WO2018066483A1 - Semiconductor element - Google Patents

Semiconductor element Download PDF

Info

Publication number
WO2018066483A1
WO2018066483A1 PCT/JP2017/035690 JP2017035690W WO2018066483A1 WO 2018066483 A1 WO2018066483 A1 WO 2018066483A1 JP 2017035690 W JP2017035690 W JP 2017035690W WO 2018066483 A1 WO2018066483 A1 WO 2018066483A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor element
less
amorphous
electrode
Prior art date
Application number
PCT/JP2017/035690
Other languages
French (fr)
Japanese (ja)
Inventor
細野 秀雄
日出也 雲見
暁 渡邉
中村 伸宏
伊藤 和弘
宮川 直通
Original Assignee
国立大学法人東京工業大学
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 旭硝子株式会社 filed Critical 国立大学法人東京工業大学
Priority to JP2018543876A priority Critical patent/JPWO2018066483A1/en
Publication of WO2018066483A1 publication Critical patent/WO2018066483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Definitions

  • the present invention relates to a semiconductor element, for example, a semiconductor element such as a solar cell and a thin film transistor.
  • semiconductor elements such as solar cells and thin film transistors (TFTs) have a configuration in which an electrode layer is disposed on a member made of crystalline or amorphous n-type silicon (see, for example, Patent Document 1).
  • a normal semiconductor element has a problem that the interface between the n-type silicon member and the electrode layer does not exhibit ohmic resistance behavior, and as a result, the interface contact resistance is high. This is one factor that hinders the efficiency improvement of semiconductor elements.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a semiconductor element in which contact resistance between an n-type silicon member and an electrode layer is significantly suppressed.
  • an n-type Si portion A first layer disposed on the n-type Si portion; A second layer disposed on the first layer; An electrode layer disposed on the second layer;
  • the first layer is composed of an oxide electride containing calcium atoms and aluminum atoms
  • Said second layer comprises the following groups: (I) a metal oxide comprising zinc (Zn) and oxygen (O), and further comprising at least one of silicon (Si) and tin (Sn); (Ii) a metal oxide containing titanium (Ti) and oxygen (O), (Iii) a metal oxide containing tin (Sn) and oxygen (O), and (iv) a metal oxide containing zinc (Zn) and oxygen (O),
  • a semiconductor device selected from is provided.
  • the present invention can provide a semiconductor element in which contact resistance between the n-type silicon member and the electrode layer is significantly suppressed.
  • an n-type Si portion A first layer disposed on the n-type Si portion; A second layer disposed on the first layer; An electrode layer disposed on the second layer;
  • the first layer is composed of an oxide electride containing calcium atoms and aluminum atoms
  • Said second layer comprises the following groups: (I) a metal oxide comprising zinc (Zn) and oxygen (O), and further comprising at least one of silicon (Si) and tin (Sn); (Ii) a metal oxide containing titanium (Ti) and oxygen (O), (Iii) a metal oxide containing tin (Sn) and oxygen (O), and (iv) a metal oxide containing zinc (Zn) and oxygen (O),
  • a semiconductor device selected from is provided.
  • an interface between an n-type Si portion and a layer disposed immediately above the n-type Si portion is referred to as a “first interface”.
  • an interface between the electrode layer and a layer disposed immediately below the electrode layer is referred to as a “second interface”.
  • a normal semiconductor element has a problem that the contact resistance at the first interface between the n-type silicon member and the electrode layer is high.
  • select the appropriate metal material to increase the carrier concentration in Si near the interface or to reduce the Schottky barrier height at the metal-Si interface The technique of doing is known.
  • the former has a limit in reducing contact resistance due to a physical phenomenon such as the solid solubility limit of dopant in a semiconductor and the latter the Fermi level pinning at the metal / Si interface.
  • a plurality of layers are added between the n-type silicon member and the electrode layer.
  • the first layer having the above-described characteristics included in the semiconductor element has good electron conductivity. Further, it has been confirmed that the contact resistance of the interface between the first layer and the n-type Si portion (that is, the “first interface”) is relatively low.
  • the first layer By disposing the first layer on the n-type Si portion, Fermi level pinning does not occur at the first interface, and the first layer has a high carrier density and a low work function.
  • the barrier height at the interface of 1 is small. Therefore, the contact resistance of the first interface can be significantly suppressed while ensuring the operability as the semiconductor element.
  • Fermi level pinning means that when the semiconductor and the metal are joined, the change in the Schottky barrier height is small even if metals having various work functions are used. For example, when Si and Al are bonded, the Schottky barrier height is about 1.5 eV, which is higher than the Schottky barrier height expected from the work function (4.2 eV) of Al and the electron affinity (4 eV) of Si. Is also big. Fermi level pinning is caused by the interface states or interface states existing in the band gap of the semiconductor, but it is considered that the chemical stability of the interface is greatly related in practice.
  • the first layer as described above has a relatively high contact resistance with the metal. For this reason, when the electrode layer comprised with the metal is arrange
  • the first layer and the electrode layer are not in direct contact. That is, the second layer is disposed between the first layer and the electrode layer.
  • the second layer has good electronic conductivity. Further, it has been confirmed that the contact resistance of the interface between the second layer and the electrode (that is, the “second interface”) is relatively low. It has also been confirmed that the contact resistance is relatively low at the interface between the first layer and the second layer (hereinafter referred to as “third interface”).
  • the Schottky barrier height is significantly suppressed at the second interface and the third interface for the same reason as the first interface, so that the operability as the semiconductor element is ensured.
  • the contact resistance of the second interface (or the third interface) can be significantly suppressed.
  • element efficiency can be significantly improved.
  • the present semiconductor element is applied to a solar cell, the power generation efficiency can be significantly increased.
  • this semiconductor element is applied to a TFT, it is possible to significantly increase the operation efficiency.
  • FIG. 1 shows a schematic cross section of a semiconductor device (hereinafter referred to as “first semiconductor device”) according to an embodiment of the present invention.
  • the first semiconductor element 100 includes a support 110, an n-type Si layer 120, a first layer 130, a second layer 140, and an electrode layer 150.
  • the support 110 has a role of supporting each layer disposed on the support 110 and facilitating the formation of the n-type Si layer 120.
  • the support 110 may have a p-type Si layer.
  • the support 110 may be a p-type Si layer.
  • the support 110 may have an amorphous Si layer.
  • the support 110 may be an amorphous Si layer.
  • the support 110 may be omitted.
  • the n-type Si layer 120 is composed of a layer containing n-type silicon Si.
  • the n-type Si layer 120 may be amorphous or crystalline.
  • the first layer 130 is composed of an oxide electride containing calcium atoms and aluminum atoms.
  • the second layer 140 is made of a metal oxide containing zinc (Zn) and oxygen (O), and further containing at least one of silicon (Si) and tin (Sn).
  • first layer 130 and the second layer 140 The details of the first layer 130 and the second layer 140 will be described later.
  • the electrode layer 150 is made of metal (or alloy; the same applies hereinafter).
  • the first to third interfaces that is, the interface between the n-type Si layer 120 and the first layer 130 (first interface), the second layer
  • the contact resistance is significantly suppressed at each of the interface between the electrode layer 150 and the electrode layer 150 (second interface) and the interface between the first layer 130 and the second layer 140 (third interface). Is done.
  • the operating efficiency can be significantly improved.
  • the support 110 has a role of supporting each layer disposed on the support 110 and facilitating the formation of the n-type Si layer 120.
  • the material of the support 110 is not particularly limited.
  • the support 110 when the first semiconductor element 100 is applied to a part of a solar cell, the support 110 may be made of p-type Si or non-doped Si.
  • the support 110 when the first semiconductor element 100 is applied to a part of the TFT, the support 110 may include amorphous Si or crystalline Si, or may be composed of amorphous Si or crystalline Si.
  • the support 110 may be a substrate made of glass, alumina, silicon, or the like.
  • the support 110 is not an essential component and may be omitted.
  • N-type Si layer 120 An n-type Si layer 120 is disposed on the support 110.
  • the n-type Si layer 120 may be crystalline or amorphous.
  • the n-type Si layer 120 may be doped with phosphorus (P) and / or arsenic (As).
  • the electron density of the n-type Si layer 120 may be in the range of 10 14 cm ⁇ 3 to 10 21 cm ⁇ 3 , for example.
  • the electron density is preferably 10 16 cm ⁇ 3 or more, and more preferably 10 18 cm ⁇ 3 or more. If the electron density is 10 14 cm ⁇ 3 or more, the contact resistance tends to be low.
  • the electron density is preferably 10 20 cm ⁇ 3 or less, and more preferably 10 19 cm ⁇ 3 or less.
  • the first layer 130 is composed of an oxide electride containing calcium atoms and aluminum atoms.
  • the first layer 130 has conductivity, a significantly high ionization potential, and a low work function.
  • the work function of the first layer 130 is in the range of 2.4 eV to 4.5 eV (eg, 2.8 eV to 3.2 eV).
  • the first layer 130 has a feature of high electron density.
  • the electron density of the first layer 130 is, for example, in the range of 2.0 ⁇ 10 17 cm ⁇ 3 to 2.3 ⁇ 10 21 cm ⁇ 3 .
  • the electron density is more preferably 1.0 ⁇ 10 18 cm ⁇ 3 or more, further preferably 1 ⁇ 10 19 cm ⁇ 3 or more, and particularly preferably 1 ⁇ 10 20 cm ⁇ 3 or more.
  • the interface (first interface) between the n-type Si layer 120 and the first layer 130 exhibits ohmic properties due to a tunnel effect. Therefore, the contact resistance of the first interface is significantly suppressed.
  • the first layer 130 also exhibits good contact resistance with the second layer 140 (third interface).
  • the contact resistance can be significantly suppressed at both the first interface and the third interface.
  • the thickness of the first layer 130 is preferably in the range of 0.5 nm to 10 nm. If it is 0.5 nm or more, a homogeneous thin film can be formed, and thus the contact resistance reduction effect can be obtained stably.
  • the thickness of the first layer 130 is more preferably 2 nm or more, and further preferably 3 nm or more. On the other hand, if the thickness of the first layer 130 is 10 nm or less, the influence of volume resistance can be ignored.
  • the thickness of the first layer 130 is more preferably 7 nm or less, and further preferably 5 nm or less.
  • the thickness of the first layer 130 can be measured by X-ray reflection (XRR) or observation with a cross-sectional transmission electron microscope.
  • the first layer 130 may be amorphous or crystalline. Hereinafter, each case will be described.
  • the first layer 130 may be made of an amorphous oxide electride containing calcium atoms and aluminum atoms.
  • Amorphous means a substance that does not give a sharp peak in X-ray diffraction measurement. Specifically, when the X-ray wavelength ⁇ is 0.154 nm and the Scherrer constant K is 0.9, the crystallite diameter (Scherrer diameter) obtained by the Scherrer equation represented by the following equation (1) is 5: .2 nm or less.
  • the Scherrer diameter L is a Scherrer constant K, an X-ray wavelength ⁇ , a half-value width ⁇ , and a peak position ⁇ .
  • L K ⁇ / ( ⁇ cos ⁇ ) (1)
  • an electride of an amorphous oxide containing calcium atoms and aluminum atoms is composed of a solvate in which an amorphous composed of calcium atoms, aluminum atoms and oxygen atoms is used as a solvent and electrons are used as a solute.
  • An amorphous solid material is meant.
  • Electrons in electride can work as anions.
  • the electrons may exist as bipolarons.
  • Bipolaron is composed of calcium atoms, aluminum atoms, and oxygen atoms, and is adjacent to two cages that are three-dimensionally connected and have a void of about 0.4 nm in inner diameter.
  • Each cage has an electron (solute). Is included.
  • the state of the amorphous oxide electride is not limited to the above, and two electrons (solutes) may be included in one cage.
  • a plurality of these cages may be in an aggregated state, and the aggregated cage can be regarded as a microcrystal. Therefore, a state in which the microcrystal is included in the amorphous is also regarded as amorphous.
  • the molar ratio of aluminum atom to calcium atom (Ca / Al) in the “amorphous oxide electride” is preferably in the range of 0.3 to 5.0, more preferably in the range of 0.55 to 1.00.
  • the range of 0.8 to 0.9 is more preferable, and the range of 0.84 to 0.86 is particularly preferable.
  • composition of “amorphous oxide electride” is preferably 12CaO ⁇ 7Al 2 O 3, but is not limited thereto, and examples thereof include the following compounds (1) to (5).
  • metal atoms such as Sr, Mg, and / or Ba.
  • a compound in which some or all of Ca atoms are substituted with Sr is strontium aluminate Sr 12 Al 14 O 33 , and calcium strontium aluminum is used as a mixed crystal in which the mixing ratio of Ca and Sr is arbitrarily changed.
  • Nate Ca 12-x Sr X Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, it is a number greater than 0 and less than 12).
  • a part of metal atoms and / or nonmetal atoms (excluding oxygen atoms) in 12CaO.7Al 2 O 3 is Ti, V, One or more transition metal atoms selected from the group consisting of Cr, Mn, Fe, Co, Ni, and Cu or one or more alkali metal atoms selected from the group consisting of typical metal atoms, Li, Na, and K; Or an isomorphous compound substituted with one or more rare earth atoms selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
  • a compound in which some or all of the free oxygen ions included in the cage are replaced with other anions include, for example, anions such as H ⁇ , H 2 ⁇ , H 2 ⁇ , O ⁇ , O 2 ⁇ , OH ⁇ , F ⁇ , Cl ⁇ , and S 2 ⁇ , and nitrogen (N). There are anions.
  • Bipolaron has almost no light absorption in the visible light range where the photon energy is 1.55 eV to 3.10 eV, and shows light absorption in the vicinity of 4.6 eV. Accordingly, the first layer 130 is transparent in visible light. In addition, by measuring the light absorption characteristics of the first layer 130 and measuring the light absorption coefficient in the vicinity of 4.6 eV, whether or not bipolaron is present in the first layer 130, that is, the first layer 130 is measured. It can be confirmed whether or not has an electride of amorphous oxide.
  • the composition analysis of the first layer 130 can be performed by an XPS method, an EPMA method, an EDX method, or the like. Analysis by the XPS method is possible when the film thickness is 100 nm or less, EPMA method when the film thickness is 50 nm or more, and EDX method when it is 3 ⁇ m or more.
  • the first layer 130 is composed of an amorphous oxide electride, no peak is observed in the X-ray diffraction measurement, and only a halo is observed.
  • the first layer 130 may contain microcrystals. Whether or not microcrystals are contained in the first layer 130 is determined from, for example, a cross-sectional TEM (transmission electron microscope) photograph of the first layer 130.
  • the composition in the crystalline state is represented by 12CaO ⁇ 7Al 2 O 3 , CaO ⁇ Al 2 O 3 , 3CaO ⁇ Al 2 O 3 and the like.
  • the microcrystal is a crystal having a Scherrer diameter larger than 5.2 nm and smaller than 100 nm. When the first layer 130 is microcrystalline, conductivity is improved.
  • the light absorption value at a position of 4.6 eV may be 100 cm ⁇ 1 or more, or 200 cm ⁇ 1 or more. If the light absorption value at the position of 4.6 eV is 100 cm ⁇ 1 or more, the electron density increases and the work function decreases, so that the contact resistance can be sufficiently reduced.
  • the electron density of the first layer 130 can be measured by an iodine titration method.
  • the density of bipolarons in the electride thin film can be calculated by multiplying the measured electron density by 1/2.
  • a sample of the first layer 130 is immersed in a 5 mol / l iodine aqueous solution and dissolved by adding hydrochloric acid. This is a method for titration detection.
  • iodine in the aqueous iodine solution is ionized by the following reaction: I 2 + e ⁇ ⁇ 2I ⁇ (2)
  • Formula (2) When titrating an aqueous iodine solution with sodium thiosulfate, 2Na 2 S 2 O 3 + I 2 ⁇ 2NaI + Na 2 S 4 O 6 (3)
  • the amount of iodine consumed in the reaction of equation (2) is calculated by subtracting the amount of iodine detected by titration in equation (3) from the amount of iodine present in the initial solution. Thereby, the electron density in the sample of the first layer 130 can be measured.
  • a method for forming the amorphous first layer 130 is not particularly limited.
  • the amorphous first layer 130 may be formed by, for example, a vapor deposition method.
  • the amorphous first layer 130 may be deposited by heating the raw material in a vacuum of 10 ⁇ 7 Pa to 10 ⁇ 3 Pa, for example. Further, the amorphous first layer 130 may be formed by a sputtering method or the like.
  • the first layer 130 may be made of a crystalline oxide electride containing calcium atoms and aluminum atoms.
  • Crystal electrite electrides are three-dimensionally stacked with their respective cages sharing a plane, so that a crystal lattice is formed, and electrons are included in a part of these cages.
  • the electrons included in the cage are loosely bound in the cage and can move freely in the crystal. For this reason, the crystalline C12A7 electride exhibits higher conductivity than the amorphous C12A7 electride.
  • the composition of the “crystalline oxide electride” is the same as the composition of the “amorphous oxide electride” described above.
  • the crystalline oxide electride can be produced by heat-treating the amorphous oxide electride to 900 ° C. or higher.
  • the heat treatment can be performed by heating with a normal electric furnace, infrared heating, laser heating, induction heating, or the like.
  • the second layer 140 includes zinc (Zn) and oxygen (O), and further includes a metal oxide including at least one of silicon (Si) and tin (Sn).
  • the second layer 140 may include zinc (Zn), silicon (Si), and oxygen (O).
  • a second layer is particularly referred to as a “ZSO layer”.
  • the second layer may include zinc (Zn), tin (Sn), and oxygen (O).
  • ZTO layer such a second layer is particularly referred to as a “ZTO layer”.
  • the second layer may include zinc (Zn), silicon (Si), tin (Sn), and oxygen (O).
  • ZSTO layer zinc (Zn), silicon (Si), tin (Sn), and oxygen (O).
  • ZSTO layer zinc (Zn), silicon (Si), tin (Sn), and oxygen
  • the ZSO layer contains zinc (Zn), silicon (Si), and oxygen (O).
  • ZnO zinc
  • Si silicon
  • O oxygen
  • the second layer 140 does not have a crystal grain boundary, and thus is superior in flatness and homogeneity as compared to a generally used oxide semiconductor such as ZnO.
  • the value of Zn / (Zn + Si) is, for example, preferably in the range of 0.30 to 0.95 in molar ratio. If it is 0.30 or more, a sufficiently large electron mobility can be obtained and the film can be used after being thickened, so that the Si substrate can be sufficiently chemically protected. If it is 0.95 or less, since a smooth surface is obtained, a short circuit can be suppressed.
  • the value of Zn / (Zn + Si) may be 0.70 or more, 0.80 or more, or 0.85 or more in terms of molar ratio.
  • the value of Zn / (Zn + Si) may be 0.94 or less in molar ratio, 0.92 or less, or 0.90 or less.
  • x 0.30 or more, a sufficiently large electron mobility can be obtained and the film can be used after being thickened, so that the Si substrate can be sufficiently protected.
  • x 0.95 or less, a smooth surface can be obtained and short-circuiting can be suppressed.
  • x may be 0.70 or more, 0.80 or more, or 0.85 or more.
  • x may be 0.94 or less, 0.92 or less, or 0.90 or less.
  • the ZSO layer is excellent in transparency, and exhibits a high electron mobility of, for example, 0.1 cm 2 V ⁇ 1 s ⁇ 1 to 5.0 cm 2 V ⁇ 1 s ⁇ 1 .
  • the ZSO layer since the ZSO layer is homogeneous and does not have crystal grain boundaries, and has a low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate.
  • the Si substrate and various functional layers formed on the substrate are known to deteriorate in characteristics mainly due to the influence of oxygen and moisture when exposed to the outside air, and a protective layer is usually required.
  • the thickness of the ZSO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZSO layer is 10 nm or more, it sufficiently functions as a protective layer. If the thickness of the ZSO layer is 1000 nm or less, the manufacturing process is short. When the thickness of the ZSO layer exceeds 1000 nm, in order to improve the film formation speed (film formation thickness per unit time), for example, when using a sputtering method, a plurality of sputtering targets are prepared, or a high output A film forming apparatus is required.
  • the thickness of the ZSO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more. On the other hand, the thickness of the ZSO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
  • the ZTO layer contains zinc (Zn), tin (Sn), and oxygen (O).
  • the etching rate is appropriate, and a desired shape can be formed without excessive etching, so that the semiconductor element can be manufactured stably.
  • SnO 2 in terms of oxide, relative to the total 100 mol% of ZnO and SnO 2, SnO 2 is 15 mol% or more, and preferably not more than 95 mol%. If SnO 2 is 15 mol% or more, the crystallization temperature is high, and it is difficult to crystallize in the heat treatment step performed in various processes. If SnO 2 is less 95 mol%, in easy sintering, good oxide target is obtained, easy to form a thin film. SnO 2 may be 20 mol% or more, 30 mol% or more, 35 mol% or more, or 40 mol% or more. On the other hand, SnO 2 may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
  • ZTO layer is excellent in transparency, for example, shows a high electron mobility 1cm 2 V -1 s -1 ⁇ 10cm 2 V -1 s -1.
  • the ZSTO layer is homogeneous and does not have a crystal grain boundary and has low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate.
  • the thickness of the ZTO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZTO layer is 10 nm or more, it sufficiently functions as a protective layer. If the thickness of the ZTO layer is 1000 nm or less, the manufacturing process is short.
  • the thickness of the ZTO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more.
  • the thickness of the ZSO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
  • the ZSTO layer includes zinc (Zn), tin (Sn), silicon (Si), and oxygen (O).
  • the work function is low, the etching rate is appropriate, and high transparency is obtained, so that the semiconductor element characteristics are improved.
  • SnO 2 in terms of oxide, ZnO, relative to SnO 2, and the total 100 mol% of SiO 2, SnO 2 is 15 mol% or more, and preferably not more than 95 mol%. If SnO 2 is 15 mol% or more, the crystallization temperature is high, and it is difficult to crystallize in the heat treatment step performed in various processes. If it is 95 mol% or less, it is easy to sinter, a good oxide target is obtained, and a thin film is easily formed. SnO 2 may be 30 mol% or more, 35 mol% or more, or 40 mol% or more. On the other hand, SnO 2 may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
  • SiO 2 in terms of oxide, ZnO, relative to SnO 2, and the total 100 mol% of SiO 2, SiO 2 is, 7 mol% or more, and preferably not more than 30 mol%. SiO 2 is 7 mol% or more, not more than 30 mol%, the electron affinity is not too high, the volume resistivity is not too high. SiO 2 may be 8 mol% or more, or 10 mol% or more. On the other hand, SiO 2 may be less 20 mol%, may be not more than 15 mol%.
  • the ZSTO layer is excellent in transparency and exhibits a high electron mobility of, for example, 0.1 cm 2 V ⁇ 1 s ⁇ 1 to 3 cm 2 V ⁇ 1 s ⁇ 1 .
  • the ZSTO layer is homogeneous and does not have a crystal grain boundary and has low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate.
  • the thickness of the ZSTO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZSTO layer is 10 nm or more, it sufficiently functions as a protective layer for the Si substrate and various functional layers formed on the substrate. In addition, if the thickness of the ZSTO layer is 1000 nm or less, the manufacturing process is short.
  • the thickness of the ZSTO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more. On the other hand, the thickness of the ZSTO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
  • the second layer 140 may further include one or more metal components selected from the group consisting of titanium (Ti), indium (In), gallium (Ga), niobium (Nb), and aluminum (Al). .
  • Ti titanium
  • In indium
  • Ga gallium
  • Nb niobium
  • Al aluminum
  • the content of these metal components calculated as oxide, ZnO, the total 100 mol% of SiO 2, SnO 2, and other oxides of the metal components, preferably not more than 15 mol%, more preferably 10mol % Or less, more preferably 5 mol% or less. In terms of oxides, these metals are calculated as TiO 2 , In 2 O 3 , Ga 2 O 3 , Nb 2 O 5 , or Al 2 O 3 .
  • the composition of the second layer 140 can be analyzed using EPMA when the thickness is 200 nm or more.
  • the analysis can be performed using SEM-EDX having an acceleration voltage of 10 kV.
  • the analysis can also be performed by performing substrate correction using XRF.
  • the second layer 140 can be analyzed by using a volume of 1 mm 3 or more.
  • the second layer 140 is dominant in an amorphous state or an amorphous state.
  • amorphous means a substance that does not give a sharp peak in the X-ray diffraction measurement, like the first layer 130.
  • the amorphous state is dominant when the amorphous is present in a volume ratio of more than 50%.
  • the second layer 140 is predominantly amorphous or amorphous because the film surface has high smoothness and can prevent a short circuit of the element.
  • the second layer 140 may be a microcrystal or a mixture of amorphous and microcrystal.
  • the microcrystal is a crystal having a Scherrer diameter larger than 5.2 nm and smaller than 100 nm. It is preferable that the second layer 140 be microcrystalline because conductivity is improved. It is preferable that the second layer 140 is in a form in which amorphous and microcrystals are mixed because both smoothness and conductivity are improved.
  • the electron mobility of the second layer 140 is preferably 10 ⁇ 4 cm 2 ⁇ V ⁇ 1 s ⁇ 1 to 10 2 cm 2 ⁇ V ⁇ 1 s ⁇ 1 .
  • the thickness of the second layer 140 can be 10 nm or more, and as a protective layer for the Si substrate and various functional layers formed on the substrate. Works well. If it is 10 2 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or less, the amorphous state becomes dominant, the smoothness of the film surface is high, and the short circuit of the element can be prevented.
  • the electron mobility of the second layer 140 may be 10 ⁇ 4 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or more, or may be 10 ⁇ 3 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or more. It may be ⁇ 2 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or more.
  • the electron mobility of the second layer 140 may be 10 2 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or less, may be 10 cm 2 ⁇ V ⁇ 1 s ⁇ 1 or less, and may be 10 ⁇ 1 cm 2. It may be V ⁇ 1 s ⁇ 1 or less.
  • the electron density of the second layer 140 is preferably 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 . If the thickness is 1 ⁇ 10 14 cm ⁇ 3 or more, the thickness of the second layer 140 can be 10 nm or more, and it sufficiently functions as a protective layer for the Si substrate and various functional layers formed on the substrate. If it is 1 ⁇ 10 21 cm ⁇ 3 or less, the amorphous state becomes dominant, the smoothness of the film surface is high, and the short circuit of the element can be prevented.
  • the electron density of the second layer 140 may be 1 ⁇ 10 14 cm ⁇ 3 or more, 5 ⁇ 10 16 cm ⁇ 3 or more, or 1 ⁇ 10 18 cm ⁇ 3 or more. Good.
  • the electron density of the second layer 140 may be 1 ⁇ 10 21 cm ⁇ 3 or less, 5 ⁇ 10 20 cm ⁇ 3 or less, or 1 ⁇ 10 20 cm ⁇ 3 or less. Good.
  • the electron mobility of the second layer 140 can be obtained by a hole measurement method, a time-of-flight (TOF) method, or the like.
  • the electron density of the second layer 140 can be obtained by an iodine titration method, a Hall measurement method, or the like.
  • the electron affinity of the second layer 140 is preferably 2.0 eV to 4.0 eV. If it is 2.0 eV or more, the contact resistance can be sufficiently reduced. If it is 4.0 eV or less, the effect of reducing the contact resistance cannot be sufficiently obtained.
  • the electron affinity of the second layer 140 may be 2.0 eV or more, 2.2 eV or more, or 2.5 eV or more. On the other hand, the electron affinity of the second layer 140 may be 4.0 eV or less, 3.5 eV or less, or 3.0 eV or less.
  • the ionization potential of the second layer 140 is preferably 5.5 eV to 8.5 eV.
  • the second layer 140 having such a large ionization potential has a high hole blocking effect and can selectively transport only electrons.
  • the ionization potential of the second layer 140 may be 5.7 eV or more, or 5.9 eV or more.
  • the ionization potential of the second layer 140 may be 7.5 eV or less, or 7.0 eV or less.
  • the interface between the n-type Si layer and the metal electrode layer usually does not exhibit ohmic resistance behavior and has a problem that the contact resistance of the interface is high.
  • the second layer 140 forms an ohmic junction with the metal electrode layer 150, and has a characteristic that the contact resistance between the two layers is relatively small. Further, as described above, the contact resistance at the interface between the second layer 140 and the first layer 130 is significantly small. For this reason, even if the second layer 140 is provided on the first layer 130, the influence of the contact resistance increase due to the increase in the number of interfaces is small.
  • the entire resistance loss in the first semiconductor element 100 can be suppressed. This also makes it possible to increase the element efficiency in the first semiconductor element 100.
  • the electrode layer 150 is made of metal.
  • the electrode layer 150 may be made of, for example, aluminum, an aluminum alloy, copper, a copper alloy, or the like.
  • the thickness of the electrode layer 150 is, for example, in the range of 50 nm to 100 nm.
  • a thickness of the electrode layer 150 of 50 nm or more is preferable because a low-resistance electrode is formed.
  • a thickness of the electrode layer 150 of 100 nm or less is preferable because a step at the edge of the electrode is small and a coating property of a film to be formed later is good.
  • the thickness of the electrode layer 150 may be 60 nm or more, or 70 nm or more. On the other hand, the thickness of the electrode layer 150 may be 90 nm or less, or 80 nm or less.
  • the electrode layer 150 may be configured in a mesh shape, for example.
  • FIG. 2 shows a schematic flow chart of an example of a method for manufacturing the first semiconductor element 100.
  • this manufacturing method (hereinafter referred to as “first manufacturing method”) Placing an n-type Si layer on the support (step S110); disposing a first layer on the n-type Si layer (step S120); Disposing a second layer on the first layer (step S130); Disposing an electrode layer on the second layer (step S140); Have
  • Step S110 First, the support body 110 is prepared.
  • the material of the support 110 is not particularly limited.
  • the case where the support 110 is a Si substrate will be described as an example.
  • the surface of the support 110 is sufficiently cleaned before the subsequent steps.
  • an n-type Si layer 120 is formed on the support 110.
  • the n-type Si layer 120 may be formed, for example, by doping the surface of the support 110, that is, the Si substrate, with an n-type dopant such as phosphorus and / or arsenic.
  • Step S120 Next, the first layer 130 is disposed on the n-type Si layer 120.
  • the method for forming the first layer 130 is not particularly limited.
  • the first layer 130 can be formed by, for example, a “vapor deposition method” using a target including aluminum (Al) and calcium (Ca).
  • the “vapor deposition method” means that a target material including a physical vapor deposition (PVD) method, a PLD method, a sputtering method, and a vacuum deposition method is vaporized and then formed. It means a general term for a film forming method to be deposited on a film member.
  • the first layer 130 may be formed by an evaporation method.
  • the first layer 130 may be deposited by heating the raw material in a vacuum of 10 ⁇ 7 Pa to 10 ⁇ 3 Pa, for example. If it is 10 ⁇ 7 Pa or more, a sufficient electron density can be obtained. It may be 10 ⁇ 6 Pa or higher, or 10 ⁇ 5 Pa or higher. If it is 10 ⁇ 3 Pa or less, a thin film can be formed at low cost using a simple apparatus. It may be 10 ⁇ 4 Pa or less, or 10 ⁇ 5 Pa or less. Further, the first layer 130 may be formed by a sputtering method or the like.
  • the first layer 130 formed by vapor deposition has an amorphous structure. Thereafter, the first layer 130 may be heat-treated as necessary. In this case, for example, the crystalline first layer 130 can be obtained by heat-treating the first layer 130 at 900 ° C. or higher.
  • Step S130 Next, the second layer 140 is disposed on the first layer 130.
  • the second layer 140 can be formed by, for example, a “vapor deposition method” including a sputtering method using a target including zinc (Zn) and silicon (Si).
  • Sputtering methods include DC (direct current) sputtering method, high frequency sputtering method, helicon wave sputtering method, ion beam sputtering method, magnetron sputtering method and the like.
  • the second layer 140 can be formed relatively uniformly in a large area region.
  • the target only needs to contain Zn and Si.
  • Zn and Si may be contained in a single target or may be separately contained in a plurality of targets.
  • Zn and Si may exist as a metal or a metal oxide, respectively, or may exist as an alloy or a composite metal oxide.
  • the metal oxide or composite metal oxide may be crystalline or amorphous.
  • the target may contain one or more metal components selected from the group consisting of Sn, Ti, In, Ga, Nb, and Al in addition to Zn and Si.
  • Zn, Si and other metal components may be contained in a single target, or may be separately contained in a plurality of targets.
  • Zn, Si and other metal components may exist as a metal or a metal oxide, respectively, or may exist as an alloy or a composite metal oxide of two or more metals.
  • the metal oxide or composite metal oxide may be crystalline or amorphous.
  • the Zn / (Zn + Si) value in the target may be 0.30 to 0.95, 0.70 to 0.94, 0.80 in terms of molar ratio. It may be ⁇ 0.92 and may be 0.85 ⁇ 0.90.
  • a single target contains one or more metal components selected from the group consisting of Sn, Ti, In, Ga, Nb, and Al in addition to Zn and Si, the content of these metal components is oxide in terms of, ZnO, the total 100 mol% of an oxide of SiO 2 and other metal components, preferably not more than 15 mol%, more preferably not more than 10 mol%, more preferably not more than 5 mol%.
  • the metal component is calculated as SnO 2 , TiO 2 , In 2 O 3 , Ga 2 O 3 , Nb 2 O 5 , or Al 2 O 3 .
  • the composition analysis of the target can be performed by the XRF method or the like. Note that the composition of the second layer 140 may differ from the composition ratio of the target used.
  • the second layer 140 can be obtained by simultaneously sputtering a metal Si target and a ZnO target.
  • Other combinations of a plurality of targets include a combination of a ZnO target and a SiO 2 target, a combination of a plurality of targets including ZnO and SiO 2 with different ZnO ratios, a combination of a metal Zn target and a metal Si target, Examples include a combination of a metal Zn target and a SiO 2 target, and a combination of a metal Zn or metal Si target and a ZnO and SiO 2 target.
  • the second layer 140 having a desired composition can be obtained by adjusting the power applied to each target.
  • the support 110 may not be “positively” heated. preferable. This is because when the temperature of the support 110 is increased, the second layer 140 may not easily become amorphous.
  • the support 110 may be “incidentally” heated by the sputtering process itself by ion bombardment or the like. In this case, how much the temperature of the support 110 increases depends on the sputtering conditions. In order to avoid an increase in the temperature of the support 110, the support 110 may be “positively” cooled.
  • the first layer 130 is preferably formed at a temperature of the support 110 of 70 ° C. or lower.
  • the temperature of the support 110 may be 60 ° C. or less, or 50 ° C. or less.
  • the pressure of the sputtering gas (pressure in the chamber of the sputtering apparatus) is preferably in the range of 0.05 Pa to 10 Pa, more preferably 0.1 Pa to 5 Pa, and further preferably 0.2 Pa to 3 Pa. If it is this range, since the pressure of sputtering gas will not be too low, plasma will become stable. Moreover, since the pressure of sputtering gas is not too high, the temperature rise of the support body 110 due to an increase in ion bombardment can be suppressed.
  • the sputtering gas used is not particularly limited.
  • the sputtering gas may be an inert gas or a noble gas. Oxygen may be contained.
  • the inert gas eg, N 2 gas.
  • examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These may be used alone or in combination with other gases.
  • the sputtering gas may be a reducing gas such as NO (nitrogen monoxide) or CO (carbon monoxide).
  • the second layer 140 can be formed on the first layer 130.
  • Step S140 Next, the electrode layer 150 is disposed on the second layer 140.
  • the formation method of the electrode layer 150 is not particularly limited.
  • the electrode layer 150 may be formed by a known film forming technique such as a vapor deposition method, a sputtering method, or a coating method.
  • the first semiconductor element 100 can be manufactured.
  • the first semiconductor element 100 may further be provided with other members as necessary.
  • FIG. 3 shows a schematic cross section of another semiconductor element (hereinafter referred to as “second semiconductor element”) according to an embodiment of the present invention.
  • the second semiconductor element 200 includes a support 210, an n-type Si layer 220, a first layer 230, a second layer 240, and an electrode layer 250 in this order.
  • the configuration of the second semiconductor element 200 is substantially the same as that of the first semiconductor element 100 shown in FIG.
  • the support 210 to the first layer 230 and the electrode layer 250 are respectively the support 110 to the first layer 130 and the electrode layer in the first semiconductor element 100.
  • 150 has the same configuration.
  • the second layer 240 in the second semiconductor element 200 is composed of a layer different from the second layer 140 in the first semiconductor element 100.
  • the second layer 240 is (A) a metal oxide containing titanium (Ti) and oxygen (O), (B) a metal oxide containing tin (Sn) and oxygen (O), and (c) a metal oxide containing zinc (Zn) and oxygen (O), Consists of either.
  • the second layer 240 has high chemical durability, and is particularly excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the second layer 240 may be made of titanium oxide doped with Nb (niobium). Since the second layer 240 is composed of titanium oxide doped with Nb (niobium) and exhibits high conductivity, the film thickness can be particularly increased, so that the Si substrate and various types formed on the substrate can be formed. Excellent protection for the functional layer.
  • the value of Nb / (Ti + Nb) is, for example, in the range of 0.01 to 0.15 in molar ratio.
  • Nb niobium
  • the molar ratio of Nb / (Ti + Nb) may be 0.02 or more, 0.03 or more, or 0.05 or more.
  • the molar ratio Nb / (Ti + Nb) may be 0.10 or less, 0.08 or less, or 0.07 or less.
  • the second layer 240 has high chemical durability, and is particularly excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the second layer 240 may be made of tin oxide, ITO (indium tin oxide), tin oxide doped with fluorine, or the like.
  • the second layer 240 is made of tin oxide, so that the chemical durability is high, and particularly, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the second layer 240 is made of ITO, high conductivity can be obtained.
  • the film thickness can be increased, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the value of In / (Sn + In) is, for example, in the range of 0.03 to 0.2 in terms of molar ratio. Since it will show high electroconductivity if it is 0.03 or more, since a film thickness can be enlarged, it is excellent in the protection property with respect to the Si substrate and various functional layers formed on the substrate. If it is 0.20 or less, since Sn (tin) is dissolved, a homogeneous thin film can be produced.
  • the molar ratio of In / (Sn + In) may be 0.5 or more, 0.07 or more, or 0.09 or more.
  • the value of In / (Sn + In) may be 0.15 or less, 0.13 or less, or 0.11 or less in terms of molar ratio.
  • the second layer 240 is composed of tin oxide doped with fluorine, so that the chemical durability is high, and in particular, the second substrate 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the value of F / (Sn + F) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained. In particular, since the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since F (fluorine) is dissolved, a homogeneous thin film can be produced.
  • the value of F / (Sn + F) may be 0.03 or more, 0.05 or more, or 0.08 or more in terms of molar ratio.
  • the value of F / (Sn + F) may be 0.15 or less in molar ratio, 0.12 or less, or 0.1 or less.
  • the second layer 240 may be made of zinc oxide, IZO (indium zinc oxide), zinc oxide doped with aluminum, zinc oxide doped with gallium, or the like.
  • the second layer 240 is composed of zinc oxide, high conductivity can be obtained. In particular, since the film thickness can be increased, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate. .
  • the second layer 240 is made of IZO, high conductivity can be obtained.
  • the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate.
  • the value of Zn / (Zn + In) is, for example, in the range of 0.01 to 0.2 in molar ratio. If it is 0.01 or more, high conductivity can be obtained.
  • the Si substrate and various functional layers formed on the substrate are excellent in protection. Since Zn (zinc) is dissolved, a homogeneous thin film can be produced.
  • the value of Zn / (Zn + In) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio.
  • the value of Zn / (Zn + In) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
  • the second layer 240 is made of zinc oxide doped with aluminum, high conductivity can be obtained.
  • various functional layers formed on the Si substrate and the substrate excellent protection against.
  • the value of Al / (Zn + Al) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained.
  • the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since Al (aluminum) is dissolved, a homogeneous thin film can be produced.
  • the value of Al / (Zn + Al) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio.
  • the value of Al / (Zn + Al) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
  • the second layer 240 is composed of zinc oxide doped with gallium, high conductivity can be obtained.
  • various functional layers formed on the Si substrate and the substrate are provided. Excellent protection against.
  • the value of Ga / (Zn + Ga) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained.
  • the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since Ga (gallium) is dissolved, a homogeneous thin film can be produced.
  • the value of Ga / (Zn + Ga) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio.
  • the value of Ga / (Zn + Ga) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
  • the second layer 240 may be crystalline or amorphous.
  • the second layer 240 is characterized in that an ohmic junction is formed at the interface (second interface) with the metal electrode layer 250, and the contact resistance of the second interface is relatively small. Further, the contact resistance at the interface (third interface) between the second layer 240 and the first layer 230 is also significantly small. For this reason, even if the second layer 240 is provided on the first layer 230, the influence of an increase in contact resistance due to an increase in the number of interfaces is small.
  • the contact resistance is significantly suppressed also at the interface (first interface) between the n-type Si layer 220 and the first layer 230.
  • the same effects as those of the first semiconductor element 100 can be obtained in the second semiconductor element 200. That is, in the second semiconductor element 200, the first to third interfaces, that is, the interface (first interface) between the n-type Si layer 220 and the first layer 230, the second layer 240 and the electrode layer. Contact resistance is significantly suppressed at each of the interface between the first layer 230 and the second layer 240 (third interface). As a result, in the second semiconductor element 200, the efficiency during operation can be significantly improved.
  • Second manufacturing method As a method for manufacturing the second semiconductor element 200 (hereinafter referred to as “second manufacturing method”), the flowchart of the first manufacturing method shown in FIG. 2 described above can be referred to. In particular, steps S110 to S120 and step S140 in the first manufacturing method described above can be applied to the second manufacturing method as they are.
  • step S130 shown in FIG. 2 that is, an example of an installation method of the second layer will be described.
  • the second layer 240 as described above, (A) a metal oxide containing titanium (Ti) and oxygen (O), (B) a metal oxide containing tin (Sn) and oxygen (O), or (c) a metal oxide containing zinc (Zn) and oxygen (O), Consists of either.
  • the second layer 240 can be formed by, for example, a “vapor deposition method” including a sputtering method.
  • Sputtering methods include DC (direct current) sputtering method, high frequency sputtering method, helicon wave sputtering method, ion beam sputtering method, magnetron sputtering method and the like.
  • the second layer 240 can be formed relatively uniformly in a large area region.
  • the target only needs to include a predetermined material.
  • a target containing Ti is used.
  • a target containing Sn is used.
  • a target containing Zn is used.
  • These targets may be metals or metal oxides.
  • the target may be crystalline or amorphous.
  • the support 210 in forming the second layer 240 may not be “positively” heated. preferable.
  • the installation method of the second layer 240 shown here is merely an example, and the second layer 240 may be installed by other methods.
  • FIG. 4 shows a schematic cross section of still another semiconductor element (hereinafter referred to as “third semiconductor element”) according to an embodiment of the present invention.
  • the third semiconductor element 300 includes a support 310, an n-type Si layer 320, a first layer 330, a third layer 342, a fourth layer 344, and an electrode layer. 350.
  • the third semiconductor element 300 has a configuration very similar to that of the first semiconductor element 100 shown in FIG.
  • the support 310 to the third layer 342 and the electrode layer 350 are respectively the support 110 to the second layer 140 and the electrode layer in the first semiconductor element 100.
  • 150 has the same configuration. That is, the third layer 342 in the third semiconductor element 300 corresponds to the second layer 140 in the first semiconductor element 100.
  • the third semiconductor element 300 is different from the first semiconductor element 100 in that it has a fourth layer 344 between the third layer 342 and the electrode layer 350.
  • the third semiconductor element 300 has a configuration in which two layers of the third layer 342 and the fourth layer 344 are arranged instead of the second layer 140 in the first semiconductor element 100. I can say.
  • the fourth layer 344 corresponds to the second layer 240 in the second semiconductor element 200. That is, the fourth layer 344 is (A) a metal oxide containing titanium (Ti) and oxygen (O), (B) a metal oxide containing tin (Sn) and oxygen (O), or (c) a metal oxide containing zinc (Zn) and oxygen (O), Consists of either.
  • the fourth layer 344 may be made of titanium oxide doped with Nb (niobium).
  • the fourth layer 344 may be composed of tin oxide, ITO (indium tin oxide), tin oxide doped with fluorine, or the like.
  • the fourth layer 344 may be made of zinc oxide, IZO (indium zinc oxide), zinc oxide doped with aluminum, zinc oxide doped with gallium, or the like.
  • the fourth layer 344 may be crystalline or amorphous.
  • the number of layers of the third semiconductor element 300 is increased by one as compared with the first semiconductor element 100 and the second semiconductor element 200 described above, and as a result, one interface is also increased.
  • the inventors' knowledge has confirmed that the contact resistance of the interface between the third layer 342 and the fourth layer 344 (hereinafter referred to as “fourth interface”) is relatively low. . Therefore, although the number of layers and the number of interfaces of the third semiconductor element 300 are larger than those of the first semiconductor element 100 and the second semiconductor element 200, the influence thereof hardly occurs.
  • the same effects as those of the first semiconductor element 100 and the second semiconductor element 200 can be obtained. That is, in the third semiconductor element 300, the interface between the n-type Si layer 320 and the first layer 330 (first interface), the interface between the fourth layer 344 and the electrode layer 350 (second interface). ) And the interface between the first layer 330 and the third layer 342 (third interface), the contact resistance is significantly suppressed.
  • the contact resistance can be reduced as compared with the first semiconductor element 100 and the second semiconductor element 200, the element efficiency can be significantly improved.
  • the third layer 342 and the fourth layer 344 have different refractive indexes, the degree of freedom in optical design can be increased.
  • a method for manufacturing the third semiconductor element 300 can be easily understood by those skilled in the art from the description of the method for manufacturing the first semiconductor element 100 and the second semiconductor element 200 described above.
  • the embodiment of the present invention has been described above by taking the first to third semiconductor elements 100, 200, and 300 as examples. However, the present invention is not limited to these configurations.
  • the n-type Si layers 120, 220, 320 may be made of another n-type semiconductor material other than Si.
  • the semiconductor device according to one embodiment of the present invention can be applied to, for example, a solar cell module.
  • FIG. 5 schematically shows a configuration example of such a solar cell module.
  • the solar cell module 500 is configured by electrically connecting a plurality of solar cells 502 in series with each other.
  • Each solar cell 502 includes a first electrode 560A and a second electrode 560B made of metal, and the first portion 580 and the second portion 590 are disposed between the electrodes 560A and 560B.
  • the solar battery cell 502 is configured by disposing the second electrode 560B, the second portion 590, the first portion 580, and the first electrode 560A in order from the bottom.
  • the first electrode 560A is electrically connected to the second electrode 560B of the adjacent right solar cell 502.
  • the second electrode 560B is electrically connected to the first electrode 560A of the adjacent left solar cell 502. Thereby, each photovoltaic cell 502 is mutually connected in series.
  • the first portion 580 has an n-type Si layer
  • the second portion 590 has a p-type Si layer.
  • the n-type Si layer of the first portion 580 forms a pn junction with the p-type Si layer of the second portion 590.
  • the second portion 590 to the first electrode 560A are composed of the first semiconductor element 100 described above. That is, the second portion 590 in the solar cell 502 corresponds to the support 110 of the first semiconductor element 100, and the first portion 580 in the solar cell 502 is the n-type Si of the first semiconductor element 100. Corresponding to the layer 120, the first layer 130, and the second layer 140, the first electrode 560 ⁇ / b> A in the solar battery cell 502 corresponds to the electrode layer 150 of the first semiconductor element 100.
  • the contact resistance between the first electrode and the n-type Si layer in the first portion 580 is relatively high, and thus there is a limit to improving the power generation efficiency. It was.
  • the first semiconductor element 100 having the above-described characteristics is applied to the solar cell module 500 shown in FIG. For this reason, in the solar cell module 500, the power generation efficiency can be significantly improved.
  • TFT The semiconductor device according to an embodiment of the present invention can be applied to, for example, a TFT.
  • FIG. 6 schematically shows a configuration example of such a TFT.
  • the TFT 600 includes a gate electrode 601, a gate insulating film 603, an amorphous Si layer 690, an n-type Si layer 680, a first electrode 660A (for example, a source), a second electrode 660B (for example, a drain), A channel protective layer 670 and a protective film 675 are included.
  • the portion of the amorphous Si layer 690 to the first electrode 660A or the portion of the amorphous Si layer 690 to the second electrode 660B is composed of the first semiconductor element 100 described above. That is, the amorphous Si layer 690 in the TFT 600 corresponds to the support 110 of the first semiconductor element 100, and the n-type Si layer 680 in the TFT 600 is the n-type Si layer 120 and the first layer of the first semiconductor element 100. 130 and the second layer 140, the first electrode 660A or the second electrode 660B in the TFT 600 corresponds to the electrode layer 150 of the first semiconductor element 100.
  • the contact resistance between the first or second electrode and the n-type Si layer is relatively high, so that there is a limit to the improvement of the operation efficiency.
  • the first semiconductor element 100 having the above-described characteristics is applied to the TFT 600 shown in FIG. For this reason, in the TFT 600, it is possible to significantly improve the operation efficiency.
  • Example 1 The semiconductor device as shown in FIG. 1 was manufactured by the following method.
  • n-type Si substrate had dimensions of 30 mm length ⁇ 30 mm width ⁇ 0.5 mm thickness, and the electron density was 10 15 cm ⁇ 3 .
  • substrate The n-type Si substrate (hereinafter simply referred to as “substrate”) was washed with hydrofluoric acid and pure water before use to remove the natural oxide film on the surface.
  • the substrate was introduced into a sputtering apparatus. After evacuating the inside of the sputtering apparatus to 3 ⁇ 10 ⁇ 7 Pa, an amorphous C12A7 electride was formed as a first layer on the substrate by sputtering.
  • a metal mask was used to form four rectangular first layers (thickness 2 nm) having a width of 200 ⁇ m ⁇ length of 800 ⁇ m ⁇ thickness of 2 nm on a substrate.
  • the intervals between adjacent rectangles were 400 ⁇ m, 600 ⁇ m, and 800 ⁇ m, respectively.
  • the RF power was 100 W
  • Ar was used as the soot film forming gas
  • the total pressure was 0.15 Pa.
  • the distance between the substrate and the target was 100 mm.
  • the electron density of the obtained first layer was 10 21 cm ⁇ 3 .
  • the second layer was a ZSO layer.
  • the distance between the target and the substrate during film formation was 100 mm.
  • the sputtering gas at the time of film formation was a mixed gas of Ar and O 2 , and the pressure of the sputtering gas was 0.4 Pa.
  • the Ar flow rate was 39.9 sccm, and the O 2 flow rate was 0.1 sccm.
  • the RF plasma power was 100W.
  • a second layer having a thickness of 10 nm was formed only on the first layer.
  • the electron density of the obtained second layer was 10 15 cm ⁇ 3 .
  • the substrate on which each layer was formed was taken out into the atmosphere and left for 1.5 hours.
  • Al electrode Al alloy layer
  • the thickness of the Al electrode was 200 nm.
  • sample A A semiconductor element (hereinafter referred to as “sample A”) was formed by such a method.
  • Example 2 A semiconductor device was manufactured in the same manner as in Example 1.
  • Example 3 titanium oxide doped with Nb (niobium) was formed as the second layer on the first layer.
  • a target having a composition of Ti: Nb 94: 6 in molar ratio was used.
  • the distance between the target and the substrate during film formation was 100 mm.
  • the sputtering gas at the time of film formation was a mixed gas of Ar and O 2 , and the pressure of the sputtering gas was 0.4 Pa.
  • the flow rate of Ar was 40 sccm.
  • the RF plasma power was 100W.
  • a second layer having a thickness of 10 nm was formed only on the first layer. At this time, the second layer was amorphous.
  • the substrate on which each layer was formed was taken out into the atmosphere and left for 48 hours.
  • the substrate was returned to the same sputtering apparatus, and an Al electrode was formed only on the second layer.
  • sample B the obtained semiconductor element is referred to as “sample B”.
  • Example 3 A semiconductor device was manufactured in the same manner as in Example 1.
  • Example 3 the second layer was not formed on the first layer. That is, an Al electrode was directly formed on the amorphous C12A7 electride layer.
  • the film forming conditions for each layer are the same as in Example 1.
  • sample C the obtained semiconductor element is referred to as “sample C”.
  • the resistance value of the sample can be measured as a function of the distance between the two Al electrodes by measuring the current and voltage between each two Al electrodes.
  • Keithley 2635B was used for the ammeter.
  • FIG. 7 collectively shows the measurement results obtained for Sample A, Sample B, and Sample C.
  • the horizontal axis is the distance between the Al electrodes, and the vertical axis is the resistance value.
  • Sample A and Sample B show significantly lower resistance values than Sample C.
  • four rectangular Al electrodes were formed directly on the substrate, and the same measurement was performed. As a result, it was confirmed that the resistance change was not ohmic in such a sample. It was also found that the absolute value of the resistance was significantly high regardless of the distance between the Al electrodes. This may be due to alteration of the interface of the amorphous C12A7 electride layer, which is an oxide.
  • the electric conduction of the amorphous C12A7 electride layer is considered to be obtained by O 2 ⁇ coming out of the cage and e ⁇ entering instead of moving the e ⁇ , but at the interface of the amorphous C12A7 electride layer. It is inferred that oxygen atoms enter the cage and the electrical characteristics deteriorate, which is considered to be a phenomenon peculiar to the amorphous C12A7 electride layer.
  • the first layer (C12A7 electride layer) is disposed immediately above the n-type layer, and the second layer (ZSO layer or titanium oxide layer) is disposed directly below the Al electrode.
  • the semiconductor element of the present invention can be applied to, for example, a solar cell module and a thin film transistor (TFT). Further, the present invention can be applied to semiconductor devices used for various electronic devices such as electro-optical devices. For example, it can be used for electronic devices such as displays such as televisions, electrical appliances such as washing machines and refrigerators, and information processing devices such as mobile phones and computers. In addition, the semiconductor element of the present invention can be used for electronic devices included in automobiles and various industrial equipment.
  • TFT thin film transistor
  • SYMBOLS 100 1st semiconductor element 110 Support body 120 n-type Si layer 130 1st layer 140 2nd layer 150 Electrode layer 200 2nd semiconductor element 210 Support body 220 n-type Si layer 230 1st layer 240 2nd Layer 250 electrode layer 300 third semiconductor element 310 support 320 n-type Si layer 330 first layer 342 third layer 344 fourth layer 350 electrode layer 500 solar cell module 502 each solar cell 560A first electrode 560B Second electrode 580 First portion 590 Second portion 600 TFT 601 gate electrode 603 gate insulating film 660A first electrode 660B second electrode 670 channel protective layer 675 protective film 680 n-type Si layer 690 amorphous Si layer

