission or reflection of irradiated light in addition to a signal transmitted spontaneously such as an electroencephalogram or a heartbeat.
  • the electrode sheet 1 preferably has stretchability and flexibility as a whole.
  • the electrode sheet 1 can be curved following the curved shape of the forehead. Therefore, the electrode sheet 1 can be in close contact with the forehead, for example, and biosignals can be continuously acquired.
  • the electrode sheet 1 according to each embodiment is capable of simultaneously acquiring two types of biological signals.
  • the electrode sheet 1 according to each embodiment simultaneously acquires an electroencephalogram and blood oxygen saturation as two types of biological signals among the biological signals.
  • the electrode sheet 1 which concerns on each embodiment can acquire the biological signal given to the analysis of the electroencephalogram based on blood oxygen saturation.
  • the electrode sheet 1 according to the first embodiment of the present invention includes a flexible substrate 10, a biological signal acquisition unit 11, a marking unit 12, and a ground electrode 13.
  • the electrode sheet 1 is formed in a substantially rectangular shape as a whole.
  • the electrode sheet 1 is formed in a size that can be attached to the forehead of a living body (human body). Specifically, the electrode sheet 1 acquires a signal for blood oxygen saturation at a position near both eyes of the forehead. Moreover, the electrode sheet 1 acquires an electroencephalogram in the forehead located above it.
  • the flexible substrate 10 has a rectangular shape in plan view. One side of the flexible substrate 10 has a shape protruding in the out-of-plane direction. Specifically, the flexible substrate 10 is formed in a rectangular shape by a biological signal acquisition region 101 formed in a rectangular shape on one side of the straight line X in FIG. 1 and a region protruding in the out-of-plane direction on the other side of the straight line X. Wiring arrangement region 102 to be provided. In the wiring arrangement region 102, the flexible substrate 10 can be connected to an external analysis device 2 or a wireless device (not shown) that sends a biological signal to the analysis device 2 wirelessly. In the wiring arrangement area 102, a plurality of wirings 25, 25,. Such a flexible substrate 10 includes a reference layer 103 and a contact layer 104. In addition, an electrode sheet module is configured by a radio device (not shown) connected to the flexible substrate 10 and the electrode sheet 1.
  • the contact layer 104 forms a surface that contacts the forehead when the electrode sheet 1 is attached to the forehead.
  • the contact layer 104 is formed in a sheet shape like the reference layer 103. Similar to the reference layer 103, the contact layer 104 is formed using a material having flexibility and stretchability. Further, the contact layer 104 is formed so as to overlap the reference layer 103. In particular, the contact layer 104 is formed to cover the entire one surface of the reference layer 103 with the same shape and size as the shape of the reference layer 103. And the contact layer 104 has the through-hole 105 in the other area
  • the contact layer 104 has a through hole 105 in a region in the biological signal acquisition region 101 that is in contact with a position near both eyes divided by the straight line Y.
  • the contact layer 104 has four through holes 105 formed at predetermined intervals along the straight line Y.
  • the straight line Y is a virtual straight line.
  • the biological signal acquisition unit 11 is disposed on the flexible substrate 10 and acquires a biological signal of the biological body. Specifically, the biological signal acquisition unit 11 acquires two types of biological signals.
  • a biological signal acquisition unit 11 includes an electrical signal acquisition unit 14 and an optical signal acquisition unit 15.
  • the electrical signal acquisition unit 14 is arranged in one area (area that contacts the upper part of the forehead) obtained by dividing one surface of the flexible substrate 10 by a straight line Y.
  • the electrical signal acquisition unit 14 can electrically acquire a biological signal.
  • the electrical signal acquisition unit 14 includes a plurality of electrodes 16, 16,... And a plurality of electrode wirings 17, 17,.
  • the electrical signal acquisition unit 14 is formed on one surface of the flexible substrate 10 as a whole using a printing method. In the present embodiment, the electrical signal acquisition unit 14 is disposed in one region divided into two by a straight line Y along the long side of the flexible substrate 10.
  • the plurality of electrodes 16, 16,... are arranged in a predetermined direction along the surface of the flexible substrate 10.
  • a plurality of electrodes 16, 16,... are arranged along one side (long side) formed in a rectangular shape in plan view.
  • the plurality of electrodes 16, 16,... are arranged substantially in parallel with a straight line Y that divides one surface of the flexible substrate 10 to form two regions.
  • the respective electrodes 16 are arranged so as to be alternately shifted with respect to the adjacent electrodes 16 in a direction intersecting the direction in which the electrodes 16 are arranged. This makes it possible to arrange the plurality of electrodes 16, 16,... At various positions in the region of the electric signal acquisition unit 14 as compared with the case where the plurality of electrodes 16, 16,. it can. Therefore, it is possible to obtain more accurate biological signal data.
  • the plurality of electrodes 16, 16,... Can acquire a biological signal at any one regardless of the transmission position of the biological signal having individual differences.
  • the plurality of electrode wirings 17, 17,... are provided according to the number of the plurality of electrodes 16.
  • the plurality of electrode wirings 17, 17,... are provided so as to extend on the flexible substrate 10 from the protruding side of the flexible substrate 10 and to be connected to each of the plurality of electrodes 16.
  • the plurality of electrode wirings 17, 17,... Can be connected to the analysis device 2 as the wirings 25, 25,.
  • a plurality of electrodes 16, 16,... can be obtained as The plurality of electrodes 16 can transmit the acquired electrical signal to the analysis device 2 or the like via the plurality of electrode wirings 17, 17,.
  • the optical signal acquisition unit 15 is arranged on one surface of the flexible substrate 10 in the same manner as the electrical signal acquisition unit 14. And the optical signal acquisition part 15 is arrange
  • the optical signal acquisition unit 15 acquires a signal obtained based on the irradiated light by irradiating the living body with light.
  • Such an optical signal acquisition unit 15 includes a plurality of optical elements 18, 18,... And a protective layer 19.
  • the optical signal acquisition unit 15 is provided with one optical element 18 and one protective layer 19 as a pair in a region surrounded by the inner side surface of each through-hole 105.
  • the optical signal acquisition unit 15 is arranged in the other region divided into two by the straight line Y along the long side of the flexible substrate 10.
  • the light emitting unit 20 is, for example, an OLED (organic EL diode), an iOLED (reverse organic EL diode) or a general LED, and is provided to irradiate a living body with light having a predetermined wavelength.
  • the light emitting unit 20 is an OLED.
  • the light emitting unit 20 is configured by stacking a plurality of layers. Specifically, as shown in FIG. 3, the light emitting unit 20 includes an anode 201, a hole injection layer 202, a hole transport layer 203, a light emitting layer 204, an electron injection layer 205, a cathode 206, Is provided.
  • the light emitting unit 20 is laminated in the order of the anode 201, the hole injection layer 202, the hole transport layer 203, the light emitting layer 204, the electron injection layer 205, and the cathode 206.
  • the light emitting unit 20 emits light to the outside along the direction from the cathode 206 toward the anode 201.
  • the light emitting unit 20 is manufactured as follows as an example.
  • a commercially available PET (polyethylene terephthalate) substrate with an ITO electrode layer having an average thickness of 0.1 mm was prepared.
  • the ITO electrode (anode 201) of the substrate used was patterned to a width of 1 mm.
  • This substrate was ultrasonically cleaned in isopropanol for 10 minutes each.
  • the substrate was taken out from isopropanol, dried by nitrogen blowing, and UV ozone cleaning was performed for 20 minutes.
  • the substrate formed up to the hole injection layer 202 was fixed to a substrate holder of a vacuum deposition apparatus.
  • 4,4′-bis [9-dicarbazolyl] -2,2′-biphenyl (CBP), iridium tris (1-phenylisoquinoline) (Ir (piq) 3), N, N′-di (1-naphthyl)- N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine ( ⁇ -NPD) was put in an alumina crucible and set in a vapor deposition source.
  • the inside of the vacuum deposition apparatus was depressurized to about 1 ⁇ 10 ⁇ 5 Pa, ⁇ -NPD was deposited to 60 nm, and the hole transport layer 203 was formed.
  • 35 nm was co-evaporated using CBP as a host and Ir (piq) 3 as a dopant to form a light emitting layer 204.
  • the doping concentration was such that Ir (piq) 3 was 6 wt% with respect to the entire light emitting layer 204.
  • a commercially available mixed ethanol solution of polyethyleneimine SP-200 manufactured by Nippon Shokubai Co., Ltd. and triphenylphosphine oxide was prepared.
  • the substrate produced in the above step [4] was set on a spin coater.
  • a polyethyleneimine-triphenylphosphine oxide mixed ethanol solution is dropped on the light emitting layer 204 formed in the above step [3], and is rotated at 2,000 rpm for 30 seconds, and the electron injection layer 205 is formed on the light emitting layer 204. Formed.
  • the average thickness of the electron injection layer 205 was 10 nm.
  • the average thickness of the electron injection layer 205 was measured with a stylus type step gauge.
  • the substrate produced in the above step [4] was fixed to the substrate holder of the vacuum deposition apparatus.
  • An aluminum wire (Al) was placed in an alumina crucible and set in a vapor deposition source.
  • the inside of the vacuum deposition apparatus was depressurized to about 1 ⁇ 10 ⁇ 4 Pa, and Al (cathode 206) was deposited on the electron injection layer 205 so as to have an average thickness of 100 nm, thereby producing an organic electroluminescent device (1). .
  • the average thickness of the cathode 206 was measured at the time of film formation with a crystal oscillator thickness meter. Note that when the cathode 206 was deposited, a deposition mask made of stainless steel was used so that the deposition surface was a strip having a width of 1 mm. That is, the light emitting area of the produced organic electroluminescent element was 1 mm 2 .
  • the light receiving unit 21 is, for example, a PD (photodiode) or an OPD (organic photodiode).
  • the light receiving unit 21 is provided in a pair with the light emitting unit 20.