Abstract

A semiconductor element which comprises an n-type Si portion, a first layer that is arranged on the n-type Si portion, a second layer that is arranged on the first layer, and an electrode layer that is arranged on the second layer. The first layer is configured from an electride of an oxide that contains a calcium atom and an aluminum atom. The second layer is selected from the group consisting of: (i) metal oxides that contain zinc (Zn) and oxygen (O), and additionally contains at least one of silicon (Si) and tin (Sn); (ii) metal oxides that contain titanium (Ti) and oxygen (O); (iii) metal oxides that contain tin (Sn) and oxygen (O); and (iv) metal oxides that contain zinc (Zn) and oxygen (O).

Description

半導体素子Semiconductor element
 本発明は、半導体素子に関し、例えば、太陽電池および薄膜トランジスタのような半導体素子に関する。 The present invention relates to a semiconductor element, for example, a semiconductor element such as a solar cell and a thin film transistor.
 例えば太陽電池および薄膜トランジスタ(TFT)のような半導体素子は、結晶質または非晶質のn型シリコンからなる部材上に、電極層が配置された構成を有する(例えば、特許文献1参照)。 For example, semiconductor elements such as solar cells and thin film transistors (TFTs) have a configuration in which an electrode layer is disposed on a member made of crystalline or amorphous n-type silicon (see, for example, Patent Document 1).
国際公開第2015/098225号International Publication No. 2015/098225
 前述のような半導体素子の分野においては、素子効率をさらに高めることが要望されている。例えば、太陽電池では発電効率のさらなる向上、一方薄膜トランジスタ(TFT)では作動効率のさらなる向上が求められている。 In the field of semiconductor elements as described above, there is a demand for further increasing element efficiency. For example, solar cells are required to further improve power generation efficiency, while thin film transistors (TFTs) are required to further improve operating efficiency.
 しかしながら、通常の半導体素子では、n型シリコン部材と電極層の間の界面は、オーミック性の抵抗挙動を示さず、その結果、界面の接触抵抗が高いという問題がある。そしてこのことが、半導体素子の効率向上を妨げる一要因となっている。 However, a normal semiconductor element has a problem that the interface between the n-type silicon member and the electrode layer does not exhibit ohmic resistance behavior, and as a result, the interface contact resistance is high. This is one factor that hinders the efficiency improvement of semiconductor elements.
 本発明は、このような背景に鑑みなされたものであり、本発明では、n型シリコン部材~電極層の間の接触抵抗が有意に抑制された半導体素子を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a semiconductor element in which contact resistance between an n-type silicon member and an electrode layer is significantly suppressed.
 本発明では、
 n型Si部分と、
 該n型Si部分の上に配置された第1の層と、
 該第1の層の上に配置された第2の層と、
 前記第2の層の上に配置された電極層と、
 を有し、
 前記第1の層は、カルシウム原子およびアルミニウム原子を含む酸化物のエレクトライドで構成され、
 前記第2の層は、以下の群:
  (i)亜鉛(Zn)および酸素(O)を含み、さらに、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1つを含む金属酸化物、
  (ii)チタン(Ti)および酸素(O)を含む金属酸化物、
  (iii)スズ(Sn)および酸素(O)を含む金属酸化物、ならびに
  (iv)亜鉛(Zn)および酸素(O)を含む金属酸化物、
 から選定される、半導体素子が提供される。
In the present invention,
an n-type Si portion;
A first layer disposed on the n-type Si portion;
A second layer disposed on the first layer;
An electrode layer disposed on the second layer;
Have
The first layer is composed of an oxide electride containing calcium atoms and aluminum atoms,
Said second layer comprises the following groups:
(I) a metal oxide comprising zinc (Zn) and oxygen (O), and further comprising at least one of silicon (Si) and tin (Sn);
(Ii) a metal oxide containing titanium (Ti) and oxygen (O),
(Iii) a metal oxide containing tin (Sn) and oxygen (O), and (iv) a metal oxide containing zinc (Zn) and oxygen (O),
A semiconductor device selected from is provided.
 本発明では、n型シリコン部材~電極層の間の接触抵抗が有意に抑制された半導体素子を提供することができる。 The present invention can provide a semiconductor element in which contact resistance between the n-type silicon member and the electrode layer is significantly suppressed.
本発明の一実施形態による半導体素子の概略的な断面を示した図である。It is the figure which showed the schematic cross section of the semiconductor device by one Embodiment of this invention. 本発明の一実施形態による半導体素子の製造方法の一例の概略的なフロー図である。It is a schematic flowchart of an example of the manufacturing method of the semiconductor device by one Embodiment of this invention. 本発明の一実施形態による別の半導体素子の概略的な断面を示した図である。It is the figure which showed the schematic cross section of another semiconductor element by one Embodiment of this invention. 本発明の一実施形態によるさらに別の半導体素子の概略的な断面を示した図である。It is the figure which showed the schematic cross section of another semiconductor element by one Embodiment of this invention. 本発明の一実施形態による半導体素子を備える太陽電池モジュールの一構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of 1 structure of the solar cell module provided with the semiconductor element by one Embodiment of this invention. 本発明の一実施形態による半導体素子を備えるTFTの一構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of 1 structure of TFT provided with the semiconductor element by one Embodiment of this invention. 各サンプルにおいて得られた、電極間距離と抵抗値の間の関係をまとめて示したグラフである。It is the graph which showed collectively the relationship between the distance between electrodes and resistance value which were obtained in each sample.
 以下、本発明について説明する。 Hereinafter, the present invention will be described.
 本発明の一実施形態では、
 n型Si部分と、
 該n型Si部分の上に配置された第1の層と、
 該第1の層の上に配置された第2の層と、
 前記第2の層の上に配置された電極層と、
 を有し、
 前記第1の層は、カルシウム原子およびアルミニウム原子を含む酸化物のエレクトライドで構成され、
 前記第2の層は、以下の群:
  (i)亜鉛(Zn)および酸素(O)を含み、さらに、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1つを含む金属酸化物、
  (ii)チタン(Ti)および酸素(O)を含む金属酸化物、
  (iii)スズ(Sn)および酸素(O)を含む金属酸化物、ならびに
  (iv)亜鉛(Zn)および酸素(O)を含む金属酸化物、
 から選定される、半導体素子が提供される。
In one embodiment of the invention,
an n-type Si portion;
A first layer disposed on the n-type Si portion;
A second layer disposed on the first layer;
An electrode layer disposed on the second layer;
Have
The first layer is composed of an oxide electride containing calcium atoms and aluminum atoms,
Said second layer comprises the following groups:
(I) a metal oxide comprising zinc (Zn) and oxygen (O), and further comprising at least one of silicon (Si) and tin (Sn);
(Ii) a metal oxide containing titanium (Ti) and oxygen (O),
(Iii) a metal oxide containing tin (Sn) and oxygen (O), and (iv) a metal oxide containing zinc (Zn) and oxygen (O),
A semiconductor device selected from is provided.
 なお、本願では、n型Si部分と該n型Si部分の直上に配置される層との間の界面を、「第1の界面」と称する。また、電極層と該電極層の直下に配置される層との間の界面を、「第2の界面」と称する。 In the present application, an interface between an n-type Si portion and a layer disposed immediately above the n-type Si portion is referred to as a “first interface”. In addition, an interface between the electrode layer and a layer disposed immediately below the electrode layer is referred to as a “second interface”.
 前述のように、通常の半導体素子では、n型シリコン部材と電極層の間の第1の界面における接触抵抗が高いという問題がある。金属とSiとの接合において接触抵抗を低減させるためには、界面近傍のSi中のキャリア濃度を増大させる、または金属とSi界面のショットキー障壁高さを低減するために適切な金属材料を選択するなどの手法が知られている。前者は半導体中のドーパント固溶限、後者は金属とSi界面でのフェルミレベルピンニングといった物理現象により、いずれも接触抵抗の低減には限界がある。 As described above, a normal semiconductor element has a problem that the contact resistance at the first interface between the n-type silicon member and the electrode layer is high. To reduce contact resistance at the junction between metal and Si, select the appropriate metal material to increase the carrier concentration in Si near the interface or to reduce the Schottky barrier height at the metal-Si interface The technique of doing is known. The former has a limit in reducing contact resistance due to a physical phenomenon such as the solid solubility limit of dopant in a semiconductor and the latter the Fermi level pinning at the metal / Si interface.
 しかしながら、本発明の一実施形態による半導体素子では、n型シリコン部材と、電極層との間に、複数の層が追加される。 However, in the semiconductor device according to the embodiment of the present invention, a plurality of layers are added between the n-type silicon member and the electrode layer.
 本願発明者らの知見では、本半導体素子に含まれる前述のような特徴を有する第1の層は、良好な電子伝導性を有する。また、第1の層とn型Si部分との界面(すなわち「第1の界面」)の接触抵抗は、比較的低いことが確認されている。 According to the knowledge of the inventors of the present application, the first layer having the above-described characteristics included in the semiconductor element has good electron conductivity. Further, it has been confirmed that the contact resistance of the interface between the first layer and the n-type Si portion (that is, the “first interface”) is relatively low.
 n型Si部分の上に第1の層を配置することにより、第1の界面においてフェルミレベルピニングを生じず、また、第1の層が、キャリア密度が高く、仕事関数が小さいことから、第1の界面での障壁高さが小さい。そのため、半導体素子としての動作性を確保したまま、第1の界面の接触抵抗を有意に抑制することができる。 By disposing the first layer on the n-type Si portion, Fermi level pinning does not occur at the first interface, and the first layer has a high carrier density and a low work function. The barrier height at the interface of 1 is small. Therefore, the contact resistance of the first interface can be significantly suppressed while ensuring the operability as the semiconductor element.
 ここで、フェルミレベルピンニングとは、半導体と金属を接合させる場合に、様々な仕事関数の金属を用いてもショットキー障壁高さの変化が小さいことをいう。例えば、SiとAlとを接合させる場合では、ショットキー障壁高さは1.5eV程度となり、Alの仕事関数(4.2eV)とSiの電子親和力(4eV)から予想されるショットキー障壁高さよりも大きい。フェルミレベルピンニングは、半導体のバンドギャップ内に存在する界面準位、または界面状態に起因するが、実用上は、界面の化学的な安定性が大きく関係していると考えられる。 Here, Fermi level pinning means that when the semiconductor and the metal are joined, the change in the Schottky barrier height is small even if metals having various work functions are used. For example, when Si and Al are bonded, the Schottky barrier height is about 1.5 eV, which is higher than the Schottky barrier height expected from the work function (4.2 eV) of Al and the electron affinity (4 eV) of Si. Is also big. Fermi level pinning is caused by the interface states or interface states existing in the band gap of the semiconductor, but it is considered that the chemical stability of the interface is greatly related in practice.
 本願発明者らの知見では、前述のような第1の層は、金属との間の接触抵抗が比較的高いことが確認されている。このため、第1の層の直上に金属で構成された電極層を配置した場合、第2の界面での接触抵抗の影響が顕著になってしまう。 According to the knowledge of the inventors of the present application, it has been confirmed that the first layer as described above has a relatively high contact resistance with the metal. For this reason, when the electrode layer comprised with the metal is arrange | positioned directly on the 1st layer, the influence of the contact resistance in a 2nd interface will become remarkable.
 しかしながら、前述のように、本半導体素子において、第1の層と電極層とは、直接接触しない。すなわち、第1の層と電極層の間には、第2の層が配置される。 However, as described above, in the present semiconductor element, the first layer and the electrode layer are not in direct contact. That is, the second layer is disposed between the first layer and the electrode layer.
 ここで、第2の層は、良好な電子伝導性を有する。また、第2の層と電極との界面(すなわち「第2の界面」)の接触抵抗は、比較的低いことが確認されている。また、第1の層と第2の層との間の界面(以下、「第3の界面」という)においても、接触抵抗は、比較的低いことが確認されている。 Here, the second layer has good electronic conductivity. Further, it has been confirmed that the contact resistance of the interface between the second layer and the electrode (that is, the “second interface”) is relatively low. It has also been confirmed that the contact resistance is relatively low at the interface between the first layer and the second layer (hereinafter referred to as “third interface”).
 本半導体素子では、第2の界面および第3の界面においても、第1の界面と同様の理由により、ショットキー障壁高さが有意に抑制されるため、該半導体素子としての動作性を確保したまま、第2の界面(さらには第3の界面)の接触抵抗を有意に抑制することができる。 In the present semiconductor element, the Schottky barrier height is significantly suppressed at the second interface and the third interface for the same reason as the first interface, so that the operability as the semiconductor element is ensured. The contact resistance of the second interface (or the third interface) can be significantly suppressed.
 その結果、本半導体素子では、素子効率を有意に向上させることができる。例えば、本半導体素子を太陽電池に適用した場合、発電効率を有意に高めることが可能になる。また、本半導体素子をTFTに適用した場合、作動効率を有意に高めることが可能になる。 As a result, in this semiconductor element, element efficiency can be significantly improved. For example, when the present semiconductor element is applied to a solar cell, the power generation efficiency can be significantly increased. In addition, when this semiconductor element is applied to a TFT, it is possible to significantly increase the operation efficiency.
 (本発明の一実施形態による半導体素子)
 以下、図面を参照して、本発明の一実施形態について説明する。
(Semiconductor Device According to One Embodiment of the Present Invention)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1には、本発明の一実施形態による半導体素子(以下、「第1の半導体素子」と言う)の概略的な断面を示す。 FIG. 1 shows a schematic cross section of a semiconductor device (hereinafter referred to as “first semiconductor device”) according to an embodiment of the present invention.
 図1に示すように、第1の半導体素子100は、支持体110と、n型Si層120と、第1の層130と、第2の層140と、電極層150とを備える。 As shown in FIG. 1, the first semiconductor element 100 includes a support 110, an n-type Si layer 120, a first layer 130, a second layer 140, and an electrode layer 150.
 支持体110は、その上部に配置される各層を支持したり、n型Si層120の形成を容易にしたりする役割を有する。 The support 110 has a role of supporting each layer disposed on the support 110 and facilitating the formation of the n-type Si layer 120.
 例えば、第1の半導体素子100が太陽電池の一部を構成する場合、支持体110はp型Si層を有してもよい。あるいは、支持体110は、p型Si層であってもよい。また、第1の半導体素子100が、薄膜トランジスタ(TFT)の一部を構成する場合、支持体110は、アモルファスSi層を有してもよい。あるいは、支持体110は、アモルファスSi層であってもよい。 For example, when the first semiconductor element 100 constitutes a part of the solar cell, the support 110 may have a p-type Si layer. Alternatively, the support 110 may be a p-type Si layer. In addition, when the first semiconductor element 100 forms part of a thin film transistor (TFT), the support 110 may have an amorphous Si layer. Alternatively, the support 110 may be an amorphous Si layer.
 ただし、n型Si層120が厚く形成される場合など、特定の場合には、支持体110は、省略されてもよい。 However, in certain cases, such as when the n-type Si layer 120 is formed thick, the support 110 may be omitted.
 n型Si層120は、n型のケイ素Siを含む層で構成される。n型Si層120は、非晶質であっても結晶質であってもよい。 The n-type Si layer 120 is composed of a layer containing n-type silicon Si. The n-type Si layer 120 may be amorphous or crystalline.
 第1の層130は、カルシウム原子およびアルミニウム原子を含む酸化物のエレクトライドで構成される。 The first layer 130 is composed of an oxide electride containing calcium atoms and aluminum atoms.
 第2の層140は、亜鉛(Zn)および酸素(O)を含み、さらに、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1つを含む金属酸化物で構成される。 The second layer 140 is made of a metal oxide containing zinc (Zn) and oxygen (O), and further containing at least one of silicon (Si) and tin (Sn).
 なお、第1の層130および第2の層140の詳細については、後述する。 The details of the first layer 130 and the second layer 140 will be described later.
 電極層150は、金属(または合金。以下同じ)で構成される。 The electrode layer 150 is made of metal (or alloy; the same applies hereinafter).
 このような構成を有する第1の半導体素子100では、第1~第3の界面、すなわちn型Si層120と第1の層130との間の界面(第1の界面)、第2の層140と電極層150との間の界面(第2の界面)、および第1の層130と第2の層140との間の界面(第3の界面)のそれぞれにおいて、接触抵抗が有意に抑制される。 In the first semiconductor element 100 having such a configuration, the first to third interfaces, that is, the interface between the n-type Si layer 120 and the first layer 130 (first interface), the second layer The contact resistance is significantly suppressed at each of the interface between the electrode layer 150 and the electrode layer 150 (second interface) and the interface between the first layer 130 and the second layer 140 (third interface). Is done.
 このため、第1の半導体素子100では、作動時の効率を有意に向上させることができる。 For this reason, in the first semiconductor element 100, the operating efficiency can be significantly improved.
 (各構成部材について)
 次に、図1に示した第1の半導体素子100を構成する各部材について、より詳しく説明する。
(About each component)
Next, each member constituting the first semiconductor element 100 shown in FIG. 1 will be described in more detail.
 なお、ここでは、明確化のため、各部材を表す際に、図1に示した参照符号を使用する。 Here, for the sake of clarity, the reference numerals shown in FIG. 1 are used to represent each member.
 (支持体110)
 前述のように、支持体110は、その上部に配置される各層を支持したり、n型Si層120の形成を容易にしたりする役割を有する。
(Support 110)
As described above, the support 110 has a role of supporting each layer disposed on the support 110 and facilitating the formation of the n-type Si layer 120.
 支持体110の材料は、特に限られない。 The material of the support 110 is not particularly limited.
 例えば、第1の半導体素子100が太陽電池の一部に適用される場合、支持体110は、p型SiまたはノンドープのSiで構成されてもよい。一方、第1の半導体素子100がTFTの一部に適用される場合、支持体110は、アモルファスSiあるいは結晶質Siを有し、またはアモルファスSiあるいは結晶質Siで構成されてもよい。 For example, when the first semiconductor element 100 is applied to a part of a solar cell, the support 110 may be made of p-type Si or non-doped Si. On the other hand, when the first semiconductor element 100 is applied to a part of the TFT, the support 110 may include amorphous Si or crystalline Si, or may be composed of amorphous Si or crystalline Si.
 また、支持体110は、ガラス、アルミナ、またはケイ素等で構成された基板であってもよい。 Further, the support 110 may be a substrate made of glass, alumina, silicon, or the like.
 なお、前述のように、支持体110は、必須の構成ではなく、省略されてもよい。 As described above, the support 110 is not an essential component and may be omitted.
 (n型Si層120)
 支持体110の上には、n型Si層120が配置される。
(N-type Si layer 120)
An n-type Si layer 120 is disposed on the support 110.
 n型Si層120は、結晶質であっても、非晶質であってもよい。 The n-type Si layer 120 may be crystalline or amorphous.
 n型Si層120は、リン(P)および/またはヒ素(As)等がドープされていてもよい。 The n-type Si layer 120 may be doped with phosphorus (P) and / or arsenic (As).
 n型Si層120の電子密度は、例えば、1014cm-3~1021cm-3の範囲であってもよい。電子密度は、1016cm-3以上が好ましく、1018cm-3以上がより好ましい。電子密度が1014cm-3以上であれば、接触抵抗が低くなりやすい。電子密度は、1020cm-3以下が好ましく、1019cm-3以下がより好ましい。 The electron density of the n-type Si layer 120 may be in the range of 10 14 cm −3 to 10 21 cm −3 , for example. The electron density is preferably 10 16 cm −3 or more, and more preferably 10 18 cm −3 or more. If the electron density is 10 14 cm −3 or more, the contact resistance tends to be low. The electron density is preferably 10 20 cm −3 or less, and more preferably 10 19 cm −3 or less.
 (第1の層130)
 第1の層130は、前述のように、カルシウム原子およびアルミニウム原子を含む酸化物のエレクトライドで構成される。
(First layer 130)
As described above, the first layer 130 is composed of an oxide electride containing calcium atoms and aluminum atoms.
 第1の層130は、導電性を有し、有意に高いイオン化ポテンシャルを有するとともに、仕事関数が低いという特徴を有する。例えば、第1の層130の仕事関数は、2.4eV~4.5eVの範囲(例えば2.8eV~3.2eV)である。 The first layer 130 has conductivity, a significantly high ionization potential, and a low work function. For example, the work function of the first layer 130 is in the range of 2.4 eV to 4.5 eV (eg, 2.8 eV to 3.2 eV).
 また、第1の層130は、電子密度が高いという特徴を有する。第1の層130の電子密度は、例えば、2.0×1017cm-3~2.3×1021cm-3の範囲である。電子密度は、1.0×1018cm-3以上がより好ましく、1×1019cm-3以上がさらに好ましく、1×1020cm-3以上が特に好ましい。 In addition, the first layer 130 has a feature of high electron density. The electron density of the first layer 130 is, for example, in the range of 2.0 × 10 17 cm −3 to 2.3 × 10 21 cm −3 . The electron density is more preferably 1.0 × 10 18 cm −3 or more, further preferably 1 × 10 19 cm −3 or more, and particularly preferably 1 × 10 20 cm −3 or more.
 第1の層130の電子密度が高いため、n型Si層120と第1の層130との間の界面(第1の界面)は、トンネル効果によりオーミック性を示す。そのため、第1の界面の接触抵抗は、有意に抑制される。また、第1の層130は、第2の層140との間(第3の界面)でも良好な接触抵抗を示す。 Since the electron density of the first layer 130 is high, the interface (first interface) between the n-type Si layer 120 and the first layer 130 exhibits ohmic properties due to a tunnel effect. Therefore, the contact resistance of the first interface is significantly suppressed. The first layer 130 also exhibits good contact resistance with the second layer 140 (third interface).
 従って、第1の層130を有する第1の半導体素子100では、第1の界面および第3の界面のいずれにおいても、接触抵抗を有意に抑制することができる。 Therefore, in the first semiconductor element 100 having the first layer 130, the contact resistance can be significantly suppressed at both the first interface and the third interface.
 第1の層130の厚さは、0.5nm~10nmの範囲が好ましい。0.5nm以上であれば、均質な薄膜を形成することができるため、接触抵抗の低減効果を安定して得ることができる。第1の層130の厚さは、2nm以上がより好ましく、3nm以上がさらに好ましい。一方、第1の層130の厚さが10nm以下であれば、体積抵抗の影響を無視することができる。第1の層130の厚さは、7nm以下がより好ましく、5nm以下がさらに好ましい。 The thickness of the first layer 130 is preferably in the range of 0.5 nm to 10 nm. If it is 0.5 nm or more, a homogeneous thin film can be formed, and thus the contact resistance reduction effect can be obtained stably. The thickness of the first layer 130 is more preferably 2 nm or more, and further preferably 3 nm or more. On the other hand, if the thickness of the first layer 130 is 10 nm or less, the influence of volume resistance can be ignored. The thickness of the first layer 130 is more preferably 7 nm or less, and further preferably 5 nm or less.
 第1の層130の厚さは、X線反射法(XRR)または断面透過電子顕微鏡観察により測定することができる。 The thickness of the first layer 130 can be measured by X-ray reflection (XRR) or observation with a cross-sectional transmission electron microscope.
 第1の層130は、非晶質であっても、結晶質であってもよい。以下、それぞれの場合について、説明する。 The first layer 130 may be amorphous or crystalline. Hereinafter, each case will be described.
 (非晶質の第1の層130)
 第1の層130は、カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライドで構成されてもよい。
(Amorphous first layer 130)
The first layer 130 may be made of an amorphous oxide electride containing calcium atoms and aluminum atoms.
 非晶質とは、X線回折測定で鋭いピークを与えない物質を意味する。具体的には、X線波長λが0.154nm、シェラー定数Kが0.9であるとき、下記の(1)式で表されるシェラーの式で求められる結晶子径(シェラー径)が5.2nm以下である。シェラー径Lはシェラー定数をK、X線波長をλ、半値幅をβ、ピーク位置をθとすると、
 
  L=Kλ/(βcosθ)    (1)式
 
で表される。第1の層130が非晶質であれば、膜表面の平滑性が高く、素子の短絡防止が可能であるため好ましい。
Amorphous means a substance that does not give a sharp peak in X-ray diffraction measurement. Specifically, when the X-ray wavelength λ is 0.154 nm and the Scherrer constant K is 0.9, the crystallite diameter (Scherrer diameter) obtained by the Scherrer equation represented by the following equation (1) is 5: .2 nm or less. The Scherrer diameter L is a Scherrer constant K, an X-ray wavelength λ, a half-value width β, and a peak position θ.

L = Kλ / (βcos θ) (1) Formula
It is represented by It is preferable that the first layer 130 be amorphous because the film surface has high smoothness and can prevent a short circuit of the element.
 また、「カルシウム原子およびアルミニウム原子を含む非晶質酸化物のエレクトライド」とは、カルシウム原子、アルミニウム原子および酸素原子から構成される非晶質を溶媒とし、電子を溶質とする溶媒和からなる非晶質固体物質を意味する。 In addition, “an electride of an amorphous oxide containing calcium atoms and aluminum atoms” is composed of a solvate in which an amorphous composed of calcium atoms, aluminum atoms and oxygen atoms is used as a solvent and electrons are used as a solute. An amorphous solid material is meant.
 エレクトライド中の電子は、陰イオンとして働くことができる。電子はバイポーラロンとして存在してもよい。バイポーラロンは、カルシウム原子、アルミニウム原子、および酸素原子により構成され、三次元的に連結された内径約0.4nmの空隙であるケージが2つ隣接し、さらにそれぞれのケージに、電子(溶質)が包接されて構成されている。ただし、非晶質酸化物のエレクトライドの状態は、上記に限られず、ひとつのケージに2つの電子(溶質)が包接されてもよい。また、これらのケージが複数凝集した状態でもよく、凝集したケージは微結晶とみなすこともできるため、非晶質中に微結晶が含まれた状態も、非晶質とみなされる。 Electrons in electride can work as anions. The electrons may exist as bipolarons. Bipolaron is composed of calcium atoms, aluminum atoms, and oxygen atoms, and is adjacent to two cages that are three-dimensionally connected and have a void of about 0.4 nm in inner diameter. Each cage has an electron (solute). Is included. However, the state of the amorphous oxide electride is not limited to the above, and two electrons (solutes) may be included in one cage. In addition, a plurality of these cages may be in an aggregated state, and the aggregated cage can be regarded as a microcrystal. Therefore, a state in which the microcrystal is included in the amorphous is also regarded as amorphous.
 「非晶質酸化物のエレクトライド」におけるアルミニウム原子とカルシウム原子のモル比(Ca/Al)は、0.3~5.0の範囲が好ましく、0.55~1.00の範囲がより好ましく、0.8~0.9の範囲がさらに好ましく、0.84~0.86の範囲が特に好ましい。 The molar ratio of aluminum atom to calcium atom (Ca / Al) in the “amorphous oxide electride” is preferably in the range of 0.3 to 5.0, more preferably in the range of 0.55 to 1.00. The range of 0.8 to 0.9 is more preferable, and the range of 0.84 to 0.86 is particularly preferable.
 「非晶質酸化物のエレクトライド」の組成は、12CaO・7Alが好ましいが、これに限られず、例えば、下記の(1)~(5)の化合物が例示される。
(1)Ca原子の一部乃至全部が、Sr、Mg、および/またはBaなどの金属原子に置換された同型化合物。例えば、Ca原子の一部乃至全部がSrに置換された化合物としては、ストロンチウムアルミネートSr12Al1433があり、CaとSrの混合比が任意に変化された混晶として、カルシウムストロンチウムアルミネートCa12-xSrAl1433(xは1~11の整数;平均値の場合は0超12未満の数)などがある。
(2)Al原子の一部乃至全部が、Si、Ge、Ga、In、およびBからなる群から選択される一種以上の原子に置換された同型化合物。例えば、Ca12Al10Si35などが挙げられる。
(3)12CaO・7Al(上記(1)、(2)の化合物を含む)中の金属原子および/または非金属原子(ただし、酸素原子を除く)の一部が、Ti、V、Cr、Mn、Fe、Co、Ni、およびCuからなる群から選択される一種以上の遷移金属原子もしくは典型金属原子、Li、Na、およびKからなる群から選択される一種以上のアルカリ金属原子、またはCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される一種以上の希土類原子と置換された同型化合物。
(4)ケージに包接されているフリー酸素イオンの一部乃至全部が、他の陰イオンに置換された化合物。他の陰イオンとしては、例えば、H、H 、H2-、O、O 、OH、F、Cl、およびS2-などの陰イオンや、窒素(N)の陰イオンなどがある。
(5)ケージの骨格の酸素の一部が、窒素(N)などで置換された化合物。
The composition of “amorphous oxide electride” is preferably 12CaO · 7Al 2 O 3, but is not limited thereto, and examples thereof include the following compounds (1) to (5).
(1) Isomorphic compounds in which some or all of the Ca atoms are substituted with metal atoms such as Sr, Mg, and / or Ba. For example, a compound in which some or all of Ca atoms are substituted with Sr is strontium aluminate Sr 12 Al 14 O 33 , and calcium strontium aluminum is used as a mixed crystal in which the mixing ratio of Ca and Sr is arbitrarily changed. Nate Ca 12-x Sr X Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, it is a number greater than 0 and less than 12).
(2) An isomorphous compound in which some or all of the Al atoms are substituted with one or more atoms selected from the group consisting of Si, Ge, Ga, In, and B. For example, like Ca 12 Al 10 Si 4 O 35 .
(3) A part of metal atoms and / or nonmetal atoms (excluding oxygen atoms) in 12CaO.7Al 2 O 3 (including the compounds of (1) and (2) above) is Ti, V, One or more transition metal atoms selected from the group consisting of Cr, Mn, Fe, Co, Ni, and Cu or one or more alkali metal atoms selected from the group consisting of typical metal atoms, Li, Na, and K; Or an isomorphous compound substituted with one or more rare earth atoms selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
(4) A compound in which some or all of the free oxygen ions included in the cage are replaced with other anions. Other anions include, for example, anions such as H , H 2 , H 2− , O , O 2 , OH , F , Cl , and S 2− , and nitrogen (N). There are anions.
(5) A compound in which part of oxygen in the cage skeleton is substituted with nitrogen (N) or the like.
 バイポーラロンは、光子エネルギーが1.55eV~3.10eVの可視光の範囲では光吸収がほとんどなく、4.6eV付近で光吸収を示す。従って、第1の層130は、可視光において透明である。また、第1の層130の光吸収特性を測定し、4.6eV付近の光吸収係数を測定することにより、第1の層130中にバイポーラロンが存在するかどうか、すなわち第1の層130が非晶質酸化物のエレクトライドを有するかどうかを確認することができる。 Bipolaron has almost no light absorption in the visible light range where the photon energy is 1.55 eV to 3.10 eV, and shows light absorption in the vicinity of 4.6 eV. Accordingly, the first layer 130 is transparent in visible light. In addition, by measuring the light absorption characteristics of the first layer 130 and measuring the light absorption coefficient in the vicinity of 4.6 eV, whether or not bipolaron is present in the first layer 130, that is, the first layer 130 is measured. It can be confirmed whether or not has an electride of amorphous oxide.
 第1の層130の組成分析は、XPS法、EPMA法またはEDX法等により行うことができる。膜厚が100nm以下の場合はXPS法、50nm以上の場合はEPMA法、3μm以上の場合はEDX法による分析が可能である。 The composition analysis of the first layer 130 can be performed by an XPS method, an EPMA method, an EDX method, or the like. Analysis by the XPS method is possible when the film thickness is 100 nm or less, EPMA method when the film thickness is 50 nm or more, and EDX method when it is 3 μm or more.
 第1の層130が非晶質酸化物のエレクトライドで構成される場合、X線回折の測定ではピークは観察されず、ハローのみが観察される。 When the first layer 130 is composed of an amorphous oxide electride, no peak is observed in the X-ray diffraction measurement, and only a halo is observed.
 第1の層130は、微結晶を含んでいても良い。第1の層130内に微結晶が含有されているか否かは、例えば第1の層130の断面TEM(透過型電子顕微鏡)写真などから判断される。結晶状態における組成は、12CaO・7Al、CaO・Al、3CaO・Al等で表わされる。また、微結晶は、シェラー径が5.2nmより大きく、100nmより小さい結晶である。第1の層130が微結晶であれば、導電性が向上する。 The first layer 130 may contain microcrystals. Whether or not microcrystals are contained in the first layer 130 is determined from, for example, a cross-sectional TEM (transmission electron microscope) photograph of the first layer 130. The composition in the crystalline state is represented by 12CaO · 7Al 2 O 3 , CaO · Al 2 O 3 , 3CaO · Al 2 O 3 and the like. The microcrystal is a crystal having a Scherrer diameter larger than 5.2 nm and smaller than 100 nm. When the first layer 130 is microcrystalline, conductivity is improved.
 第1の層130において、4.6eVの位置での光吸収値は、100cm-1以上であってもよく、200cm-1以上であってもよい。4.6eVの位置での光吸収値は、100cm-1以上であれば、電子密度が大きくなり、仕事関数が小さくなるため、十分に接触抵抗を小さくすることができる。 In the first layer 130, the light absorption value at a position of 4.6 eV may be 100 cm −1 or more, or 200 cm −1 or more. If the light absorption value at the position of 4.6 eV is 100 cm −1 or more, the electron density increases and the work function decreases, so that the contact resistance can be sufficiently reduced.
 なお、第1の層130の電子密度は、ヨウ素滴定法により測定することができる。ちなみに、エレクトライドの薄膜におけるバイポーラロンの密度は、測定された電子密度を1/2倍することにより算定することができる。 Note that the electron density of the first layer 130 can be measured by an iodine titration method. Incidentally, the density of bipolarons in the electride thin film can be calculated by multiplying the measured electron density by 1/2.
 このヨウ素滴定法は、5mol/lのヨウ素水溶液中に第1の層130のサンプルを浸漬し、塩酸を加えて溶解させた後、この溶液中に含まれる未反応ヨウ素の量を、チオ硫酸ナトリウムで滴定検出する方法である。この場合、サンプルの溶解により、ヨウ素水溶液中のヨウ素は、以下の反応によりイオン化する:
 
  I+e→2I   (2)式
 
 また、チオ硫酸ナトリウムでヨウ素水溶液を滴定した場合、
 
  2Na+I→2NaI+Na   (3)式
 
の反応により、未反応のヨウ素がヨウ化ナトリウムに変化する。最初の溶液中に存在するヨウ素量から、(3)式で滴定検出されたヨウ素量を差し引くことにより、(2)式の反応で消費されたヨウ素量が算定される。これにより、第1の層130のサンプル中の電子密度を測定することができる。
In this iodine titration method, a sample of the first layer 130 is immersed in a 5 mol / l iodine aqueous solution and dissolved by adding hydrochloric acid. This is a method for titration detection. In this case, due to dissolution of the sample, iodine in the aqueous iodine solution is ionized by the following reaction:

I 2 + e → 2I (2) Formula
When titrating an aqueous iodine solution with sodium thiosulfate,