  • the light receiving unit 21 is configured to receive the reflected light of the light irradiated by the light emitting unit 20.
  • the light receiving unit 21 is disposed adjacent to the light receiving unit 21 in a direction intersecting with the direction in which the plurality of optical elements 18, 18,.
  • the light-receiving unit 21 is, for example, 8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanoliner-Modified Inorganic Electron-LED Or can be manufactured by a manufacturing method.
  • the soft layer 23 is formed of a material having a lower Young's modulus than the hard layer 22.
  • the soft layer 23 is adjacent to the hard layer 22. That is, the soft layer 23 is disposed so as to fill a portion between the hard layer 22 and the contact layer 104.
  • the exposed surface of the soft layer 23 is laminated so as to be flush with the exposed surface of the hard layer 22.
  • a plurality of electrodes 16,16, ... and a plurality of optical elements 18,18, ... are the same of flexible substrate 10. Since it is provided on the surface (one surface), the plurality of electrodes 16, 16,... And the plurality of optical elements 18, 18,. Thereby, both an electrical biological signal and an optical biological signal can be acquired simultaneously.
  • the sign unit 12 is provided so as to be aligned with a predetermined position of the living body in order to bring the electrical signal acquisition unit 14 and the optical signal acquisition unit 15 into contact with the measurement position of the living body.
  • the marking unit 12 is provided on a surface opposite to one surface of the flexible substrate 10 (a surface exposed when the electrode sheet 1 is attached to a living body, hereinafter referred to as an exposed surface). It is done. That is, the marking unit 12 is provided on the reference layer 103.
  • the marking unit 12 is provided as a straight line on a surface opposite to the one surface of the flexible substrate 10 by printing or the like so as to be aligned along a direction along the nose line.
  • the ground electrode 13 (not shown in FIG. 4) is connected to the wiring 25 in the wiring arrangement region 102 via the wiring 24.
  • the ground electrode 13 is provided for obtaining a reference potential of the living body by contacting the ear of the living body.
  • the ground electrode 13 can be connected to the analysis apparatus 2 via the wiring 24 and the wiring 25.
  • the electrode sheet 1 as described above is used as follows. First, the electrode sheet 1 is brought close to the measurement position of the living body. At this time, the surface on which the marking unit 12 is provided (one surface of the reference layer 103) is an exposed surface. The marking unit 12 is aligned with a predetermined position of the living body (for example, a position along the nose muscle). The electrode sheet 1 is affixed to the living body in a state where the marking portion 12 is aligned.
  • the flexible substrate 10 and the protective layer 19 are bent along the curve of the living body.
  • the flexible substrate 10 and the protective layer 19 are curved along the shape of the forehead.
  • the plurality of electrodes 16, 16,... can acquire a biological signal (electric signal) from the living body by contacting the living body.
  • the plurality of optical elements 18, 18,... Can irradiate and receive light with respect to the living body, and can acquire a biological signal (optical signal) from the living body.
  • the ground electrode 13 is attached to a living body ear or the like, and can acquire a reference potential of the living body. Thereby, the electrode sheet 1 can acquire a biological signal with respect to the reference potential.
  • the electrode sheet 1 according to the first embodiment described above has the following effects.
  • the electric signal acquisition unit 14 includes a plurality of electrodes 16, 16,... Arranged in a predetermined direction along the surface of the flexible substrate 10.
  • the optical signal acquisition unit 15 includes a plurality of optical elements 18, 18,... Arranged in substantially the same direction as the arrangement direction of the plurality of electrodes 16, 16,. As a result, a plurality of electrodes 16, 16,... And optical elements 18, 18,. it can.
  • the plurality of electrodes 16, 16,... are arranged substantially in parallel with a straight line Y that divides one surface of the flexible substrate 10 into two regions. Thereby, the extending direction of each region of the electrical signal acquisition unit 14 and the optical signal acquisition unit 15 is aligned with the plurality of electrodes 16, 16,... And the plurality of optical elements 18, 18,. It is possible to facilitate the positioning of both of them.
  • the optical signal acquisition unit 15 is formed of a material harder than the flexible substrate 10, and further includes a protective layer 19 that surrounds the optical element 18 while being in contact with the optical element 18. Thereby, the strain applied to the optical element 18 due to the curvature of the flexible substrate 10 can be reduced by the protective layer 19. Therefore, the optical element 18 can be protected from distortion.
  • the protective layer 19 includes a hard layer 22 that contacts the optical element 18 and a soft layer 23 that is formed of a material having a Young's modulus lower than that of the hard layer 22 and is adjacent to the hard layer 22. Thereby, since the strain applied to the optical element 18 can be reduced by the hard layer 22 and the soft layer 23, the optical element 18 can be further protected from the strain.
  • the electrode sheet 1 further includes a marking unit 12 that can be aligned with a predetermined position of the living body in order to bring the electrical signal acquisition unit 14 and the optical signal acquisition unit 15 into contact with the measurement position of the living body.
  • the electrical signal acquisition part 14 and the optical signal acquisition part 15 can be made to contact the measurement position of a biological body by aligning the marking part 12 to the predetermined position of the biological body. Therefore, the electrode sheet 1 can be handled more easily.
  • the electrode 16 and the optical element 18 can be brought into contact with a place closer to a position where a biological signal can be obtained, the number of the electrodes 16 and the optical elements 18 can be reduced as compared with the case where the marking unit 12 is not provided. The manufacturing cost of the electrode sheet 1 can be reduced.
  • the electrode sheet module includes the electrode sheet 1 and a wireless device connected to the flexible substrate 10 and capable of wirelessly transmitting a biological signal acquired by the biological signal acquisition unit 11.
  • an electrode sheet 1 according to a second embodiment of the present invention will be described with reference to FIG.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the electrode sheet 1 according to the second embodiment is different from the first embodiment in that the light emitting unit 20A is an iOLED (reverse organic EL diode) instead of the OLED.
  • the light emitting unit 20A includes a plurality of layers.
  • the light emitting unit 20A includes a cathode 206, an electron injecting metal oxide layer 205A1, an electron injecting organic buffer layer 205A2, a light emitting layer 204, and a positive electrode.
  • a hole transport layer 203 , a hole injection layer 202, and an anode 201 are provided.
  • Each layer of the light emitting unit 20 ⁇ / b> A is stacked in the reverse order of the light emitting unit 20.
  • the light emitting unit 20 ⁇ / b> A irradiates light to the outside along the direction from the anode 201 to the cathode 206, contrary to the light emitting unit 20.
  • the average thickness of the buffer layer was measured using a stylus type step meter (product name “Alphastep IQ”, manufactured by KLA Tencor).
  • a stylus type step meter product name “Alphastep IQ”, manufactured by KLA Tencor.
  • This substrate was fixed to a substrate holder of a Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 1 ⁇ 10 ⁇ 4 Pa, sputtering was performed with argon and oxygen introduced, and a zinc oxide layer having a thickness of about 2 nm was formed. At this time, a metal mask was used in combination so that a portion of the ITO electrode was not deposited with zinc oxide for electrode extraction.
  • a mixed solution of magnesium acetate in 1% water-ethanol (1: 3 by volume) was prepared. The substrate prepared in step [2] was washed again in the same manner as in step [1]. The cleaned substrate with a zinc oxide thin film was set on a spin coater.
  • a polyethyleneimine ethanol solution is dropped on the layer formed in the above step [3] and rotated at 2,000 rpm for 30 seconds, and the electron injecting organic buffer layer 205A2 is formed on the electron injecting metal oxide layer 205A1. Formed.
  • the average thickness of the electron injecting organic buffer layer 205A2 was 10 nm.
  • the average thickness of the electron-injecting organic buffer layer 205A2 was measured with a stylus profilometer.
  • the substrate formed up to step [4] was fixed to the substrate holder of the vacuum deposition apparatus.
  • the inside of the vacuum evaporation apparatus was depressurized to about 1 ⁇ 10 ⁇ 5 Pa, and 35 nm was co-evaporated using CBP as a host and Ir (piq) 3 as a dopant to form a light emitting layer 204.
  • the doping concentration was such that Ir (piq) 3 was 6 wt% with respect to the entire light emitting layer 204.
  • ⁇ -NPD was deposited to 60 nm to form a hole transport layer 203.
  • molybdenum trioxide and gold were put in an alumina crucible and set in a vapor deposition source.
  • the inside of the vacuum deposition apparatus was depressurized to about 1 ⁇ 10 ⁇ 5 Pa, and molybdenum trioxide (hole injection layer 202) was deposited to a thickness of 10 nm.
  • gold anode 201 was vapor-deposited so as to have a film thickness of 50 nm, and the organic electroluminescent element 1 was produced.
  • a deposition mask made of stainless steel was used so that the deposition surface became a strip shape having a width of 1 mm. That is, the light emitting area of the produced organic electroluminescent element was 1 mm 2 .
  • the light emitting unit 20A is configured by iOLED. As a result, the light emitting unit 20A can have higher atmospheric stability than that formed by the OLED, and stable measurement can be realized.
  • an electrode sheet 1 according to a third embodiment of the present invention will be described with reference to FIG.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the electrode sheet 1 according to the third embodiment is different from the first embodiment and the second embodiment in that an adhesive layer 40 is provided on the surface to be attached to the living body.
  • the adhesive layer 40 is disposed so as to be exposed on the surface to be attached to the living body. That is, the adhesive layer 40 is configured to be able to contact a living body that acquires a biological signal.
  • the adhesive layer 40 fixes the plurality of electrodes 16, 16,... And the plurality of optical elements 18, 18,.
  • the adhesive layer 40 includes a first adhesive layer 41 and a second adhesive layer 42.
  • the second adhesive layer 42 is disposed in the other region separated by the straight line Y. Specifically, the second adhesive layer 42 is disposed so as to overlap the exposed surface of the contact layer 104 in the other region separated by the straight line Y.
  • the second adhesive layer 42 is preferably disposed only on the exposed surface of the contact layer 104 and does not overlap the optical element 18. Thereby, since the 2nd adhesion layer 42 does not block the light irradiated from optical element 18, it becomes possible to acquire an optical signal with sufficient accuracy. More preferably, the second adhesive layer 42 is disposed on a part of the exposed surface of the contact layer 104.
  • the electrode sheet 1 of the third embodiment described above the following effects are obtained in addition to the effects (1) to (9).
  • the electrode sheet 1 further includes an adhesive layer 40 that fixes the plurality of electrodes 16, 16,... And the plurality of optical elements 18, 18,. As a result, the plurality of electrodes 16, 16,... And the plurality of optical elements 18, 18,.
  • the adhesive layer 40 includes a first adhesive layer 41 and a second adhesive layer 42.
  • the second adhesive layer 42 is disposed so as not to overlap the optical element 18. Thereby, since the 2nd adhesion layer 42 does not block the light irradiated from optical element 18, a living body signal can be acquired suitably.
  • the second adhesive layer 42 is disposed on a part of the exposed surface of the contact layer 104. It is possible to suppress the stuffiness caused by applying the second adhesive layer 42 to the living body, and to prevent foreign substances such as sweat from entering between the optical element 18 and the living body. Therefore, a biological signal can be acquired suitably.
  • an electrode sheet 1 according to a fourth embodiment of the present invention will be described with reference to FIGS.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the light receiving unit 21 is omitted from the optical signal acquiring unit 15 for the sake of simplicity.
  • the electrode sheet 1 according to the fourth embodiment is different from the first to third embodiments in that the flexible substrate 10 is formed by the reference layer 103 and the contact layer 104 is not provided.
  • the electrode sheet 1 according to the fourth embodiment is different from the first to third embodiments in that the reference layer 103 includes a first reference layer 131 and a second reference layer 132.
  • the electrode sheet 1 according to the fourth embodiment is different from the first to third embodiments in that it includes a coating layer 26C.
  • the electrode sheet 1 according to the fourth embodiment is different from the first embodiment in that the optical element wiring 171 is formed in the optical signal acquisition unit 15 and the coating layer 26C is provided instead of the contact layer 104.
  • the optical signal acquisition unit 15 is disposed on the exposed surface of the reference layer 103.
  • the first reference layer 131 is made of polyurethane, for example.
  • the first reference layer 131 is disposed in one region delimited by the straight line Y. That is, the first reference layer 131 is disposed in a region where the electrical signal acquisition unit 14 is disposed.
  • a plurality of electrodes 16, 16,... Are arranged on one surface of the first reference layer 131.
  • the 1st adhesion layer 41 is arranged on the surface of a plurality of electrodes 16,16, .... Further, a part of the optical element wiring 171 is disposed on one surface of the first reference layer 131.
  • the second reference layer 132 is made of a light transmissive material. Similar to the first reference layer 131, the second reference layer 132 is formed of polyurethane, for example.
  • the second reference layer 132 is disposed over the entire biological signal acquisition region 101. That is, the second reference layer 132 is disposed in a region where the electrical signal acquisition unit 14 and the optical signal acquisition unit 15 are disposed. In other words, the second reference layer 132 is disposed so as to overlap the first reference layer 131.
  • the other portion of the optical element wiring 171 is disposed on one surface of the second reference layer 132 that overlaps the first reference layer 131.
  • the optical signal acquisition unit 15 connected to the other part of the optical element wiring 171 is arranged on one surface of the second reference layer 132.
  • the second reference layer 132 is formed with a plurality of insertion holes 50 penetrating in the thickness direction.
  • the second adhesive layer 42 is disposed on the other surface of the second reference layer 132.
  • the first reference layer 131 and the second reference layer 132 are partially overlapped.
  • the insertion hole 50 is formed and arranged in accordance with the arrangement position of the plurality of electrodes 16, 16,... In the in-plane direction of the second reference layer 132.
  • Each of the insertion holes 50 exposes the electrode 16 inserted into the opening on one surface side from the opening on the other surface side.
  • the optical signal acquisition unit 15 is disposed on the exposed surface of the flexible substrate 10.
  • the optical signal acquisition unit 15 includes a protective layer 19C.
  • the protective layer 19C includes a hard layer 22C and a soft layer 23C.
  • the hard layer 22C is formed in a dome shape.
  • the hard layer 22 ⁇ / b> C is disposed so as to cover each of the light emitting unit 20 and the light receiving unit 21. That is, the hard layer 22 ⁇ / b> C is disposed so as to overlap the light emitting unit 20 and the light receiving unit 21.
  • the soft layer 23C is formed in a dome shape.