2Na 2 S 2 O 3 + I 2 → 2NaI + Na 2 S 4 O 6 (3) Formula
By this reaction, unreacted iodine is changed to sodium iodide. The amount of iodine consumed in the reaction of equation (2) is calculated by subtracting the amount of iodine detected by titration in equation (3) from the amount of iodine present in the initial solution. Thereby, the electron density in the sample of the first layer 130 can be measured.
 非晶質の第1の層130の成膜方法は、特に限られない。非晶質の第1の層130は、例えば、蒸着法で成膜されてもよい。非晶質の第1の層130は、例えば、10-7Pa~10-3Paの真空中で原料を加熱し、蒸着してもよい。また、非晶質の第1の層130は、スパッタリング法等により成膜してもよい。 A method for forming the amorphous first layer 130 is not particularly limited. The amorphous first layer 130 may be formed by, for example, a vapor deposition method. The amorphous first layer 130 may be deposited by heating the raw material in a vacuum of 10 −7 Pa to 10 −3 Pa, for example. Further, the amorphous first layer 130 may be formed by a sputtering method or the like.
 (結晶質の第1の層130)
 第1の層130は、カルシウム原子およびアルミニウム原子を含む結晶質酸化物のエレクトライドで構成されてもよい。
(Crystalline first layer 130)
The first layer 130 may be made of a crystalline oxide electride containing calcium atoms and aluminum atoms.
 結晶質酸化物のエレクトライドは、それぞれのケージが面を共有して3次元的に積み重なることにより、結晶格子が構成され、それらのケージの一部に電子が包接される。結晶質C12A7エレクトライドにおいて、ケージに包接された電子は、ケージに緩く束縛され、結晶中を自由に動くことができる。このため、結晶質C12A7エレクトライドは、非晶質C12A7エレクトライドよりも高い導電性を示す。「結晶質酸化物のエレクトライド」の組成は、上述の「非晶質酸化物のエレクトライド」の組成と同様である。 Crystal electrite electrides are three-dimensionally stacked with their respective cages sharing a plane, so that a crystal lattice is formed, and electrons are included in a part of these cages. In the crystalline C12A7 electride, the electrons included in the cage are loosely bound in the cage and can move freely in the crystal. For this reason, the crystalline C12A7 electride exhibits higher conductivity than the amorphous C12A7 electride. The composition of the “crystalline oxide electride” is the same as the composition of the “amorphous oxide electride” described above.
 結晶質酸化物のエレクトライドは、非晶質酸化物エレクトライドを900℃以上に加熱処理することにより作製することができる。加熱処理は、通常の電気炉による加熱、赤外線加熱、レーザー加熱、または誘導加熱などにより行うことができる。 The crystalline oxide electride can be produced by heat-treating the amorphous oxide electride to 900 ° C. or higher. The heat treatment can be performed by heating with a normal electric furnace, infrared heating, laser heating, induction heating, or the like.
 (第2の層140)
 第2の層140は、亜鉛(Zn)および酸素(O)を含み、さらに、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1つを含む金属酸化物で構成される。
(Second layer 140)
The second layer 140 includes zinc (Zn) and oxygen (O), and further includes a metal oxide including at least one of silicon (Si) and tin (Sn).
 例えば、第2の層140は、亜鉛(Zn)、ケイ素(Si)および酸素(O)を含んでもよい。以下、このような第2の層を、特に、「ZSO層」と称する。また、第2の層は、亜鉛(Zn)、スズ(Sn)および酸素(O)を含んでもよい。以下、このような第2の層を、特に、「ZTO層」と称する。さらに、第2の層は、亜鉛(Zn)、ケイ素(Si)、スズ(Sn)および酸素(O)を含んでもよい。以下、このような第2の層を、特に、「ZSTO層」と称する。 For example, the second layer 140 may include zinc (Zn), silicon (Si), and oxygen (O). Hereinafter, such a second layer is particularly referred to as a “ZSO layer”. Further, the second layer may include zinc (Zn), tin (Sn), and oxygen (O). Hereinafter, such a second layer is particularly referred to as a “ZTO layer”. Further, the second layer may include zinc (Zn), silicon (Si), tin (Sn), and oxygen (O). Hereinafter, such a second layer is particularly referred to as a “ZSTO layer”.
 以下、ZSO層、ZTO層およびZSTO層のそれぞれについて説明する。 Hereinafter, each of the ZSO layer, the ZTO layer, and the ZSTO layer will be described.
 (ZSO層)
 ZSO層は、亜鉛(Zn)、ケイ素(Si)および酸素(O)を含む。第2の層140がZSO層で構成される場合、結晶粒界を持たないので、一般的に用いられるZnOなどの酸化物半導体と比べて、平坦性および均質性に優れる。
(ZSO layer)
The ZSO layer contains zinc (Zn), silicon (Si), and oxygen (O). In the case where the second layer 140 is formed of a ZSO layer, it does not have a crystal grain boundary, and thus is superior in flatness and homogeneity as compared to a generally used oxide semiconductor such as ZnO.
 Zn/(Zn+Si)の値は、例えば、モル比で0.30~0.95の範囲が好ましい。0.30以上であれば、十分に大きな電子移動度が得られ、厚膜化して使用できるので、Si基板を十分に化学的に保護することができる。0.95以下であれば、平滑な表面が得られるので短絡を抑制できる。Zn/(Zn+Si)の値は、モル比で0.70以上であってもよく、0.80以上であってもよく、0.85以上であってもよい。Zn/(Zn+Si)の値は、モル比で0.94以下であってもよく、0.92以下であってもよく、0.90以下であってもよい。 The value of Zn / (Zn + Si) is, for example, preferably in the range of 0.30 to 0.95 in molar ratio. If it is 0.30 or more, a sufficiently large electron mobility can be obtained and the film can be used after being thickened, so that the Si substrate can be sufficiently chemically protected. If it is 0.95 or less, since a smooth surface is obtained, a short circuit can be suppressed. The value of Zn / (Zn + Si) may be 0.70 or more, 0.80 or more, or 0.85 or more in terms of molar ratio. The value of Zn / (Zn + Si) may be 0.94 or less in molar ratio, 0.92 or less, or 0.90 or less.
 ZSO層は、化学組成がxZnO-(1-x)SiO(x=0.30~0.95)で表わされることが好ましい。ここで、xが0.30以上であれば、十分に大きな電子移動度が得られ、厚膜化して使用できるので、Si基板を十分に保護することができる。xが0.95以下であれば、平滑な表面が得られるので短絡を抑制できる。xは0.70以上であってもよく、0.80以上であってもよく、0.85以上であってもよい。xは、0.94以下であってもよく、0.92以下であってもよく、0.90以下であってもよい。 The chemical composition of the ZSO layer is preferably represented by xZnO— (1-x) SiO 2 (x = 0.30 to 0.95). Here, if x is 0.30 or more, a sufficiently large electron mobility can be obtained and the film can be used after being thickened, so that the Si substrate can be sufficiently protected. If x is 0.95 or less, a smooth surface can be obtained and short-circuiting can be suppressed. x may be 0.70 or more, 0.80 or more, or 0.85 or more. x may be 0.94 or less, 0.92 or less, or 0.90 or less.
 ZSO層は、透明性に優れ、例えば、0.1cm-1-1~5.0cm-1-1の高い電子移動度を示す。また、ZSO層は、均質かつ結晶粒界を持たないためガス透過性が小さいので、Si基板および基板上に形成された各種機能層に対する保護層として利用できる。Si基板および基板上に形成された各種機能層は、外気に暴露されると、主に酸素や水分の影響により特性が劣化することが知られており、通常は保護層が必要となる。 The ZSO layer is excellent in transparency, and exhibits a high electron mobility of, for example, 0.1 cm 2 V −1 s −1 to 5.0 cm 2 V −1 s −1 . In addition, since the ZSO layer is homogeneous and does not have crystal grain boundaries, and has a low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate. The Si substrate and various functional layers formed on the substrate are known to deteriorate in characteristics mainly due to the influence of oxygen and moisture when exposed to the outside air, and a protective layer is usually required.
 ZSO層の厚さは、10nm~1000nmの範囲が好ましい。ZSO層の厚さが10nm以上であれば、保護層として十分に機能する。また、ZSO層の厚さが1000nm以下であれば、製造工程が短い。ZSO層の厚さが1000nmを超える場合は、成膜速度(単位時間あたりの成膜厚さ)を向上させるために、例えばスパッタリング法を用いる場合には、スパッタリングターゲットを複数用意するか、高出力な成膜装置が必要となる。ZSO層の厚さは、20nm以上がより好ましく、30nm以上がさらに好ましく、50nm以上が特に好ましい。一方、ZSO層の厚さは、700nm以下がより好ましく、500nm以下がさらに好ましく、300nm以下が特に好ましい。 The thickness of the ZSO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZSO layer is 10 nm or more, it sufficiently functions as a protective layer. If the thickness of the ZSO layer is 1000 nm or less, the manufacturing process is short. When the thickness of the ZSO layer exceeds 1000 nm, in order to improve the film formation speed (film formation thickness per unit time), for example, when using a sputtering method, a plurality of sputtering targets are prepared, or a high output A film forming apparatus is required. The thickness of the ZSO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more. On the other hand, the thickness of the ZSO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
 (ZTO層)
 ZTO層は、亜鉛(Zn)、スズ(Sn)および酸素(O)を含む。第2の層140がZTO層で構成される場合、エッチングレートが適切であり、エッチングし過ぎることなく所望の形状を形成できるため、半導体素子を安定して製造できる。
(ZTO layer)
The ZTO layer contains zinc (Zn), tin (Sn), and oxygen (O). When the second layer 140 is composed of a ZTO layer, the etching rate is appropriate, and a desired shape can be formed without excessive etching, so that the semiconductor element can be manufactured stably.
 ZTO層は、酸化物換算で、ZnOとSnOの合計100mol%に対して、SnOが15mol%以上、95mol%以下であることが好ましい。SnOが15mol%以上であれば、結晶化温度が高く、各種のプロセスにおいて施される熱処理工程において結晶化しにくい。SnOが95mol%以下であれば、焼結しやすく、良好な酸化物ターゲットが得られ、薄膜を形成しやすい。SnOは20mol%以上であってもよく、30mol%以上であってもよく、35mol%以上であってもよく、40mol%以上であってもよい。一方、SnOは70mol%以下であってもよく、60mol%以下であってもよく、50mol%以下であってもよい。 ZTO layer, in terms of oxide, relative to the total 100 mol% of ZnO and SnO 2, SnO 2 is 15 mol% or more, and preferably not more than 95 mol%. If SnO 2 is 15 mol% or more, the crystallization temperature is high, and it is difficult to crystallize in the heat treatment step performed in various processes. If SnO 2 is less 95 mol%, in easy sintering, good oxide target is obtained, easy to form a thin film. SnO 2 may be 20 mol% or more, 30 mol% or more, 35 mol% or more, or 40 mol% or more. On the other hand, SnO 2 may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
 ZTO層は、透明性に優れ、例えば、1cm-1-1~10cm-1-1の高い電子移動度を示す。また、ZSTO層は、均質かつ結晶粒界を持たないためガス透過性が小さいので、Si基板および基板上に形成された各種機能層に対する保護層として利用できる。 ZTO layer is excellent in transparency, for example, shows a high electron mobility 1cm 2 V -1 s -1 ~ 10cm 2 V -1 s -1. In addition, since the ZSTO layer is homogeneous and does not have a crystal grain boundary and has low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate.
 ZTO層の厚さは、10nm~1000nmの範囲が好ましい。ZTO層の厚さが10nm以上であれば、保護層として十分に機能する。また、ZTO層の厚さが1000nm以下であれば、製造工程が短い。ZTO層の厚さは、20nm以上がより好ましく、30nm以上がさらに好ましく、50nm以上が特に好ましい。一方、ZSO層の厚さは、700nm以下がより好ましく、500nm以下がさらに好ましく、300nm以下が特に好ましい。 The thickness of the ZTO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZTO layer is 10 nm or more, it sufficiently functions as a protective layer. If the thickness of the ZTO layer is 1000 nm or less, the manufacturing process is short. The thickness of the ZTO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more. On the other hand, the thickness of the ZSO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
 (ZSTO層)
 ZSTO層は、亜鉛(Zn)、スズ(Sn)、ケイ素(Si)および酸素(O)を含む。第2の層140がZSTO層で構成される場合、仕事関数が低く、かつ、エッチングレートが適切であり、また、高い透明性が得られるため、半導体素子特性が向上する。
(ZSTO layer)
The ZSTO layer includes zinc (Zn), tin (Sn), silicon (Si), and oxygen (O). In the case where the second layer 140 is formed of a ZSTO layer, the work function is low, the etching rate is appropriate, and high transparency is obtained, so that the semiconductor element characteristics are improved.
 ZSTO層は、酸化物換算で、ZnO、SnO、およびSiOの合計100mol%に対して、SnOが15mol%以上、95mol%以下であることが好ましい。SnOが15mol%以上であれば、結晶化温度が高く、各種のプロセスにおいて施される熱処理工程において結晶化しにくい。95mol%以下であれば、焼結しやすく、良好な酸化物ターゲットが得られ、薄膜を形成しやすい。SnOは30mol%以上であってもよく、35mol%以上であってもよく、40mol%以上であってもよい。一方、SnOは70mol%以下であってもよく、60mol%以下であってもよく、50mol%以下であってもよい。 ZSTO layer, in terms of oxide, ZnO, relative to SnO 2, and the total 100 mol% of SiO 2, SnO 2 is 15 mol% or more, and preferably not more than 95 mol%. If SnO 2 is 15 mol% or more, the crystallization temperature is high, and it is difficult to crystallize in the heat treatment step performed in various processes. If it is 95 mol% or less, it is easy to sinter, a good oxide target is obtained, and a thin film is easily formed. SnO 2 may be 30 mol% or more, 35 mol% or more, or 40 mol% or more. On the other hand, SnO 2 may be 70 mol% or less, 60 mol% or less, or 50 mol% or less.
 ZSTO層は、酸化物換算で、ZnO、SnO、およびSiOの合計100mol%に対して、SiOが、7mol%以上、30mol%以下であることが好ましい。SiOが7mol%以上、30mol%以下であれば、電子親和力が大きすぎず、体積抵抗率が高すぎない。SiOは8mol%以上であってもよく、10mol%以上であってもよい。一方、SiOは20mol%以下であってもよく、15mol%以下であってもよい。 ZSTO layer, in terms of oxide, ZnO, relative to SnO 2, and the total 100 mol% of SiO 2, SiO 2 is, 7 mol% or more, and preferably not more than 30 mol%. SiO 2 is 7 mol% or more, not more than 30 mol%, the electron affinity is not too high, the volume resistivity is not too high. SiO 2 may be 8 mol% or more, or 10 mol% or more. On the other hand, SiO 2 may be less 20 mol%, may be not more than 15 mol%.
 ZSTO層は、透明性に優れ、例えば、0.1cm-1-1~3cm-1-1の高い電子移動度を示す。また、ZSTO層は、均質かつ結晶粒界を持たないためガス透過性が小さいので、Si基板および基板上に形成された各種機能層に対する保護層として利用できる。 The ZSTO layer is excellent in transparency and exhibits a high electron mobility of, for example, 0.1 cm 2 V −1 s −1 to 3 cm 2 V −1 s −1 . In addition, since the ZSTO layer is homogeneous and does not have a crystal grain boundary and has low gas permeability, it can be used as a protective layer for the Si substrate and various functional layers formed on the substrate.
 ZSTO層の厚さは、10nm~1000nmの範囲が好ましい。ZSTO層の厚さが10nm以上であれば、Si基板および基板上に形成された各種機能層に対する保護層として十分に機能する。また、ZSTO層の厚さが1000nm以下であれば、製造工程が短い。ZSTO層の厚さは、20nm以上がより好ましく、30nm以上がさらに好ましく、50nm以上が特に好ましい。一方、ZSTO層の厚さは、700nm以下がより好ましく、500nm以下がさらに好ましく、300nm以下が特に好ましい。 The thickness of the ZSTO layer is preferably in the range of 10 nm to 1000 nm. If the thickness of the ZSTO layer is 10 nm or more, it sufficiently functions as a protective layer for the Si substrate and various functional layers formed on the substrate. In addition, if the thickness of the ZSTO layer is 1000 nm or less, the manufacturing process is short. The thickness of the ZSTO layer is more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more. On the other hand, the thickness of the ZSTO layer is more preferably 700 nm or less, further preferably 500 nm or less, and particularly preferably 300 nm or less.
 第2の層140は、さらに、チタン(Ti)、インジウム(In)、ガリウム(Ga)、ニオブ(Nb)、およびアルミニム(Al)からなる群から選択される一以上の金属成分を含んでもよい。これらの金属成分を含むことにより、化学的耐久性に優れる。これらの金属成分の含有量は、酸化物換算で、ZnO、SiO、SnO、およびその他の金属成分の酸化物の合計100mol%に対して、好ましくは15mol%以下であり、より好ましくは10mol%以下であり、さらに好ましくは5mol%以下である。なお、酸化物換算においては、これらの金属は、TiO、In、Ga、Nb、またはAlの形態として算出することとする。 The second layer 140 may further include one or more metal components selected from the group consisting of titanium (Ti), indium (In), gallium (Ga), niobium (Nb), and aluminum (Al). . By including these metal components, the chemical durability is excellent. The content of these metal components, calculated as oxide, ZnO, the total 100 mol% of SiO 2, SnO 2, and other oxides of the metal components, preferably not more than 15 mol%, more preferably 10mol % Or less, more preferably 5 mol% or less. In terms of oxides, these metals are calculated as TiO 2 , In 2 O 3 , Ga 2 O 3 , Nb 2 O 5 , or Al 2 O 3 .
 第2の層140の組成は、厚さが200nm以上の場合、EPMAを用いて分析することができる。また、厚さが700nm以上の場合、例えば10kVの加速電圧のSEM-EDXを用いて分析することができる。また、XRFを用いて基板補正を行うことによっても分析することができる。また、ICPを使用する場合、第2の層140は、1mm以上の体積を使用することにより、分析することができる。 The composition of the second layer 140 can be analyzed using EPMA when the thickness is 200 nm or more. When the thickness is 700 nm or more, for example, the analysis can be performed using SEM-EDX having an acceleration voltage of 10 kV. The analysis can also be performed by performing substrate correction using XRF. Also, when using ICP, the second layer 140 can be analyzed by using a volume of 1 mm 3 or more.
 第2の層140は、非晶質または非晶質の状態が支配的であることが好ましい。ここで、非晶質とは、第1の層130と同様に、X線回折測定で鋭いピークを与えない物質を意味する。また、非晶質の状態が支配的であるとは、非晶質が体積割合で50%より多く存在している状態のことである。第2の層140が非晶質または非晶質の状態が支配的であれば、膜表面の平滑性が高く、素子の短絡防止が可能であるため好ましい。 It is preferable that the second layer 140 is dominant in an amorphous state or an amorphous state. Here, the term “amorphous” means a substance that does not give a sharp peak in the X-ray diffraction measurement, like the first layer 130. The amorphous state is dominant when the amorphous is present in a volume ratio of more than 50%. It is preferable that the second layer 140 is predominantly amorphous or amorphous because the film surface has high smoothness and can prevent a short circuit of the element.
 第2の層140は、微結晶であっても、非晶質と微結晶が混在する形態であってもよい。ここで微結晶とは、シェラー径が5.2nmより大きく、100nmより小さい結晶である。第2の層140が微結晶であれば、導電性が向上するため好ましい。第2の層140が非晶質と微結晶が混在する形態であれば、平滑性と導電性とがともに向上するため好ましい。 The second layer 140 may be a microcrystal or a mixture of amorphous and microcrystal. Here, the microcrystal is a crystal having a Scherrer diameter larger than 5.2 nm and smaller than 100 nm. It is preferable that the second layer 140 be microcrystalline because conductivity is improved. It is preferable that the second layer 140 is in a form in which amorphous and microcrystals are mixed because both smoothness and conductivity are improved.
 第2の層140の電子移動度は、10-4cm・V-1-1~10cm・V-1-1が好ましい。10-4cm・V-1-1以上であれば、第2の層140の厚さを10nm以上とすることができ、Si基板および基板上に形成された各種機能層に対する保護層として十分に機能する。10cm・V-1-1以下であれば、非晶質の状態が支配的となり、膜表面の平滑性が高く、素子の短絡防止が可能となる。第2の層140の電子移動度は、10-4cm・V-1-1以上であってもよく、10-3cm・V-1-1以上であってもよく、10-2cm・V-1-1以上であってもよい。第2の層140の電子移動度は、10cm・V-1-1以下であってもよく、10cm・V-1-1以下あってもよく、10-1cm・V-1-1以下であってもよい。 The electron mobility of the second layer 140 is preferably 10 −4 cm 2 · V −1 s −1 to 10 2 cm 2 · V −1 s −1 . When the thickness is 10 −4 cm 2 · V −1 s −1 or more, the thickness of the second layer 140 can be 10 nm or more, and as a protective layer for the Si substrate and various functional layers formed on the substrate. Works well. If it is 10 2 cm 2 · V −1 s −1 or less, the amorphous state becomes dominant, the smoothness of the film surface is high, and the short circuit of the element can be prevented. The electron mobility of the second layer 140 may be 10 −4 cm 2 · V −1 s −1 or more, or may be 10 −3 cm 2 · V −1 s −1 or more. It may be −2 cm 2 · V −1 s −1 or more. The electron mobility of the second layer 140 may be 10 2 cm 2 · V −1 s −1 or less, may be 10 cm 2 · V −1 s −1 or less, and may be 10 −1 cm 2. It may be V −1 s −1 or less.
 第2の層140の電子密度は、1×1014cm-3~1×1021cm-3が好ましい。1×1014cm-3以上であれば、第2の層140厚さを10nm以上とすることができ、Si基板および基板上に形成された各種機能層に対する保護層として十分に機能する。1×1021cm-3以下であれば、非晶質の状態が支配的となり、膜表面の平滑性が高く、素子の短絡防止が可能となる。第2の層140の電子密度は、1×1014cm-3以上であってもよく、5×1016cm-3以上であってもよく、1×1018cm-3以上であってもよい。第2の層140の電子密度は、1×1021cm-3以下であってもよく、5×1020cm-3以下であってもよく、1×1020cm-3以下であってもよい。 The electron density of the second layer 140 is preferably 1 × 10 14 cm −3 to 1 × 10 21 cm −3 . If the thickness is 1 × 10 14 cm −3 or more, the thickness of the second layer 140 can be 10 nm or more, and it sufficiently functions as a protective layer for the Si substrate and various functional layers formed on the substrate. If it is 1 × 10 21 cm −3 or less, the amorphous state becomes dominant, the smoothness of the film surface is high, and the short circuit of the element can be prevented. The electron density of the second layer 140 may be 1 × 10 14 cm −3 or more, 5 × 10 16 cm −3 or more, or 1 × 10 18 cm −3 or more. Good. The electron density of the second layer 140 may be 1 × 10 21 cm −3 or less, 5 × 10 20 cm −3 or less, or 1 × 10 20 cm −3 or less. Good.
 第2の層140の電子移動度は、ホール測定法またはタイムオブフライト(Time-of-Flight(TOF))法等により、求めることができる。第2の層140の電子密度は、ヨウ素滴定法またはホール測定法等により求めることができる。 The electron mobility of the second layer 140 can be obtained by a hole measurement method, a time-of-flight (TOF) method, or the like. The electron density of the second layer 140 can be obtained by an iodine titration method, a Hall measurement method, or the like.
 第2の層140の電子親和力は、2.0eV~4.0eVが好ましい。2.0eV以上であれば、接触抵抗を十分に低減できる。4.0eV以下であれば、接触抵抗の低減の効果が十分に得られない。第2の層140の電子親和力は、2.0eV以上であってもよく、2.2eV以上であってもよく、2.5eV以上であってもよい。一方、第2の層140の電子親和力は、4.0eV以下であってもよく、3.5eV以下であってもよく、3.0eV以下であってもよい。 The electron affinity of the second layer 140 is preferably 2.0 eV to 4.0 eV. If it is 2.0 eV or more, the contact resistance can be sufficiently reduced. If it is 4.0 eV or less, the effect of reducing the contact resistance cannot be sufficiently obtained. The electron affinity of the second layer 140 may be 2.0 eV or more, 2.2 eV or more, or 2.5 eV or more. On the other hand, the electron affinity of the second layer 140 may be 4.0 eV or less, 3.5 eV or less, or 3.0 eV or less.
 第2の層140のイオン化ポテンシャルは、5.5eV~8.5eVが好ましい。このように大きいイオン化ポテンシャルを有する第2の層140は、ホールブロック効果が高く、電子のみを選択的に輸送することができる。第2の層140のイオン化ポテンシャルは、5.7eV以上であってもよく、5.9eV以上であってもよい。一方、第2の層140のイオン化ポテンシャルは、7.5eV以下であってもよく、7.0eV以下であってもよい。 The ionization potential of the second layer 140 is preferably 5.5 eV to 8.5 eV. The second layer 140 having such a large ionization potential has a high hole blocking effect and can selectively transport only electrons. The ionization potential of the second layer 140 may be 5.7 eV or more, or 5.9 eV or more. On the other hand, the ionization potential of the second layer 140 may be 7.5 eV or less, or 7.0 eV or less.
 前述のように、通常、n型Si層と金属電極層との間の界面は、オーミック性の抵抗挙動を示さず、界面の接触抵抗が高いという問題がある。 As described above, the interface between the n-type Si layer and the metal electrode layer usually does not exhibit ohmic resistance behavior and has a problem that the contact resistance of the interface is high.
 一方、第2の層140は、金属製の電極層150との間で、オーミック接合を形成し、両者の界面の接触抵抗は、比較的小さいという特徴を有する。また、前述のように、第2の層140と第1の層130の間の界面における接触抵抗は、有意に小さい。このため、第1の層130の上に第2の層140を設けても、界面数の増加による接触抵抗上昇の影響は少ない。 On the other hand, the second layer 140 forms an ohmic junction with the metal electrode layer 150, and has a characteristic that the contact resistance between the two layers is relatively small. Further, as described above, the contact resistance at the interface between the second layer 140 and the first layer 130 is significantly small. For this reason, even if the second layer 140 is provided on the first layer 130, the influence of the contact resistance increase due to the increase in the number of interfaces is small.
 その結果、電極層150の直下に第2の層140を配置することにより、第1の半導体素子100において、全体の抵抗ロスを抑制することができる。また、これにより、第1の半導体素子100において、素子効率を高めることが可能になる。 As a result, by disposing the second layer 140 immediately below the electrode layer 150, the entire resistance loss in the first semiconductor element 100 can be suppressed. This also makes it possible to increase the element efficiency in the first semiconductor element 100.
 (電極層150)
 電極層150は、金属で構成される。電極層150は、例えば、アルミニウム、アルミニウム合金、銅、および銅合金等で構成されてもよい。
(Electrode layer 150)
The electrode layer 150 is made of metal. The electrode layer 150 may be made of, for example, aluminum, an aluminum alloy, copper, a copper alloy, or the like.
 電極層150の厚さは、例えば、50nm~100nmの範囲である。電極層150の厚さが50nm以上であれば、低抵抗な電極が形成されるので好ましい。電極層150の厚さが100nm以下であれば、電極のエッジの段差が小さく、後から成膜される膜の被覆性がよいため好ましい。電極層150の厚さは、60nm以上であってもよく、70nm以上であってもよい。一方、電極層150の厚さは、90nm以下であってもよく、80nm以下であってもよい。 The thickness of the electrode layer 150 is, for example, in the range of 50 nm to 100 nm. A thickness of the electrode layer 150 of 50 nm or more is preferable because a low-resistance electrode is formed. A thickness of the electrode layer 150 of 100 nm or less is preferable because a step at the edge of the electrode is small and a coating property of a film to be formed later is good. The thickness of the electrode layer 150 may be 60 nm or more, or 70 nm or more. On the other hand, the thickness of the electrode layer 150 may be 90 nm or less, or 80 nm or less.
 電極層150は、例えばメッシュ状に構成してもよい。 The electrode layer 150 may be configured in a mesh shape, for example.
 (第1の半導体素子100の製造方法)
 次に、図2を参照して、図1に示したような構成を有する第1の半導体素子100の製造方法の一例について説明する。
(Method for Manufacturing First Semiconductor Element 100)
Next, an example of a manufacturing method of the first semiconductor element 100 having the configuration as shown in FIG. 1 will be described with reference to FIG.
 図2には、第1の半導体素子100の製造方法の一例の概略的なフロー図を示す。 FIG. 2 shows a schematic flow chart of an example of a method for manufacturing the first semiconductor element 100.
 図2に示すように、この製造方法(以下、「第1の製造方法」という)は、
 支持体の上に、n型Si層を配置するステップ(ステップS110)と、
 n型Si層の上に、第1の層を配置するステップ(ステップS120)と、
 第1の層の上に、第2の層を配置するステップ(ステップS130)と、
 第2の層の上に、電極層を配置するステップ(ステップS140)と、
 を有する。
As shown in FIG. 2, this manufacturing method (hereinafter referred to as “first manufacturing method”)
Placing an n-type Si layer on the support (step S110);
disposing a first layer on the n-type Si layer (step S120);
Disposing a second layer on the first layer (step S130);
Disposing an electrode layer on the second layer (step S140);
Have
 以下、各工程について説明する。なお、ここでは、明確化のため、各部材を表す際に、図1に示した参照符号を使用する。 Hereinafter, each process will be described. Here, for the sake of clarity, reference numerals shown in FIG. 1 are used to represent each member.
 (ステップS110)
 まず、支持体110が準備される。
(Step S110)
First, the support body 110 is prepared.
 前述のように、支持体110の材料は特に限られない。ここでは、一例として、支持体110がSi基板である場合を例に、以下説明する。 As described above, the material of the support 110 is not particularly limited. Here, as an example, the case where the support 110 is a Si substrate will be described as an example.
 支持体110の表面は、以降のステップの前に、十分に清浄化される。 The surface of the support 110 is sufficiently cleaned before the subsequent steps.
 次に、支持体110の上に、n型Si層120が形成される。 Next, an n-type Si layer 120 is formed on the support 110.
 n型Si層120は、例えば、支持体110、すなわちSi基板の表面に、リンおよび/またはヒ素のようなn型のドーパントをドープすることにより形成されてもよい。 The n-type Si layer 120 may be formed, for example, by doping the surface of the support 110, that is, the Si substrate, with an n-type dopant such as phosphorus and / or arsenic.
 (ステップS120)
 次に、n型Si層120の上に、第1の層130が配置される。
(Step S120)
Next, the first layer 130 is disposed on the n-type Si layer 120.
 第1の層130の形成方法は、特に限られない。第1の層130は、例えば、アルミニウム(Al)およびカルシウム(Ca)を含むターゲットを用いた「気相蒸着法」により、形成することができる。 The method for forming the first layer 130 is not particularly limited. The first layer 130 can be formed by, for example, a “vapor deposition method” using a target including aluminum (Al) and calcium (Ca).