  • the soft layer 23C is disposed so as to cover the hard layer 22C. That is, the soft layer 23C is disposed so as to overlap the hard layer 22C.
  • the covering layer 26 ⁇ / b> C is disposed so as to cover the soft layer 23 ⁇ / b> C covering each of the light emitting unit 20 and the light receiving unit 21 so that the light emitting unit 20 and the light receiving unit 21 are integrated.
  • the covering layer 26C is desirably softer than the soft layer 23C.
  • the covering layer 26C is formed using, for example, urethane acrylate.
  • the covering layer 26C is formed in a sheet shape, for example.
  • the analysis device 2 removes noise from the biological signal (step S3).
  • the analysis device 2 removes noise by filtering a photoelectric pulse wave (PPG) signal using, for example, a software-based 0.3 to 5 Hz bandpass filter.
  • PPG photoelectric pulse wave
  • the analysis device 2 detects the high peak and low peak of the amplitude (step S4).
  • the analyzer 2 displays the detected low peak and high peak.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本発明は、位置合わせが容易な電極シートを提供することを課題とする。 電極シート1は、シート状のフレキシブル基板10と、フレキシブル基板10上に配置され、生体の生体信号を取得する生体信号取得部11と、を備え、生体信号取得部11は、フレキシブル基板10に配置された生体信号を電気的に取得可能な電気信号取得部14と、フレキシブル基板10に配置され、生体に対して光を照射することにより、照射した光に基づいて得られた生体信号を取得する複数の光信号取得部15と、を備える。

Description

電極シート
 本発明は、電極シートに関する。
 従来より、電極及び計測器が一体となった簡易型脳波計が知られている。この簡易型脳波計では、硬い電極を用いて長時間計測を行うことによる患者への負担を無視することができず、電極構成が固定されており、患者や医師の要望に合わせた生体信号の取得が困難であった。また、この簡易型脳波計では、頭部に固定するためのヘッドセット等の固定具が必要であった。
 そこで、より容易に脳波を計測可能な装置として、額に貼付可能なフレキシブル樹脂シートに電極及び光学素子を構成する生体センサが提案されている(例えば、特許文献1参照)。提案された生体センサによれば、電極で脳波を取得するとともに、光学素子で他の信号を取得することができる。
米国特許公開第2016/0015281号公報
 ところで、電極や光学素子で信号を得られる位置には個人差がある。そこで、電極及び光学素子は、生体信号を取得できるように、工夫されて設けられるのが理想である。提案された生体センサでは、額の中心位置に合わせて電極が接触されるが、他の電極及び光学素子が個人差に合わせて設けられていない。そのため、信号を取得するために、電極及び光学素子が生体に対して位置合わせを繰り返す必要がある。
 本発明は、位置合わせが容易な電極シートを提供することを目的とする。
(1)本発明は、シート状のフレキシブル基板と、前記フレキシブル基板上に配置され、生体の生体信号を取得する生体信号取得部と、を備え、前記生体信号取得部は、前記フレキシブル基板に配置された生体信号を電気的に取得可能な電気信号取得部と、前記フレキシブル基板に配置され、生体に対して光を照射することにより、照射した光に基づいて得られた生体信号を取得する複数の光信号取得部と、を備える電極シートに関する。
(2)前記電気信号取得部は、前記フレキシブル基板の一面を直線で2分割した一方の領域に配置され、前記光信号取得部は、他方の領域に配置されるのが好ましい。
(3)前記電気信号取得部は、前記フレキシブル基板の面に沿って所定の方向に並べられた複数の電極を備え、前記光信号取得部は、複数の電極の配列方向と略同方向に並べられた複数の光学素子を備えるのが好ましい。
(4)複数の電極は、フレキシブル基板の一面を2分割して2つの領域を形成する直線と略平行に並べられるのが好ましい。
(5)前記光信号取得部は、前記フレキシブル基板よりヤング率の高い材料により形成され、前記光学素子に接触しつつ、前記光学素子を囲う保護層を更に備えるのが好ましい。
(6)前記保護層は、前記光学素子に接触する硬質層と、前記硬質層よりもヤング率の低い材料で形成され、前記硬質層に隣接する軟質層と、を備えるのが好ましい。
(7)電極シートは、前記電気信号取得部及び前記光信号取得部を生体の計測位置に接触させるために、生体の所定の位置に位置合わせ可能な標示部を更に備えるのが好ましい。
(8)前記フレキシブル基板は、基準層によって形成され、前記基準層は、前記電気信号取得部が配置される第1基準層と、前記光信号取得部が配置される第2基準層と、を備え、前記第1基準層及び前記第2基準層は、一部が重ねて配置されるのが好ましい。
(9)前記第1基準層の一方の面上には、前記複数の電極と、前記光信号取得部に接続される光学素子用配線の一部と、が配置され、前記第2基準層には、厚さ方向に形成された挿通孔と、一方の面上に形成された前記光学素子用配線の他部と、が配置され、前記第1基準層及び前記第2基準層は、前記挿通孔に前記複数の電極が挿入された状態で重ね合わされるのが好ましい。
(10)前記光信号取得部は、前記第2基準層の一方の面に重ね合わされるのが好ましい。
(11)前記光学素子用配線は、前記第1基準層と前記第2基準層との間で厚さ方向に挟持されるのが好ましい。
(12)また、本発明は、(1)~(11)のいずれかの電極シートと、前記フレキシブル基板に接続され、前記生体信号取得部で取得した生体信号を無線により送出可能な無線機器と、を備える電極シートモジュールに関する。
 本発明によれば、位置合わせが容易な電極シートを提供することができる。
本発明の第1実施形態に係る電極シートを示す平面図である。 図1のA-A線断面図である。 第1実施形態の発光部を示す概略斜視図である。 第1実施形態の電極シートを生体に使用する際の概略斜視図である。 第2実施形態の電極シートの発光部を示す概略斜視図である。 第3実施形態の電極シートを示す平.面図である。 第4実施形態の電極シートの光信号取得部を形成する一過程を示す概略断面図である。 第4実施形態の電極シートの光信号取得部を形成する一過程を示す概略断面図である。 第4実施形態の電極シートの光信号取得部を形成する一過程を示す概略断面図である。 第4実施形態の電極シートを形成する一過程を示す概略断面図である。 第4実施形態の電極シートを形成する一過程を示す概略断面図である。 第4実施形態の電極シートを形成する一過程を示す概略断面図である。 第4実施形態の電極シートを形成する一過程を示す概略断面図である。 第4実施形態の電極シートを形成する一過程を示す概略断面図である。 第5実施形態の電極シートを形成する一過程を示す概略断面図である。 第5実施形態の電極シートを形成する一過程を示す概略断面図である。 第5実施形態の電極シートを形成する一過程を示す概略断面図である。 本発明の変形例における発光部及び受光部の配置を示す概略平面図である。 本発明の変形例における生体信号を解析する流れを示すフローチャートである。
 以下、本発明に係る電極シートの各実施形態について、図1~図17を参照して説明する。なお、以下に記載する各実施形態は例示であり、それぞれの実施形態の説明を他の実施形態に追加したり、それぞれの実施形態の説明を入れ替えた実施形態もまた、本発明の実施形態である。
 各実施形態に係る電極シート1は、例えば、人体の額に取り付けられて、生体信号を取得するものである。生体信号としては、脳波や心拍等の自発的に発信される信号の他、照射した光の透過や反射により得られる信号が挙げられる。これらの生体信号を人体の額において効果的に取得するために、電極シート1は、全体として伸縮性及び柔軟性をもつことが好ましい。電極シート1は、額の曲面形状に追従して湾曲することが可能である。したがって、電極シート1は、例えば額に対して密着することができ、生体信号を継続的に取得することができる。
 特に、各実施形態に係る電極シート1は、2種類の生体信号を同時に取得可能なものである。例えば、各実施形態に係る電極シート1は、生体信号のうち、脳波及び血中酸素飽和度を2種類の生体信号として同時に取得する。これにより、各実施形態に係る電極シート1は、血中酸素飽和度に基づく脳波の解析に与する生体信号を取得することが可能なものである。
[第1実施形態]
 次に、本発明の第1実施形態に係る電極シート1について、図1~図4を参照して説明する。
 本実施形態に係る電極シート1は、図1~図4に示すように、フレキシブル基板10と、生体信号取得部11と、標示部12と、グランド電極13と、を備える。電極シート1は、全体として略矩形形状に形成される。電極シート1は、生体(人体)の額に合わせて貼付可能な大きさで形成されている。具体的には、電極シート1は、額のうち両目に近い位置において血中酸素飽和度のための信号を取得する。また、電極シート1は、その上方に位置する額において脳波を取得する。
 フレキシブル基板10は、平面視矩形形状である。フレキシブル基板10の一辺は、面外方向に突出する形状をもつ。具体的には、フレキシブル基板10は、図1において直線Xの一方側で矩形形状に形成される生体信号取得領域101と、直線Xの他方側で面外方向に突出する領域によって矩形形状に形成される配線配置領域102と、をもつ。フレキシブル基板10は、配線配置領域102において、外部の解析装置2や、無線により解析装置2に生体信号を送出する無線機器(図示せず)に接続可能になっている。配線配置領域102には、複数の配線25,25,・・・が配置される。このようなフレキシブル基板10は、基準層103と、接触層104と、を備える。なお、フレキシブル基板10に接続した無線機器(図示せず)及び電極シート1によって、電極シートモジュールが構成される。
 基準層103は、生体信号取得領域101と、配線配置領域102とを合わせたフレキシブル基板10の領域全体に配置される。基準層103は、シート状に形成される。基準層103は、柔軟性及び伸縮性をもつ材料を用いて形成される。基準層103は、電極シート1を額に取り付けた際に、露出する面を形成する。
 接触層104は、電極シート1を額に取り付けた際に、額に接触する面を形成する。接触層104は、基準層103と同様に、シート状に形成される。接触層104は、基準層103と同様に、柔軟性及び伸縮性をもつ材料を用いて形成される。また、接触層104は、基準層103に重ね合わせて形成される。特に、接触層104は、基準層103の形状と同じ形状及び大きさによって、基準層103の一方の面全体を覆うように形成される。そして、接触層104は、生体信号取得領域101のうち、直線Yで区切られた他方の領域に貫通孔105をもつ。具体的には、接触層104は、生体信号取得領域101のうち、直線Yで区切られた両目に近い位置に接触する領域に貫通孔105をもつ。本実施形態において、接触層104は、直線Yに沿って所定の間隔を開けて形成される4つの貫通孔105をもつ。なお、直線Yは、仮想的な直線である。
 生体信号取得部11は、フレキシブル基板10上に配置され、生体の生体信号を取得する。具体的には、生体信号取得部11は、2種類の生体信号を取得する。このような生体信号取得部11は、電気信号取得部14と、光信号取得部15と、を備える。
 電気信号取得部14は、フレキシブル基板10の一面を直線Yで2分割した一方の領域(額の上方に接触する領域)に配置される。電気信号取得部14は、生体信号を電気的に取得可能となっている。このような電気信号取得部14は、複数の電極16,16,・・・と、複数の電極用配線17,17,・・・と、を備える。電気信号取得部14は、全体として、フレキシブル基板10の一面に印刷法を用いて形成される。本実施形態において、電気信号取得部14は、フレキシブル基板10の長辺に沿う直線Yで2分割された一方の領域に配置される。
 複数の電極16,16,・・・は、フレキシブル基板10の面に沿って所定の方向に並べられる。本実施形態において、複数の電極16,16,・・・は、平面視矩形形状に形成された一辺(長辺)に沿って7つ並べられる。
 また、複数の電極16,16,・・・は、フレキシブル基板10の一面を2分割して2つの領域を形成する直線Yと略平行に並べられる。そして、それぞれの電極16は、隣接する電極16に対して、並べられる方向に交差する方向に交互に位置をずらして配置される。これにより、直線状に複数の電極16,16,・・・を並べる場合に比べ、複数の電極16,16,・・・を電気信号取得部14の領域内の種々の位置に配置することができる。したがって、より精度の良い生体信号のデータの取得が可能となる。複数の電極16,16,・・・は、個人差のある生体信号の発信位置に関わらず、いずれかにおいて生体信号を取得することができる。
 複数の電極用配線17,17,・・・は、複数の電極16の数に合わせて設けられる。複数の電極用配線17,17,・・・は、フレキシブル基板10の突出する辺からフレキシブル基板10上を伸びて、複数の電極16のそれぞれに接続されて設けられる。また、複数の電極用配線17,17,・・・は、配線配置領域102の配線25,25,・・・として、解析装置2へ接続可能になっている。
 以上のような電気信号取得部14によれば、複数の電極16,16,・・・が生体信号の測定位置に貼り付けられることで、脳波等の自発的に発信される生体信号を電気信号として取得することができる。複数の電極16は、取得した電気信号を、複数の電極用配線17,17,・・・を介して解析装置2等に送信することができる。
 光信号取得部15は、電気信号取得部14と同じように、フレキシブル基板10の一面に配置される。そして、光信号取得部15は、フレキシブル基板10の一面を直線Yで2分割した他方の領域(額のうち両目に近い位置)に配置される。光信号取得部15は、生体に対して光を照射することにより、照射した光に基づいて得られた信号を取得する。このような光信号取得部15は、複数の光学素子18,18,・・・と、保護層19と、を備える。本実施形態において、光信号取得部15は、それぞれの貫通孔105の内側面に囲われる領域に、1つの光学素子18と、1つの保護層19とを対として設けられている。また、本実施形態において、光信号取得部15は、フレキシブル基板10の長辺に沿う直線Yで2分割された他方の領域に配置される。
 複数の光学素子18,18,・・・は、複数の電極16の配列方向と略同方向に並べられる。つまり、複数の光学素子18,18,・・・は、フレキシブル基板10の一面を2分割して2つの領域を形成する直線と略平行に並べられる。複数の光学素子18,18,・・・のそれぞれは、図1に示すように、発光部20と、受光部21と、を備える。複数の光学素子18,18,・・・のそれぞれは、フレキシブル基板10上に形成された配線(図示せず)に接続される。
 発光部20は、例えばOLED(有機ELダイオード)、iOLED(逆有機ELダイオード)や一般的なLEDであり、生体に対して所定波長の光を照射するために設けられる。本実施形態において、発光部20は、OLEDである。発光部20は、複数の層を重ねて構成される。具体的には、発光部20は、図3に示すように、陽極201と、正孔注入層202と、正孔輸送層203と、発光層204と、電子注入層205と、陰極206と、を備える。そして、発光部20は、陽極201、正孔注入層202、正孔輸送層203、発光層204、電子注入層205、及び陰極206の順に積層される。発光部20は、陰極206から陽極201に向かう方向に沿って外部に光を照射する。
 発光部20は、一例として、以下のように作製される。
[1]市販されている平均厚さ0.1mmのITO電極層付きPET(ポリエチレンテレフタラート)基板を用意した。この時、基板のITO電極(陽極201)は幅1mmにパターニングされているものを用いた。この基板をイソプロパノール中でそれぞれ10分間超音波洗浄した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分間行った。
[2]この基板をスピンコーターにセットし、市販のポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)の水分散液を滴下し、毎分1,800回転で60秒間回転させ、更に125℃のホットプレートで10分間乾燥させて、陽極上にPEDOT/PSSからなる正孔注入層202を形成した。正孔注入層202の平均厚さは60nmであった。正孔注入層202の平均厚さは、触針式段差計により測定した。
[3]正孔注入層202まで形成した基板を真空蒸着装置の基板ホルダーに固定した。4,4’-ビス[9-ジカルバゾリル]-2,2’-ビフェニル(CBP)、イリジウムトリス(1-フェニルイソキノリン)(Ir(piq)3)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)をそれぞれアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-5Paまで減圧し、α-NPDを60nm蒸着し、正孔輸送層203を成膜した。次に、CBPをホスト、Ir(piq)3をドーパントとして35nm共蒸着し、発光層204を成膜した。この時、ドープ濃度はIr(piq)3が発光層204全体に対して6重量%となるようにした。
[4]市販の日本触媒社製ポリエチレンイミンSP-200とトリフェニルホスフィンオキシドの混合エタノール溶液を作製した。この時、トリフェニルホスフィンオキシドの濃度は0.5%、ポリエチレンイミンオキシドの濃度は1%とした。上記工程[4]で作製した基板をスピンコーターにセットした。上記工程[3]で形成した発光層204の上にポリエチレンイミン-トリフェニルホスフィンオキシド混合エタノール溶液を滴下し、毎分2,000回転で30秒間回転させ、発光層204の上に電子注入層205を形成した。電子注入層205の平均厚さは10nmであった。電子注入層205の平均厚さは、触針式段差計により測定した。
[5]上記工程[4]で作製した基板を真空蒸着装置の基板ホルダーに固定した。アルミニウムワイヤー(Al)をアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-4Paまで減圧し、電子注入層205の上にAl(陰極206)を平均厚さが100nmとなるように蒸着し、有機電界発光素子(1)を作製した。陰極206の平均厚さは、水晶振動子膜厚計により成膜時に測定した。なお、陰極206を蒸着する時、ステンレス製の蒸着マスクを用いて蒸着面が幅1mmの帯状になるようにした。即ち、作製した有機電界発光素子の発光面積は1mmとした。
 受光部21は、例えばPD(フォトダイオード)やOPD(有機フォトダイオード)である。受光部21は、発光部20と一対に設けられる。受光部21は、発光部20によって照射された光の反射光を受光可能に構成される。本実施形態において、受光部21は、複数の光学素子18,18,・・・の並べられている方向と交差する方向に、受光部21に隣接するように配置される。受光部21は、例えば、8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers(ADVANCED ENERGY MATERIALS,2014年1月7日公開)に記載された構成や作製方法で作製することができる。
 保護層19は、図1及び図2に示すように、基準層103上に積層される柔軟性をもつ層である。保護層19は、接触層104よりヤング率の高い材料により形成される。保護層19は、光学素子18に接触しつつ、光学素子18を囲う。保護層19は、フレキシブル基板10と同様に伸縮性をもつ。本実施形態において、保護層19は、光信号取得部15が形成されたフレキシブル基板10の領域に合わせた大きさで形成される。このような保護層19は、硬質層22と、軟質層23と、を備える。保護層19は、発光部20の発光により照射される光の波長及び受光部21で受光可能な光の波長を透過する性質の材料で形成される。
 硬質層22は、接触層104よりもヤング率の高い材料により形成される。硬質層22は、貫通孔105の径よりも小さい径で形成される。硬質層22は、光学素子18に接触する。そして、硬質層22は、複数の光学素子18,18,・・・のそれぞれを封止するように基準層103上に積層される。即ち、硬質層22は、発光部20及び受光部21を基準層103との間に封止するように形成される。
 軟質層23は、硬質層22よりもヤング率の低い材料で形成される。軟質層23は、硬質層22に隣接する。つまり、軟質層23は、硬質層22及び接触層104の間の部分を充填するように配置される。また、軟質層23の露出する表面は、硬質層22の露出する表面と面一になるように積層される。
 以上のような光信号取得部15によれば、生体に取り付けられた際に、生体の湾曲に沿って保護層19が湾曲する。このとき、ヤング率の低い軟質層23がより湾曲しやすく、ヤング率の高い硬質層22が湾曲しにくい。したがって、軟質層23がより湾曲したとしても、硬質層22が軟質層23よりも湾曲しないので、湾曲によるひずみが光学素子18に伝わることを抑制することができる。これにより、湾曲により光学素子18がダメージを受けることを抑制することができる。
 そして、以上のような電気信号取得部14及び光信号取得部15によれば、複数の電極16,16,・・・及び複数の光学素子18,18,・・・が、フレキシブル基板10の同じ面(一面)に設けられるので、複数の電極16,16,・・・及び複数の光学素子18,18,・・・を同時に生体に接触させることができる。これにより、電気的な生体信号と、光学的な生体信号との双方を同時に取得することができる。
 標示部12は、電気信号取得部14及び光信号取得部15を生体の計測位置に接触させるために、生体の所定の位置に位置合わせ可能に設けられる。本実施形態において、標示部12は、図4に示すように、フレキシブル基板10の一面とは逆の面(生体に電極シート1を貼付したときに露出する面、以下、露出面という)に設けられる。つまり、標示部12は、基準層103上に設けられる。例えば、標示部12は、鼻の筋に沿う方向に沿って位置合わせ可能なように、直線状の線としてフレキシブル基板10の一面とは逆の面に印刷等により設けられる。
 グランド電極13(図4では図示省略)は、配線24を介して、配線配置領域102の配線25に接続される。グランド電極13は、生体の耳等に接触して、生体の基準電位を取得するために設けられる。グランド電極13は、配線24及び配線25を介して、解析装置2へ接続可能になっている。
 以上のような電極シート1は、以下のように用いられる。
 まず、電極シート1が生体の測定位置に近づけられる。このとき、標示部12の設けられている面(基準層103の一方の面)は、露出する面とされる。そして、標示部12は、生体の所定の位置(例えば、鼻の筋に沿う位置)に、位置合わせされる。標示部12が位置合わせされた状態で、電極シート1は、生体に貼付される。
 電極シート1が生体に貼付されることにより、フレキシブル基板10及び保護層19は、生体の湾曲に沿って湾曲する。例えば、電極シート1が生体の額に貼付されることにより、フレキシブル基板10及び保護層19は、額の形状に沿って湾曲する。これにより、複数の電極16,16,・・・は、生体に接触することにより、生体から生体信号(電気信号)を取得可能になる。また、複数の光学素子18,18,・・・は、生体に対して光を照射及び受光することが可能になり、生体から生体信号(光信号)を取得可能になる。
 具体的には、発光部20は、1つの光又は波長の異なる複数の光を血管に照射する。これにより、血液中のヘモグロビンは、光を吸収する。吸収されなかった光は、受光部21によって集光される。ヘモグロビンの光の吸収量は、酸化状態と還元状態とで異なることが知られている。したがって、受光した反射波の大きさから酸化ヘモグロビンの割合を計算することができる。これは、血中酸素飽和度(SpO2)と呼ばれている。
 ここで、グランド電極13は、生体の耳等に取り付けられて、生体の基準電位を取得可能になる。これにより、電極シート1は、基準電位に対する生体信号を取得することができる。
 以上説明した第1実施形態の電極シート1によれば、以下のような効果を奏する。