 ここで、本願において、「気相蒸着法」とは、物理気相成膜(PVD)法、PLD法、スパッタリング法、および真空蒸着法を含む、ターゲット原料を気化させてからこの原料を被成膜部材上に堆積させる成膜方法の総称を意味する。 Here, in the present application, the “vapor deposition method” means that a target material including a physical vapor deposition (PVD) method, a PLD method, a sputtering method, and a vacuum deposition method is vaporized and then formed. It means a general term for a film forming method to be deposited on a film member.
 例えば、第1の層130は、蒸着法で成膜されてもよい。第1の層130は、例えば、10-7Pa~10-3Paの真空中で原料を加熱し、蒸着してもよい。10-7Pa以上であれば、十分な電子密度を得ることができる。10-6Pa以上であってもよく、10-5Pa以上であってもよい。10-3Pa以下であれば、簡便な装置を用いて、低コストで薄膜を形成できる。10-4Pa以下であってもよく、10-5Pa以下であってもよい。また、第1の層130は、スパッタリング法等により、成膜してもよい。 For example, the first layer 130 may be formed by an evaporation method. The first layer 130 may be deposited by heating the raw material in a vacuum of 10 −7 Pa to 10 −3 Pa, for example. If it is 10 −7 Pa or more, a sufficient electron density can be obtained. It may be 10 −6 Pa or higher, or 10 −5 Pa or higher. If it is 10 −3 Pa or less, a thin film can be formed at low cost using a simple apparatus. It may be 10 −4 Pa or less, or 10 −5 Pa or less. Further, the first layer 130 may be formed by a sputtering method or the like.
 気相蒸着法で成膜された第1の層130は、通常の場合、非晶質構造を有する。その後、必要に応じて、第1の層130を加熱処理してもよい。この場合、例えば、第1の層130を900℃以上に加熱処理することにより結晶質の第1の層130を得ることができる。 In general, the first layer 130 formed by vapor deposition has an amorphous structure. Thereafter, the first layer 130 may be heat-treated as necessary. In this case, for example, the crystalline first layer 130 can be obtained by heat-treating the first layer 130 at 900 ° C. or higher.
 (ステップS130)
 次に、第1の層130の上に、第2の層140が配置される。
(Step S130)
Next, the second layer 140 is disposed on the first layer 130.
 第2の層140は、例えば、亜鉛(Zn)およびケイ素(Si)を含むターゲットを用いたスパッタリング法を含む「気相蒸着法」により、形成することができる。 The second layer 140 can be formed by, for example, a “vapor deposition method” including a sputtering method using a target including zinc (Zn) and silicon (Si).
 スパッタリング法には、DC(直流)スパッタリング法、高周波スパッタリング法、ヘリコン波スパッタリング法、イオンビームスパッタリング法、およびマグネトロンスパッタリング法等が含まれる。スパッタリング法では、大面積領域に、第2の層140を比較的均一に成膜することができる。 Sputtering methods include DC (direct current) sputtering method, high frequency sputtering method, helicon wave sputtering method, ion beam sputtering method, magnetron sputtering method and the like. In the sputtering method, the second layer 140 can be formed relatively uniformly in a large area region.
 ターゲットは、ZnおよびSiを含むものであればよい。ZnおよびSiは、単独のターゲットに含まれていてもよく、複数のターゲットに別々に含まれていてもよい。ターゲットにおいて、ZnおよびSiは、それぞれ金属または金属酸化物として存在してもよく、合金または複合金属酸化物として存在してもよい。金属酸化物または複合金属酸化物は、結晶であってもよく、非晶質であってもよい。 The target only needs to contain Zn and Si. Zn and Si may be contained in a single target or may be separately contained in a plurality of targets. In the target, Zn and Si may exist as a metal or a metal oxide, respectively, or may exist as an alloy or a composite metal oxide. The metal oxide or composite metal oxide may be crystalline or amorphous.
 ターゲットは、ZnおよびSiの他、Sn、Ti、In、Ga、Nb、およびAlからなる群から選択される一以上の金属成分を含んでもよい。Zn、Siおよびその他の金属成分は、単独のターゲットに含まれていてもよく、複数のターゲットに別々に含まれていてもよい。ターゲットにおいて、Zn、Siおよびその他の金属成分は、それぞれ金属または金属酸化物として存在してもよく、2種以上の金属の合金または複合金属酸化物として存在してもよい。金属酸化物または複合金属酸化物は、結晶であってもよく、非晶質であってもよい。 The target may contain one or more metal components selected from the group consisting of Sn, Ti, In, Ga, Nb, and Al in addition to Zn and Si. Zn, Si and other metal components may be contained in a single target, or may be separately contained in a plurality of targets. In the target, Zn, Si and other metal components may exist as a metal or a metal oxide, respectively, or may exist as an alloy or a composite metal oxide of two or more metals. The metal oxide or composite metal oxide may be crystalline or amorphous.
 単独のターゲットを用いる場合、ターゲットにおけるZn/(Zn+Si)の値は、モル比で0.30~0.95であってもよく、0.70~0.94であってもよく、0.80~0.92であってもよく、0.85~0.90であってもよい。単独のターゲットが、ZnおよびSiの他、Sn、Ti、In、Ga、Nb、およびAlからなる群から選択される一以上の金属成分を含む場合、これらの金属成分の含有量は、酸化物換算で、ZnO、SiOおよびその他の金属成分の酸化物の合計100mol%に対して、好ましくは15mol%以下であり、より好ましくは10mol%以下であり、さらに好ましくは5mol%以下である。なお、酸化物換算において、金属成分は、SnO、TiO、In、Ga、Nb、またはAlとして算出することとする。ターゲットの組成分析は、XRF法等により行うことができる。なお、第2の層140の組成は、用いたターゲットの組成比と異なることがある。 When a single target is used, the Zn / (Zn + Si) value in the target may be 0.30 to 0.95, 0.70 to 0.94, 0.80 in terms of molar ratio. It may be ˜0.92 and may be 0.85˜0.90. When a single target contains one or more metal components selected from the group consisting of Sn, Ti, In, Ga, Nb, and Al in addition to Zn and Si, the content of these metal components is oxide in terms of, ZnO, the total 100 mol% of an oxide of SiO 2 and other metal components, preferably not more than 15 mol%, more preferably not more than 10 mol%, more preferably not more than 5 mol%. Note that, in terms of oxide, the metal component is calculated as SnO 2 , TiO 2 , In 2 O 3 , Ga 2 O 3 , Nb 2 O 5 , or Al 2 O 3 . The composition analysis of the target can be performed by the XRF method or the like. Note that the composition of the second layer 140 may differ from the composition ratio of the target used.
 複数のターゲットを用いる場合、例えば、金属SiのターゲットとZnOのターゲットを同時にスパッタすることで、第2の層140を得ることができる。その他の複数のターゲットの組み合わせとしては、ZnOのターゲットとSiOのターゲットの組み合わせ、ZnOおよびSiOを含み、ZnO比率の異なる複数のターゲットの組み合わせ、金属Znのターゲットと金属Siのターゲットの組み合わせ、金属ZnのターゲットとSiOのターゲットの組み合わせ、金属Znまたは金属Siを含むターゲットとZnOおよびSiOを含むターゲットの組み合わせなどが挙げられる。 When a plurality of targets are used, for example, the second layer 140 can be obtained by simultaneously sputtering a metal Si target and a ZnO target. Other combinations of a plurality of targets include a combination of a ZnO target and a SiO 2 target, a combination of a plurality of targets including ZnO and SiO 2 with different ZnO ratios, a combination of a metal Zn target and a metal Si target, Examples include a combination of a metal Zn target and a SiO 2 target, and a combination of a metal Zn or metal Si target and a ZnO and SiO 2 target.
 複数のターゲットを同時に用いる場合、それぞれのターゲットに印加する電力を調節することで所望の組成を有する第2の層140を得ることができる。 When a plurality of targets are used simultaneously, the second layer 140 having a desired composition can be obtained by adjusting the power applied to each target.
 第2の層140を成膜する際には、第2の層140が非晶質または非晶質の状態が支配的である場合、支持体110は、「積極的に」は加熱しないことが好ましい。支持体110の温度が上昇すると、第2の層140が非晶質になりにくい場合があるためである。 When the second layer 140 is formed, if the second layer 140 is dominant in an amorphous state or an amorphous state, the support 110 may not be “positively” heated. preferable. This is because when the temperature of the support 110 is increased, the second layer 140 may not easily become amorphous.
 ただし、イオン衝撃などによるスパッタ工程自身によって、支持体110が「付随的に」加熱される場合がある。この場合、どの程度支持体110の温度が上昇するかは、スパッタの条件に依存する。支持体110の温度上昇を避けるため、支持体110を「積極的に」冷却してもよい。支持体110が70℃以下で、第1の層130の成膜を行うことが好ましい。支持体110の温度は、60℃以下であってもよく、50℃以下であってもよい。 However, the support 110 may be “incidentally” heated by the sputtering process itself by ion bombardment or the like. In this case, how much the temperature of the support 110 increases depends on the sputtering conditions. In order to avoid an increase in the temperature of the support 110, the support 110 may be “positively” cooled. The first layer 130 is preferably formed at a temperature of the support 110 of 70 ° C. or lower. The temperature of the support 110 may be 60 ° C. or less, or 50 ° C. or less.
 スパッタリングガスの圧力(スパッタ装置のチャンバ内の圧力)は、0.05Pa~10Paの範囲が好ましく、0.1Pa~5Paがより好ましく、0.2Pa~3Paがさらに好ましい。この範囲であれば、スパッタリングガスの圧力が低すぎることがないため、プラズマが安定になる。また、スパッタリングガスの圧力が高すぎることがないため、イオン衝撃が増えることによる支持体110の温度上昇を抑制することができる。 The pressure of the sputtering gas (pressure in the chamber of the sputtering apparatus) is preferably in the range of 0.05 Pa to 10 Pa, more preferably 0.1 Pa to 5 Pa, and further preferably 0.2 Pa to 3 Pa. If it is this range, since the pressure of sputtering gas will not be too low, plasma will become stable. Moreover, since the pressure of sputtering gas is not too high, the temperature rise of the support body 110 due to an increase in ion bombardment can be suppressed.
 使用されるスパッタリングガスは、特に限られない。スパッタリングガスは、不活性ガスまたは希ガスであってもよい。酸素を含有してもよい。不活性ガスとしては、例えば、Nガスが挙げられる。また、希ガスとしては、He(ヘリウム)、Ne(ネオン)、Ar(アルゴン)、Kr(クリプトン)、およびXe(キセノン)が挙げられる。これらは、単独で使用しても、他のガスと併用してもよい。あるいは、スパッタリングガスは、NO(一酸化窒素)やCO(一酸化炭素)のような還元性ガスであってもよい。 The sputtering gas used is not particularly limited. The sputtering gas may be an inert gas or a noble gas. Oxygen may be contained. The inert gas, eg, N 2 gas. In addition, examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These may be used alone or in combination with other gases. Alternatively, the sputtering gas may be a reducing gas such as NO (nitrogen monoxide) or CO (carbon monoxide).
 以上の方法により、第1の層130の上に、第2の層140を形成することができる。 By the above method, the second layer 140 can be formed on the first layer 130.
 (ステップS140)
 次に、第2の層140の上に、電極層150が配置される。
(Step S140)
Next, the electrode layer 150 is disposed on the second layer 140.
 電極層150の形成方法は、特に限られない。例えば、電極層150は、蒸着法、スパッタリング法、塗布法等の公知の成膜技術により、形成してもよい。 The formation method of the electrode layer 150 is not particularly limited. For example, the electrode layer 150 may be formed by a known film forming technique such as a vapor deposition method, a sputtering method, or a coating method.
 以上の工程により、第1の半導体素子100を製造することができる。 Through the above steps, the first semiconductor element 100 can be manufactured.
 なお、第1の半導体素子100には、さらに、必要に応じてその他の部材を設置してもよい。 The first semiconductor element 100 may further be provided with other members as necessary.
 (本発明の一実施形態による別の半導体素子)
 次に、図3を参照して、本発明の一実施形態による別の半導体素子について説明する。
(Another semiconductor device according to an embodiment of the present invention)
Next, another semiconductor device according to an embodiment of the present invention will be described with reference to FIG.
 図3には、本発明の一実施形態による別の半導体素子(以下、「第2の半導体素子」と言う)の概略的な断面を示す。 FIG. 3 shows a schematic cross section of another semiconductor element (hereinafter referred to as “second semiconductor element”) according to an embodiment of the present invention.
 図3に示すように、第2の半導体素子200は、支持体210と、n型Si層220と、第1の層230と、第2の層240と、電極層250とをこの順に備える。 As shown in FIG. 3, the second semiconductor element 200 includes a support 210, an n-type Si layer 220, a first layer 230, a second layer 240, and an electrode layer 250 in this order.
 ここで、第2の半導体素子200の構成は、図1に示した第1の半導体素子100とほぼ同様である。例えば、第2の半導体素子200において、支持体210~第1の層230まで、および電極層250は、それぞれ、第1の半導体素子100における支持体110~第1の層130まで、および電極層150と同様の構成を有する。 Here, the configuration of the second semiconductor element 200 is substantially the same as that of the first semiconductor element 100 shown in FIG. For example, in the second semiconductor element 200, the support 210 to the first layer 230 and the electrode layer 250 are respectively the support 110 to the first layer 130 and the electrode layer in the first semiconductor element 100. 150 has the same configuration.
 ただし、第2の半導体素子200における第2の層240は、第1の半導体素子100における第2の層140とは異なる層で構成される。 However, the second layer 240 in the second semiconductor element 200 is composed of a layer different from the second layer 140 in the first semiconductor element 100.
 そこで、以下、第2の層240について、詳しく説明する。 Therefore, the second layer 240 will be described in detail below.
 (第2の層240)
 第2の層240は、
 (a)チタン(Ti)および酸素(O)を含む金属酸化物、
 (b)スズ(Sn)および酸素(O)を含む金属酸化物、ならびに
 (c)亜鉛(Zn)および酸素(O)を含む金属酸化物、
 のいずれかで構成される。
(Second layer 240)
The second layer 240 is
(A) a metal oxide containing titanium (Ti) and oxygen (O),
(B) a metal oxide containing tin (Sn) and oxygen (O), and (c) a metal oxide containing zinc (Zn) and oxygen (O),
Consists of either.
 (a)の場合、第2の層240は、化学的耐久性が高く、特に、Si基板および基板上に形成された各種機能層に対する保護性に優れる。第2の層240は、Nb(ニオブ)がドープされた酸化チタンで構成されてもよい。第2の層240は、Nb(ニオブ)がドープされた酸化チタンで構成されることにより、高い導電性を示すので、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。Nb/(Ti+Nb)の値は、例えば、モル比で0.01~0.15の範囲である。0.01以上であれば、高い導電性を示すので、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。0.15以下であれば、Nb(ニオブ)が固溶するため、均質な薄膜が作製できる。Nb/(Ti+Nb)の値は、モル比で0.02以上であってもよく、0.03以上であってもよく、0.05以上であってもよい。Nb/(Ti+Nb)の値は、モル比で0.10以下であってもよく、0.08以下であってもよく、0.07以下であってもよい。 (A) In the case of (a), the second layer 240 has high chemical durability, and is particularly excellent in protection against the Si substrate and various functional layers formed on the substrate. The second layer 240 may be made of titanium oxide doped with Nb (niobium). Since the second layer 240 is composed of titanium oxide doped with Nb (niobium) and exhibits high conductivity, the film thickness can be particularly increased, so that the Si substrate and various types formed on the substrate can be formed. Excellent protection for the functional layer. The value of Nb / (Ti + Nb) is, for example, in the range of 0.01 to 0.15 in molar ratio. Since it will show high electroconductivity if it is 0.01 or more, since a film thickness can be enlarged, it is excellent in the protection property with respect to the Si substrate and various functional layers formed on the substrate. If it is 0.15 or less, Nb (niobium) is dissolved, so that a homogeneous thin film can be produced. The molar ratio of Nb / (Ti + Nb) may be 0.02 or more, 0.03 or more, or 0.05 or more. The molar ratio Nb / (Ti + Nb) may be 0.10 or less, 0.08 or less, or 0.07 or less.
 また、(b)の場合、第2の層240は、化学的耐久性が高く、特に、Si基板および基板上に形成された各種機能層に対する保護性に優れる。第2の層240は、酸化スズ、ITO(インジウムスズ酸化物)、またはフッ素がドープされた酸化スズ等で構成されてもよい。 Further, in the case of (b), the second layer 240 has high chemical durability, and is particularly excellent in protection against the Si substrate and various functional layers formed on the substrate. The second layer 240 may be made of tin oxide, ITO (indium tin oxide), tin oxide doped with fluorine, or the like.
 第2の層240は、酸化スズで構成されることにより、化学的耐久性が高く、特に、Si基板および基板上に形成された各種機能層に対する保護性に優れる。 The second layer 240 is made of tin oxide, so that the chemical durability is high, and particularly, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate.
 第2の層240は、ITOで構成されることにより、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。In/(Sn+In)の値は、例えば、モル比で0.03~0.2の範囲である。0.03以上であれば、高い導電性を示すので、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。0.20以下であれば、Sn(スズ)が固溶するため、均質な薄膜が作製できる。In/(Sn+In)の値は、モル比で0.5以上であってもよく、0.07以上であってもよく、0.09以上であってもよい。In/(Sn+In)の値は、モル比で0.15以下であってもよく、0.13以下であってもよく、0.11以下であってもよい。 Since the second layer 240 is made of ITO, high conductivity can be obtained. In particular, since the film thickness can be increased, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate. The value of In / (Sn + In) is, for example, in the range of 0.03 to 0.2 in terms of molar ratio. Since it will show high electroconductivity if it is 0.03 or more, since a film thickness can be enlarged, it is excellent in the protection property with respect to the Si substrate and various functional layers formed on the substrate. If it is 0.20 or less, since Sn (tin) is dissolved, a homogeneous thin film can be produced. The molar ratio of In / (Sn + In) may be 0.5 or more, 0.07 or more, or 0.09 or more. The value of In / (Sn + In) may be 0.15 or less, 0.13 or less, or 0.11 or less in terms of molar ratio.
 第2の層240は、フッ素がドープされた酸化スズで構成されることにより、化学的耐久性が高く、特に、Si基板および基板上に形成された各種機能層に対する保護性に優れる。F/(Sn+F)の値は、例えば、モル比で0.01~0.2の範囲である。0.01以上であれば、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。0.2以下であれば、F(フッ素)が固溶するため、、均質な薄膜が作製できる。F/(Sn+F)の値は、モル比で0.03以上であってもよく、0.05以上であってもよく、0.08以上であってもよい。F/(Sn+F)の値は、モル比で0.15以下であってもよく、0.12以下であってもよく、0.1以下であってもよい。 The second layer 240 is composed of tin oxide doped with fluorine, so that the chemical durability is high, and in particular, the second substrate 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate. The value of F / (Sn + F) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained. In particular, since the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since F (fluorine) is dissolved, a homogeneous thin film can be produced. The value of F / (Sn + F) may be 0.03 or more, 0.05 or more, or 0.08 or more in terms of molar ratio. The value of F / (Sn + F) may be 0.15 or less in molar ratio, 0.12 or less, or 0.1 or less.
 さらに、(c)の場合、第2の層240は、酸化亜鉛、IZO(インジウム亜鉛酸化物)、アルミニウムがドープされた酸化亜鉛、またはガリウムがドープされた酸化亜鉛等で構成されてもよい。 Furthermore, in the case of (c), the second layer 240 may be made of zinc oxide, IZO (indium zinc oxide), zinc oxide doped with aluminum, zinc oxide doped with gallium, or the like.
 第2の層240は、酸化亜鉛で構成されることにより、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。 Since the second layer 240 is composed of zinc oxide, high conductivity can be obtained. In particular, since the film thickness can be increased, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate. .
 第2の層240は、IZOで構成されることにより、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。Zn/(Zn+In)の値は、例えば、モル比で0.01~0.2の範囲である。0.01以上であれば、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。Zn(亜鉛)が固溶するため、均質な薄膜が作製できる。Zn/(Zn+In)の値は、モル比で0.05以上であってもよく、0.08以上であってもよく、0.1以上であってもよい。Zn/(Zn+In)の値は、モル比で0.15以下であってもよく、0.13以下であってもよく、0.11以下であってもよい。 Since the second layer 240 is made of IZO, high conductivity can be obtained. In particular, since the film thickness can be increased, the second layer 240 is excellent in protection against the Si substrate and various functional layers formed on the substrate. The value of Zn / (Zn + In) is, for example, in the range of 0.01 to 0.2 in molar ratio. If it is 0.01 or more, high conductivity can be obtained. In particular, since the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. Since Zn (zinc) is dissolved, a homogeneous thin film can be produced. The value of Zn / (Zn + In) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio. The value of Zn / (Zn + In) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
 第2の層240は、アルミニウムがドープされた酸化亜鉛で構成されることにより、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。Al/(Zn+Al)の値は、例えば、モル比で0.01~0.2の範囲である。0.01以上であれば、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。0.2以下であれば、Al(アルミニウム)が固溶するため、均質な薄膜が作製できる。Al/(Zn+Al)の値は、モル比で0.05以上であってもよく、0.08以上であってもよく、0.1以上であってもよい。Al/(Zn+Al)の値は、モル比で0.15以下であってもよく、0.13以下であってもよく、0.11以下であってもよい。 Since the second layer 240 is made of zinc oxide doped with aluminum, high conductivity can be obtained. In particular, since the film thickness can be increased, various functional layers formed on the Si substrate and the substrate. Excellent protection against. The value of Al / (Zn + Al) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained. In particular, since the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since Al (aluminum) is dissolved, a homogeneous thin film can be produced. The value of Al / (Zn + Al) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio. The value of Al / (Zn + Al) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
 第2の層240は、ガリウムがドープされた酸化亜鉛で構成されることにより、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。Ga/(Zn+Ga)の値は、例えば、モル比で0.01~0.2の範囲である。0.01以上であれば、高い導電性が得られるため、特に、膜厚を大きくできることから、Si基板および基板上に形成された各種機能層に対する保護性に優れる。0.2以下であれば、Ga(ガリウム)が固溶するため、均質な薄膜が作製できる。Ga/(Zn+Ga)の値は、モル比で0.05以上であってもよく、0.08以上であってもよく、0.1以上であってもよい。Ga/(Zn+Ga)の値は、モル比で0.15以下であってもよく、0.13以下であってもよく、0.11以下であってもよい。 Since the second layer 240 is composed of zinc oxide doped with gallium, high conductivity can be obtained. In particular, since the film thickness can be increased, various functional layers formed on the Si substrate and the substrate are provided. Excellent protection against. The value of Ga / (Zn + Ga) is, for example, in the range of 0.01 to 0.2 in terms of molar ratio. If it is 0.01 or more, high conductivity can be obtained. In particular, since the film thickness can be increased, the Si substrate and various functional layers formed on the substrate are excellent in protection. If it is 0.2 or less, since Ga (gallium) is dissolved, a homogeneous thin film can be produced. The value of Ga / (Zn + Ga) may be 0.05 or more, 0.08 or more, or 0.1 or more in terms of molar ratio. The value of Ga / (Zn + Ga) may be 0.15 or less in molar ratio, 0.13 or less, or 0.11 or less.
 第2の層240は、結晶質であっても、非晶質であってもよい。 The second layer 240 may be crystalline or amorphous.
 第2の層240は、金属製の電極層250との間の界面(第2の界面)で、オーミック接合を形成し、第2の界面の接触抵抗は、比較的小さいという特徴を有する。また、第2の層240と第1の層230の間の界面(第3の界面)における接触抵抗も、有意に小さい。このため、第1の層230の上に第2の層240を設けても、界面数の増加による接触抵抗上昇の影響は少ない。 The second layer 240 is characterized in that an ohmic junction is formed at the interface (second interface) with the metal electrode layer 250, and the contact resistance of the second interface is relatively small. Further, the contact resistance at the interface (third interface) between the second layer 240 and the first layer 230 is also significantly small. For this reason, even if the second layer 240 is provided on the first layer 230, the influence of an increase in contact resistance due to an increase in the number of interfaces is small.
 また、前述のように、n型Si層220と第1の層230との間の界面(第1の界面)においても、接触抵抗は、有意に抑制される。 Also, as described above, the contact resistance is significantly suppressed also at the interface (first interface) between the n-type Si layer 220 and the first layer 230.
 従って、第2の半導体素子200においても、第1の半導体素子100の場合と同様の効果が得られる。すなわち、第2の半導体素子200では、第1~第3の界面、すなわちn型Si層220と第1の層230との間の界面(第1の界面)、第2の層240と電極層250との間の界面(第2の界面)、および第1の層230と第2の層240との間の界面(第3の界面)のそれぞれにおいて、接触抵抗が有意に抑制される。その結果、第2の半導体素子200では、作動時の効率を有意に向上させることができる。 Therefore, the same effects as those of the first semiconductor element 100 can be obtained in the second semiconductor element 200. That is, in the second semiconductor element 200, the first to third interfaces, that is, the interface (first interface) between the n-type Si layer 220 and the first layer 230, the second layer 240 and the electrode layer. Contact resistance is significantly suppressed at each of the interface between the first layer 230 and the second layer 240 (third interface). As a result, in the second semiconductor element 200, the efficiency during operation can be significantly improved.
 (第2の半導体素子200の製造方法)
 第2の半導体素子200の製造方法(以下、「第2の製造方法」と言う)としては、前述の図2に示した第1の製造方法のフロー図が参照できる。特に、前述の第1の製造方法におけるステップS110~ステップS120、およびステップS140は、そのまま、第2の製造方法に適用できる。
(Method for Manufacturing Second Semiconductor Element 200)
As a method for manufacturing the second semiconductor element 200 (hereinafter referred to as “second manufacturing method”), the flowchart of the first manufacturing method shown in FIG. 2 described above can be referred to. In particular, steps S110 to S120 and step S140 in the first manufacturing method described above can be applied to the second manufacturing method as they are.
 そこで、ここでは、特に図2に示したステップS130、すなわち、第2の層の設置方法の一例について説明する。 Therefore, here, in particular, step S130 shown in FIG. 2, that is, an example of an installation method of the second layer will be described.
 (第2の層240の設置方法)
 第2の層240は、前述のように、
 (a)チタン(Ti)および酸素(O)を含む金属酸化物、
 (b)スズ(Sn)および酸素(O)を含む金属酸化物、または
 (c)亜鉛(Zn)および酸素(O)を含む金属酸化物、
 のいずれかで構成される。
(Installation method of the second layer 240)
The second layer 240, as described above,
(A) a metal oxide containing titanium (Ti) and oxygen (O),
(B) a metal oxide containing tin (Sn) and oxygen (O), or (c) a metal oxide containing zinc (Zn) and oxygen (O),
Consists of either.
 第2の層240は、例えば、スパッタリング法を含む「気相蒸着法」により、形成することができる。 The second layer 240 can be formed by, for example, a “vapor deposition method” including a sputtering method.
 スパッタリング法には、DC(直流)スパッタリング法、高周波スパッタリング法、ヘリコン波スパッタリング法、イオンビームスパッタリング法、およびマグネトロンスパッタリング法等が含まれる。スパッタリング法では、大面積領域に、第2の層240を比較的均一に成膜することができる。 Sputtering methods include DC (direct current) sputtering method, high frequency sputtering method, helicon wave sputtering method, ion beam sputtering method, magnetron sputtering method and the like. In the sputtering method, the second layer 240 can be formed relatively uniformly in a large area region.
 ターゲットは、所定の材料を含むものであればよい。例えば、前述の(a)の場合、Tiを含むターゲットが使用される。また、前述の(b)の場合、Snを含むターゲットが使用される。さらに、前述の(c)の場合、Znを含むターゲットが使用される。これらのターゲットは、金属または金属酸化物であってもよい。また、ターゲットは、結晶質であってもよく、非晶質であってもよい。 The target only needs to include a predetermined material. For example, in the case of (a) described above, a target containing Ti is used. In the case of (b) described above, a target containing Sn is used. Further, in the case of (c) described above, a target containing Zn is used. These targets may be metals or metal oxides. The target may be crystalline or amorphous.
 第2の層240を非晶質または非晶質の状態が支配的な層とする場合、第2の層240を成膜する際の支持体210は、「積極的に」は加熱しないことが好ましい。 When the second layer 240 is a layer in which an amorphous state or an amorphous state is dominant, the support 210 in forming the second layer 240 may not be “positively” heated. preferable.
 なお、ここに示した第2の層240の設置方法は、単なる一例であって、第2の層240は、その他の方法で設置されてもよい。 Note that the installation method of the second layer 240 shown here is merely an example, and the second layer 240 may be installed by other methods.
 (本発明の一実施形態によるさらに別の半導体素子)
 次に、図4を参照して、本発明の一実施形態によるさらに別の半導体素子について説明する。
(Still another semiconductor device according to an embodiment of the present invention)
Next, still another semiconductor device according to an embodiment of the present invention will be described with reference to FIG.
 図4には、本発明の一実施形態によるさらに別の半導体素子(以下、「第3の半導体素子」と言う)の概略的な断面を示す。 FIG. 4 shows a schematic cross section of still another semiconductor element (hereinafter referred to as “third semiconductor element”) according to an embodiment of the present invention.
 図4に示すように、第3の半導体素子300は、支持体310と、n型Si層320と、第1の層330と、第3の層342と、第4の層344と、電極層350とを備える。 As shown in FIG. 4, the third semiconductor element 300 includes a support 310, an n-type Si layer 320, a first layer 330, a third layer 342, a fourth layer 344, and an electrode layer. 350.
 ここで、第3の半導体素子300は、図1に示した第1の半導体素子100とよく似た構成を有する。例えば、第3の半導体素子300において、支持体310~第3の層342まで、および電極層350は、それぞれ、第1の半導体素子100における支持体110~第2の層140まで、および電極層150と同様の構成を有する。すなわち、第3の半導体素子300における第3の層342は、第1の半導体素子100における第2の層140に対応する。 Here, the third semiconductor element 300 has a configuration very similar to that of the first semiconductor element 100 shown in FIG. For example, in the third semiconductor element 300, the support 310 to the third layer 342 and the electrode layer 350 are respectively the support 110 to the second layer 140 and the electrode layer in the first semiconductor element 100. 150 has the same configuration. That is, the third layer 342 in the third semiconductor element 300 corresponds to the second layer 140 in the first semiconductor element 100.
 ただし、第3の半導体素子300は、第3の層342と電極層350の間に、第4の層344を有する点で、第1の半導体素子100とは異なっている。換言すれば、第3の半導体素子300は、第1の半導体素子100において、第2の層140の代わりに、第3の層342および第4の層344の2層を配置した構成を有するとも言える。 However, the third semiconductor element 300 is different from the first semiconductor element 100 in that it has a fourth layer 344 between the third layer 342 and the electrode layer 350. In other words, the third semiconductor element 300 has a configuration in which two layers of the third layer 342 and the fourth layer 344 are arranged instead of the second layer 140 in the first semiconductor element 100. I can say.
 ここで、第4の層344は、第2の半導体素子200における第2の層240に相当する。すなわち、第4の層344は、
 (a)チタン(Ti)および酸素(O)を含む金属酸化物、
 (b)スズ(Sn)および酸素(O)を含む金属酸化物、または
 (c)亜鉛(Zn)および酸素(O)を含む金属酸化物、
 のいずれかで構成される。
Here, the fourth layer 344 corresponds to the second layer 240 in the second semiconductor element 200. That is, the fourth layer 344 is
(A) a metal oxide containing titanium (Ti) and oxygen (O),
(B) a metal oxide containing tin (Sn) and oxygen (O), or (c) a metal oxide containing zinc (Zn) and oxygen (O),
Consists of either.
 前述のように、(a)の場合、第4の層344は、Nb(ニオブ)がドープされた酸化チタンで構成されてもよい。また、(b)の場合、第4の層344は、酸化スズ、ITO(インジウムスズ酸化物)、またはフッ素がドープされた酸化スズ等で構成されてもよい。さらに、(c)の場合、第4の層344は、酸化亜鉛、IZO(インジウム亜鉛酸化物)、アルミニウムがドープされた酸化亜鉛、またはガリウムがドープされた酸化亜鉛等で構成されてもよい。 As described above, in the case of (a), the fourth layer 344 may be made of titanium oxide doped with Nb (niobium). In the case of (b), the fourth layer 344 may be composed of tin oxide, ITO (indium tin oxide), tin oxide doped with fluorine, or the like. Furthermore, in the case of (c), the fourth layer 344 may be made of zinc oxide, IZO (indium zinc oxide), zinc oxide doped with aluminum, zinc oxide doped with gallium, or the like.
 また、第4の層344は、結晶質であっても、非晶質であってもよい。 Further, the fourth layer 344 may be crystalline or amorphous.
 ここで、第3の半導体素子300は、前述の第1の半導体素子100および第2の半導体素子200に比べて、層数が1増えており、その結果、界面も一つ多くなっている。 Here, the number of layers of the third semiconductor element 300 is increased by one as compared with the first semiconductor element 100 and the second semiconductor element 200 described above, and as a result, one interface is also increased.
 しかしながら、本願発明者らの知見では、第3の層342と第4の層344の間の界面(以下、「第4の界面」という)の接触抵抗は、比較的低いことが確認されている。従って、第3の半導体素子300は、第1の半導体素子100および第2の半導体素子200に比べて、層数および界面数が増加しているものの、その影響はほとんど生じない。 However, the inventors' knowledge has confirmed that the contact resistance of the interface between the third layer 342 and the fourth layer 344 (hereinafter referred to as “fourth interface”) is relatively low. . Therefore, although the number of layers and the number of interfaces of the third semiconductor element 300 are larger than those of the first semiconductor element 100 and the second semiconductor element 200, the influence thereof hardly occurs.
 従って、このような構成を有する第3の半導体素子300においても、第1の半導体素子100および第2の半導体素子200の場合と同様の効果が得られる。すなわち、第3の半導体素子300では、n型Si層320と第1の層330との間の界面(第1の界面)、第4の層344と電極層350との間の界面(第2の界面)、および第1の層330と第3の層342との間の界面(第3の界面)のそれぞれにおいて、接触抵抗が有意に抑制される。 Therefore, also in the third semiconductor element 300 having such a configuration, the same effects as those of the first semiconductor element 100 and the second semiconductor element 200 can be obtained. That is, in the third semiconductor element 300, the interface between the n-type Si layer 320 and the first layer 330 (first interface), the interface between the fourth layer 344 and the electrode layer 350 (second interface). ) And the interface between the first layer 330 and the third layer 342 (third interface), the contact resistance is significantly suppressed.
 このため、第3の半導体素子300では、接触抵抗を第1の半導体素子100および第2の半導体素子200よりも低減できるため、素子効率を有意に向上させることができる。また、第3の層342と第4の層344との屈折率が異なる構成とすることにより、光学的な設計の自由度を高くすることができる。 For this reason, in the third semiconductor element 300, since the contact resistance can be reduced as compared with the first semiconductor element 100 and the second semiconductor element 200, the element efficiency can be significantly improved. In addition, when the third layer 342 and the fourth layer 344 have different refractive indexes, the degree of freedom in optical design can be increased.
 なお、第3の半導体素子300の製造方法は、前述の第1の半導体素子100および第2の半導体素子200の製造方法の記載から、当業者には容易に理解できる。
以上、第1~第3の半導体素子100、200、300を例に、本発明の一実施形態について説明した。しかしながら、本発明はこれらの構成に限定されるものではない。例えば、第1~第3の半導体素子100、200、300において、n型Si層120、220、320は、Si以外の別のn型半導体材料で構成されても良い。
A method for manufacturing the third semiconductor element 300 can be easily understood by those skilled in the art from the description of the method for manufacturing the first semiconductor element 100 and the second semiconductor element 200 described above.
The embodiment of the present invention has been described above by taking the first to third semiconductor elements 100, 200, and 300 as examples. However, the present invention is not limited to these configurations. For example, in the first to third semiconductor elements 100, 200, 300, the n-type Si layers 120, 220, 320 may be made of another n-type semiconductor material other than Si.
 (本発明の一実施形態による半導体素子の適用例)
 次に、本発明の一実施形態による半導体素子の適用例について説明する。なお、ここでは、前述の第1の半導体素子100の構成を例に、その適用例について説明する。ただし、前述の第2または第3の半導体素子200、300の構成においても、同様の適用が可能であることは当業者には明らかであろう。
(Application Example of Semiconductor Device According to One Embodiment of the Present Invention)
Next, application examples of the semiconductor device according to the embodiment of the present invention will be described. Here, the application example will be described by taking the configuration of the first semiconductor element 100 described above as an example. However, it will be apparent to those skilled in the art that the same application is possible in the configuration of the second or third semiconductor elements 200 and 300 described above.
 (太陽電池モジュール)
 本発明の一実施形態による半導体素子は、例えば太陽電池モジュールに適用することができる。
(Solar cell module)
The semiconductor device according to one embodiment of the present invention can be applied to, for example, a solar cell module.
 図5にはそのような太陽電池モジュールの一構成例を模式的に示す。 FIG. 5 schematically shows a configuration example of such a solar cell module.
 図5に示すように、太陽電池モジュール500は、複数の太陽電池セル502を、相互に電気的に直列に接続することにより構成される。 As shown in FIG. 5, the solar cell module 500 is configured by electrically connecting a plurality of solar cells 502 in series with each other.
 各太陽電池セル502は、金属製の第1の電極560Aおよび第2の電極560Bを有し、両電極560A、560Bの間には、第1の部分580および第2の部分590が配置される。換言すれば、太陽電池セル502は、下から順に、第2の電極560B、第2の部分590、第1の部分580、および第1の電極560Aを配置することにより構成される。 Each solar cell 502 includes a first electrode 560A and a second electrode 560B made of metal, and the first portion 580 and the second portion 590 are disposed between the electrodes 560A and 560B. . In other words, the solar battery cell 502 is configured by disposing the second electrode 560B, the second portion 590, the first portion 580, and the first electrode 560A in order from the bottom.
 第1の電極560Aは、隣接する右側の太陽電池セル502の第2の電極560Bと電気的に接続される。また、第2の電極560Bは、隣接する左側の太陽電池セル502の第1の電極560Aと電気的に接続される。これにより、各太陽電池セル502が、相互に直列に接続される。 The first electrode 560A is electrically connected to the second electrode 560B of the adjacent right solar cell 502. The second electrode 560B is electrically connected to the first electrode 560A of the adjacent left solar cell 502. Thereby, each photovoltaic cell 502 is mutually connected in series.
 第1の部分580は、n型Si層を有し、第2の部分590は、p型Si層を有する。第1の部分580のn型Si層は、第2の部分590のp型Si層との間で、pn接合を形成する。 The first portion 580 has an n-type Si layer, and the second portion 590 has a p-type Si layer. The n-type Si layer of the first portion 580 forms a pn junction with the p-type Si layer of the second portion 590.
 ここで、第2の部分590~第1の電極560Aは、前述の第1の半導体素子100で構成される。すなわち、太陽電池セル502における第2の部分590は、第1の半導体素子100の支持体110に対応し、太陽電池セル502における第1の部分580は、第1の半導体素子100のn型Si層120、第1の層130、および第2の層140に対応し、太陽電池セル502における第1の電極560Aは、第1の半導体素子100の電極層150に対応する。 Here, the second portion 590 to the first electrode 560A are composed of the first semiconductor element 100 described above. That is, the second portion 590 in the solar cell 502 corresponds to the support 110 of the first semiconductor element 100, and the first portion 580 in the solar cell 502 is the n-type Si of the first semiconductor element 100. Corresponding to the layer 120, the first layer 130, and the second layer 140, the first electrode 560 </ b> A in the solar battery cell 502 corresponds to the electrode layer 150 of the first semiconductor element 100.
 前述のように、従来の太陽電池モジュールでは、第1の電極と第1の部分580におけるn型Si層との間の接触抵抗が比較的高く、このため、発電効率の向上には限界があった。 As described above, in the conventional solar cell module, the contact resistance between the first electrode and the n-type Si layer in the first portion 580 is relatively high, and thus there is a limit to improving the power generation efficiency. It was.
 しかしながら、図5に示した太陽電池モジュール500には、前述の特徴を有する第1の半導体素子100が適用されている。このため、太陽電池モジュール500では、発電効率を有意に向上させることが可能になる。 However, the first semiconductor element 100 having the above-described characteristics is applied to the solar cell module 500 shown in FIG. For this reason, in the solar cell module 500, the power generation efficiency can be significantly improved.
 (TFT)
 本発明の一実施形態による半導体素子は、例えばTFTに適用することができる。
(TFT)
The semiconductor device according to an embodiment of the present invention can be applied to, for example, a TFT.
 図6には、そのようなTFTの一構成例を模式的に示す。 FIG. 6 schematically shows a configuration example of such a TFT.
 図6に示すように、TFT600は、ゲート電極601、ゲート絶縁膜603、アモルファスSi層690、n型Si層680、第1の電極660A(例えばソース)、第2の電極660B(例えばドレイン)、チャネル保護層670、および保護膜675を有する。 As shown in FIG. 6, the TFT 600 includes a gate electrode 601, a gate insulating film 603, an amorphous Si layer 690, an n-type Si layer 680, a first electrode 660A (for example, a source), a second electrode 660B (for example, a drain), A channel protective layer 670 and a protective film 675 are included.
 なお、これらの部材の役割は、当業者には明らかなため、ここでは、詳細な記載を省略する。 In addition, since the role of these members is clear to those skilled in the art, detailed description is omitted here.
 ここで、アモルファスSi層690~第1の電極660Aの部分、またはアモルファスSi層690~第2の電極660Bの部分は、前述の第1の半導体素子100で構成される。すなわち、TFT600におけるアモルファスSi層690は、第1の半導体素子100の支持体110に対応し、TFT600におけるn型Si層680は、第1の半導体素子100のn型Si層120、第1の層130、および第2の層140に対応し、TFT600における第1の電極660Aまたは第2の電極660Bは、第1の半導体素子100の電極層150に対応する。 Here, the portion of the amorphous Si layer 690 to the first electrode 660A or the portion of the amorphous Si layer 690 to the second electrode 660B is composed of the first semiconductor element 100 described above. That is, the amorphous Si layer 690 in the TFT 600 corresponds to the support 110 of the first semiconductor element 100, and the n-type Si layer 680 in the TFT 600 is the n-type Si layer 120 and the first layer of the first semiconductor element 100. 130 and the second layer 140, the first electrode 660A or the second electrode 660B in the TFT 600 corresponds to the electrode layer 150 of the first semiconductor element 100.
 前述のように、従来のTFTでは、第1または第2の電極と、n型Si層との間の接触抵抗が比較的高く、このため、作動効率の向上には限界があった。 As described above, in the conventional TFT, the contact resistance between the first or second electrode and the n-type Si layer is relatively high, so that there is a limit to the improvement of the operation efficiency.
 しかしながら、図6に示したTFT600には、前述の特徴を有する第1の半導体素子100が適用されている。このため、TFT600では、作動効率を有意に向上させることが可能になる。 However, the first semiconductor element 100 having the above-described characteristics is applied to the TFT 600 shown in FIG. For this reason, in the TFT 600, it is possible to significantly improve the operation efficiency.
 以上、太陽電池モジュールおよびTFTを例に、本発明の一実施形態による半導体素子の適用例について説明した。しかしながら、これらの適用例は、単なる一例に過ぎず、本発明の一実施形態による半導体素子は、その他の装置に適用されてもよい。 The application example of the semiconductor element according to the embodiment of the present invention has been described above using the solar cell module and the TFT as examples. However, these application examples are merely examples, and the semiconductor element according to the embodiment of the present invention may be applied to other apparatuses.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
 (例1)
 以下の方法により、前述の図1に示したような半導体素子を製造した。
(Example 1)
The semiconductor device as shown in FIG. 1 was manufactured by the following method.
 まず、n型のSi基板を準備した。n型のSi基板は、寸法が縦30mm×横30mm×厚さ0.5mmであり、電子密度は1015cm-3であった。 First, an n-type Si substrate was prepared. The n-type Si substrate had dimensions of 30 mm length × 30 mm width × 0.5 mm thickness, and the electron density was 10 15 cm −3 .
 なお、、n型のSi基板(以下、単に「基板」という)は、使用前にフッ酸および純水により洗浄し、表面の自然酸化膜を除去した。 The n-type Si substrate (hereinafter simply referred to as “substrate”) was washed with hydrofluoric acid and pure water before use to remove the natural oxide film on the surface.
 次に、基板をスパッタリング装置に導入した。スパッタリング装置内を3×10-7Paまで排気後、スパッタリング法により、基板上に、第1の層として、非晶質C12A7エレクトライドを成膜した。 Next, the substrate was introduced into a sputtering apparatus. After evacuating the inside of the sputtering apparatus to 3 × 10 −7 Pa, an amorphous C12A7 electride was formed as a first layer on the substrate by sputtering.
 成膜の際には、メタルマスクを使用し、基板上に、幅200μm×長さ800μm×厚さ2nmの矩形状の4本の第1の層(厚さ2nm)を形成した。隣接する矩形同士の間隔は、それぞれ、400μm、600μm、および800μmとした。 During film formation, a metal mask was used to form four rectangular first layers (thickness 2 nm) having a width of 200 μm × length of 800 μm × thickness of 2 nm on a substrate. The intervals between adjacent rectangles were 400 μm, 600 μm, and 800 μm, respectively.
 成膜の際には、RFパワーを100Wとし、 成膜ガスとしてArを用い、全圧を0.15Paとした。また、基板とターゲット間の距離は、100mmとした。 During film formation, the RF power was 100 W, Ar was used as the soot film forming gas, and the total pressure was 0.15 Pa. The distance between the substrate and the target was 100 mm.
 得られた第1の層の電子密度は、1021cm-3であった。 The electron density of the obtained first layer was 10 21 cm −3 .
 次に、基板をスパッタリング装置に導入したまま、各矩形状の第1の層の上に、スパッタリング法により、第2の層を成膜した。第2の層は、ZSO層とした。 Next, a second layer was formed by sputtering on each rectangular first layer while the substrate was introduced into the sputtering apparatus. The second layer was a ZSO layer.
 ターゲットには、モル比でZn:Si=80:20の組成のものを使用した。 As the target, a composition having a molar ratio of Zn: Si = 80: 20 was used.
 成膜時のターゲットと基板の間の距離は、100mmとした。成膜時のスパッタガスは、ArとOの混合ガスとし、スパッタガスの圧力は、0.4Paとした。なお、Arの流量は39.9sccmとし、Oの流量は0.1sccmとした。RFプラズマパワーは、100Wであった。これにより、第1の層の上にのみ、厚さ10nmの第2の層が成膜された。
得られた第2の層の電子密度は、1015cm-3であった。
The distance between the target and the substrate during film formation was 100 mm. The sputtering gas at the time of film formation was a mixed gas of Ar and O 2 , and the pressure of the sputtering gas was 0.4 Pa. The Ar flow rate was 39.9 sccm, and the O 2 flow rate was 0.1 sccm. The RF plasma power was 100W. As a result, a second layer having a thickness of 10 nm was formed only on the first layer.
The electron density of the obtained second layer was 10 15 cm −3 .
 その後、各層が形成された基板を大気中に取り出し、1.5時間放置した。 Thereafter, the substrate on which each layer was formed was taken out into the atmosphere and left for 1.5 hours.
 次に、基板を同じスパッタリング装置に戻し、第2の層の上にのみ、Al合金層(以下、「Al電極」という)を形成した。Al電極は、Al:2%Ndターゲットを使用し、スパッタリング法により成膜した。 Next, the substrate was returned to the same sputtering apparatus, and an Al alloy layer (hereinafter referred to as “Al electrode”) was formed only on the second layer. The Al electrode was formed by sputtering using an Al: 2% Nd target.
 4本の矩形のいずれの部分においても、Al電極の厚さは、200nmであった。 In any part of the four rectangles, the thickness of the Al electrode was 200 nm.
 このような方法により、半導体素子(以下、「サンプルA」と称する)が形成された。 A semiconductor element (hereinafter referred to as “sample A”) was formed by such a method.
 (例2)
 例1と同様の方法により、半導体素子を製造した。
(Example 2)
A semiconductor device was manufactured in the same manner as in Example 1.
 ただし、この例3では、第1の層の上に、第2の層として、Nb(ニオブ)がドープされた酸化チタンを成膜した。ターゲットには、モル比でTi:Nb=94:6の組成のものを使用した。成膜時のターゲットと基板の間の距離は、100mmとした。成膜時のスパッタガスは、ArとOの混合ガスとし、スパッタガスの圧力は、0.4Paとした。なお、Arの流量は40sccmとした。RFプラズマパワーは、100Wであった。これにより、第1の層の上にのみ、厚さ10nmの第2の層が成膜された。このとき、第2の層は非晶質であった。 However, in Example 3, titanium oxide doped with Nb (niobium) was formed as the second layer on the first layer. A target having a composition of Ti: Nb = 94: 6 in molar ratio was used. The distance between the target and the substrate during film formation was 100 mm. The sputtering gas at the time of film formation was a mixed gas of Ar and O 2 , and the pressure of the sputtering gas was 0.4 Pa. The flow rate of Ar was 40 sccm. The RF plasma power was 100W. As a result, a second layer having a thickness of 10 nm was formed only on the first layer. At this time, the second layer was amorphous.
 その後、各層が形成された基板を大気中に取り出し、48時間放置した。 Thereafter, the substrate on which each layer was formed was taken out into the atmosphere and left for 48 hours.
 次に、基板を同じスパッタリング装置に戻し、第2の層の上にのみ、Al電極を形成した。 Next, the substrate was returned to the same sputtering apparatus, and an Al electrode was formed only on the second layer.
 得られた半導体素子を、以下、「サンプルB」と称する。 Hereinafter, the obtained semiconductor element is referred to as “sample B”.
 (例3)
 例1と同様の方法により、半導体素子を製造した。
(Example 3)
A semiconductor device was manufactured in the same manner as in Example 1.
 ただし、この例3では、第1の層の上に、第2の層を成膜しなかった。すなわち、非晶質C12A7エレクトライド層の上には、直接Al電極を形成した。各層の成膜条件等は、例1の場合と同様である。 However, in Example 3, the second layer was not formed on the first layer. That is, an Al electrode was directly formed on the amorphous C12A7 electride layer. The film forming conditions for each layer are the same as in Example 1.
 得られた半導体素子を、以下、「サンプルC」と称する。 Hereinafter, the obtained semiconductor element is referred to as “sample C”.
 (評価)
 前述のサンプルA、サンプルBおよびサンプルCを用いて、抵抗測定を行った。抵抗測定には、TLM法(Transmission Line Model)法を使用した。
(Evaluation)
Resistance measurement was performed using Sample A, Sample B, and Sample C described above. For the resistance measurement, a TLM method (Transmission Line Model) was used.
 この方法では、各2本のAl電極の間の電流および電圧を測定することにより、2つのAl電極間距離の関数として、サンプルの抵抗値を測定することができる。電流電圧計には、Keithley 2635Bを使用した。 In this method, the resistance value of the sample can be measured as a function of the distance between the two Al electrodes by measuring the current and voltage between each two Al electrodes. Keithley 2635B was used for the ammeter.
 測定の結果、サンプルAおよびサンプルBでは、抵抗変化がオーミック性であることが確認された。一方、サンプルCでは、抵抗変化がオーミック性ではないことが確認された。 As a result of measurement, in Sample A and Sample B, it was confirmed that the resistance change was ohmic. On the other hand, in sample C, it was confirmed that the resistance change was not ohmic.
 図7には、サンプルA、サンプルB、およびサンプルCにおいて得られた測定結果をまとめて示す。 FIG. 7 collectively shows the measurement results obtained for Sample A, Sample B, and Sample C.
 図7において、横軸は、Al電極間の距離であり、縦軸は、抵抗値である。 7, the horizontal axis is the distance between the Al electrodes, and the vertical axis is the resistance value.
 図7から、サンプルAおよびサンプルBは、サンプルCに比べて、有意に低い抵抗値を示すことがわかる。なお、図には示さないが、基板の上に、直接4本の矩形状のAl電極を形成して、同様の測定を行った。その結果、そのようなサンプルでは、抵抗変化がオーミック性ではないことが確認された。また抵抗の絶対値は、Al電極間の距離に関わらず、有意に高いことがわかった。
この原因として酸化物である非晶質C12A7エレクトライド層の界面の変質が考えられる。非晶質C12A7エレクトライド層の電気伝導はケージからO2-が抜けて代わりにeが入ってeが移動することによって得られると考えられるが、非晶質C12A7エレクトライド層の界面のケージに酸素原子が入って電気特性が低下することが推察され、非晶質C12A7エレクトライド層特有の現象と考えられる。
From FIG. 7, it can be seen that Sample A and Sample B show significantly lower resistance values than Sample C. Although not shown in the figure, four rectangular Al electrodes were formed directly on the substrate, and the same measurement was performed. As a result, it was confirmed that the resistance change was not ohmic in such a sample. It was also found that the absolute value of the resistance was significantly high regardless of the distance between the Al electrodes.
This may be due to alteration of the interface of the amorphous C12A7 electride layer, which is an oxide. The electric conduction of the amorphous C12A7 electride layer is considered to be obtained by O 2 coming out of the cage and e entering instead of moving the e −, but at the interface of the amorphous C12A7 electride layer. It is inferred that oxygen atoms enter the cage and the electrical characteristics deteriorate, which is considered to be a phenomenon peculiar to the amorphous C12A7 electride layer.
 このように、n型層の直上に前述の第1の層(C12A7エレクトライド層)を配置するとともに、Al電極の直下に前述の第2の層(ZSO層または酸化チタン層)を配置することにより、第1の界面および第2の界面の接触抵抗がともに抑制され、半導体素子の全体の抵抗値を低減できることが確認された。 In this way, the first layer (C12A7 electride layer) is disposed immediately above the n-type layer, and the second layer (ZSO layer or titanium oxide layer) is disposed directly below the Al electrode. Thus, it was confirmed that the contact resistances of the first interface and the second interface are both suppressed, and the overall resistance value of the semiconductor element can be reduced.
 本発明の半導体素子は、例えば、太陽電池モジュールおよび薄膜トランジスタ(TFT)に適用することができる。また、電気光学装置のような各種電子デバイス等に使用される半導体装置等に適用することができる。例えば、テレビなどのディスプレイ、洗濯機や冷蔵庫などの電化製品、携帯電話やコンピュータなどの情報処理機器などの電子機器に用いることができる。また、本発明の半導体素子は、自動車や各種産業機器などが具備する電子機器にも用いることができる。 The semiconductor element of the present invention can be applied to, for example, a solar cell module and a thin film transistor (TFT). Further, the present invention can be applied to semiconductor devices used for various electronic devices such as electro-optical devices. For example, it can be used for electronic devices such as displays such as televisions, electrical appliances such as washing machines and refrigerators, and information processing devices such as mobile phones and computers. In addition, the semiconductor element of the present invention can be used for electronic devices included in automobiles and various industrial equipment.
 本願は、2016年10月3日に出願した日本国特許出願2016-195785号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2016-195785 filed on October 3, 2016, the entire contents of which are incorporated herein by reference.
 100   第1の半導体素子
 110   支持体
 120   n型Si層
 130   第1の層
 140   第2の層
 150   電極層
 200   第2の半導体素子
 210   支持体
 220   n型Si層
 230   第1の層
 240   第2の層
 250   電極層
 300   第3の半導体素子
 310   支持体
 320   n型Si層
 330   第1の層
 342   第3の層
 344   第4の層
 350   電極層
 500   太陽電池モジュール
 502   各太陽電池セル
 560A  第1の電極
 560B  第2の電極
 580   第1の部分
 590   第2の部分
 600   TFT
 601   ゲート電極
 603   ゲート絶縁膜
 660A  第1の電極
 660B  第2の電極
 670   チャネル保護層
 675   保護膜
 680   n型Si層
 690   アモルファスSi層
DESCRIPTION OF SYMBOLS 100 1st semiconductor element 110 Support body 120 n-type Si layer 130 1st layer 140 2nd layer 150 Electrode layer 200 2nd semiconductor element 210 Support body 220 n-type Si layer 230 1st layer 240 2nd Layer 250 electrode layer 300 third semiconductor element 310 support 320 n-type Si layer 330 first layer 342 third layer 344 fourth layer 350 electrode layer 500 solar cell module 502 each solar cell 560A first electrode 560B Second electrode 580 First portion 590 Second portion 600 TFT
601 gate electrode 603 gate insulating film 660A first electrode 660B second electrode 670 channel protective layer 675 protective film 680 n-type Si layer 690 amorphous Si layer