(1)電極シート1は、シート状のフレキシブル基板10と、フレキシブル基板10上に配置され、生体の生体信号を取得する生体信号取得部11と、を備える。そして、生体信号取得部11は、フレキシブル基板10に配置された生体信号を電気的に取得可能な電気信号取得部14と、フレキシブル基板10に配置され、生体に対して光を照射することにより、照射した光に基づいて得られた生体信号を取得する複数の光信号取得部15と、を備える。これにより、生体の凹凸に応じて湾曲する電極シート1を提供することができる。そして、電気信号取得部14により、脳波等を電気的な生体信号として取得しつつ、経皮的動脈血酸素飽和度(SpO2)等を光学的な生体信号として取得できる。このように、複数の生体信号を同時に取得可能な電極シート1を簡易な構造で提供することができる。
(2)電気信号取得部14は、フレキシブル基板10の一面を直線Yで2分割した一方の領域に配置される。光信号取得部15は、他方の領域に配置される。これにより、電気信号取得部14及び光信号取得部15のそれぞれを、生体の測定位置に位置合わせしやすくすることができる。
(3)電気信号取得部14は、フレキシブル基板10の面に沿って所定の方向に並べられた複数の電極16,16,・・・を備える。また、光信号取得部15は、複数の電極16,16,・・・の配列方向と略同方向に並べられた複数の光学素子18,18,・・・を備える。これにより、生体の測定位置に、所定方向に並べられた複数の電極16,16,・・・及び光学素子18,18,・・・が接触するので、生体信号をより確実に取得することができる。
(4)複数の電極16,16,・・・は、フレキシブル基板10の一面を2分割して2つの領域を形成する直線Yと略平行に並べられる。これにより、電気信号取得部14及び光信号取得部15のそれぞれの領域の延びる方向が複数の電極16,16,・・・及び複数の光学素子18,18,・・・の並びに揃うので、生体に対する両者の位置決めを容易にすることができる。
(5)光信号取得部15は、フレキシブル基板10より硬い材料により形成され、光学素子18に接触しつつ光学素子18を囲う保護層19を更に備える。これにより、フレキシブル基板10の湾曲に起因して、光学素子18に加えられるひずみを保護層19により軽減することができる。したがって、光学素子18をひずみから保護することができる。
(6)保護層19は、光学素子18に接触する硬質層22と、硬質層22よりもヤング率の低い材料で形成され、硬質層22に隣接する軟質層23と、を備える。これにより、光学素子18に加えられるひずみを、硬質層22及び軟質層23によって軽減することができるので、光学素子18をよりひずみから保護することができる。
(7)電極シート1は、電気信号取得部14及び光信号取得部15を生体の測定位置に接触させるために、生体の所定の位置に位置合わせ可能な標示部12を更に備える。これにより、標示部12を生体の所定の位置に位置合わせすることで、電気信号取得部14及び光信号取得部15を生体の測定位置に接触させることができる。したがって、電極シート1の扱いをより容易にすることができる。また、生体信号を取得可能な位置により近い場所に電極16及び光学素子18を接触させることができるので、標示部12を設けない場合に比べ、電極16及び光学素子18の数を減らすことができ、電極シート1の製造コストを低下させることができる。
(8)電極シートモジュールは、電極シート1と、フレキシブル基板10に接続され、生体信号取得部11で取得した生体信号を無線により送出可能な無線機器と、を備える。これにより、有線機器を使用して生体信号を送出する場合に比べて、簡易で自由度の高い生体信号の測定が可能となる。また、S/N(生体信号対雑音比)が改善し得る。
[第2実施形態]
 次に、本発明の第2実施形態に係る電極シート1について、図5を参照して説明する。第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第2実施形態に係る電極シート1は、発光部20Aが、OLEDに代えて、iOLED(逆有機ELダイオード)である点で第1実施形態と異なる。
 発光部20Aは、発光部20と同様に、複数の層を備える。また、発光部20Aは、図5に示すように、発光部20と同様に、陰極206と、電子注入性金属酸化物層205A1と、電子注入性有機バッファ層205A2と、発光層204と、正孔輸送層203、正孔注入層202と、陽極201と、を備える。発光部20Aの各層は、発光部20とは逆の順に積層される。発光部20Aは、発光部20とは逆に、陽極201から陰極206に向かう方向に沿って外部に光を照射する。
 次に、発光部20Aの作製方法が以下に説明される。なお、以下の作製方法において、バッファ層の平均厚さを触針式段差計(製品名「アルファステップIQ」、KLAテンコール社製)を用いて測定した。
[1]市販されている平均厚さ0.1mmのITO電極層付きPET基板を用意した。この時、基板のITO電極(陰極206)は幅1mmにパターニングされているものを用いた。この基板をイソプロパノール中でそれぞれ10分間超音波洗浄した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10-4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。
[3]酢酸マグネシウムの1%水-エタノール(体積比で1:3)混合溶液を作成した。工程[2]で作成した基板を、工程[1]と同様にして再度洗浄した。洗浄した酸化亜鉛薄膜付き基板をスピンコーターにセットした。この基板上に酢酸マグネシウム溶液を滴下し、毎分1300回転で60秒間回転させた。これを大気中、100℃にセットしたホットプレートで2時間焼成することにより、酸化亜鉛/酸化マグネシウム層(電子注入性金属酸化物層205A1)を形成した。
[4]市販の日本触媒社製ポリエチレンイミンSP-200のエタノール溶液を作製した。この時、ポリエチレンイミンの濃度は0.4%とした。上記工程[3]で作製した基板をスピンコーターにセットした。上記工程[3]で形成した層の上にポリエチレンイミンエタノール溶液を滴下し、毎分2,000回転で30秒間回転させ、電子注入性金属酸化物層205A1の上に電子注入性有機バッファ層205A2を形成した。電子注入性有機バッファ層205A2の平均厚さは10nmであった。電子注入性有機バッファ層205A2の平均厚さは、触針式段差計により測定した。
[5]工程[4]までで形成した基板を真空蒸着装置の基板ホルダーに固定した。4,4’-ビス[9-ジカルバゾリル]-2,2’-ビフェニル(CBP)、イリジウムトリス(1-フェニルイソキノリン)(Ir(piq)3)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)をそれぞれアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-5Paまで減圧し、CBPをホスト、Ir(piq)3をドーパントとして35nm共蒸着し、発光層204を成膜した。この時、ドープ濃度はIr(piq)3が発光層204全体に対して6重量%となるようにした。次に、α-NPDを60nm蒸着し、正孔輸送層203を成膜した。次に、一度窒素パージした後、三酸化モリブデン、金をアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10-5Paまで減圧し、三酸化モリブデン(正孔注入層202)を膜厚10nmになるように蒸着した。次に、金(陽極201)を膜厚50nmになるように蒸着し、有機電界発光素子1を作製した。金を蒸着する時、ステンレス製の蒸着マスクを用いて蒸着面が幅1mmの帯状になるようにした。即ち、作製した有機電界発光素子の発光面積は、1mmとした。
 以上説明した第2実施形態の電極シート1によれば、上記(1)~(8)の効果に加え、以下のような効果を奏する。
(9)発光部20AはiOLEDで構成される。これにより、発光部20Aは、OLEDで構成されるよりも高い大気安定性をもつことができ、安定した測定が実現できる。
[第3実施形態]
 次に、本発明の第3実施形態に係る電極シート1について、図6を参照して説明する。第3実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第3実施形態に係る電極シート1は、図6に示すように、生体に貼付される側の面に粘着層40を備える点で第1実施形態及び第2実施形態と異なる。
 粘着層40は、生体に貼付される側の面に露出して配置される。即ち、粘着層40は、生体信号を取得する生体に接触可能に構成される。粘着層40は、生体に接触することで、複数の電極16,16,・・・及び複数の光学素子18,18,・・・を生体に固定する。粘着層40は、第1粘着層41と、第2粘着層42と、を備える。
 第1粘着層41は、複数の電極16,16,・・・のそれぞれの露出面に重ねて配置される。第1粘着層41は、生体と接触することで、生体信号を電極16へ伝達する。第1粘着層41は、例えば、アクリル系ゲル、ウレタン系ゲル、シリコーン系ゲル等のゲルを主剤とすることが好ましい。第1粘着層41には、生体信号を取得するために、塩化ナトリウム、塩化カリウム等の電解質塩を含む。具体的には、積水化成品株式会社製「テクノゲル HIT」「テクノゲル CR」「テクノゲル G」等が挙げられる。第1粘着層41を電極16上に配置する方法としては、ゲルを塗工、印刷する方法や、シート状のゲルを電極の形状に切り抜いたものを貼付する方法等が挙げられる。
 第2粘着層42は、直線Yで区切られた他方の領域に配置される。具体的には、第2粘着層42は、直線Yで区切られた他方の領域の接触層104の露出面に重ねて配置される。第2粘着層42は、接触層104の露出面のみに配置され、光学素子18に重ならないことが好ましい。これにより、第2粘着層42が光学素子18から照射される光を遮らないので光信号を精度よく取得することが可能になる。また、より好適には、第2粘着層42は、接触層104の露出面の一部に配置される。これにより、第2粘着層42を生体に貼付することによる蒸れを抑制することができ、光学素子及び生体の間に汗等の異物が入り込むことを抑制できる。第2粘着層42には、例えばアクリル、ウレタン系、シリコーン系の生体貼付用両面テープ「No.9874」、「No.1522」、「No.1513」等を採用することができる。なお、第2粘着層42に加え、フレキシブル基板10の厚さ方向に貫かれた穴(図示せず)を設けることで、蒸れを抑制するようにしてもよい。また、第2粘着層42は、直線Yに沿って、間隔をあけて複数配置されてもよい。これにより、第2粘着層42が配置されていない部分を通気孔として、蒸れを抑制することができる。
 以上説明した第3実施形態の電極シート1によれば、上記(1)~(9)の効果に加え、以下のような効果を奏する。
(10)電極シート1は、複数の電極16,16,・・・及び複数の光学素子18,18,・・・を生体に固定する粘着層40を更に備える。これにより、生体に複数の電極16,16,・・・及び複数の光学素子18,18,・・・を固定することができ、生体信号を好適に取得できる。
(11)粘着層40は、第1粘着層41と、第2粘着層42と、を備える。第2粘着層42は、光学素子18に重ならないように配置される。これにより、第2粘着層42が光学素子18から照射される光を遮らないので、生体信号を好適に取得することができる。
(12)第2粘着層42は、接触層104の露出面の一部に配置される。第2粘着層42を生体に貼付することによる蒸れを抑制することができ、光学素子18及び生体の間に汗等の異物が入り込むことを抑制できる。従って、生体信号を好適に取得することができる。
[第4実施形態]
 次に、本発明の第4実施形態に係る電極シート1について、図7~図14を参照して説明する。第4実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。なお、図13及び図14では、光信号取得部15について、簡便のため、受光部21が省略して示されている。
 第4実施形態に係る電極シート1は、フレキシブル基板10が基準層103によって形成され、接触層104を備えない点で第1実施形態~第3実施形態と異なる。また、第4実施形態に係る電極シート1は、基準層103が第1基準層131と、第2基準層132と、を備える点で第1~第3実施形態と異なる。また、第4実施形態に係る電極シート1は、被覆層26Cを備える点で第1実施形態~第3実施形態と異なる。また、第4実施形態に係る電極シート1は、光信号取得部15に光学素子用配線171が形成される点や、接触層104に代えて被覆層26Cを備える点等で第1実施形態~第3実施形態と異なる。そして、第4実施形態に係る電極シート1は、光信号取得部15が、基準層103の露出面上に配置される点等で第1~第3実施形態と異なる。
 第1基準層131は、例えば、ポリウレタンで形成される。第1基準層131は、直線Yで区切られた一方の領域に配置される。即ち、第1基準層131は、電気信号取得部14が配置される領域に配置される。第1基準層131の一方の面上には、複数の電極16,16,・・・が配置される。複数の電極16,16,・・・の表面には、第1粘着層41が配置される。また、第1基準層131の一方の面上には、光学素子用配線171の一部が配置される。