Claims (9)

  1.  n型Si部分と、
     該n型Si部分の上に配置された第1の層と、
     該第1の層の上に配置された第2の層と、
     前記第2の層の上に配置された電極層と、
     を有し、
     前記第1の層は、カルシウム原子およびアルミニウム原子を含む酸化物のエレクトライドで構成され、
     前記第2の層は、以下の群:
      (i)亜鉛(Zn)および酸素(O)を含み、さらに、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1つを含む金属酸化物、
      (ii)チタン(Ti)および酸素(O)を含む金属酸化物、
      (iii)スズ(Sn)および酸素(O)を含む金属酸化物、ならびに
      (iv)亜鉛(Zn)および酸素(O)を含む金属酸化物、
     から選定される、半導体素子。
    an n-type Si portion;
    A first layer disposed on the n-type Si portion;
    A second layer disposed on the first layer;
    An electrode layer disposed on the second layer;
    Have
    The first layer is composed of an oxide electride containing calcium atoms and aluminum atoms,
    Said second layer comprises the following groups:
    (I) a metal oxide comprising zinc (Zn) and oxygen (O), and further comprising at least one of silicon (Si) and tin (Sn);
    (Ii) a metal oxide containing titanium (Ti) and oxygen (O),
    (Iii) a metal oxide containing tin (Sn) and oxygen (O), and (iv) a metal oxide containing zinc (Zn) and oxygen (O),
    A semiconductor element selected from
  2.  前記第1の層は、非晶質である、請求項1に記載の半導体素子。 The semiconductor element according to claim 1, wherein the first layer is amorphous.
  3.  前記(i)の金属酸化物は、非晶質である、請求項1または2に記載の半導体素子。 3. The semiconductor element according to claim 1, wherein the metal oxide (i) is amorphous.
  4.  前記(ii)の金属酸化物は、Nb(ニオブ)がドープされた酸化チタンである、請求項1乃至3のいずれか一つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 3, wherein the metal oxide (ii) is titanium oxide doped with Nb (niobium).
  5.  前記(iii)の金属酸化物は、インジウムスズ酸化物(ITO)、またはフッ素ドープ酸化スズである、請求項1乃至4のいずれか一つに記載の半導体素子。 5. The semiconductor element according to claim 1, wherein the metal oxide (iii) is indium tin oxide (ITO) or fluorine-doped tin oxide.
  6.  前記(iv)の金属酸化物は、アルミニウムおよび/またはガリウムがドープされた酸化亜鉛である、請求項1乃至5のいずれか一つに記載の半導体素子。 The semiconductor element according to any one of claims 1 to 5, wherein the metal oxide (iv) is zinc oxide doped with aluminum and / or gallium.
  7.  前記第2の層は、前記第1の層に近い側から、第3の層および第4の層を含む、少なくとも2層で構成され、
     前記第3の層は、前記(i)から選定され、
     前記第4の層は、前記(ii)~(iv)の一つから選定される、請求項1乃至6のいずれか一つに記載の半導体素子。
    The second layer is composed of at least two layers including a third layer and a fourth layer from the side close to the first layer,
    The third layer is selected from (i),
    7. The semiconductor device according to claim 1, wherein the fourth layer is selected from one of (ii) to (iv).
  8.  請求項1乃至7のいずれか一つに記載の半導体素子を備える太陽電池モジュール。 A solar cell module comprising the semiconductor element according to any one of claims 1 to 7.
  9.  請求項1乃至7のいずれか一つに記載の半導体素子を備えるTFT。 A TFT comprising the semiconductor element according to claim 1.
PCT/JP2017/035690 2016-10-03 2017-09-29 Semiconductor element WO2018066483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018543876A JPWO2018066483A1 (en) 2016-10-03 2017-09-29 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-195785 2016-10-03
JP2016195785 2016-10-03