 第2基準層132は、光透過性をもつ材料で形成される。第2基準層132は、第1基準層131と同様に、例えば、ポリウレタンで形成される。第2基準層132は、生体信号取得領域101の全体に渡り配置される。即ち、第2基準層132は、電気信号取得部14及び光信号取得部15が配置される領域に配置される。換言すると、第2基準層132は、第1基準層131と重なって配置される。また、第2基準層132の面のうち、第1基準層131に重なる一方の面上には、光学素子用配線171の他部が配置される。具体的には、第2基準層132の一方の面上には、光学素子用配線171の他部に接続された光信号取得部15が配置される。また、第2基準層132には、厚さ方向に貫通する複数の挿通孔50が形成される。そして、第2基準層132の他方の面上には、第2粘着層42が配置される。第1基準層131及び第2基準層132は、一部が重ねて配置される。
 挿通孔50は、第2基準層132の面内方向において複数の電極16,16,・・・の配置位置に合わせて形成され、配置される。挿通孔50のそれぞれは、一方の面側の開口に挿入された電極16を他方の面側の開口から露出する。
 光信号取得部15は、フレキシブル基板10の露出面上に配置される。光信号取得部15は、保護層19Cを備える。保護層19Cは、硬質層22Cと、軟質層23Cと、を備える。
 硬質層22Cは、ドーム状に形成される。硬質層22Cは、発光部20及び受光部21のそれぞれを被覆するように配置される。即ち、硬質層22Cは、発光部20及び受光部21のそれぞれに重ねて配置される。
 軟質層23Cは、ドーム状に形成される。軟質層23Cは、硬質層22Cを被覆するように配置される。即ち、軟質層23Cは、硬質層22Cに重ねて配置される。
 被覆層26Cは、発光部20及び受光部21を一体化するように、発光部20及び受光部21のそれぞれを被覆する軟質層23Cに跨って被覆するように配置される。被覆層26Cは、軟質層23Cよりも軟質であることが望ましい。被覆層26Cは、例えば、ウレタンアクリレートを用いて形成される。被覆層26Cは、例えば、シート状に形成される。
 光信号取得部15等は、以下のように作製される。
 図7に示すように、例えばガラス製の支持板31の一面上に犠牲層32が形成される。更に、犠牲層32の上には、PEN(ポリエチレンナフタレート)又はPET(ポリエチレンテレフタラート)の層33が形成される。PEN(又はPET)の層33の上には、発光部20及び受光部21が並べて形成される。なお、本実施形態において、発光部20及び受光部21は、10μmの厚さのPETで形成された密着層207により、外周面が被覆される。
 次いで、図8に示すように、PEN(又はPET)層33のうち、発光部20及び受光部21とは重ならない部分がレーザにより剥離される。この際、図には示していないが、PEN(又はPET)層33上にある上部電極及び下部電極の取り出しを犠牲層32上にくるように印刷により形成しておく。次いで、図9に示すように、発光部20及び受光部21を覆うように、ドーム状の硬質層22Cが形成される。また、硬質層22Cを覆うようにドーム状の軟質層23Cが形成される。そして、軟質層23Cを覆うように被覆層26Cが形成される。その後、支持板31が除去されることで、光信号取得部15等が形成される。
 次に、作製した光信号取得部15等を用いた電極シート1の作製方法が以下に説明される。
 図10に示すように、第1基準層131の一方の面上に、光学素子用配線171の一部と、複数の電極16とが印刷により形成される。また、第2基準層132の一方の面に、光学素子用配線171の他部が形成される。そして、第2基準層132の他方の面に、第2粘着層42が形成される。
 次いで、図11に示すように、第1基準層131が、第2基準層132に重ね合わされる。具体的には、第1基準層131の一面が、第2基準層132の一面に対向した状態で重ね合わされる。また、第1基準層131の一面上に形成された電極16が、第2基準層132に形成された挿通孔50に位置合わせして挿入される。これにより、第1基準層131の一面上に形成された光学素子用配線171の一部が、第2基準層132の一面上に形成された光学素子用配線171の他部に重ね合わされる。即ち、光学素子用配線171は、第1基準層131と第2基準層132との間で厚さ方向に挟持される。そして、第1基準層131は、第2基準層132と熱圧着される。これにより、第1基準層131は、図12に示すように、第2基準層132と一体化される。
 次いで、光信号取得部15の発光部20及び受光部21が、図13に示すように、第2基準層132の一方の面上に形成される他方の光学素子用配線171の上に位置合わせされる。そして、光信号取得部15及び被覆層26Cは、一体化された第1基準層131及び第2基準層132に重ね合わされる。その上で、光信号取得部15は、第1基準層131及び第2基準層132と熱圧着される。これにより、光信号取得部15は、図14に示すように、第1基準層131及び第2基準層132と一体化される。
 以上説明した第4実施形態の電極シート1によれば、上記(1)~(12)の効果に加え、以下のような効果を奏する。
(13)光信号取得部15は、基準層103の露出する側の面上に配置される。これにより、光信号取得部15が生体の汗等に影響を受けることがない。従って、電極シート1の安定性を高めることができる。
(13)基準層103は、第1基準層131と、第2基準層132と、を備える。また、光学素子用配線171が、重ね合わされた第1基準層131及び第2基準層132の間に形成される。これにより、光学素子用配線171を容易に形成することができる。
[第5実施形態]
 次に、本発明の第5実施形態に係る電極シート1について、図15~図17を参照して説明する。第5実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第5実施形態に係る電極シート1は、光信号取得部15の上に光学素子用配線171及び電極16が形成される点で第4実施形態と異なる。
 光学素子用配線171及び電極16は、図15及び図16に示すように、被覆層26Cの一方の面上に印刷により形成される。具体的には、光学素子用配線171は、発光部20及び受光部21に接続されるように、被覆層26Cの一方の面上に印刷により形成される。次いで、第1粘着層41は、図17に示すように、電極16の露出面上に印刷により形成される。また、第2基準層132は、被覆層26Cの一方の面上及び光学素子用配線171の面上に亘り、重ねて配置される。即ち、第2基準層132は、電極16の位置を除いて、被覆層26C及び光学素子用配線171に重ねて配置される。そして、第2基準層132の一方の面上には、第2粘着層42が配置される。
 以上説明した第5実施形態の電極シート1によれば、上記(14)の効果に加え、以下のような効果を奏する。
(15)光学素子用配線171及び電極16は、光信号取得部15の被覆層26C上に形成される。これにより、光学素子用配線171及び電極16を容易に形成することができる。
 以上、本発明の電極シートの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、上記実施形態では、標示部12を鼻の筋に沿って形成される直線状の線としたが、これに限定されない。例えば、フレキシブル基板10の一面を2分割する直線Yを標示部12として含んでもよい。なお、フレキシブル基板10を透過性の高い材質とすることで電極16や光学素子18を標示部12とすることも考えられるが、フレキシブル基板10が伸縮性及び柔軟性をもつことから別途標示部12を設けることが好ましい。
 また、上記実施形態において、複数の電極16,16,・・・及び複数の光学素子18,18,・・・は、所定の方向に揃えて並べられるとした。これに加え、複数の電極16,16,・・・のそれぞれと、複数の電極16,16,・・・のそれぞれとが、並べられる所定の方向に交差する方向に重なる位置に並べられてもよい。換言すると、複数の電極16,16,・・・のそれぞれと、複数の光学素子18,18,・・・のそれぞれとが、一対となるような配置に設けられていてもよい。これにより、電気的な生体信号と、光学的な生体信号をより近い位置で取得することができる可能性が高くなるので、生体信号の解析精度を高めることができる。なお、本実施形態では、7つの電極16に対して、対応する7つの光学素子18を設けることが考えられるが、これに限定されない。例えば、2つの電極16に対して対応する1つの光学素子18を設けることや、3つの電極16に対して1つの光学素子18を設けること、逆に、1つの電極16に対して2つ又は3つの光学素子18を設けることが考えられる。したがって、電極16の数と光学素子18の数との比については適宜選択されてよい。
 また、電気信号取得部14は、フレキシブル基板10上に1つだけ配置され、光信号取得部15は、フレキシブル基板10上に複数配置されてもよい。この場合、一対の発光部20及び受光部21が、フレキシブル基板10上に複数は位置されることになるため、少なくとも、光学的に取得された生体信号の解析精度が高まる。また、光信号取得部15は、フレキシブル基板上に、3つ以上配置することが好ましく、5つ以上配置することがより好ましく、8つ以上配置することが特に好ましい。
 また、電気信号取得部14は、フレキシブル基板10の一面を直線Yで2分割した一方の領域に配置されるとした。また、光信号取得部15は、他方の領域に配置されるとした。しかし、これに限定されない。光信号取得部15は、一方の領域及び他方の領域のいずれにも配置されることも可能である。
 また、上記実施形態において、軟質層23は1つのヤング率をもつとして説明されたが、これに限定されない。例えば、軟質層23は、ヤング率の異なる複数の層を重ねて形成されてもよい。このような軟質層23は、貫通孔105の内壁から硬質層22に近づくにつれて、ヤング率が高くなるよう(硬質グラデーション構造)に形成されているのが好ましい。
 また、上記実施形態に係る電極シート1は、複数の光学素子18,18,・・・を設けられてもよい。そして、解析装置2は、複数の光学素子18,18,・・・から最も強い生体信号を出力する光学素子18がスキャンすることにより、生体信号の取得に最適な光学素子18を選択してもよい。
 また、上記実施形態に係る電極シート1の光信号取得部15は、1つの発光部20に対して1つの受光部21を備える。しかしながら、本発明は、上記実施形態に限定されない。具体的には、光信号取得部15は、図18に示すように、1つの発光部20に対して複数の受光部21を備えてもよい。例えば、光信号取得部15は、1つの発光部20に対して矩形に配置された4つの受光部21を備えてもよい。これにより、受光できる領域が広がるので、生体信号をより容易に取得することができる。
 また、上記実施形態に係る電極シート1によって取得された生体信号は、解析装置2において、図19に示すような流れで解析される。
 まず、電極シート1で取得された生体信号は、解析装置2に送信される。解析装置2には、生体信号が入力され、生体信号が表示される(ステップS1)。次いで、解析装置2は、パラメータチェックを実行する(ステップS2)。解析装置2は、パラメータチェックとして、例えば、入力時間範囲、振幅オプション選択、フィルタバンド幅選択等のパラメータチェックを実行する。
 次いで、解析装置2は、生体信号からノイズを除去する(ステップS3)。解析装置2は、例えば、ソフトウェアベースの0.3~5Hzバンドパスフィルタを用いて、光電脈波(PPG)信号をフィルタすることでノイズを除去する。次いで、解析装置2は、振幅のハイピーク及びローピークを検出する(ステップS4)。解析装置2は、検出したローピーク及びハイピークを表示する。
 次いで、解析装置2は、平均振幅と心拍レートとを表示する(ステップS5)。次いで、解析装置2は、表示された生体信号の情報を記録する(ステップS6)。
 1 電極シート
 2 解析装置
 10 フレキシブル基板
 11 生体信号取得部
 12 標示部
 13 グランド電極
 14 電気信号取得部
 15 光信号取得部
 16 電極
 17,24 配線
 18 光学素子
 19 保護層
 20 発光部
 21 受光部
 22 硬質層
 23 軟質層
 50 挿通孔
 103 基準層
 131 第1基準層
 132 第2基準層
 171 光学素子用配線
 Y 直線

Claims (12)

  1.  シート状のフレキシブル基板と、
     前記フレキシブル基板上に配置され、生体の生体信号を取得する生体信号取得部と、
    を備え、
     前記生体信号取得部は、
     前記フレキシブル基板に配置された生体信号を電気的に取得可能な電気信号取得部と、
     前記フレキシブル基板に配置され、生体に対して光を照射することにより、照射した光に基づいて得られた生体信号を取得する複数の光信号取得部と、
    を備える電極シート。
  2.  前記電気信号取得部は、前記フレキシブル基板の一面を直線で2分割した一方の領域に配置され、
     前記光信号取得部は、他方の領域に配置される請求項1に記載の電極シート。
  3.  前記電気信号取得部は、前記フレキシブル基板の面に沿って所定の方向に並べられた複数の電極を備え、
     前記光信号取得部は、複数の電極の配列方向と略同方向に並べられた複数の光学素子を備える請求項2に記載の電極シート。
  4.  前記複数の電極は、前記フレキシブル基板の一面を2分割して2つの領域を形成する直線と略平行に並べられる請求項3に記載の電極シート。
  5.  前記光信号取得部は、前記フレキシブル基板よりヤング率の高い材料により形成され、前記光学素子に接触しつつ、前記光学素子を囲う保護層を更に備える請求項3又は4のいずれかの請求項に記載の電極シート。
  6.  前記保護層は、
     前記光学素子に接触する硬質層と、
     前記硬質層よりもヤング率の低い材料で形成され、前記硬質層に隣接する軟質層と、
    を備える請求項5に記載の電極シート。
  7.  前記電気信号取得部及び前記光信号取得部を生体の計測位置に接触させるために、生体の所定の位置に位置合わせ可能な標示部を更に備える請求項1~6のいずれかの請求項に記載の電極シート。
  8.  前記フレキシブル基板は、基準層によって形成され、
     前記基準層は、
     前記電気信号取得部が配置される第1基準層と、
     前記光信号取得部が配置される第2基準層と、
    を備え、
     前記第1基準層及び前記第2基準層は、一部が重ねて配置される請求項1~7のいずれかの請求項に記載の電極シート。
  9.  前記第1基準層の一方の面上には、前記複数の電極と、前記光信号取得部に接続される光学素子用配線の一部と、が配置され、
     前記第2基準層には、厚さ方向に形成された挿通孔と、一方の面上に形成された前記光学素子用配線の他部と、が配置され、
     前記第1基準層及び前記第2基準層は、前記挿通孔に前記複数の電極が挿入された状態で重ね合わされる請求項8のいずれかの請求項に記載の電極シート。
  10.  前記光信号取得部は、前記第2基準層の一方の面に重ね合わされる請求項9に記載の電極シート。
  11.  前記光学素子用配線は、前記第1基準層と前記第2基準層との間で厚さ方向に挟持される請求項9又は10に記載された電極シート。
  12.  請求項1~11のいずれかの請求項に記載の電極シートと、
     前記フレキシブル基板に接続され、前記生体信号取得部で取得した生体信号を無線により送出可能な無線機器と、を備える電極シートモジュール。
PCT/JP2017/035835 2016-10-03 2017-10-02 電極シート WO2018066519A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018543896A JP6752476B2 (ja) 2016-10-03 2017-10-02 電極シートおよび電極シートモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016195850 2016-10-03
JP2016-195850 2016-10-03

Publications (1)

Publication Number Publication Date
WO2018066519A1 true WO2018066519A1 (ja) 2018-04-12

Family

ID=61831774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035835 WO2018066519A1 (ja) 2016-10-03 2017-10-02 電極シート

Country Status (3)

Country Link
JP (1) JP6752476B2 (ja)
TW (1) TW201828884A (ja)
WO (1) WO2018066519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108814620A (zh) * 2018-05-30 2018-11-16 清华大学 柔性生理信息监测装置
CN112839583A (zh) * 2018-09-21 2021-05-25 智能医疗有限公司 多测量点电极贴片
CN114081499A (zh) * 2021-11-23 2022-02-25 吉林大学 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法
US11872017B2 (en) 2022-02-28 2024-01-16 Seiko Epson Corporation Detecting device and measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223503A (ja) * 2005-02-17 2006-08-31 Shimadzu Corp ホルダーおよびこれを用いた複合生体測定装置
JP2007105316A (ja) * 2005-10-14 2007-04-26 Konica Minolta Sensing Inc 生体情報測定器
US20160015281A1 (en) * 2010-02-03 2016-01-21 Covidien Lp Combined physiological sensor systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126145A (ja) * 1998-10-28 2000-05-09 Omron Corp 心電計測方法及び生体用電極
JP4529862B2 (ja) * 2005-10-12 2010-08-25 オムロンヘルスケア株式会社 体脂肪測定装置、測定ユニットおよび体脂肪測定プログラム
CN105960197B (zh) * 2014-01-27 2022-03-11 Rds公司 健康监视系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223503A (ja) * 2005-02-17 2006-08-31 Shimadzu Corp ホルダーおよびこれを用いた複合生体測定装置
JP2007105316A (ja) * 2005-10-14 2007-04-26 Konica Minolta Sensing Inc 生体情報測定器
US20160015281A1 (en) * 2010-02-03 2016-01-21 Covidien Lp Combined physiological sensor systems and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108814620A (zh) * 2018-05-30 2018-11-16 清华大学 柔性生理信息监测装置
CN112839583A (zh) * 2018-09-21 2021-05-25 智能医疗有限公司 多测量点电极贴片
JP2022501123A (ja) * 2018-09-21 2022-01-06 スマートメディクス エスピー. ゼット オー. オー.Smartmedics Sp. Z O.O. 複数の測定点を備えた電極パッチ
JP7459072B2 (ja) 2018-09-21 2024-04-01 スマートメディクス エスピー. ゼット オー. オー. 複数の測定点を備えた電極パッチ
CN114081499A (zh) * 2021-11-23 2022-02-25 吉林大学 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法
CN114081499B (zh) * 2021-11-23 2024-01-12 吉林大学 一种具有二梯度孔的柔性透气表面肌电电极及其制备方法
US11872017B2 (en) 2022-02-28 2024-01-16 Seiko Epson Corporation Detecting device and measuring device

Also Published As

Publication number Publication date
JPWO2018066519A1 (ja) 2019-09-26
TW201828884A (zh) 2018-08-16
JP6752476B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2018066519A1 (ja) 電極シート
US20210100514A1 (en) Health monitoring systems and methods
ES2824126T3 (es) Procedimiento de procesamiento de fotopletismograma y dispositivo portable que utiliza dicho procedimiento
Kim et al. Attachable pulse sensors integrated with inorganic optoelectronic devices for monitoring heart rates at various body locations
JP2022546991A (ja) バイタルサイン又は健康モニタリングシステム及び方法
US20200237309A1 (en) Health monitoring systems and methods
US11963764B2 (en) Printed all-organic reflectance oximeter array
US20170367679A1 (en) Wearable ultrasonic device for health monitoring with display
WO2011051888A2 (en) Medical optical sensor
Dcosta et al. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO2 Monitoring
US20160345846A1 (en) Wearable Biomedical Devices Manufactured with Flexible Flat Panel Display Technology
Polat Seamlessly integrable optoelectronics for clinical grade wearables
JP2013009709A (ja) 生体センサーおよび生体情報検出装置
JP2018164725A (ja) 生体信号測定装置及びプログラム
US20220104718A1 (en) Reflective photoplethysmogram sensor and biological information measurement apparatus
US20120130210A1 (en) Sensor for measuring amount of substance in blood and method of making the sensor
KR102250188B1 (ko) 생체 정보 검출 장치
CN114980807A (zh) 具有显示器的健康和生命体征监测贴片及其制造方法
JP2016000205A (ja) 生体センサーおよび生体情報検出装置
US20230172499A1 (en) Vital signs or health monitoring systems and methods
US20150094550A1 (en) Dual-spectra pulse oximeter sensors and methods of making the same
KR20220111480A (ko) 생체 신호 센서, 센서 시스템 및 전자 기기
EP2316332A1 (en) Sensor for measuring amount of substance in blood and method of making the sensor
US20240120326A1 (en) Bio sensing device
KR20220013775A (ko) 연신 소자, 표시 패널, 센서 및 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858357

Country of ref document: EP

Kind code of ref document: A1