Publications (1)

Publication Number Publication Date
WO2018066483A1 true WO2018066483A1 (en) 2018-04-12

Family

ID=61832066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035690 WO2018066483A1 (en) 2016-10-03 2017-09-29 Semiconductor element

Country Status (3)

Country Link
JP (1) JPWO2018066483A1 (en)
TW (1) TW201834248A (en)
WO (1) WO2018066483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218354A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light emitting diode, and nanoparticle aggregate manufacturing method
JP2020202360A (en) * 2019-06-13 2020-12-17 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
CN115052837A (en) * 2020-02-17 2022-09-13 国立研究开发法人科学技术振兴机构 Layered double hydroxide electronic compound and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114332A (en) * 2008-11-08 2010-05-20 Japan Science & Technology Agency Variable-resistance nonvolatile memory element
JP2015026703A (en) * 2013-07-26 2015-02-05 旭硝子株式会社 Photoelectric conversion element and imaging device
JP2015070114A (en) * 2013-09-30 2015-04-13 エルジー ディスプレイ カンパニー リミテッド Thin film semiconductor device
WO2015098458A1 (en) * 2013-12-26 2015-07-02 国立大学法人東京工業大学 Metal oxide thin film, organic electroluminescence element provided with thin film, solar cell, and organic solar cell
WO2015098225A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Semiconductor device and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114332A (en) * 2008-11-08 2010-05-20 Japan Science & Technology Agency Variable-resistance nonvolatile memory element
JP2015026703A (en) * 2013-07-26 2015-02-05 旭硝子株式会社 Photoelectric conversion element and imaging device
JP2015070114A (en) * 2013-09-30 2015-04-13 エルジー ディスプレイ カンパニー リミテッド Thin film semiconductor device
WO2015098458A1 (en) * 2013-12-26 2015-07-02 国立大学法人東京工業大学 Metal oxide thin film, organic electroluminescence element provided with thin film, solar cell, and organic solar cell
WO2015098225A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218354A1 (en) * 2019-04-25 2020-10-29 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light emitting diode, and nanoparticle aggregate manufacturing method
CN113711378A (en) * 2019-04-25 2021-11-26 Agc株式会社 Nanoparticle aggregate, nanoparticle dispersion liquid, ink, thin film, organic light-emitting diode, and method for producing nanoparticle aggregate
JP2020202360A (en) * 2019-06-13 2020-12-17 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system
JP7378974B2 (en) 2019-06-13 2023-11-14 株式会社東芝 Solar cells, multijunction solar cells, solar cell modules and solar power generation systems
CN115052837A (en) * 2020-02-17 2022-09-13 国立研究开发法人科学技术振兴机构 Layered double hydroxide electronic compound and method for producing same

Also Published As

Publication number Publication date
JPWO2018066483A1 (en) 2019-07-18
TW201834248A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
JP6148311B2 (en) Electronic equipment
JP6296463B2 (en) Thin film transistor and manufacturing method thereof
TWI442570B (en) Semiconductor thin film and its manufacturing method and thin film transistor
JP5242083B2 (en) Crystalline oxide semiconductor and thin film transistor using the same
JP5466939B2 (en) Semiconductor device, polycrystalline semiconductor thin film, method for manufacturing polycrystalline semiconductor thin film, field effect transistor, and method for manufacturing field effect transistor
JP5917385B2 (en) Method for manufacturing semiconductor device
TWI478347B (en) A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
JP5966840B2 (en) Oxide semiconductor thin film and thin film transistor
JP2016192567A (en) Oxide layer and semiconductor device
TW201234593A (en) Semiconductor device
JP2011100979A (en) Oxide semiconductor film and semiconductor device
CN103137701A (en) Transistor and semiconductor device
WO2018066483A1 (en) Semiconductor element
JP6149725B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20160105490A (en) Wiring film for flat panel display
KR20120074276A (en) Transparent conductive film and device comprising same
WO2015098225A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6143423B2 (en) Manufacturing method of semiconductor device
WO2015115330A1 (en) Thin-film transistor, oxide semiconductor, and method for producing same
Li et al. Sr: F co-doping of In2O3 thin film and its dual inhibition effect on trap states to achieve a high stability thin film transistor deposited by solution process
JP6308583B2 (en) Thin film transistor, thin film transistor manufacturing method, and semiconductor device
KR20110133317A (en) Thin film transistor with oxide semiconductor comprising silicon
KR20120118171A (en) Electronic device having passivation layer including magnesium oxide and method for fabricating the same
JP6252904B2 (en) Oxide semiconductor and its production method
JP5581416B2 (en) Crystalline oxide semiconductor and thin film transistor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858321

Country of ref document: EP

Kind code of ref document: A1